1
|
Liu L, Chen Y, Qi J, Sun J, Zhang L. The role of sulfidated zero-valent iron in enhancing anaerobic digestion of waste activated sludge. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 375:124283. [PMID: 39862835 DOI: 10.1016/j.jenvman.2025.124283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/16/2024] [Accepted: 01/19/2025] [Indexed: 01/27/2025]
Abstract
Zero-valent iron (ZVI) has been confirmed in enhancing methane production by improving interspecies electron transfer during anaerobic digestion (AD) of waste activated sludge (WAS). In this study, we suppose that sulfidated zero-valent iron (S-ZVI), a semiconductor material, has better property of electron transfer in AD process. Based on two-phase anaerobic digestion process, nitrite and S-ZVI were used separately for improving acidogenic phase and methanogenic phase of anaerobic sludge digestion. Based on XRD and XPS, Fe(Ⅱ)-O and Fe(Ⅲ)-O were substituted by Fe(Ⅱ)-S and Fe(Ⅲ)-S after ZVI sulfidation, which increased the electric conductivity of S-ZVI. Nyquist plot and Tafel corrosion curve showed that the sulfidation treatment can reduce impedance of electronic transmission. The results showed that the addition of S-ZVI increased methane production by 24.22% compared with ZVI alone. The addition of S-ZVI increased the relative abundance of Actinobacteria in R3(Raw + S-ZVI) and R6(NO2- + S-ZVI), enhancing the activity of microbial in anaerobic sludge digestion. The relative abundance of Acidobacteriota, Synergistota, WPS-2, Firmicutes, Caldisericota, and Gampylobactenota have changed markedly, and facilitated the activity of acidogenic microbes to produce more biodegradable organic matter, further boosting methane production. The findings of in-situ formation of S-ZVI in R5 anaerobic digestion saves the economic cost of S-ZVI preparation, which will be helpful for the extensive application of this technology.
Collapse
Affiliation(s)
- Lei Liu
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, China; Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Ying Chen
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Jun Qi
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Jianliang Sun
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, China; Institute of Science and Technology Innovation Co., Ltd., South China Normal University, Qingyuan, 511517, China
| | - Liguo Zhang
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, China; Institute of Science and Technology Innovation Co., Ltd., South China Normal University, Qingyuan, 511517, China.
| |
Collapse
|
2
|
Exogenous Melatonin Reprograms the Rhizosphere Microbial Community to Modulate the Responses of Barley to Drought Stress. Int J Mol Sci 2022; 23:ijms23179665. [PMID: 36077064 PMCID: PMC9456345 DOI: 10.3390/ijms23179665] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/17/2022] [Accepted: 08/23/2022] [Indexed: 02/08/2023] Open
Abstract
The rhizospheric melatonin application-induced drought tolerance has been illuminated in various plant species, while the roles of the rhizosphere microbial community in this process are still unclear. Here, the diversity and functions of the rhizosphere microbial community and related physiological parameters were tested in barley under the rhizospheric melatonin application and drought. Exogenous melatonin improved plant performance under drought via increasing the activities of non-structural carbohydrate metabolism enzymes and activating the antioxidant enzyme systems in barley roots under drought. The 16S/ITS rRNA gene sequencing revealed that drought and melatonin altered the compositions of the microbiome. Exogenous melatonin increased the relative abundance of the bacterial community in carbohydrate and carboxylate degradation, while decreasing the relative abundance in the pathways of fatty acid and lipid degradation and inorganic nutrient metabolism under drought. These results suggest that the effects of melatonin on rhizosphere microbes and nutrient condition need to be considered in its application for crop drought-resistant cultivation.
Collapse
|
3
|
Papp LA, Cardinali-Rezende J, de Souza Júdice WA, Sanchez MB, Araújo WL. Low biological phosphorus removal from effluents treated by slow sand filters. Appl Microbiol Biotechnol 2022; 106:5797-5809. [PMID: 35930038 DOI: 10.1007/s00253-022-12077-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/01/2022] [Accepted: 07/11/2022] [Indexed: 11/02/2022]
Abstract
The legislation for environment protection requires strict controls of the wastewater releasing in water bodies. The wastewater treatment plants (WWTP) have been used for organic matter degradation; however, the residual total phosphorus (TP) removal has not been efficient. TP and nitrogen present in wastewater are associated to eutrophication of water bodies and algae growth. Therefore, this study discusses the efficiency of phosphorus removal by a slow filter (SF), complementary to a WWTP and the microbial community involved. The results showed that the use of SF, with or without macrophytes, is not suitable to remove TP. Spatial variation in microbial communities distributed in three distinct zones was identified in the SF. Proteobacteria, Bacteroidetes, Chloroflexi and Firmicutes covered the hydrolytic and fermentative bacteria. The acetogenesis, nitrification, and denitrification, as well as the removal of phosphorus from the effluent, were performed by representatives affiliated to different groups. Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria among these, Dokdonella sp., Frateuria sp., Comamonas sp., Diaphorobacter sp., Nitrosospira sp., Ferruginibacter sp., Flavobacterium sp., and the uncultured OD1 were the most abundant bacteria in the SF. The low efficiency for TP removing from SF effluents can be explained by the low abundance of phosphorus accumulating organisms (PAOs), with the association of the low concentration of biodegradable organic matter in the inlet effluent. Therefore, the alternative to using SF as a complement to WWTPs, as recommended by some Brazilian environmental agencies, did not prove to be viable and new approaches must be evaluated. KEY POINTS: • The phosphorus removal was performed by a slow filter system in a WWTP but obtained a low efficiency. • Microbial spatial variation was distributed into distinct zones from slow filter. • Low abundance of PAOs was observed due to the low availability of organic matter.
Collapse
Affiliation(s)
- Luiz Antonio Papp
- ICB, Integrated Center of Biotechnology, University of Mogi das Cruzes, Dr. Cândido Xavier de Almeida e Souza avenue, 200, Mogi das Cruzes, SP, cep 08780-911, Brazil
| | - Juliana Cardinali-Rezende
- CCNH, Center for Natural and Human Science, Federal University of ABC, Estados avenue, 5001, Santo André, SP, cep 09210-580, Brazil.,LABMEM/NAP-BIOP, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Prof. Lineu Prestes Avenue, 1374, SP, cep 05508-900, São Paulo, Brazil
| | - Wagner Alves de Souza Júdice
- ICBR, Interdisciplinary Center for Biochemical Research, University of Mogi das Cruzes, Dr. Cândido Xavier de Almeida e Souza Avenue, 200, Mogi das Cruzes, SP, cep 08780-911, Brazil
| | - Marília Bixilia Sanchez
- LABMEM/NAP-BIOP, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Prof. Lineu Prestes Avenue, 1374, SP, cep 05508-900, São Paulo, Brazil.,Distrito Industrial - Av. João XXIII, 1160c - Cezar de Souza, Mogi das Cruzes, 08830-000, Brazil
| | - Welington Luiz Araújo
- LABMEM/NAP-BIOP, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Prof. Lineu Prestes Avenue, 1374, SP, cep 05508-900, São Paulo, Brazil.
| |
Collapse
|
4
|
Passarini MRZ, Moreira JVF, Gomez JAM, Bonugli-Santos RC. DNA metabarcoding of the leachate microbiota from sanitary landfill: potential for bioremediation process. Arch Microbiol 2021; 203:4847-4858. [PMID: 34228134 DOI: 10.1007/s00203-021-02471-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 01/04/2023]
Abstract
Leachate generation contains a variety of toxic compounds, and is a major problem for municipal solid waste (MSW). Microbial profile knowledge is essential to new alternatives and improvements in current treatments of these effluents. In this respect, the microbial community in the leachate from the sanitary landfill of the city of Foz do Iguaçu was analyzed. The 16S rDNA metabarcoding suggested the dominance of fermenting bacteria belonging to Firmicutes phylum, followed by Proteobacteria, Bacteroidetes, and Synergistetes. The most abundant genera were Sedimentibacter, Vulcanibacillus, and Anaerovorax. However, 60% of amplicon sequence variants (ASVs) were not classified taxonomically. In addition, an expressive abundance was attributed to the superphylum known as PVC group, little studied and with unknown scientific potential. The leachate acidogenic phase was masked in the chemical and physical analyzes. Nevertheless, it was evidenced in the metabarcoding methodology. No specifically methanogenic group was detected in significant abundance. Therefore, from bacterial community identification, a bioremediation process can be designed. Enriched culture media can be developed and targeted to the recovery of specific groups which may be involved in leachate biodegradation. What is more, the results expand the knowledge of bacterial diversity, especially from the presence of unknown genera in this habitat.
Collapse
Affiliation(s)
- Michel Rodrigo Zambrano Passarini
- Institute Latin American of Nature and Life Sciences (ILACNV), Interdisciplinary Center of Life Sciences (CICV), Federal University of Latin American Integration (UNILA), 1000 Tarquínio Joslin dos Santos Av., Jardim Universitário, Foz do Iguaçu, PR, 85870-901, Brazil
| | - João Victor Fonseca Moreira
- Institute Latin American of Nature and Life Sciences (ILACNV), Interdisciplinary Center of Life Sciences (CICV), Federal University of Latin American Integration (UNILA), 1000 Tarquínio Joslin dos Santos Av., Jardim Universitário, Foz do Iguaçu, PR, 85870-901, Brazil
| | - Jose Alejandro Morales Gomez
- Institute Latin American of Nature and Life Sciences (ILACNV), Interdisciplinary Center of Life Sciences (CICV), Federal University of Latin American Integration (UNILA), 1000 Tarquínio Joslin dos Santos Av., Jardim Universitário, Foz do Iguaçu, PR, 85870-901, Brazil
| | - Rafaella Costa Bonugli-Santos
- Institute Latin American of Nature and Life Sciences (ILACNV), Interdisciplinary Center of Life Sciences (CICV), Federal University of Latin American Integration (UNILA), 1000 Tarquínio Joslin dos Santos Av., Jardim Universitário, Foz do Iguaçu, PR, 85870-901, Brazil.
| |
Collapse
|
5
|
Aigle A, Bourgeois E, Marjolet L, Houot S, Patureau D, Doelsch E, Cournoyer B, Galia W. Relative Weight of Organic Waste Origin on Compost and Digestate 16S rRNA Gene Bacterial Profilings and Related Functional Inferences. Front Microbiol 2021; 12:667043. [PMID: 34054773 PMCID: PMC8160089 DOI: 10.3389/fmicb.2021.667043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Abstract
Even though organic waste (OW) recycling via anaerobic digestion (AD) and composting are increasingly used, little is known about the impact of OW origin (fecal matters and food and vegetable wastes) on the end products' bacterial contents. The hypothesis of a predictable bacterial community structure in the end products according to the OW origin was tested. Nine OW treatment plants were selected to assess the genetic structure of bacterial communities found in raw OW according to their content in agricultural and urban wastes and to estimate their modifications through AD and composting. Two main bacterial community structures among raw OWs were observed and matched a differentiation according to the occurrences of urban chemical pollutants. Composting led to similar 16S rRNA gene OTU profiles whatever the OW origin. With a significant shift of about 140 genera (representing 50% of the bacteria), composting was confirmed to largely shape bacterial communities toward similar structures. The enriched taxa were found to be involved in detoxification and bioremediation activities. This process was found to be highly selective and favorable for bacterial specialists. Digestates showed that OTU profiles differentiated into two groups according to their relative content in agricultural (manure) and urban wastes (mainly activated sludge). About one third of the bacterial taxa was significantly affected by AD. In digestates of urban OW, this sorting led to an enrichment of 32 out of the 50 impacted genera, while for those produced from agricultural or mixed urban/agricultural OW (called central OW), a decay of 54 genera over 60 was observed. Bacteria from activated sludge appeared more fit for AD than those of other origins. Functional inferences showed AD enriched genera from all origins to share similar functional traits, e.g., chemoheterotrophy and fermentation, while being often taxonomically distinct. The main functional traits among the dominant genera in activated sludge supported a role in AD. Raw OW content in activated sludge was found to be a critical factor for predicting digestate bacterial contents. Composting generated highly predictable and specialized community patterns whatever the OW origin. AD and composting bacterial changes were driven by functional traits selected by physicochemical factors such as temperature and chemical pollutants.
Collapse
Affiliation(s)
- Axel Aigle
- Univ Lyon, UMR Ecologie Microbienne (LEM), Université Claude Bernard Lyon 1, CNRS 5557, INRAE 1418, VetAgro Sup, Marcy L'Etoile, France
| | - Emilie Bourgeois
- Univ Lyon, UMR Ecologie Microbienne (LEM), Université Claude Bernard Lyon 1, CNRS 5557, INRAE 1418, VetAgro Sup, Marcy L'Etoile, France
| | - Laurence Marjolet
- Univ Lyon, UMR Ecologie Microbienne (LEM), Université Claude Bernard Lyon 1, CNRS 5557, INRAE 1418, VetAgro Sup, Marcy L'Etoile, France
| | - Sabine Houot
- UMR ECOSYS, INRAE, AgroParisTech, Thiverval-Grignon, France
| | | | - Emmanuel Doelsch
- CIRAD, UPR Recyclage et risque, Montpellier, France.,Recyclage et Risque, Univ Montpellier, CIRAD, Montpellier, France
| | - Benoit Cournoyer
- Univ Lyon, UMR Ecologie Microbienne (LEM), Université Claude Bernard Lyon 1, CNRS 5557, INRAE 1418, VetAgro Sup, Marcy L'Etoile, France
| | - Wessam Galia
- Univ Lyon, UMR Ecologie Microbienne (LEM), Université Claude Bernard Lyon 1, CNRS 5557, INRAE 1418, VetAgro Sup, Marcy L'Etoile, France
| |
Collapse
|
6
|
Zhao R, Liu J, Feng J, Li X, Li B. Microbial community composition and metabolic functions in landfill leachate from different landfills of China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 767:144861. [PMID: 33422962 DOI: 10.1016/j.scitotenv.2020.144861] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/24/2020] [Accepted: 12/25/2020] [Indexed: 06/12/2023]
Abstract
Landfill leachate usually harbors complex microbial communities responsible for the decomposition of municipal solid waste. However, the diversity and metabolic functions of the microbial communities in landfill leachate as well as the factors that influence them are still not well understood. In this study, Illumina MiSeq high-throughput sequencing was used to investigate the microbial community composition and metabolic functions in landfill leachate from 11 cities in China. The microbial diversity and structure of different leachate samples exhibited obvious differences. In general, Bacteroidetes, Firmicutes and Proteobacteria were the three dominant microbial communities among the 26 bacterial phyla identified in landfill leachate, regardless of the geographical locations. Diverse bacterial genera associated with various functions such as cellulolytic bacteria (e.g., Sphaerochaeta and Defluviitoga), acidifying bacteria (e.g., Prevotella and Trichococcus) and sulfate-reducing bacteria (e.g., Desulfuromonas and Desulfobacterium) were detected abundantly in the landfill leachate. Moreover, the archaeal community in all leachate samples was dominated by the orders Methanomicrobiales and Methanosarcinales belonging to the Euryarchaeota phylum. Notably, the archaea-specific primer pair covered more diverse archaeal communities than the universal bacteria-archaea primer pair. Seventeen archaeal genera belonging to acetoclastic, hydrogenotrophic, and methylotrophic methanogens were identified, and the composition of the dominant genera in these samples varied greatly. The canonical correlation analysis indicated that landfill age, electrical conductivity, ammonia nitrogen, and total nitrogen were significantly correlated with the microbial community structure. Based on PICRUSt2, a total of 41 metabolic pathways belonging to six metabolic pathway groups were predicted, and the KEGG pathway Metabolism was the most abundant group across all leachate samples. This study provides an important insight into the composition and functional characteristics of the microbial communities in landfill leachate.
Collapse
Affiliation(s)
- Renxin Zhao
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Jie Liu
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; State Key Laboratory of Grassland Agro-ecosystems, Center for Grassland Microbiome, Lanzhou University, Lanzhou 730000, China
| | - Jie Feng
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Drinking Water Source Management and Technology, Shenzhen Research Academy of Environmental Sciences, Shenzhen 518001, China
| | - Xiaoyan Li
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Shenzhen Environmental Science and New Energy Laboratory, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
| | - Bing Li
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| |
Collapse
|
7
|
Cardinali-Rezende J, Di Genova A, Nahat RATPS, Steinbüchel A, Sagot MF, Costa RS, Oliveira HC, Taciro MK, Silva LF, Gomez JGC. The relevance of enzyme specificity for coenzymes and the presence of 6-phosphogluconate dehydrogenase for polyhydroxyalkanoates production in the metabolism of Pseudomonas sp. LFM046. Int J Biol Macromol 2020; 163:240-250. [PMID: 32622773 DOI: 10.1016/j.ijbiomac.2020.06.226] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/14/2020] [Accepted: 06/24/2020] [Indexed: 11/29/2022]
Abstract
Reconstruction of genome-based metabolic model is a useful approach for the assessment of metabolic pathways, genes and proteins involved in the environmental fitness capabilities or pathogenic potential as well as for biotechnological processes development. Pseudomonas sp. LFM046 was selected as a good polyhydroxyalkanoates (PHA) producer from carbohydrates and plant oils. Its complete genome sequence and metabolic model were obtained. Analysis revealed that the gnd gene, encoding 6-phosphogluconate dehydrogenase, is absent in Pseudomonas sp. LFM046 genome. In order to improve the knowledge about LFM046 metabolism, the coenzyme specificities of different enzymes was evaluated. Furthermore, the heterologous expression of gnd genes from Pseudomonas putida KT2440 (NAD+ dependent) and Escherichia coli MG1655 (NADP+ dependent) in LFM046 was carried out and provoke a delay on cell growth and a reduction in PHA yield, respectively. The results indicate that the adjustment in cyclic Entner-Doudoroff pathway may be an interesting strategy for it and other bacteria to simultaneously meet divergent cell needs during cultivation phases of growth and PHA production.
Collapse
Affiliation(s)
- Juliana Cardinali-Rezende
- University of São Paulo, Institute of Biomedical Sciences, Bioproducts Laboratory, Prof. Lineu Prestes Avenue, 1374 São Paulo, Brazil; Westfalische Wilhelms-Universitat Münster, Institut für Molekulare Mikrobiologie und Biotechnologie, Corrensstrasse 3, D-48149 Münster, Germany.
| | - Alex Di Genova
- ERABLE Team, Inria Grenoble Rhône-Alpes, Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France
| | - Rafael A T P S Nahat
- University of São Paulo, Institute of Biomedical Sciences, Bioproducts Laboratory, Prof. Lineu Prestes Avenue, 1374 São Paulo, Brazil
| | - Alexander Steinbüchel
- Westfalische Wilhelms-Universitat Münster, Institut für Molekulare Mikrobiologie und Biotechnologie, Corrensstrasse 3, D-48149 Münster, Germany; Environmental Sciences Department, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Marie-France Sagot
- ERABLE Team, Inria Grenoble Rhône-Alpes, Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France
| | - Rafael S Costa
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal; REQUIMTE/LAQV, Department of Chemistry, Faculty of Science and Technology, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Henrique C Oliveira
- University of São Paulo, Institute of Biomedical Sciences, Bioproducts Laboratory, Prof. Lineu Prestes Avenue, 1374 São Paulo, Brazil
| | - Marilda K Taciro
- University of São Paulo, Institute of Biomedical Sciences, Bioproducts Laboratory, Prof. Lineu Prestes Avenue, 1374 São Paulo, Brazil
| | - Luiziana F Silva
- University of São Paulo, Institute of Biomedical Sciences, Bioproducts Laboratory, Prof. Lineu Prestes Avenue, 1374 São Paulo, Brazil
| | - José Gregório C Gomez
- University of São Paulo, Institute of Biomedical Sciences, Bioproducts Laboratory, Prof. Lineu Prestes Avenue, 1374 São Paulo, Brazil.
| |
Collapse
|
8
|
Obata O, Ditchfield A, Hatton A, Akunna J. Investigating the impact of inoculum source on anaerobic digestion of various species of marine macroalgae. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101803] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
9
|
Baker BR, Mohamed R, Al-Gheethi A, Aziz HA. Advanced technologies for poultry slaughterhouse wastewater treatment: A systematic review. J DISPER SCI TECHNOL 2020. [DOI: 10.1080/01932691.2020.1721007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Bakar Radhi Baker
- Micro-Pollutant Research Centre (MPRC), Department of Water and Environmental Engineering, Faculty of Civil & Environmental Engineering, Universiti Tun Hussein Onn Malaysia, Batu Pahat, Malaysia
- Department of Structures and Water Resources, Faculty of Engineering, University of Kufa, Kufa, Iraq
| | - Radin Mohamed
- Micro-Pollutant Research Centre (MPRC), Department of Water and Environmental Engineering, Faculty of Civil & Environmental Engineering, Universiti Tun Hussein Onn Malaysia, Batu Pahat, Malaysia
| | - Adel Al-Gheethi
- Micro-Pollutant Research Centre (MPRC), Department of Water and Environmental Engineering, Faculty of Civil & Environmental Engineering, Universiti Tun Hussein Onn Malaysia, Batu Pahat, Malaysia
| | - Hamidi Abdul Aziz
- School of Civil Engineering, Universiti Sains Malaysia, Nibong Tebal, Malaysia
| |
Collapse
|
10
|
Ghosh P, Kumar M, Kapoor R, Kumar SS, Singh L, Vijay V, Vijay VK, Kumar V, Thakur IS. Enhanced biogas production from municipal solid waste via co-digestion with sewage sludge and metabolic pathway analysis. BIORESOURCE TECHNOLOGY 2020; 296:122275. [PMID: 31683109 DOI: 10.1016/j.biortech.2019.122275] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/09/2019] [Accepted: 10/15/2019] [Indexed: 06/10/2023]
Abstract
The present study intends to evaluate the potential of co-digestion for utilizing Organic fraction of Municipal Solid Waste (OFMSW) and sewage sludge (SS) for enhanced biogas production. Metagenomic analysis was performed to identify the dominant bacteria, archaea and fungi, changes in their communities with time and their functional roles during the course of anaerobic digestion (AD). The cumulative biogas yield of 586.2 mL biogas/gVS with the highest methane concentration of 69.5% was observed under an optimum ratio of OFMSW:SS (40:60 w/w). Bacteria and fungi were found to be majorly involved in hydrolysis and initial stages of AD. Probably, the most common archaea Methanosarsina sp. primarily followed the acetoclastic pathway. The hydrogenotrophic pathway was less followed as indicated by the reduction in abundance of syntrophic acetate oxidizers. An adequate understanding of microbial communities is important to manipulate and inoculate the specific microbial consortia to maximize CH4 production through AD.
Collapse
Affiliation(s)
- Pooja Ghosh
- Centre for Rural Development and Technology, Indian Institute of Technology, New Delhi 110016, India.
| | - Madan Kumar
- Centre for Rural Development and Technology, Indian Institute of Technology, New Delhi 110016, India
| | - Rimika Kapoor
- Centre for Rural Development and Technology, Indian Institute of Technology, New Delhi 110016, India
| | - Smita S Kumar
- Centre for Rural Development and Technology, Indian Institute of Technology, New Delhi 110016, India
| | - Lakhveer Singh
- Faculty of Civil and Environmental Engineering, University Malaysia Pahang, Kuantan 26300, Malaysia
| | - Vandit Vijay
- Centre for Rural Development and Technology, Indian Institute of Technology, New Delhi 110016, India
| | - Virendra Kumar Vijay
- Centre for Rural Development and Technology, Indian Institute of Technology, New Delhi 110016, India
| | - Vivek Kumar
- Centre for Rural Development and Technology, Indian Institute of Technology, New Delhi 110016, India
| | - Indu Shekhar Thakur
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
11
|
Akyol Ç, Ozbayram EG, Demirel B, Onay TT, Ince O, Ince B. Linking nano-ZnO contamination to microbial community profiling in sanitary landfill simulations. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:13580-13591. [PMID: 30915691 DOI: 10.1007/s11356-019-04906-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 03/18/2019] [Indexed: 06/09/2023]
Abstract
Nanomaterials (NMs) commercially used for various activities mostly end up in landfills. Reduced biogas productions reported in landfill reactors create a need for more comprehensive research on these greatly-diverse microbial pools. In order to evaluate the impact of one of the most widely-used NMs, namely nano-zinc oxide (nano-ZnO), simulated bioreactor and conventional landfills were operated using real municipal solid waste (MSW) for 300 days with addition nano-ZnO. Leachate samples were taken at different phases and analyzed by 16S rRNA gene amplicon sequencing. The bacterial communities were distinctly characterized by Cloacamonaceae (phylum WWE1), Rhodocyclaceae (phylum Proteobacteria), Porphyromonadaceae (phylum Bacteroidetes), and Synergistaceae (phylum Synergistetes). The bacterial community in the bioreactors shifted at the end of the operation and was dominated by Rhodocyclaceae. There was not a major change in the bacterial community in the conventional reactors. The methanogenic archaeal diversity highly differed between the bioreactors and conventional reactors. The dominance of Methanomicrobiaceae was observed in the bioreactors during the peak methane-production period; however, their prominence shifted to WSA2 in the nano-ZnO-added bioreactor and to Methanocorpusculaceae in the control bioreactor towards the end. Methanocorpusculaceae was the most abundant family in both conventional control and nano-ZnO-containing reactors.
Collapse
Affiliation(s)
- Çağrı Akyol
- Institute of Environmental Sciences, Boğaziçi University, Bebek, 34342, Istanbul, Turkey.
| | - Emine Gozde Ozbayram
- Department of Environmental Engineering, Faculty of Civil Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Burak Demirel
- Institute of Environmental Sciences, Boğaziçi University, Bebek, 34342, Istanbul, Turkey
| | - Turgut Tüzün Onay
- Institute of Environmental Sciences, Boğaziçi University, Bebek, 34342, Istanbul, Turkey
| | - Orhan Ince
- Department of Environmental Engineering, Faculty of Civil Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Bahar Ince
- Institute of Environmental Sciences, Boğaziçi University, Bebek, 34342, Istanbul, Turkey
| |
Collapse
|
12
|
Dong L, Cao G, Guo X, Liu T, Wu J, Ren N. Efficient biogas production from cattle manure in a plug flow reactor: A large scale long term study. BIORESOURCE TECHNOLOGY 2019; 278:450-455. [PMID: 30709765 DOI: 10.1016/j.biortech.2019.01.100] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 06/09/2023]
Abstract
In this study, a large-scale plug flow reactor has been operated at a hydraulic retention time of 25 d with substrate concentration of total solids (7-10%) under a temperature of 37-40 °C with a working volume of 3.85 × 104 m3 and dispose 1504 m3/d of waste for three years. The average monthly biogas production was 7.45 × 104 m3. At stable stage, the volume biogas, methane production rate and methane content reached 1.07 m3/m3·d, 0.58 m3/m3·d and 56.4%, respectively. Moreover, the specific biogas and methane yields of substrate removal efficiency were up to 0.39 m3/kg VS, 0.22 m3/kg VS and 59%, respectively. Among the bacteria, the genera Draconibacteriaceae, Ruminofilibacter, Cloacimonetes and vadinBC27, Ruminiclostridium and Treponema_2 dominated in digestate. The achaeal was dominated by methanogens genera Methanosarcina and Bathyarchaeota. Long-term operation in large scale demonstrated technological potential and industrial application of cattle manure treatment for biogas production.
Collapse
Affiliation(s)
- Lili Dong
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Guangli Cao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Xianzhang Guo
- Chinese Academy of Agricultural Mechanization Sciences, Beijing 100083, China
| | - Tianshu Liu
- Chinese Academy of Agricultural Mechanization Sciences, Beijing 100083, China
| | - Jiwen Wu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
13
|
Díaz AI, Oulego P, Collado S, Laca A, González JM, Díaz M. Impact of anaerobic digestion and centrifugation/decanting processes in bacterial communities fractions. J Biosci Bioeng 2018; 126:742-749. [DOI: 10.1016/j.jbiosc.2018.05.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 05/25/2018] [Accepted: 05/29/2018] [Indexed: 12/20/2022]
|
14
|
Li Y, Li L, Sun Y, Yuan Z. Bioaugmentation strategy for enhancing anaerobic digestion of high C/N ratio feedstock with methanogenic enrichment culture. BIORESOURCE TECHNOLOGY 2018; 261:188-195. [PMID: 29660660 DOI: 10.1016/j.biortech.2018.02.069] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/10/2018] [Accepted: 02/14/2018] [Indexed: 06/08/2023]
Abstract
To investigate whether bioaugmentation could improve the digestion performance of high C/N ratio feedstock without co-digestion with nitrogen-rich substrate, different forms of enriched methanogenic culture were introduced to the continuous feed digesters. The performance efficiency of bioaugmentation on digestion improvement was compared. The effect of bioaugmentation on microbial community composition was revealed as well. Results demonstrated that routine bioaugmentation with liquid culture (containing the microbes and the medium remains) showed the best performance, with the organic loading rate (OLR), methane percentage, volumetric methane production (VMP) and volatile solid methane production (VSMP) higher at 1.0 g L-1 d-1, 24%, 0.22 L L-1 d-1 and 0.23 L g-1 VS d-1 respectively, compared to the non-bioaugmentation control. Whole genome pyrosequencing analysis suggested that consecutive microbial consortium addition could reconstruct the methanogens community by increasing the populations of acetoclastic methanogens Methanothrix, which could accelerate the degradation of acetate and methane production.
Collapse
Affiliation(s)
- Ying Li
- Laboratory of Biomass Bio-chemical Conversion, GuangZhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Lianhua Li
- Laboratory of Biomass Bio-chemical Conversion, GuangZhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Yongming Sun
- Laboratory of Biomass Bio-chemical Conversion, GuangZhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China; Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of New andw Renewable Energy Research and Development, Guangzhou 510640, PR China.
| | - Zhenhong Yuan
- Laboratory of Biomass Bio-chemical Conversion, GuangZhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China; Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of New andw Renewable Energy Research and Development, Guangzhou 510640, PR China
| |
Collapse
|
15
|
Ventorino V, Romano I, Pagliano G, Robertiello A, Pepe O. Pre-treatment and inoculum affect the microbial community structure and enhance the biogas reactor performance in a pilot-scale biodigestion of municipal solid waste. WASTE MANAGEMENT (NEW YORK, N.Y.) 2018; 73:69-77. [PMID: 29249310 DOI: 10.1016/j.wasman.2017.12.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 12/04/2017] [Accepted: 12/06/2017] [Indexed: 05/03/2023]
Abstract
During anaerobic digestion of municipal solid waste, organic matter is converted to methane, carbon dioxide, and other organic and inorganic compounds through a complex cooperation among different microbial groups with different metabolic activities. Here, culture-dependent and independent approaches provided evidence for examining the relationship between bacterial and archaeal communities and methane production in a pilot-scale anaerobic digestion. The abundance of aerobic and anaerobic functional groups of C and N cycles, such as cellulolytic, pectinolytic, amylolytic and proteolytic bacteria, was high at the beginning of the experiment and was drastically decreased after anaerobic digestion. In contrast, the ammonifiers increased in the biogas producing reactors in a higher pH environment. The methanogenic archaeal genera recovered were Methanobrevibacter, Methanobacterium, Methanoculleus and Methanocorpusculum, thus indicating that methane was formed primarily by the hydrogenotrophic pathway in the reactors. Moreover, the mechanical pretreatment effects, as well as the effect of pelleted manure as inoculum, were considered. The highest methane production was detected in the biodigesters with minced organic waste, thus indicating that pre-treatment of a heterogeneous starting matrix was essential for improving biogas production and stabilizing the process.
Collapse
Affiliation(s)
- Valeria Ventorino
- Department of Agricultural Sciences, Division of Microbiology, University of Naples Federico II, Portici, Italy
| | - Ida Romano
- Department of Agricultural Sciences, Division of Microbiology, University of Naples Federico II, Portici, Italy
| | - Giorgia Pagliano
- Department of Agricultural Sciences, Division of Microbiology, University of Naples Federico II, Portici, Italy
| | - Alessandro Robertiello
- Department of Agricultural Sciences, Division of Microbiology, University of Naples Federico II, Portici, Italy
| | - Olimpia Pepe
- Department of Agricultural Sciences, Division of Microbiology, University of Naples Federico II, Portici, Italy.
| |
Collapse
|
16
|
Liu L, Wang S, Guo X, Zhao T, Zhang B. Succession and diversity of microorganisms and their association with physicochemical properties during green waste thermophilic composting. WASTE MANAGEMENT (NEW YORK, N.Y.) 2018; 73:101-112. [PMID: 29279244 DOI: 10.1016/j.wasman.2017.12.026] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/21/2017] [Accepted: 12/20/2017] [Indexed: 06/07/2023]
Abstract
A comprehensive characterization of the bacterial diversity associated to thermophilic stages of green waste composting was achieved. In this study, eight different treatments (T1-T8) and three replicated lab-scale green waste composting were carried out to compare the effect of the cellulase (i.e. 0, 2%), microbial inoculum (i.e. 0, 2 and 4%) and particle size (i.e. 2 and 5 mm) on bacterial community structure. Physicochemical properties and bacterial communities of T1-T8 composts were observed, and the bacterial structure and diversity were examined by high-throughput sequencing via a MiSeq platform. The results showed that the most abundant phyla among the treatments were the Firmicutes, Chloroflexi and Proteobacteria. The shannon index and non-metric multidimensional scaling (NMDS) showed higher bacterial abundance and diversity at the metaphase of composting. Comparing with 5-mm treatments, particle size of 2-mm had a richer diversity of bacterial communities. The addition of cellulase and a microbial inoculum could promote the fermentation temperature, reduce the compost pH and C/N ratio and result in higher GI index. The humic substance (HS) and humic acid (HA) contents for 2-mm particle size treatments were higher than those of 5-mm treatments. Canonical correspondence analysis suggested that differences in bacterial abundance and diversity significantly correlated with HA, E4/E6 and temperature, and the relationship between bacterial diversity and environmental parameters was affected by composting stages. Based on these results, the application of cellulase to promote green waste composting was feasible, and particle size was identified as a potential control of composting physicochemical properties and bacterial diversity.
Collapse
Affiliation(s)
- Ling Liu
- College of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, PR China; Key Lab of Soil and Water Conservation and Desertification Combating, Ministry of Education, Beijing Forestry University, Beijing 100083, PR China
| | - Shuqi Wang
- Tianjin LVYIN Landscape and Ecology Construction Co., Ltd, Tianjin 300384, PR China
| | - Xiaoping Guo
- College of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, PR China; Key Lab of Soil and Water Conservation and Desertification Combating, Ministry of Education, Beijing Forestry University, Beijing 100083, PR China.
| | - Tingning Zhao
- College of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, PR China; Key Lab of Soil and Water Conservation and Desertification Combating, Ministry of Education, Beijing Forestry University, Beijing 100083, PR China
| | - Bolin Zhang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| |
Collapse
|
17
|
Zhang L, Yue Q, Yang K, Zhao P, Gao B. Analysis of extracellular polymeric substances (EPS) and ciprofloxacin-degrading microbial community in the combined Fe-C micro-electrolysis-UBAF process for the elimination of high-level ciprofloxacin. CHEMOSPHERE 2018; 193:645-654. [PMID: 29169139 DOI: 10.1016/j.chemosphere.2017.11.056] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 09/22/2017] [Accepted: 11/12/2017] [Indexed: 05/22/2023]
Abstract
Extracellular polymeric substances (EPS) and ciprofloxacin-degrading microbial community in the combined Fe-C micro-electrolysis and up-flow biological aerated filter (UBAF) process for the treatment of high-level ciprofloxacin (CIP) were analyzed. The research demonstrated a great potential of Fe-C micro-electrolysis-UBAF for the elimination of high-level CIP. Above 90% of CIP removal was achieved through the combined process at 100 mg L-1 of CIP loading. In UBAF, the pollutants were mainly removed at 0-70 cm heights. Three-dimensional fluorescence spectrum (3D-EEM) was used to characterize the chemical structural of loosely bound EPS (LB-EPS) and tightly bound EPS (TB-EPS) extracted from biofilm sample in UBAF. The results showed that the protein-like substances in LB-EPS and TB-EPS had no clear change in the study. Nevertheless, an obvious release of polysaccharides in EPSs was observed during long-term exposure to CIP, which was considered as a protective response of microbial to CIP toxic. The high-throughput sequencing results revealed that the biodiversity of bacteria community became increasingly rich with gradual ciprofloxacin biodegradation in UBAF. The ciprofloxacin-degrading microbial community was mainly dominated by Proteobacteria and Bacteroidetes. Microorganisms from genera Dechloromonas, Brevundimonas, Flavobacterium, Sphingopyxis and Bosea might take a major role in ciprofloxacin degradation. This study provides deep theoretical guidance for real CIP wastewater treatment.
Collapse
Affiliation(s)
- Longlong Zhang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| | - Qinyan Yue
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, China.
| | - Kunlun Yang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| | - Pin Zhao
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| | - Baoyu Gao
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, China.
| |
Collapse
|
18
|
Zhao C, Mu H, Zhao Y, Wang L, Zuo B. Microbial characteristics analysis and kinetic studies on substrate composition to methane after microbial and nutritional regulation of fruit and vegetable wastes anaerobic digestion. BIORESOURCE TECHNOLOGY 2018; 249:315-321. [PMID: 29054061 DOI: 10.1016/j.biortech.2017.10.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 10/06/2017] [Accepted: 10/07/2017] [Indexed: 06/07/2023]
Abstract
This study firstly evaluated the microbial role when choosing the acclimated anaerobic granular sludge (AGS) and waste activated sludge (WAS) as microbial and nutritional regulators to improve the biomethanation of fruit and vegetable wastes (FVW). Results showed that the enriched hydrogenotrophic methanogens, and Firmicutes and Spirochaeta in the AGS were responsible for the enhanced methane yield. A synthetic waste representing the mixture of WAS and FVW was then used to investigate the influences of different substrate composition on methane generations. The optimal mass ratio of carbohydrate/protein/cellulose was observed to be 50:45:5, and the corresponding methane yield was 411mL/g-VSadded. Methane kinetic studies suggested that the modified Gompertz model fitted better with those substrates of carbohydrate- than protein-predominated. Parameter results indicated that the maximum methane yield and production rate were enhanced firstly and then reduced with the decreasing carbohydrate and increasing protein percentages; the lag phase time however increased continuously.
Collapse
Affiliation(s)
- Chunhui Zhao
- Key Laboratory of Water Resources and Environmental Engineering in Universities of Shandong (University of Jinan), School of Resources and Environment, University of Jinan, Jinan 250022, China
| | - Hui Mu
- Energy Research Institute of Shandong Academy of Sciences, Key Laboratory for Biomass Gasification Technology of Shandong Province, Jinan 250014, China.
| | - Yuxiao Zhao
- Energy Research Institute of Shandong Academy of Sciences, Key Laboratory for Biomass Gasification Technology of Shandong Province, Jinan 250014, China
| | - Liguo Wang
- Key Laboratory of Water Resources and Environmental Engineering in Universities of Shandong (University of Jinan), School of Resources and Environment, University of Jinan, Jinan 250022, China
| | - Bin Zuo
- Shandong Bori Biomass Energy Co., Ltd, China
| |
Collapse
|
19
|
Li Y, Sun Y, Li L, Yuan Z. Acclimation of acid-tolerant methanogenic propionate-utilizing culture and microbial community dissecting. BIORESOURCE TECHNOLOGY 2018; 250:117-123. [PMID: 29161570 DOI: 10.1016/j.biortech.2017.11.034] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 11/09/2017] [Accepted: 11/10/2017] [Indexed: 05/28/2023]
Abstract
The acid-tolerant methanogenic propionate degradation culture was acclimated in a propionate-fed semi-continuous bioreactor by daily adjusting the digestate pH. The performance of propionate fermentation, the respond of microbial community structure to the acidic environment, and the microbial network for propionate degradation in the acid-tolerant culture was investigated. The results demonstrated that after long term of acclimation to low pH, the digester could produce methane from propionate at pH 4.8-5.5 with 0.3-0.4 L g-1 propionic acid (HPr) d-1 of the volatile solids (VS) methane production. The predominant methanogens shifted from acetoclastic methanogens (∼87%) to hydrogenotrophic methanogens (∼67%) in the bioreactor with the dropping pH, indicating that hydrogenotrophic methanogens were more acid-tolerant than acetoclastic methanogens. Smithella (∼11%), Syntrophobacter (∼7%) and Pelotomaculum (∼3%) were the main propionate oxidizers in the acid-tolerant propionate-utilizing culture. Methanothrix dominant acetoclastic methanogens, while Methanolinea and Methanospirillum were the major H2 scavengers to support Syntrophobacter and Pelotomaculum syntrophic propionate degradation.
Collapse
Affiliation(s)
- Ying Li
- Laboratory of Biomass Bio-chemical Conversion, GuangZhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Yongming Sun
- Laboratory of Biomass Bio-chemical Conversion, GuangZhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China; Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Lianhua Li
- Laboratory of Biomass Bio-chemical Conversion, GuangZhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China.
| | - Zhenhong Yuan
- Laboratory of Biomass Bio-chemical Conversion, GuangZhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China; Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China
| |
Collapse
|
20
|
Li Y, Sun Y, Yang G, Hu K, Lv P, Li L. Vertical distribution of microbial community and metabolic pathway in a methanogenic propionate degradation bioreactor. BIORESOURCE TECHNOLOGY 2017; 245:1022-1029. [PMID: 28946204 DOI: 10.1016/j.biortech.2017.09.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 08/30/2017] [Accepted: 09/04/2017] [Indexed: 06/07/2023]
Abstract
The methanogenic propionate degradation consortia were enriched in a propionate-fed semi-continuous bioreactor. The microbial community shift with depth, the microbial network and its correlation with metabolic pathway were also investigated. The results demonstrated that the maximum organic loading rate (OLR) of the reactor was 2.5g propionic acid (HPr) L-1d-1 with approximately 1.20LL-1d-1 of volumetric methane production (VMP). The organisms in the enrichment were spanning 36 bacterial phyla and 7 archaeal orders. Syntrophobacter, the main Hpr oxidizer in the digester, dominated bacteria with relative abundance changing from 63% to 37% with depth. The predominant methanogens shift from hydrogenotrophic Methanoculleus (∼60%) at the upper liquid layer to acetoclastic Methanothrix (∼51%) at the lower sediment layer in the bioreactor. These methanogens syntrophically support Syntrophobacter by degrading HPr catabolism by-products (H2 and acetate). Other bacteria could scavenge anabolic products (carbohydrate and protein) presumably derived from detrital biomass produced by the HPr-degrading community.
Collapse
Affiliation(s)
- Ying Li
- Laboratory of Biomass Bio-chemical Conversion, GuangZhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China; Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Yongming Sun
- Laboratory of Biomass Bio-chemical Conversion, GuangZhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Gaixiu Yang
- Laboratory of Biomass Bio-chemical Conversion, GuangZhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Keqin Hu
- Wuhan Kaidi Electric Power Engineering Co. Ltd, Wuhan 430073, PR China
| | - Pengmei Lv
- Laboratory of Biomass Bio-chemical Conversion, GuangZhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Lianhua Li
- Laboratory of Biomass Bio-chemical Conversion, GuangZhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China.
| |
Collapse
|
21
|
Xu S, Lu W, Liu Y, Ming Z, Liu Y, Meng R, Wang H. Structure and diversity of bacterial communities in two large sanitary landfills in China as revealed by high-throughput sequencing (MiSeq). WASTE MANAGEMENT (NEW YORK, N.Y.) 2017; 63:41-48. [PMID: 27515184 DOI: 10.1016/j.wasman.2016.07.047] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 07/11/2016] [Accepted: 07/31/2016] [Indexed: 05/21/2023]
Abstract
Landfill disposal has been considered as a very economically viable management practice for municipal solid waste in mainland China. However, insufficient knowledge of the bacterial community structure and diversity in landfills hampers effectively landfill disposal. In this study, the structure and diversity of bacterial communities in two large sanitary landfills in northern and western parts of China were examined by high-throughput sequencing via a MiSeq platform. Nearly 1million effective sequences (981,575) were obtained from the 20 samples collected from four independent sites with different deposit depths (up to 18m). These sequences contained high amount of operational taxonomic units (OTUs), 2511-9955 OTUs at a cutoff level of 3% and a sequencing depth of 23,928. Firmicutes, Bacteroidetes and Proteobacteria were the most abundant phyla in the samples. Clear geographical differences between the sampling sites were revealed by nonmetric multidimensional scaling. Most of the samples from the same sampling site could be clustered together. Thus, the heterogeneity of the bacterial community structures was more significantly affected by the sampling site than by sampling depth. Redundancy analysis results suggested that seven physicochemical attributes, namely NH4+-N, NO2--N, moisture, pH, dissolved organic carbon (DOC), SO42- and total Cu element, significantly affected the bacterial community structures (P<0.001) based on variance inflation factor selection. Among these attributes, NH4+-N, NO2--N, moisture, pH and DOC were the most important parameters influencing the bacterial community structures (P<0.05). This study elucidated the structure and diversity of bacterial communities in landfills and discerned the relationships between bacterial community structures and physicochemical attributes. To the best of our knowledge, this study is among the first to characterize bacterial community structures in landfills by using this novel high-throughput sequencing approach.
Collapse
Affiliation(s)
- Sai Xu
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Wenjing Lu
- School of Environment, Tsinghua University, Beijing 100084, China; Key Laboratory for Solid Waste Management and Environment Safety (Tsinghua University), Ministry of Education of China, Tsinghua University, Beijing 100084, China.
| | - Yanting Liu
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Zhongyuan Ming
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Yanjun Liu
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Ruihong Meng
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Hongtao Wang
- School of Environment, Tsinghua University, Beijing 100084, China; Key Laboratory for Solid Waste Management and Environment Safety (Tsinghua University), Ministry of Education of China, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
22
|
Zamanzadeh M, Hagen LH, Svensson K, Linjordet R, Horn SJ. Anaerobic digestion of food waste - Effect of recirculation and temperature on performance and microbiology. WATER RESEARCH 2016; 96:246-54. [PMID: 27060528 DOI: 10.1016/j.watres.2016.03.058] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 03/16/2016] [Accepted: 03/25/2016] [Indexed: 05/07/2023]
Abstract
Recirculation of digestate was investigated as a strategy to dilute the food waste before feeding to anaerobic digesters, and its effects on microbial community structure and performance were studied. Two anaerobic digesters with digestate recirculation were operated at 37 °C (MD + R) and 55 °C (TD + R) and compared to two additional digesters without digestate recirculation operated at the same temperatures (MD and TD). The MD + R digester demonstrated quite stable and similar performance to the MD digester in terms of the methane yield (around 480 mL CH4 per gVSadded). In both MD and MD + R Methanosaeta was the dominant archaea. However, the bacterial community structure was significantly different in the two digesters. Firmicutes dominated in the MD + R, while Chloroflexi was the dominant phylum in the MD. Regarding the thermophilic digesters, the TD + R showed the lowest methane yield (401 mL CH4 per gVSadded) and accumulation of VFAs. In contrast to the mesophilic digesters, the microbial communities in the thermophilic digesters were rather similar, consisting mainly of the phyla Firmicutes, Thermotoga, Synergistetes and the hydrogenotrophic methanogen Methanothermobacter. The impact of ammonia inhibition was different depending on the digesters configurations and operating temperatures.
Collapse
Affiliation(s)
- Mirzaman Zamanzadeh
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P. O. Box 5003, N-1432 Ås, Norway
| | - Live H Hagen
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P. O. Box 5003, N-1432 Ås, Norway
| | - Kine Svensson
- NIBIO, Norwegian Institute of Bioeconomy Research, P.O. Box 115, N-1431 Ås, Norway
| | - Roar Linjordet
- NIBIO, Norwegian Institute of Bioeconomy Research, P.O. Box 115, N-1431 Ås, Norway
| | - Svein J Horn
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P. O. Box 5003, N-1432 Ås, Norway.
| |
Collapse
|
23
|
Cardinali-Rezende J, Rojas-Ojeda P, Nascimento AMA, Sanz JL. Proteolytic bacterial dominance in a full-scale municipal solid waste anaerobic reactor assessed by 454 pyrosequencing technology. CHEMOSPHERE 2016; 146:519-525. [PMID: 26741558 DOI: 10.1016/j.chemosphere.2015.12.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 11/09/2015] [Accepted: 12/01/2015] [Indexed: 06/05/2023]
Abstract
Biomethanization entails a good means to reduce the organic fraction (OF) derived from municipal solid wastes (MSW). The bacterial diversity of a full scale MSW anaerobic reactor located in Madrid (Spain) was investigated using high-throughput 454 pyrosequencing. Even though the proteolytic bacteria prevailed throughout all of the process, community shifts were observed from the start-up to the steady-state conditions, with an increasing biodiversity displayed over time. The Bacteroidetes and the Firmicutes were the majority phyla: 55.1 and 40.2% (start-up) and 18.7 and 78.7 (steady-state) of the total reads. The system's lack of evenness remains noteworthy as the sequences affiliated to the proteolytic non-saccharolytic Proteiniphylum, Gallicola and Fastidiosipila genera, together with the saccharolytic Saccharofermentans, were predominant on the system and this predominance appears to correlate with the presence of a high ammonium concentration. The 454 pyrosequencing revealed a great diversity of rare organisms which seemingly do not sustain any metabolic roles in the course of the OF-MSW degradation. However, this scarce and unique microbiota can confer great resilience to the system as a buffer against nutritional and environmental changing conditions, thus opening the door to increase the current knowledge about the bacterial community dynamics taking place during MSW treatment processes.
Collapse
Affiliation(s)
- Juliana Cardinali-Rezende
- Department of Molecular Biology, Universidad Autónoma de Madrid, c/ Darwin 2, Madrid 28049, Spain; Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, MG 31.270-901, Brazil
| | - Patricia Rojas-Ojeda
- Department of Molecular Biology, Universidad Autónoma de Madrid, c/ Darwin 2, Madrid 28049, Spain
| | - Andréa M A Nascimento
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, MG 31.270-901, Brazil
| | - José L Sanz
- Department of Molecular Biology, Universidad Autónoma de Madrid, c/ Darwin 2, Madrid 28049, Spain.
| |
Collapse
|
24
|
Fudala-Ksiazek S, Pierpaoli M, Kulbat E, Luczkiewicz A. A modern solid waste management strategy--the generation of new by-products. WASTE MANAGEMENT (NEW YORK, N.Y.) 2016; 49:516-529. [PMID: 26851170 DOI: 10.1016/j.wasman.2016.01.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 01/07/2016] [Accepted: 01/18/2016] [Indexed: 05/22/2023]
Abstract
To benefit the environment and society, EU legislation has introduced a 'zero waste' strategy, in which waste material should be converted to resources. Such legislation is supported by the solid waste hierarchy concept, which is a set of priorities in waste management. Under this concept, municipal solid waste plants (MSWPs) should be equipped with sorting and recycling facilities, composting/incineration units and landfill prisms for residual bulk disposal. However, each of the aforementioned facilities generates by-products that must be treated. This project focuses on the leachates from landfill prisms, including modern prism (MP) that meet EU requirements and previous prism (PP) that provide for the storage of permitted biodegradable waste as well as technological wastewaters from sorting unit (SU) and composting unit (CU), which are usually overlooked. The physico-chemical parameters of the liquid by-products collected over 38 months were supported by quantitative real-time PCR (qPCR) amplifications of functional genes transcripts and a metagenomic approach that describes the archaeal and bacterial community in the MP. The obtained data show that SU and especially CU generate wastewater that is rich in nutrients, organic matter and heavy metals. Through their on-site pre-treatment and recirculation via landfill prisms, the landfill waste decomposition process may be accelerated because of the introduction of organic matter and greenhouse gas emissions may be increased. These results have been confirmed by the progressive abundance of both archaeal community and the methyl coenzyme M reductase (mcrA) gene. The resulting multivariate data set, supported by a principal component analysis, provides useful information for the design, operation and risk assessment of modern MSWPs.
Collapse
Affiliation(s)
- Sylwia Fudala-Ksiazek
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland.
| | - Mattia Pierpaoli
- Department of Materials, Environmental Sciences and Urban Planning (SIMAU), Università Politecnica delle Marche, Ancona, Italy.
| | - Eliza Kulbat
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland.
| | - Aneta Luczkiewicz
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland.
| |
Collapse
|
25
|
Ozgun H, Tao Y, Ersahin ME, Zhou Z, Gimenez JB, Spanjers H, van Lier JB. Impact of temperature on feed-flow characteristics and filtration performance of an upflow anaerobic sludge blanket coupled ultrafiltration membrane treating municipal wastewater. WATER RESEARCH 2015; 83:71-83. [PMID: 26141423 DOI: 10.1016/j.watres.2015.06.035] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 06/15/2015] [Accepted: 06/20/2015] [Indexed: 06/04/2023]
Abstract
The objective of this study was to assess the operational feasibility of an anaerobic membrane bioreactor (AnMBR), consisting of an upflow anaerobic sludge blanket (UASB) reactor coupled to an ultrafiltration membrane unit, at two operational temperatures (25°C and 15°C) for the treatment of municipal wastewater. The results showed that membrane fouling at 15°C was more severe than that at 25°C. Higher chemical oxygen demand (COD) and soluble microbial products (SMP) concentrations, lower mean particle diameter, and higher turbidity in the UASB effluent at lower temperature aggravated membrane fouling compared to the 25°C operation. However, the overall AnMBR treatment performance was not significantly affected by temperature, which was attributed to the physical membrane barrier. Cake resistance was found responsible for over 40% of the total fouling in both cases. However, an increase was observed in the contribution of pore blocking resistance at 15°C related to the larger amount of fine particles in the UASB effluent compared to 25°C. Based on the overall results, it is concluded that an AnMBR, consisting of a UASB coupled membrane unit, is not found technically feasible for the treatment of municipal wastewater at 15°C, considering the rapid deterioration of the filtration performance.
Collapse
Affiliation(s)
- Hale Ozgun
- Department of Water Management, Section Sanitary Engineering, Delft University of Technology, PO Box 5048, 2600 GA Delft, The Netherlands; Istanbul Technical University, Civil Engineering Faculty, Environmental Engineering Department, Ayazaga Campus, Maslak, 34469 Istanbul, Turkey.
| | - Yu Tao
- Department of Water Management, Section Sanitary Engineering, Delft University of Technology, PO Box 5048, 2600 GA Delft, The Netherlands; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Mustafa Evren Ersahin
- Department of Water Management, Section Sanitary Engineering, Delft University of Technology, PO Box 5048, 2600 GA Delft, The Netherlands; Istanbul Technical University, Civil Engineering Faculty, Environmental Engineering Department, Ayazaga Campus, Maslak, 34469 Istanbul, Turkey
| | - Zhongbo Zhou
- Department of Water Management, Section Sanitary Engineering, Delft University of Technology, PO Box 5048, 2600 GA Delft, The Netherlands; School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Juan B Gimenez
- Department of Water Management, Section Sanitary Engineering, Delft University of Technology, PO Box 5048, 2600 GA Delft, The Netherlands; Departament d'Enginyeria Quimica, Escola Tecnica Superior d'Enginyeria, Universitat de Valencia, Avda. De la Universitat s/n, 46100 Burjassot, Valencia, Spain
| | - Henri Spanjers
- Department of Water Management, Section Sanitary Engineering, Delft University of Technology, PO Box 5048, 2600 GA Delft, The Netherlands
| | - Jules B van Lier
- Department of Water Management, Section Sanitary Engineering, Delft University of Technology, PO Box 5048, 2600 GA Delft, The Netherlands
| |
Collapse
|
26
|
Sun L, Pope PB, Eijsink VGH, Schnürer A. Characterization of microbial community structure during continuous anaerobic digestion of straw and cow manure. Microb Biotechnol 2015; 8:815-27. [PMID: 26152665 PMCID: PMC4554469 DOI: 10.1111/1751-7915.12298] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 05/13/2015] [Indexed: 01/22/2023] Open
Abstract
Responses of bacterial and archaeal communities to the addition of straw during anaerobic digestion of manure at different temperatures (37°C, 44°C and 52°C) were investigated using five laboratory-scale semi-continuous stirred tank reactors. The results revealed that including straw as co-substrate decreased the species richness for bacteria, whereas increasing the operating temperature decreased the species richness for both archaea and bacteria, and also the evenness of the bacteria. Taxonomic classifications of the archaeal community showed that Methanobrevibacter dominated in the manure samples, while Methanosarcina dominated in all digesters regardless of substrate. Increase of the operating temperature to 52°C led to increased relative abundance of Methanoculleus and Methanobacterium. Among the bacteria, the phyla Firmicutes and Bacteroidetes dominated within all samples. Compared with manure itself, digestion of manure resulted in a higher abundance of an uncultured class WWE1 and lower abundance of Bacilli. Adding straw to the digesters increased the level of Bacteroidia, while increasing the operating temperature decreased the level of this class and instead increased the relative abundance of an uncultured genus affiliated to order MBA08 (Clostridia). A considerable fraction of bacterial sequences could not be allocated to genus level, indicating that novel phylotypes are resident in these communities.
Collapse
Affiliation(s)
- Li Sun
- Department of Microbiology, Swedish University of Agricultural Science, Uppsala BioCenter, P.O. Box 7025, SE-750 07, Uppsala, Sweden
| | - Phillip B Pope
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432, Ås, Norway
| | - Vincent G H Eijsink
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432, Ås, Norway
| | - Anna Schnürer
- Department of Microbiology, Swedish University of Agricultural Science, Uppsala BioCenter, P.O. Box 7025, SE-750 07, Uppsala, Sweden.,Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432, Ås, Norway
| |
Collapse
|
27
|
Chojnacka A, Szczęsny P, Błaszczyk MK, Zielenkiewicz U, Detman A, Salamon A, Sikora A. Noteworthy Facts about a Methane-Producing Microbial Community Processing Acidic Effluent from Sugar Beet Molasses Fermentation. PLoS One 2015; 10:e0128008. [PMID: 26000448 PMCID: PMC4441513 DOI: 10.1371/journal.pone.0128008] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 04/21/2015] [Indexed: 11/30/2022] Open
Abstract
Anaerobic digestion is a complex process involving hydrolysis, acidogenesis, acetogenesis and methanogenesis. The separation of the hydrogen-yielding (dark fermentation) and methane-yielding steps under controlled conditions permits the production of hydrogen and methane from biomass. The characterization of microbial communities developed in bioreactors is crucial for the understanding and optimization of fermentation processes. Previously we developed an effective system for hydrogen production based on long-term continuous microbial cultures grown on sugar beet molasses. Here, the acidic effluent from molasses fermentation was used as the substrate for methanogenesis in an upflow anaerobic sludge blanket bioreactor. This study focused on the molecular analysis of the methane-yielding community processing the non-gaseous products of molasses fermentation. The substrate for methanogenesis produces conditions that favor the hydrogenotrophic pathway of methane synthesis. Methane production results from syntrophic metabolism whose key process is hydrogen transfer between bacteria and methanogenic Archaea. High-throughput 454 pyrosequencing of total DNA isolated from the methanogenic microbial community and bioinformatic sequence analysis revealed that the domain Bacteria was dominated by Firmicutes (mainly Clostridia), Bacteroidetes, δ- and γ-Proteobacteria, Cloacimonetes and Spirochaetes. In the domain Archaea, the order Methanomicrobiales was predominant, with Methanoculleus as the most abundant genus. The second and third most abundant members of the Archaeal community were representatives of the Methanomassiliicoccales and the Methanosarcinales. Analysis of the methanogenic sludge by scanning electron microscopy with Energy Dispersive X-ray Spectroscopy and X-ray diffraction showed that it was composed of small highly heterogeneous mineral-rich granules. Mineral components of methanogenic granules probably modulate syntrophic metabolism and methanogenic pathways. A rough functional analysis from shotgun data of the metagenome demonstrated that our knowledge of methanogenesis is poor and/or the enzymes responsible for methane production are highly effective, since despite reasonably good sequencing coverage, the details of the functional potential of the microbial community appeared to be incomplete.
Collapse
Affiliation(s)
- Aleksandra Chojnacka
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland
| | | | | | | | - Anna Detman
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland
| | | | - Anna Sikora
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland
- * E-mail:
| |
Collapse
|
28
|
Alvarado A, Montañez-Hernández LE, Palacio-Molina SL, Oropeza-Navarro R, Luévanos-Escareño MP, Balagurusamy N. Microbial trophic interactions and mcrA gene expression in monitoring of anaerobic digesters. Front Microbiol 2014; 5:597. [PMID: 25429286 PMCID: PMC4228917 DOI: 10.3389/fmicb.2014.00597] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Accepted: 10/22/2014] [Indexed: 11/13/2022] Open
Abstract
Anaerobic digestion (AD) is a biological process where different trophic groups of microorganisms break down biodegradable organic materials in the absence of oxygen. A wide range of AD technologies is being used to convert livestock manure, municipal and industrial wastewaters, and solid organic wastes into biogas. AD gains importance not only because of its relevance in waste treatment but also because of the recovery of carbon in the form of methane, which is a renewable energy and is used to generate electricity and heat. Despite the advances on the engineering and design of new bioreactors for AD, the microbiology component always poses challenges. Microbiology of AD processes is complicated as the efficiency of the process depends on the interactions of various trophic groups involved. Due to the complex interdependence of microbial activities for the functionality of the anaerobic bioreactors, the genetic expression of mcrA, which encodes a key enzyme in methane formation, is proposed as a parameter to monitor the process performance in real time. This review evaluates the current knowledge on microbial groups, their interactions, and their relationship to the performance of anaerobic biodigesters with a focus on using mcrA gene expression as a tool to monitor the process.
Collapse
Affiliation(s)
- Alejandra Alvarado
- Laboratorio de Biorremediación, Escuela de Ciencias Biológicas, Universidad Autónoma de Coahuila, TorreónMéxico
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, MarburgGermany
| | - Lilia E. Montañez-Hernández
- Laboratorio de Biorremediación, Escuela de Ciencias Biológicas, Universidad Autónoma de Coahuila, TorreónMéxico
| | - Sandra L. Palacio-Molina
- Laboratorio de Biorremediación, Escuela de Ciencias Biológicas, Universidad Autónoma de Coahuila, TorreónMéxico
| | | | - Miriam P. Luévanos-Escareño
- Laboratorio de Biorremediación, Escuela de Ciencias Biológicas, Universidad Autónoma de Coahuila, TorreónMéxico
| | - Nagamani Balagurusamy
- Laboratorio de Biorremediación, Escuela de Ciencias Biológicas, Universidad Autónoma de Coahuila, TorreónMéxico
| |
Collapse
|
29
|
Rodriguez-Verde I, Regueiro L, Pena R, Álvarez JA, Lema JM, Carballa M. Feasibility of spent metalworking fluids as co-substrate for anaerobic co-digestion. BIORESOURCE TECHNOLOGY 2014; 155:281-288. [PMID: 24457301 DOI: 10.1016/j.biortech.2013.12.090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 12/18/2013] [Accepted: 12/21/2013] [Indexed: 06/03/2023]
Abstract
In this paper, anaerobic co-digestion of spent metalworking fluids (SMWF) and pig manure (PM) was evaluated. Three SMWF:PM ratios were tested in order to find the highest process efficiency. The best results (COD removal efficiencies of 74%) were achieved co-digesting a mixture with a SMWF:PM ratio of 1:99, w/w(1) (corresponding to 3.75mL SMWF/Lreactor week), which indicates that SMWF did not affect negatively PM degradation. Furthermore, two different weekly SMWF pulse-frequencies were performed (one reactor received 1 pulse of 3.75mL/Lreactor and the other 3 pulses of 1.25mL/Lreactor) and no differences in COD removal efficiency were observed. Microbiology analysis confirmed that Pseudomonas was the predominant genus when treating anaerobically SMWF and the presence of a higher fraction of Archaea was indicative of good digester performance. This study confirms the feasibility of anaerobic co-digestion as an appropriate technology for treating and valorising SMWF.
Collapse
Affiliation(s)
- Ivan Rodriguez-Verde
- Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, E- 15782 Santiago de Compostela, Spain.
| | - Leticia Regueiro
- Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, E- 15782 Santiago de Compostela, Spain.
| | - Rocio Pena
- AIMEN Technological Centre, C/Relva, 27A - Torneiros, E-36410, Porriño, Pontevedra, Spain.
| | - Juan A Álvarez
- AIMEN Technological Centre, C/Relva, 27A - Torneiros, E-36410, Porriño, Pontevedra, Spain.
| | - Juan M Lema
- Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, E- 15782 Santiago de Compostela, Spain.
| | - Marta Carballa
- Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, E- 15782 Santiago de Compostela, Spain.
| |
Collapse
|
30
|
Enitan AM, Kumari S, Swalaha FM, Adeyemo J, Ramdhani N, Bux F. Kinetic modelling and characterization of microbial community present in a full-scale UASB reactor treating brewery effluent. MICROBIAL ECOLOGY 2014; 67:358-368. [PMID: 24337806 DOI: 10.1007/s00248-013-0333-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 11/15/2013] [Indexed: 06/03/2023]
Abstract
The performance of a full-scale upflow anaerobic sludge blanket (UASB) reactor treating brewery wastewater was investigated by microbial analysis and kinetic modelling. The microbial community present in the granular sludge was detected using fluorescent in situ hybridization (FISH) and further confirmed using polymerase chain reaction. A group of 16S rRNA based fluorescent probes and primers targeting Archaea and Eubacteria were selected for microbial analysis. FISH results indicated the presence and dominance of a significant amount of Eubacteria and diverse group of methanogenic Archaea belonging to the order Methanococcales, Methanobacteriales, and Methanomicrobiales within in the UASB reactor. The influent brewery wastewater had a relatively high amount of volatile fatty acids chemical oxygen demand (COD), 2005 mg/l and the final COD concentration of the reactor was 457 mg/l. The biogas analysis showed 60-69% of methane, confirming the presence and activities of methanogens within the reactor. Biokinetics of the degradable organic substrate present in the brewery wastewater was further explored using Stover and Kincannon kinetic model, with the aim of predicting the final effluent quality. The maximum utilization rate constant U max and the saturation constant (K(B)) in the model were estimated as 18.51 and 13.64 g/l/day, respectively. The model showed an excellent fit between the predicted and the observed effluent COD concentrations. Applicability of this model to predict the effluent quality of the UASB reactor treating brewery wastewater was evident from the regression analysis (R(2) = 0.957) which could be used for optimizing the reactor performance.
Collapse
Affiliation(s)
- Abimbola M Enitan
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O. Box 1334, Durban, 4000, South Africa,
| | | | | | | | | | | |
Collapse
|
31
|
Regueiro L, Veiga P, Figueroa M, Lema JM, Carballa M. Influence of transitional states on the microbial ecology of anaerobic digesters treating solid wastes. Appl Microbiol Biotechnol 2013; 98:2015-27. [DOI: 10.1007/s00253-013-5378-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 10/30/2013] [Accepted: 11/02/2013] [Indexed: 01/09/2023]
|
32
|
Molecular phylogenetic analysis of dominant microbial populations in aged refuse. World J Microbiol Biotechnol 2013; 30:1037-45. [DOI: 10.1007/s11274-013-1522-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 10/10/2013] [Indexed: 10/26/2022]
|
33
|
St-Pierre B, Wright ADG. Comparative metagenomic analysis of bacterial populations in three full-scale mesophilic anaerobic manure digesters. Appl Microbiol Biotechnol 2013; 98:2709-17. [PMID: 24085391 DOI: 10.1007/s00253-013-5220-3] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 08/27/2013] [Accepted: 08/28/2013] [Indexed: 10/26/2022]
Abstract
While the use of anaerobic digestion to generate methane as a source of bioenergy is increasing worldwide, our knowledge of the microbial communities that perform biomethanation is very limited. Using next-generation sequencing, bacterial population profiles were determined in three full-scale mesophilic anaerobic digesters operated on dairy farms in the state of Vermont (USA). To our knowledge, this is the first report of a metagenomic analysis on the bacterial population of anaerobic digesters using dairy manure as their main substrate. A total of 20,366 non-chimeric sequence reads, covering the V1-V2 hypervariable regions of the bacterial 16S rRNA gene, were assigned to 2,176 operational taxonomic units (OTUs) at a genetic distance cutoff value of 5 %. Based on their limited sequence identity to validly characterized species, the majority of OTUs identified in our study likely represented novel bacterial species. Using a naïve Bayesian classifier, 1,624 anaerobic digester OTUs could be assigned to 16 bacterial phyla, while 552 OTUs could not be classified and may belong to novel bacterial taxonomic groups that have yet to be described. Firmicutes, Bacteroidetes, and Chloroflexi were the most highly represented bacteria overall, with Bacteroidetes and Chloroflexi showing the least and the most variation in abundance between digesters, respectively. All digesters shared 132 OTUs, which as a "core" group represented 65.4 to 70.6 % of sequences in individual digesters. Our results show that bacterial populations from microbial communities of anaerobic manure digesters can display high levels of diversity despite sharing a common core substrate.
Collapse
Affiliation(s)
- Benoit St-Pierre
- Department of Animal Science, The University of Vermont, 570 Main Street, Burlington, VT, 05405, USA
| | | |
Collapse
|
34
|
Bareither CA, Wolfe GL, McMahon KD, Benson CH. Microbial diversity and dynamics during methane production from municipal solid waste. WASTE MANAGEMENT (NEW YORK, N.Y.) 2013; 33:1982-1992. [PMID: 23318155 DOI: 10.1016/j.wasman.2012.12.013] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 12/13/2012] [Accepted: 12/14/2012] [Indexed: 06/01/2023]
Abstract
The objectives of this study were to characterize development of bacterial and archaeal populations during biodegradation of municipal solid waste (MSW) and to link specific methanogens to methane generation. Experiments were conducted in three 0.61-m-diameter by 0.90-m-tall laboratory reactors to simulate MSW bioreactor landfills. Pyrosequencing of 16S rRNA genes was used to characterize microbial communities in both leachate and solid waste. Microbial assemblages in effluent leachate were similar between reactors during peak methane generation. Specific groups within the Bacteroidetes and Thermatogae phyla were present in all samples and were particularly abundant during peak methane generation. Microbial communities were not similar in leachate and solid fractions assayed at the end of reactor operation; solid waste contained a more abundant bacterial community of cellulose-degrading organisms (e.g., Firmicutes). Specific methanogen populations were assessed using quantitative polymerase chain reaction. Methanomicrobiales, Methanosarcinaceae, and Methanobacteriales were the predominant methanogens in all reactors, with Methanomicrobiales consistently the most abundant. Methanogen growth phases coincided with accelerated methane production, and cumulative methane yield increased with increasing total methanogen abundance. The difference in methanogen populations and corresponding methane yield is attributed to different initial cellulose and hemicellulose contents of the MSW. Higher initial cellulose and hemicellulose contents supported growth of larger methanogen populations that resulted in higher methane yield.
Collapse
Affiliation(s)
- Christopher A Bareither
- Civil & Environmental Engineering, Colorado State University, Ft. Collins, CO 80532, USA; Geological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | | | | | | |
Collapse
|
35
|
Cardinali-Rezende J, Araújo JC, Almeida PGS, Chernicharo CAL, Sanz JL, Chartone-Souza E, Nascimento AMA. Organic loading rate and food-to-microorganism ratio shape prokaryotic diversity in a demo-scale up-flow anaerobic sludge blanket reactor treating domestic wastewater. Antonie van Leeuwenhoek 2013; 104:993-1003. [PMID: 24000090 DOI: 10.1007/s10482-013-0018-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 08/24/2013] [Indexed: 12/01/2022]
Abstract
We investigated the microbial community in an up-flow anaerobic sludge blanket (UASB) reactor treating domestic wastewater (DW) during two different periods of organic loading rate (OLR) and food-to-microorganism (F/M) ratio. 16S rDNA clone libraries were generated, and quantitative real-time PCR (qPCR) analyses were performed. Fluctuations in the OLR and F/M ratio affected the abundance and the composition of the UASB prokaryotic community, mainly at the species level, as well as the performance of the UASB reactor. The qPCR analysis suggested that there was a decrease in the bacterial cell number during the rainy season, when the OLR and F/M ratio were lower. However, the bacterial diversity was higher during this time, suggesting that the community degraded more diversified substrates. The diversity and the abundance of the archaeal community were higher when the F/M ratio was lower. Shifts in the methanogenic community composition might have influenced the route of methane production, with methane produced by acetotrophic methanogens (dry season), and by hydrogenotrophic, methylotrophic and acetotrophic methanogens (rainy season). This study revealed higher levels of bacterial diversity, metabolic specialization and chemical oxygen demand removal efficiency of the DW UASB reactor during the rainy season.
Collapse
Affiliation(s)
- Juliana Cardinali-Rezende
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, MG, 31270-901, Brazil
| | | | | | | | | | | | | |
Collapse
|
36
|
Sundberg C, Al-Soud WA, Larsson M, Alm E, Yekta SS, Svensson BH, Sørensen SJ, Karlsson A. 454 pyrosequencing analyses of bacterial and archaeal richness in 21 full-scale biogas digesters. FEMS Microbiol Ecol 2013; 85:612-26. [PMID: 23678985 DOI: 10.1111/1574-6941.12148] [Citation(s) in RCA: 444] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 05/11/2013] [Accepted: 05/13/2013] [Indexed: 12/21/2022] Open
Abstract
The microbial community of 21 full-scale biogas reactors was examined using 454 pyrosequencing of 16S rRNA gene sequences. These reactors included seven (six mesophilic and one thermophilic) digesting sewage sludge (SS) and 14 (ten mesophilic and four thermophilic) codigesting (CD) various combinations of wastes from slaughterhouses, restaurants, households, etc. The pyrosequencing generated more than 160,000 sequences representing 11 phyla, 23 classes, and 95 genera of Bacteria and Archaea. The bacterial community was always both more abundant and more diverse than the archaeal community. At the phylum level, the foremost populations in the SS reactors included Actinobacteria, Proteobacteria, Chloroflexi, Spirochetes, and Euryarchaeota, while Firmicutes was the most prevalent in the CD reactors. The main bacterial class in all reactors was Clostridia. Acetoclastic methanogens were detected in the SS, but not in the CD reactors. Their absence suggests that methane formation from acetate takes place mainly via syntrophic acetate oxidation in the CD reactors. A principal component analysis of the communities at genus level revealed three clusters: SS reactors, mesophilic CD reactors (including one thermophilic CD and one SS), and thermophilic CD reactors. Thus, the microbial composition was mainly governed by the substrate differences and the process temperature.
Collapse
Affiliation(s)
- Carina Sundberg
- Department of Thematic Studies - Water and Environmental Studies, Linköping University, Linköping, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Hanreich A, Schimpf U, Zakrzewski M, Schlüter A, Benndorf D, Heyer R, Rapp E, Pühler A, Reichl U, Klocke M. Metagenome and metaproteome analyses of microbial communities in mesophilic biogas-producing anaerobic batch fermentations indicate concerted plant carbohydrate degradation. Syst Appl Microbiol 2013; 36:330-8. [PMID: 23694815 DOI: 10.1016/j.syapm.2013.03.006] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 03/01/2013] [Accepted: 03/07/2013] [Indexed: 11/27/2022]
Abstract
Microbial communities in biogas batch fermentations, using straw and hay as co-substrates, were analyzed at the gene and protein level by metagenomic and metaproteomic approaches. The analysis of metagenomic data revealed that the Clostridiales and Bacteroidales orders were prevalent in the community. However, the number of sequences assigned to the Clostridiales order decreased during fermentation, whereas the number of sequences assigned to the Bacteroidales order increased. In addition, changes at the functional level were monitored and the metaproteomic analyses detected transporter proteins and flagellins, which were expressed mainly by members of the Bacteroidetes and Firmicutes phyla. A high number of sugar transporters, expressed by members of the Bacteroidetes, proved their potential to take up various glycans efficiently. Metagenome data also showed that methanogenic organisms represented less than 4% of the community, while 20-30% of the identified proteins were of archeal origin. These data suggested that methanogens were disproportionally active. In conclusion, the community studied was capable of digesting the recalcitrant co-substrate. Members of the Firmicutes phylum seemed to be the main degraders of cellulose, even though expression of only a few glycoside hydrolases was detected. The Bacteroidetes phylum expressed a high number of sugar transporters and seemed to specialize in the digestion of other polysaccharides. Finally, it was found that key enzymes of methanogenesis were expressed in high quantities, indicating the high metabolic activity of methanogens, although they only represented a minor group within the microbial community.
Collapse
Affiliation(s)
- Angelika Hanreich
- Leibniz-Institut für Agrartechnik Potsdam-Bornim e.V., Abteilung Bioverfahrenstechnik, Max-Eyth-Allee 100, 14469 Potsdam, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
The prokaryotic community of a historically mining-impacted tropical stream sediment is as diverse as that from a pristine stream sediment. Extremophiles 2013; 17:301-9. [PMID: 23389654 DOI: 10.1007/s00792-013-0517-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 01/10/2013] [Indexed: 10/27/2022]
Abstract
Mining negatively affects the environment by producing large quantities of metallic tailings, such as those contaminated with arsenic, with harmful consequences for human and aquatic life. A culture-independent molecular analysis was performed to assess the prokaryotic diversity and community structural changes of the tropical historically metal-contaminated Mina stream (MS) and the relatively pristine Mutuca stream (MTS) sediments. A total of 234 bacterial operational taxonomic units (OTUs) were affiliated with 14 (MS) and 17 (MTS) phyla and 53 OTUs were associated with two archaeal phyla. Although the bacterial community compositions of these sediments were markedly distinct, no significant difference in the diversity indices between the bacterial communities was observed. Additionally, the rarefaction and diversity indices indicated a higher bacterial diversity than archaeal diversity. Most of the OTUs were affiliated with the Proteobacteria and Bacteroidetes phyla. Alphaproteobacteria, Gemmatimonadetes and Actinobacteria were only found in the MS clone library. Crenarchaeal 16S rDNA sequences constituted 75 % of the MS archaeal clones, whereas Euryarchaeota were dominant in the MTS clones. Despite the markedly different characteristics of these streams, their bacterial communities harbor high diversity, suggesting that historically mining-impacted sediments promote diversity. The findings also provide basis for further investigation of members of Alphaproteobacteria as potential biological indicators of arsenic-rich sediments.
Collapse
|
39
|
Bengelsdorf FR, Gerischer U, Langer S, Zak M, Kazda M. Stability of a biogas-producing bacterial, archaeal and fungal community degrading food residues. FEMS Microbiol Ecol 2012; 84:201-12. [DOI: 10.1111/1574-6941.12055] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 11/07/2012] [Accepted: 12/02/2012] [Indexed: 11/27/2022] Open
Affiliation(s)
| | - Ulrike Gerischer
- Theoretical and Computational Biophysics Department; Max Planck Institute for Biophysical Chemistry; Göttingen; Germany
| | - Susanne Langer
- Institute for Microbiology and Biotechnology; University of Ulm; Ulm; Germany
| | - Manuel Zak
- Institute for Systematic Botany and Ecology; University of Ulm; Ulm; Germany
| | - Marian Kazda
- Institute for Systematic Botany and Ecology; University of Ulm; Ulm; Germany
| |
Collapse
|
40
|
Traversi D, Villa S, Lorenzi E, Degan R, Gilli G. Application of a real-time qPCR method to measure the methanogen concentration during anaerobic digestion as an indicator of biogas production capacity. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2012; 111:173-177. [PMID: 22910214 DOI: 10.1016/j.jenvman.2012.07.021] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2011] [Revised: 07/10/2012] [Accepted: 07/23/2012] [Indexed: 06/01/2023]
Abstract
Biogas is an energy source that is produced via the anaerobic digestion of various organic materials, including waste-water sludge and organic urban wastes. Among the microorganisms involved in digestion, methanogens are the major microbiological group responsible for methane production. To study the microbiological equilibrium in an anaerobic reactor, we detected the methanogen concentration during wet digestion processes fed with pre-treated urban organic waste and waste-water sludge. Two different pre-treatments were used in successive experimental digestions: pressure-extrusion and turbo-mixing. Chemical parameters were collected to describe the process and its production. The method used is based on real-time quantitative PCR (RT-qPCR) with the functional gene mcrA as target. First, we evaluated the validity of the analyses. Next, we applied this method to 50 digestate samples and then we performed a statistical analysis. A positive and significant correlation between the biogas production rate and methanogen abundance was observed (r = 0.579, p < 0.001). This correlation holds both when considering all of the collected data and when the two data sets are separated. The pressure-extrusion pre-treatment allowed to obtain the higher methane amount and also the higher methanogen presence (F = 41.190, p < 0.01). Moreover a higher mean methanogen concentration was observed for production rate above than of 0.6 m(3) biogas/kg TVS (F = 7.053; p < 0.05). The applied method is suitable to describe microbiome into the anaerobic reactor, moreover methanogen concentration may have potential for use as a digestion optimisation tool.
Collapse
Affiliation(s)
- Deborah Traversi
- Department of Public Health and Microbiology, University of the Study of Turin, Via Santena 5 bis, 10126 Turin, Italy.
| | | | | | | | | |
Collapse
|
41
|
Sasaki K, Morita M, Sasaki D, Ohmura N, Igarashi Y. The membraneless bioelectrochemical reactor stimulates hydrogen fermentation by inhibiting methanogenic archaea. Appl Microbiol Biotechnol 2012; 97:7005-13. [DOI: 10.1007/s00253-012-4465-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 09/17/2012] [Accepted: 09/20/2012] [Indexed: 10/27/2022]
|
42
|
Cardinali-Rezende J, Colturato LFDB, Colturato TDB, Chartone-Souza E, Nascimento AMA, Sanz JL. Prokaryotic diversity and dynamics in a full-scale municipal solid waste anaerobic reactor from start-up to steady-state conditions. BIORESOURCE TECHNOLOGY 2012; 119:373-83. [PMID: 22750748 DOI: 10.1016/j.biortech.2012.05.136] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 05/27/2012] [Accepted: 05/28/2012] [Indexed: 05/16/2023]
Abstract
The prokaryotic diversity of an anaerobic reactor for the treatment of municipal solid waste was investigated over the course of 2 years with the use of 16S rDNA-targeted molecular approaches. The fermentative Bacteroidetes and Firmicutes predominated, and Proteobacteria, Actinobacteria, Tenericutes and the candidate division WWE1 were also identified. Methane production was dominated by the hydrogenotrophic Methanomicrobiales (Methanoculleus sp.) and their syntrophic association with acetate-utilizing and propionate-oxidizing bacteria. qPCR demonstrated the predominance of the hydrogenotrophic over aceticlastic Methanosarcinaceae (Methanosarcina sp. and Methanimicrococcus sp.), and Methanosaetaceae (Methanosaeta sp.) were measured in low numbers in the reactor. According to the FISH and CARD-FISH analyses, Bacteria and Archaea accounted for 85% and 15% of the cells, respectively. Different cell counts for these domains were obtained by qPCR versus FISH analyses. The use of several molecular tools increases our knowledge of the prokaryotic community dynamics from start-up to steady-state conditions in a full-scale MSW reactor.
Collapse
Affiliation(s)
- Juliana Cardinali-Rezende
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, MG 31.270-901, Brazil
| | | | | | | | | | | |
Collapse
|
43
|
Microorganisms in landfill bioreactors for accelerated stabilization of solid wastes. J Biosci Bioeng 2012; 114:243-50. [DOI: 10.1016/j.jbiosc.2012.04.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 03/24/2012] [Accepted: 04/06/2012] [Indexed: 11/22/2022]
|
44
|
Bacterial and archaeal phylogenetic diversity associated with swine sludge from an anaerobic treatment lagoon. World J Microbiol Biotechnol 2012; 28:3187-95. [DOI: 10.1007/s11274-012-1129-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 07/06/2012] [Indexed: 10/28/2022]
|
45
|
Hanreich A, Heyer R, Benndorf D, Rapp E, Pioch M, Reichl U, Klocke M. Metaproteome analysis to determine the metabolically active part of a thermophilic microbial community producing biogas from agricultural biomass. Can J Microbiol 2012; 58:917-22. [DOI: 10.1139/w2012-058] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Complex consortia of microorganisms are responsible for biogas production. A lot of information about the taxonomic structure and enzymatic potential of such communities has been collected by a variety of gene-based approaches, yet little is known about which of all the assumable metabolic pathways are active throughout the process of biogas formation. To tackle this problem, we established a protocol for the metaproteomic analysis of samples taken from biogas reactors fed with agricultural biomass. In contrast to previous studies where an anaerobic digester was fed with synthetic wastewater, the complex matrix in this study required the extraction of proteins with liquid phenol and the application of paper bridge loading for 2-dimensional gel electrophoresis. Proteins were subjected to nanoHPLC (high-performance liquid chromatography) coupled to tandem mass spectrometry for characterization. Several housekeeping proteins as well as methanogenesis-related enzymes were identified by a MASCOT search and de novo sequencing, which proved the feasibility of our approach. The establishment of such an approach is the basis for further metaproteomic studies of biogas-producing communities. In particular, the apparent status of metabolic activities within the communities can be monitored. The knowledge collected from such experiments could lead to further improvements of biogas production.
Collapse
Affiliation(s)
- Angelika Hanreich
- Leibniz-Institut für Agrartechnik Potsdam-Bornim e.V., Abteilung Bioverfahrenstechnik, Max-Eyth-Allee 100, 14469 Potsdam, Germany
| | - Robert Heyer
- Otto von Guericke University, Bioprocess Engineering, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Dirk Benndorf
- Otto von Guericke University, Bioprocess Engineering, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Erdmann Rapp
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Sandtor Straße 1, 39106 Magdeburg, Germany
| | - Markus Pioch
- Otto von Guericke University, Bioprocess Engineering, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Udo Reichl
- Otto von Guericke University, Bioprocess Engineering, Universitätsplatz 2, 39106 Magdeburg, Germany
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Sandtor Straße 1, 39106 Magdeburg, Germany
| | - Michael Klocke
- Leibniz-Institut für Agrartechnik Potsdam-Bornim e.V., Abteilung Bioverfahrenstechnik, Max-Eyth-Allee 100, 14469 Potsdam, Germany
| |
Collapse
|
46
|
Bertin L, Bettini C, Zanaroli G, Frascari D, Fava F. A continuous-flow approach for the development of an anaerobic consortium capable of an effective biomethanization of a mechanically sorted organic fraction of municipal solid waste as the sole substrate. WATER RESEARCH 2012; 46:413-424. [PMID: 22118905 DOI: 10.1016/j.watres.2011.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 10/30/2011] [Accepted: 11/01/2011] [Indexed: 05/31/2023]
Abstract
An effective mesophilic continuous anaerobic digestion process fed only with a mechanically sorted organic fraction of municipal solid waste (MS-OFMSW) was developed. During a preliminary 3-month experimental phase, the microbial consortium was acclimated toward MS-OFMSW by initially filling the reactor with cattle manure and then continuously feeding it with MS-OFMSW. The Hydraulic Retention Time (HRT) and Organic Loading Rate (OLR) were 23 days and 2.5 g/L/day, respectively. After 4 weeks, the reactor reached stationary performances (84% COD removal yield, 0.15 L(CH₄)/g(COD removed) methane production yield). The acclimated consortium was then employed in a second run in which the reactor was operated under steady state conditions at the previous HRT and OLR for 73 days. The COD removal and the methane production yield increased up to 87% and 0.25 L(CH₄) /g(CODremoved), respectively. The capability of the acclimated consortium to biomethanize MS-OFMSW was further studied via batch digestion experiments, carried out by inoculating the target waste with reactor effluents collected at the beginning of first run and at the end of the first and second run. The best normalized methane production (0.39 L(CH₄) /g(initial COD)) was obtained with the inoculum collected at the end of the second run. Molecular analysis of the microbial community occurring in the reactor during the two sequential runs indicated that the progressive improvement of the process performances was closely related to the selection and enrichment of specific hydrolytic and acidogenic bacteria in the reactor.
Collapse
Affiliation(s)
- Lorenzo Bertin
- Department of Civil, Environmental and Materials Engineering (DICAM), Faculty of Engineering, University of Bologna, via Terracini 28, 40131 Bologna, Italy.
| | | | | | | | | |
Collapse
|
47
|
Traversi D, Villa S, Acri M, Pietrangeli B, Degan R, Gilli G. The role of different methanogen groups evaluated by Real-Time qPCR as high-efficiency bioindicators of wet anaerobic co-digestion of organic waste. AMB Express 2011; 1:28. [PMID: 21982396 PMCID: PMC3219682 DOI: 10.1186/2191-0855-1-28] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 10/07/2011] [Indexed: 11/10/2022] Open
Abstract
Methanogen populations and their domains are poorly understood; however, in recent years, research on this topic has emerged. The relevance of this field has also been enhanced by the growing economic interest in methanogen skills, particularly the production of methane from organic substrates. Management attention turned to anaerobic wastes digestion because the volume and environmental impact reductions. Methanogenesis is the biochemically limiting step of the process and the industrially interesting phase because it connects to the amount of biogas production. For this reason, several studies have evaluated the structure of methanogen communities during this process. Currently, it is clear that the methanogen load and diversity depend on the feeding characteristics and the process conditions, but not much data is available. In this study, we apply a Real-Time Polymerase Chain Reaction (RT-PCR) method based on mcrA target to evaluate, by specific probes, some subgroups of methanogens during the mesophilic anaerobic digestion process fed wastewater sludge and organic fraction of the municipal solid waste with two different pre-treatments. The obtained data showed the prevalence of Methanomicrobiales and significantly positive correlation between Methanosarcina and Methanosaetae and the biogas production rate (0.744 p < 0.01 and 0.641 p < 0.05). Methanosarcina detected levels are different during the process after the two pre-treatment of the input materials (T-test p < 0.05). Moreover, a role as diagnostic tool could be suggested in digestion optimisation.
Collapse
|
48
|
Supaphol S, Jenkins SN, Intomo P, Waite IS, O'Donnell AG. Microbial community dynamics in mesophilic anaerobic co-digestion of mixed waste. BIORESOURCE TECHNOLOGY 2011; 102:4021-7. [PMID: 21196114 DOI: 10.1016/j.biortech.2010.11.124] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 11/27/2010] [Accepted: 11/30/2010] [Indexed: 05/16/2023]
Abstract
This paper identifies key components of the microbial community involved in the mesophilic anaerobic co-digestion (AD) of mixed waste at Rayong Biogas Plant, Thailand. The AD process is separated into three stages: front end treatment (FET); feed holding tank and the main anaerobic digester. The study examines how the microbial community structure was affected by the different stages and found that seeding the waste at the beginning of the process (FET) resulted in community stability. Also, co-digestion of mixed waste supported different bacterial and methanogenic pathways. Typically, acetoclastic methanogenesis was the major pathway catalysed by Methanosaeta but hydrogenotrophs were also supported. Finally, the three-stage AD process means that hydrolysis and acidogenesis is initiated prior to entering the main digester which helps improve the bioconversion efficiency. This paper demonstrates that both resource availability (different waste streams) and environmental factors are key drivers of microbial community dynamics in mesophilic, anaerobic co-digestion.
Collapse
Affiliation(s)
- Savaporn Supaphol
- Department of Soil Science, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand
| | | | | | | | | |
Collapse
|
49
|
Liu Z, Wang Y, He N, Huang J, Zhu K, Shao W, Wang H, Yuan W, Li Q. Optimization of polyhydroxybutyrate (PHB) production by excess activated sludge and microbial community analysis. JOURNAL OF HAZARDOUS MATERIALS 2011; 185:8-16. [PMID: 20970922 DOI: 10.1016/j.jhazmat.2010.08.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 07/20/2010] [Accepted: 08/03/2010] [Indexed: 05/30/2023]
Abstract
In this study, a high value-added and biodegradable thermoplastic, polyhydroxybutyrate (PHB), was produced by excess activated sludge. The effects of the nutritional condition, aeration mode, sodium acetate concentration and initial pH value on PHB accumulation in the activated sludge were investigated. The maximum PHB content and PHB yield of 67.0% (dry cell weight) and 0.740gCODgCOD(-1) (COD: chemical oxygen demand), respectively, were attained by the sludge in the presence of 6.0gL(-1) sodium acetate, with an initial pH value of 7.0 and intermittent aeration. The analysis of the polymerase chain reaction (PCR)-denaturing gradient-gel-electrophoresis (DGGE) sequencing indicated that the microbial community of the sludge was significantly different during the process of PHB accumulation. Three PHB-accumulating microorganisms, which were affiliated with the Thauera, Dechloromonas and Competibacter lineages, were found in the excess activated sludge under different operating conditions for PHB accumulation.
Collapse
Affiliation(s)
- Zhenggui Liu
- Environmental Science Research Center, College of Oceanography and Environmental Science, Xiamen University, Xiamen 361005, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Limam RD, Bouchez T, Chouari R, Li T, Barkallah I, Landoulsi A, Sghir A. Detection of WWE2-related Lentisphaerae by 16S rRNA gene sequencing and fluorescence in situ hybridization in landfill leachate. Can J Microbiol 2010; 56:846-52. [PMID: 20962908 DOI: 10.1139/w10-065] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We collected samples of anaerobic landfill leachate from municipal solid waste landfill (Vert-le-Grand, France) and constructed 16S rRNA clone libraries using primers targeting Planctomycetes and relatives (Pla46F and 1390R). Analyses of 16S rRNA gene sequences resulted in the abundant representation of WWE2-related Lentisphaerae, members of the phylum Lentisphaerae, in the clone library (98% of the retrieved sequences). Although the sequences that are phylogenetically affiliated with the cultured isolate Victivallis vadensis were identified (WWE2 subgroup II), the majority of the sequences were affiliated with an uncultured Lentisphaerae lineage (WWE2 subgroup I). We designed oligonucleotides probes targeting the specific 16S rRNA gene regions of those 2 subgroups. Fluorescence in situ hybridization confirmed the abundance of the uncultivated WWE2 subgroup I in our leachate samples.
Collapse
|