1
|
Daba GM, Mostafa FA, Saleh SAA, Elkhateeb WA, Awad G, Nomiyama T, Zendo T, El-Dein AN. Purification, amino acid sequence, and characterization of bacteriocin GA15, a novel class IIa bacteriocin secreted by Lactiplantibacillus plantarum GCNRC_GA15. Int J Biol Macromol 2022; 213:651-662. [PMID: 35667456 DOI: 10.1016/j.ijbiomac.2022.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/26/2022] [Accepted: 06/01/2022] [Indexed: 01/10/2023]
Abstract
The bacteriocins produced by lactic acid bacteria (LAB) are attracting attention due to their promising applications in food and pharmaceuticals fields. Hence, a LAB strain, GCNRC_GA15, was isolated from Egyptian goat cheese, and molecularly identified as Lactiplantibacillus plantarum. This strain showed a wide antimicrobial spectrum, which was found to be of proteineous nature, suggesting that L. plantarum GCNRC_GA15 is a bacteriocin-producer. This bacteriocin (bacteriocin GA15) was partially purified using cation exchange, and hydrophobic interaction chromatography. Tricine SDS-PAGE analysis for the fraction showing bacteriocin activity has estimated the molecular mass to be 4369 Da. Furthermore, amino acid sequencing of this peptide has detected 34 amino acids, and comparing its amino acid sequence with those of some pediocin-like bacteriocins revealed that bacteriocin GA15 has the conserved sequence (YYGNGV/L) in its N-terminal region which identified bacteriocin GA15 as a pediocin-like bacteriocin. Bacteriocin GA15 showed good heat and pH stabilities, and its activity was enhanced after treatment with Tween 80 or Triton X-100. Bacteriocin production medium was statistically optimized using the Plackett-Burman and Central Composite designs. As a result, bacteriocin production increased from 800 to 12,800 AU/ml using the optimized medium in comparison with result recorded for the un-optimized medium.
Collapse
Affiliation(s)
- Ghoson M Daba
- Chemistry of Natural and Microbial Products Department, Pharmaceutical Industries Research Institute, National Research Centre, Dokki, Giza 12622, Egypt.
| | - Faten A Mostafa
- Chemistry of Natural and Microbial Products Department, Pharmaceutical Industries Research Institute, National Research Centre, Dokki, Giza 12622, Egypt
| | - Shireen A A Saleh
- Chemistry of Natural and Microbial Products Department, Pharmaceutical Industries Research Institute, National Research Centre, Dokki, Giza 12622, Egypt
| | - Waill A Elkhateeb
- Chemistry of Natural and Microbial Products Department, Pharmaceutical Industries Research Institute, National Research Centre, Dokki, Giza 12622, Egypt
| | - Ghada Awad
- Chemistry of Natural and Microbial Products Department, Pharmaceutical Industries Research Institute, National Research Centre, Dokki, Giza 12622, Egypt
| | - Taisei Nomiyama
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Takeshi Zendo
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Asmaa Negm El-Dein
- Chemistry of Natural and Microbial Products Department, Pharmaceutical Industries Research Institute, National Research Centre, Dokki, Giza 12622, Egypt
| |
Collapse
|
2
|
Feito J, Contente D, Ponce-Alonso M, Díaz-Formoso L, Araújo C, Peña N, Borrero J, Gómez-Sala B, del Campo R, Muñoz-Atienza E, Hernández PE, Cintas LM. Draft Genome Sequence of Lactococcus lactis Subsp. cremoris WA2-67: A Promising Nisin-Producing Probiotic Strain Isolated from the Rearing Environment of a Spanish Rainbow Trout ( Oncorhynchus mykiss, Walbaum) Farm. Microorganisms 2022; 10:521. [PMID: 35336097 PMCID: PMC8954438 DOI: 10.3390/microorganisms10030521] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/20/2022] [Accepted: 02/25/2022] [Indexed: 12/30/2022] Open
Abstract
Probiotics are a viable alternative to traditional chemotherapy agents to control infectious diseases in aquaculture. In this regard, Lactococcus lactis subsp. cremoris WA2-67 has previously demonstrated several probiotic features, such as a strong antimicrobial activity against ichthyopathogens, survival in freshwater, resistance to fish bile and low pH, and hydrophobicity. The aim of this manuscript is an in silico analysis of the whole-genome sequence (WGS) of this strain to gain deeper insights into its probiotic properties and their genetic basis. Genomic DNA was purified, and libraries prepared for Illumina sequencing. After trimming and assembly, resulting contigs were subjected to bioinformatic analyses. The draft genome of L. cremoris WA2-67 consists of 30 contigs (2,573,139 bp), and a total number of 2493 coding DNA sequences (CDSs). Via in silico analysis, the bacteriocinogenic genetic clusters encoding the lantibiotic nisin Z (NisZ) and two new bacteriocins were identified, in addition to several probiotic traits, such as the production of vitamins, amino acids, adhesion/aggregation, and stress resistance factors, as well as the absence of transferable antibiotic resistance determinants and genes encoding detrimental enzymatic activities and virulence factors. These results unveil diverse beneficial properties that support the use of L. cremoris WA2-67 as a probiotic for aquaculture.
Collapse
Affiliation(s)
- Javier Feito
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (SEGABALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, Avda, Puerta de Hierro, s/n., 28040 Madrid, Spain; (J.F.); (D.C.); (L.D.-F.); (C.A.); (N.P.); (J.B.); (P.E.H.); (L.M.C.)
| | - Diogo Contente
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (SEGABALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, Avda, Puerta de Hierro, s/n., 28040 Madrid, Spain; (J.F.); (D.C.); (L.D.-F.); (C.A.); (N.P.); (J.B.); (P.E.H.); (L.M.C.)
| | - Manuel Ponce-Alonso
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal & Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Ctra. Colmenar Viejo, km. 9, 100., 28034 Madrid, Spain; (M.P.-A.); (R.d.C.)
| | - Lara Díaz-Formoso
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (SEGABALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, Avda, Puerta de Hierro, s/n., 28040 Madrid, Spain; (J.F.); (D.C.); (L.D.-F.); (C.A.); (N.P.); (J.B.); (P.E.H.); (L.M.C.)
| | - Carlos Araújo
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (SEGABALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, Avda, Puerta de Hierro, s/n., 28040 Madrid, Spain; (J.F.); (D.C.); (L.D.-F.); (C.A.); (N.P.); (J.B.); (P.E.H.); (L.M.C.)
| | - Nuria Peña
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (SEGABALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, Avda, Puerta de Hierro, s/n., 28040 Madrid, Spain; (J.F.); (D.C.); (L.D.-F.); (C.A.); (N.P.); (J.B.); (P.E.H.); (L.M.C.)
| | - Juan Borrero
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (SEGABALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, Avda, Puerta de Hierro, s/n., 28040 Madrid, Spain; (J.F.); (D.C.); (L.D.-F.); (C.A.); (N.P.); (J.B.); (P.E.H.); (L.M.C.)
| | - Beatriz Gómez-Sala
- APC Microbiome Ireland, University College Cork, T12 K8AF Cork, Ireland;
- Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Cork, Ireland
| | - Rosa del Campo
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal & Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Ctra. Colmenar Viejo, km. 9, 100., 28034 Madrid, Spain; (M.P.-A.); (R.d.C.)
| | - Estefanía Muñoz-Atienza
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (SEGABALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, Avda, Puerta de Hierro, s/n., 28040 Madrid, Spain; (J.F.); (D.C.); (L.D.-F.); (C.A.); (N.P.); (J.B.); (P.E.H.); (L.M.C.)
| | - Pablo E. Hernández
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (SEGABALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, Avda, Puerta de Hierro, s/n., 28040 Madrid, Spain; (J.F.); (D.C.); (L.D.-F.); (C.A.); (N.P.); (J.B.); (P.E.H.); (L.M.C.)
| | - Luis M. Cintas
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (SEGABALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, Avda, Puerta de Hierro, s/n., 28040 Madrid, Spain; (J.F.); (D.C.); (L.D.-F.); (C.A.); (N.P.); (J.B.); (P.E.H.); (L.M.C.)
| |
Collapse
|
3
|
Transition and regulation mechanism of bacterial biota in Kishu saba-narezushi (mackerel narezushi) during its fermentation step. J Biosci Bioeng 2021; 132:606-612. [PMID: 34563462 DOI: 10.1016/j.jbiosc.2021.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 11/24/2022]
Abstract
The transition of the bacterial biota of Kishu saba-narezushi (mackerel-narezushi) in the Hidaka region of Wakayama prefecture, Japan, was analyzed using amplicon sequencing based on the V3-V4 variable region of the 16S rRNA gene. In the non-fermented sample (0 day), the major genus with the highest abundance ratio was Staphylococcus. In the early stage (fermentation for 2 days), however, the genus Lactococcus became a dominant species, and in the later stage (fermentation for 5 days), the abundance ratio of the genus Lactobacillus increased significantly. Lactococcus lactis strains isolated from the narezushi samples had the ability to suppress the growth of not only Staphylococcus genera but also Lactobacillus. Moreover, the isolates produced a bacteriocin, which was identified as nisin Z. On the basis of these results, it is concluded that L. lactis plays an important role in preparing the fermentation conditions of Kishu saba-narezushi in the early stage by suppressing unwanted microorganisms using lactic acid and nisin Z.
Collapse
|
4
|
Construction of Leaderless-Bacteriocin-Producing Bacteriophage Targeting E. coli and Neighboring Gram-Positive Pathogens. Microbiol Spectr 2021; 9:e0014121. [PMID: 34259542 PMCID: PMC8552711 DOI: 10.1128/spectrum.00141-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lytic bacteriophages are expected as effective tools to control infectious bacteria in human and pathogenic or spoilage bacteria in foods. Leaderless bacteriocins (LLBs) are simple bacteriocins produced by Gram-positive bacteria. LLBs do not possess an N-terminal leader peptide in the precursor, which means that they are active immediately after translation. In this study, we constructed a novel antimicrobial agent, an LLB-producing phage (LLB-phage), by genetic engineering to introduce the LLB structural gene into the lytic phage genome. To this end, lnqQ (structure gene of an LLB, lacticin Q) and trxA, an essential gene for T7 phage genome replication, were integrated in tandem into T7 phage genome using homologous recombination in Escherichia coli host strain. The recombinant lnqQ-T7 phage was isolated by a screening method using ΔtrxA host strain. lnqQ-T7 phage formed a clear halo in agar plates containing both E. coli and lacticin Q-susceptible Bacillus coagulans, indicating that lnqQ-T7 phage could produce a significant amount of lacticin Q. Lacticin Q production did not exert a significant effect on the lytic cycle of T7 phage. In fact, the production of lacticin Q enhanced T7 phage lytic activity and helped to prevent the emergence of bacterial populations resistant against this phage. These results serve as a proof of principle for LLB-phages. There are different types of LLBs and phages, meaning that in the future, it may be possible to produce any number of LLB-phages which can be designed to efficiently control different types of bacterial contamination in different settings. IMPORTANCE We demonstrated that we could combine LLB and phage to construct promising novel antimicrobial agents, LLB-phage. The first LLB-phage, lnqQ-T7 phage, can control the growth of both the Gram-negative host strain and neighboring Gram-positive bacteria while preventing the emergence of phage resistance in the host strain. There are several different types of LLBs and phages, suggesting that we may be able to design a battery of LLB-phages by selecting novel combinations of LLBs and phages. These constructs could be tailored to control various bacterial contaminations and infectious diseases.
Collapse
|
5
|
Purified lactases versus whole-cell lactases-the winner takes it all. Appl Microbiol Biotechnol 2021; 105:4943-4955. [PMID: 34115184 DOI: 10.1007/s00253-021-11388-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/25/2021] [Accepted: 06/02/2021] [Indexed: 10/21/2022]
Abstract
Lactose-free dairy products are in great demand worldwide due to the high prevalence of lactose intolerance. To make lactose-free dairy products, commercially available β-galactosidase enzymes, also termed lactases, are used to break down lactose to its constituent monosaccharides, glucose and galactose. In this mini-review, the characteristics of lactase enzymes, their origin, and ways of use are discussed in light of their potential for hydrolyzing lactose. We also discuss whole-cell lactase catalysts, which appear to have great potential in terms of cost reduction and convenience, and which are more natural alternatives to purified enzymes. Lactic acid bacteria (LAB) already used in food fermentations seem to be optimal candidates for whole-cell lactases. However, they have not been industrially exploited yet due to technical hurdles. For whole-cell lactases to be efficient, the lactase enzymes inside the cells must be made available for lactose hydrolysis, and thus, cells need to be permeabilized or disrupted prior to use. Here we review state-of-the-art approaches for disrupting or permeabilizing microorganisms. Lastly, based on recent scientific achievements, we propose a novel, resource-efficient, and low-cost scenario for achieving lactose hydrolysis at a dairy plant using a LAB whole-cell lactase.Key points• Lactases (β-galactosidase) are essential for producing lactose-free dairy products• Novel permeabilization techniques facilitate the use of LAB lactases• Whole-cell lactase catalysts have great potential for reducing costs and resources Graphical abstract.
Collapse
|
6
|
Sabnis A, Hagart KLH, Klöckner A, Becce M, Evans LE, Furniss RCD, Mavridou DAI, Murphy R, Stevens MM, Davies JC, Larrouy-Maumus GJ, Clarke TB, Edwards AM. Colistin kills bacteria by targeting lipopolysaccharide in the cytoplasmic membrane. eLife 2021; 10:e65836. [PMID: 33821795 PMCID: PMC8096433 DOI: 10.7554/elife.65836] [Citation(s) in RCA: 210] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/31/2021] [Indexed: 12/21/2022] Open
Abstract
Colistin is an antibiotic of last resort, but has poor efficacy and resistance is a growing problem. Whilst it is well established that colistin disrupts the bacterial outer membrane (OM) by selectively targeting lipopolysaccharide (LPS), it was unclear how this led to bacterial killing. We discovered that MCR-1 mediated colistin resistance in Escherichia coli is due to modified LPS at the cytoplasmic rather than OM. In doing so, we also demonstrated that colistin exerts bactericidal activity by targeting LPS in the cytoplasmic membrane (CM). We then exploited this information to devise a new therapeutic approach. Using the LPS transport inhibitor murepavadin, we were able to cause LPS accumulation in the CM of Pseudomonas aeruginosa, which resulted in increased susceptibility to colistin in vitro and improved treatment efficacy in vivo. These findings reveal new insight into the mechanism by which colistin kills bacteria, providing the foundations for novel approaches to enhance therapeutic outcomes.
Collapse
Affiliation(s)
- Akshay Sabnis
- MRC Centre for Molecular Bacteriology and Infection, Imperial College LondonLondonUnited Kingdom
| | - Katheryn LH Hagart
- MRC Centre for Molecular Bacteriology and Infection, Imperial College LondonLondonUnited Kingdom
| | - Anna Klöckner
- MRC Centre for Molecular Bacteriology and Infection, Imperial College LondonLondonUnited Kingdom
- Department of Bioengineering, Imperial College LondonLondonUnited Kingdom
- Department of Materials, Imperial College LondonLondonUnited Kingdom
- Institute of Biomedical Engineering, Imperial College LondonLondonUnited Kingdom
| | - Michele Becce
- Department of Bioengineering, Imperial College LondonLondonUnited Kingdom
- Department of Materials, Imperial College LondonLondonUnited Kingdom
- Institute of Biomedical Engineering, Imperial College LondonLondonUnited Kingdom
| | - Lindsay E Evans
- MRC Centre for Molecular Bacteriology and Infection, Imperial College LondonLondonUnited Kingdom
- Department of Chemistry, Imperial College London, Molecular Sciences Research HubLondonUnited Kingdom
| | - R Christopher D Furniss
- MRC Centre for Molecular Bacteriology and Infection, Imperial College LondonLondonUnited Kingdom
| | - Despoina AI Mavridou
- Department of Molecular Biosciences, University of Texas at AustinAustinUnited States
| | - Ronan Murphy
- National Heart and Lung Institute, Imperial College LondonLondonUnited Kingdom
- Department of Paediatric Respiratory Medicine, Royal Brompton HospitalLondonUnited Kingdom
| | - Molly M Stevens
- Department of Bioengineering, Imperial College LondonLondonUnited Kingdom
- Department of Materials, Imperial College LondonLondonUnited Kingdom
- Institute of Biomedical Engineering, Imperial College LondonLondonUnited Kingdom
| | - Jane C Davies
- National Heart and Lung Institute, Imperial College LondonLondonUnited Kingdom
- Department of Paediatric Respiratory Medicine, Royal Brompton HospitalLondonUnited Kingdom
| | - Gérald J Larrouy-Maumus
- MRC Centre for Molecular Bacteriology and Infection, Imperial College LondonLondonUnited Kingdom
| | - Thomas B Clarke
- MRC Centre for Molecular Bacteriology and Infection, Imperial College LondonLondonUnited Kingdom
| | - Andrew M Edwards
- MRC Centre for Molecular Bacteriology and Infection, Imperial College LondonLondonUnited Kingdom
| |
Collapse
|
7
|
Wang Q, Lillevang SK, Rydtoft SM, Xiao H, Fan MT, Solem C, Liu JM, Jensen PR. No more cleaning up - Efficient lactic acid bacteria cell catalysts as a cost-efficient alternative to purified lactase enzymes. Appl Microbiol Biotechnol 2020; 104:6315-6323. [PMID: 32462242 DOI: 10.1007/s00253-020-10655-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/16/2020] [Accepted: 04/29/2020] [Indexed: 02/03/2023]
Abstract
β-galactosidases, commonly referred to as lactases, are used for producing lactose-free dairy products. Lactases are usually purified from microbial sources, which is a costly process. Here, we explored the potential that lies in using whole cells of a food-grade dairy lactic acid bacterium, Streptococcus thermophilus, as a substitute for purified lactase. We found that S. thermophilus cells, when treated with the antimicrobial peptide nisin, were able to hydrolyze lactose efficiently. The rate of hydrolysis increased with temperature; however, above 50 °C, stability was compromised. Different S. thermophilus strains were tested, and the best candidate was able to hydrolyze 80% of the lactose in a 50 g/L solution in 4 h at 50 °C, using only 0.1 g/L cells (dry weight basis). We demonstrated that it was possible to grow the cell catalyst on dairy waste, and furthermore, that a cell-free supernatant of a culture of a nisin-producing Lactococcus lactis strain could be used instead of purified nisin, which reduced cost of use significantly. Finally, we tested the cell catalysts in milk, where lactose also was efficiently hydrolyzed. The method presented is natural and low-cost, and allows for production of clean-label and lactose-free dairy products without using commercial enzymes from recombinant microorganisms. KEY POINTS: • Nisin-permeabilized Streptococcus thermophilus cells can hydrolyze lactose efficiently. • A low-cost and more sustainable alternative to purified lactase enzymes. • Reduction of overall sugar content. • Clean-label production of lactose-free dairy products.
Collapse
Affiliation(s)
- Qi Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China.,National Food Institute, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark
| | | | | | - Hang Xiao
- National Food Institute, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark
| | - Ming-Tao Fan
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Christian Solem
- National Food Institute, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark.
| | - Jian-Ming Liu
- National Food Institute, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark.
| | - Peter Ruhdal Jensen
- National Food Institute, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark
| |
Collapse
|
8
|
Dall GF, Tsang STJ, Gwynne PJ, MacKenzie SP, Simpson AHRW, Breusch SJ, Gallagher MP. Unexpected synergistic and antagonistic antibiotic activity against Staphylococcus biofilms. J Antimicrob Chemother 2019; 73:1830-1840. [PMID: 29554250 DOI: 10.1093/jac/dky087] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 02/15/2018] [Indexed: 11/13/2022] Open
Abstract
Objectives To evaluate putative anti-staphylococcal biofilm antibiotic combinations used in the management of periprosthetic joint infections (PJIs). Methods Using the dissolvable bead biofilm assay, the minimum biofilm eradication concentration (MBEC) was determined for the most commonly used antimicrobial agents and combination regimens against staphylococcal PJIs. The established fractional inhibitory concentration (FIC) index was modified to create the fractional biofilm eradication concentration (FBEC) index to evaluate synergism or antagonism between antibiotics. Results Only gentamicin (MBEC 64 mg/L) and daptomycin (MBEC 64 mg/L) were observed to be effective antistaphylococcal agents at clinically achievable concentrations. Supplementation of gentamicin with daptomycin, vancomycin or ciprofloxacin resulted in a similar or lower MBEC than gentamicin alone (FBEC index 0.25-2). Conversely, when rifampicin, clindamycin or linezolid was added to gentamicin, there was an increase in the MBEC of gentamicin relative to its use as a monotherapy (FBEC index 8-32). Conclusions This study found that gentamicin and daptomycin were the only effective single-agent antibiotics against established Staphylococcus biofilms. Interestingly the addition of a bacteriostatic antibiotic was found to antagonize the ability of gentamicin to eradicate Staphylococcus biofilms.
Collapse
Affiliation(s)
- G F Dall
- Department of Orthopaedic Surgery, Borders General Hospital, Huntlyburn, Melrose TD6 9BS, UK.,School of Biological Sciences, University of Edinburgh, Darwin Building, King's Buildings, Mayfield Road, Edinburgh EH9 3JR, UK.,Department of Orthopaedic Surgery, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Old Dalkeith Road, Edinburgh EH16 4SB, UK
| | - S-T J Tsang
- School of Biological Sciences, University of Edinburgh, Darwin Building, King's Buildings, Mayfield Road, Edinburgh EH9 3JR, UK.,Department of Orthopaedic Surgery, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Old Dalkeith Road, Edinburgh EH16 4SB, UK.,Department of Orthopaedic Surgery, Royal Infirmary of Edinburgh, 51 Little France Crescent, Old Dalkeith Road, Edinburgh EH16 4SA, UK
| | - P J Gwynne
- School of Biological Sciences, University of Edinburgh, Darwin Building, King's Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
| | - S P MacKenzie
- Department of Orthopaedic Surgery, Royal Infirmary of Edinburgh, 51 Little France Crescent, Old Dalkeith Road, Edinburgh EH16 4SA, UK
| | - A H R W Simpson
- Department of Orthopaedic Surgery, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Old Dalkeith Road, Edinburgh EH16 4SB, UK
| | - S J Breusch
- Department of Orthopaedic Surgery, Royal Infirmary of Edinburgh, 51 Little France Crescent, Old Dalkeith Road, Edinburgh EH16 4SA, UK
| | - M P Gallagher
- School of Biological Sciences, University of Edinburgh, Darwin Building, King's Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
| |
Collapse
|
9
|
Kalita S, Kandimalla R, Bhowal AC, Kotoky J, Kundu S. Functionalization of β-lactam antibiotic on lysozyme capped gold nanoclusters retrogress MRSA and its persisters following awakening. Sci Rep 2018; 8:5778. [PMID: 29636496 PMCID: PMC5893536 DOI: 10.1038/s41598-018-22736-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 02/28/2018] [Indexed: 01/07/2023] Open
Abstract
In this study we have reported an efficient antibacterial hybrid fabricated through surface functionalization of lysozyme capped gold nanoclusters (AUNC-L) with β-lactam antibiotic ampicillin (AUNC-L-Amp). The prepared hybrid not only reverted the MRSA resistance towards ampicillin but also demonstrated enhanced antibacterial activity against non-resistant bacterial strains. Most importantly, upon awakening through cis-2-decenoic acid (cis-DA) exposure, the MRSA persister got inhibited by the AUNC-L-Amp treatment. Intraperitoneal administration of this hybrid eliminates the systemic MRSA infection in a murine animal model. Topical application of this nano conjugate eradicated MRSA infection from difficult to treat diabetic wound of rat and accelerated the healing process. Due to inherent bio-safe nature of gold, AUNC-L alone or in the construct (AUNC-L-Amp) demonstrated excellent biocompatibility and did not indicate any deleterious effects in in vivo settings. We postulate that AUNC-L-Amp overcomes the elevated levels of β-lactamase at the site of MRSA antibiotic interaction with subsequent multivalent binding to the bacterial surface and enhanced permeation. Coordinated action of AUNC-L-Amp components precludes MRSA to attain resistance against the hybrid. We proposed that the inhibitory effect of AUNC-L-Amp against MRSA and its persister form is due to increased Amp concentration at the site of action, multivalent presentation and enhanced permeation of Amp through lysozyme-mediated cell wall lysis.
Collapse
Affiliation(s)
- Sanjeeb Kalita
- Drug Discovery Lab, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Assam, Guwahati, 781035, India.
| | - Raghuram Kandimalla
- Drug Discovery Lab, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Assam, Guwahati, 781035, India.
| | - Ashim Chandra Bhowal
- Soft Nano Laboratory, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Assam, Guwahati, 781035, India
| | - Jibon Kotoky
- Drug Discovery Lab, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Assam, Guwahati, 781035, India
| | - Sarathi Kundu
- Soft Nano Laboratory, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Assam, Guwahati, 781035, India.
| |
Collapse
|
10
|
Kim W, Hendricks GL, Tori K, Fuchs BB, Mylonakis E. Strategies against methicillin-resistant Staphylococcus aureus persisters. Future Med Chem 2018; 10:779-794. [PMID: 29569952 PMCID: PMC6077763 DOI: 10.4155/fmc-2017-0199] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/01/2017] [Indexed: 12/21/2022] Open
Abstract
Chronic Staphylococcus aureus infections are complicated by frequent relapses not only from the development of drug resistance to conventional antibiotics, but also through the formation of persister bacterial cells. Bacterial persisters are in a transient, metabolically inactive state, making conventional antibiotics that target essential cellular growth processes ineffective, resulting in high clinical failure rates of antibiotic chemotherapy. The development of new antibiotics against persistent S. aureus is an urgent issue. Over the last decade, new strategies to identify S. aureus persister-active compounds have been proposed. This review summarizes the proposed targets, antipersister compounds and innovative methods that may augment conventional antibiotics against S. aureus persisters. The reviewed antipersister strategies can be summarized as two broad categories; directly targeting growth-independent targets and potentiating existing, ineffective antibiotics by aiding uptake or accessibility.
Collapse
Affiliation(s)
- Wooseong Kim
- Division of Infectious Diseases, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Gabriel L Hendricks
- Division of Infectious Diseases, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Katerina Tori
- Division of Infectious Diseases, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Beth B Fuchs
- Division of Infectious Diseases, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Eleftherios Mylonakis
- Division of Infectious Diseases, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| |
Collapse
|
11
|
Ishibashi N, Seto H, Koga S, Zendo T, Sonomoto K. Identification of Lactococcus-Specific Bacteriocins Produced by Lactococcal Isolates, and the Discovery of a Novel Bacteriocin, Lactococcin Z. Probiotics Antimicrob Proteins 2016; 7:222-31. [PMID: 26093857 DOI: 10.1007/s12602-015-9196-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Lactic acid bacteria that produce Lactococcus-specific bacteriocins were isolated and identified as Lactococcus lactis from fresh corn or lettuce. Among them, four isolates were identified as lactococcin Q producers. Seven isolates showed antimicrobial activity against a lactococcin Q producer, L. lactis QU 4, as well as against nisin Z and lacticin Q producers belonging to L. lactis. Strain QU 7 was selected as a standard strain and showed no cross-immunity to lactococcin Q or other lactococcal bacteriocins. The bacteriocin produced by strain QU 7 was purified in three chromatographic steps, and its molecular mass was determined to be 5041.35 Da. The amino acid sequence analysis revealed that it is a novel class IId bacteriocin, referred to as lactococcin Z. It consisted of 45 amino acid residues. The lczA gene encoding the prepeptide of lactococcin Z showed homology to lactococcins A, B, and M. Thus, this report demonstrates a new example of Lactococcus-specific bacteriocins.
Collapse
Affiliation(s)
- Naoki Ishibashi
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, 812-8581, Japan
| | | | | | | | | |
Collapse
|
12
|
Kim W, Conery AL, Rajamuthiah R, Fuchs BB, Ausubel FM, Mylonakis E. Identification of an Antimicrobial Agent Effective against Methicillin-Resistant Staphylococcus aureus Persisters Using a Fluorescence-Based Screening Strategy. PLoS One 2015; 10:e0127640. [PMID: 26039584 PMCID: PMC4454602 DOI: 10.1371/journal.pone.0127640] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 04/17/2015] [Indexed: 12/21/2022] Open
Abstract
Persisters are a subpopulation of normal bacterial cells that show tolerance to conventional antibiotics. Persister cells are responsible for recalcitrant chronic infections and new antibiotics effective against persisters would be a major development in the treatment of these infections. Using the reporter dye SYTOX Green that only stains cells with permeabilized membranes, we developed a fluorescence-based screening assay in a 384-well format for identifying compounds that can kill methicillin-resistant Staphylococcus aureus (MRSA) persisters. The assay proved robust and suitable for high throughput screening (Z`-factor: >0.7). In screening a library of hits from a previous screen, which identified compounds that had the ability to block killing of the nematode Caenorhabditis by MRSA, we discovered that the low molecular weight compound NH125, a bacterial histidine kinase inhibitor, kills MRSA persisters by causing cell membrane permeabilization, and that 5 μg/mL of the compound can kill all cells to the limit of detection in a 108 CFU/mL culture of MRSA persisters within 3h. Furthermore, NH125 disrupts 50% of established MRSA biofilms at 20 μg/mL and completely eradicates biofilms at 160 μg/mL. Our results suggest that the SYTOX Green screening assay is suitable for large-scale projects to identify small molecules effective against MRSA persisters and should be easily adaptable to a broad range of pathogens that form persisters. Since NH125 has strong bactericidal properties against MRSA persisters and high selectivity to bacteria, we believe NH125 is a good anti-MRSA candidate drug that should be further evaluated.
Collapse
Affiliation(s)
- Wooseong Kim
- Division of Infectious Diseases, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Annie L. Conery
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Rajmohan Rajamuthiah
- Division of Infectious Diseases, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Beth Burgwyn Fuchs
- Division of Infectious Diseases, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Frederick M. Ausubel
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Eleftherios Mylonakis
- Division of Infectious Diseases, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
- * E-mail:
| |
Collapse
|
13
|
Ainsworth S, Stockdale S, Bottacini F, Mahony J, van Sinderen D. The Lactococcus lactis plasmidome: much learnt, yet still lots to discover. FEMS Microbiol Rev 2014; 38:1066-88. [PMID: 24861818 DOI: 10.1111/1574-6976.12074] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 04/17/2014] [Accepted: 05/07/2014] [Indexed: 01/20/2023] Open
Abstract
Lactococcus lactis is used extensively worldwide for the production of a variety of fermented dairy products. The ability of L. lactis to successfully grow and acidify milk has long been known to be reliant on a number of plasmid-encoded traits. The recent availability of low-cost, high-quality genome sequencing, and the quest for novel, technologically desirable characteristics, such as novel flavour development and increased stress tolerance, has led to a steady increase in the number of available lactococcal plasmid sequences. We will review both well-known and very recent discoveries regarding plasmid-encoded traits of biotechnological significance. The acquired lactococcal plasmid sequence information has in recent years progressed our understanding of the origin of lactococcal dairy starter cultures. Salient points on the acquisition and evolution of lactococcal plasmids will be discussed in this review, as well as prospects of finding novel plasmid-encoded functions.
Collapse
Affiliation(s)
- Stuart Ainsworth
- Department of Microbiology, University College Cork, Cork, Ireland
| | | | | | | | | |
Collapse
|
14
|
Dosler S, Mataraci E. In vitro pharmacokinetics of antimicrobial cationic peptides alone and in combination with antibiotics against methicillin resistant Staphylococcus aureus biofilms. Peptides 2013; 49:53-8. [PMID: 23988790 DOI: 10.1016/j.peptides.2013.08.008] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 08/07/2013] [Accepted: 08/07/2013] [Indexed: 12/15/2022]
Abstract
Antibiotic therapy for methicillin-resistant Staphylococcus aureus (MRSA) infections is becoming more difficult in hospitals and communities because of strong biofilm-forming properties and multidrug resistance. Biofilm-associated MRSA is not affected by therapeutically achievable concentrations of antibiotics. Therefore, we investigated the in vitro pharmacokinetic activities of antimicrobial cationic peptides (AMPs; indolicidin, cecropin [1-7]-melittin A [2-9] amide [CAMA], and nisin), either alone or in combination with antibiotics (daptomycin, linezolid, teicoplanin, ciprofloxacin, and azithromycin), against standard and 2 clinically obtained MRSA biofilms. The minimum inhibitory concentrations (MIC) and minimum biofilm-eradication concentrations (MBEC) were determined by microbroth dilution technique. The time-kill curve (TKC) method was used to determine the bactericidal activities of the AMPs alone and in combination with the antibiotics against standard and clinically obtained MRSA biofilms. The MIC values of the AMPs and antibiotics ranged between 2 to 16 and 0.25 to 512 mg/L, and their MBEC values were 640 and 512 to 5120 mg/L, respectively. The TKC studies demonstrated that synergistic interactions occurred most frequently when using nisin+daptomycin/ciprofloxacin, indolicidin+teicoplanin, and CAMA+ciprofloxacin combinations. No antagonism was observed with any combination. AMPs appear to be good candidates for the treatment of MRSA biofilms, as they act as both enhancers of anti-biofilm activities and help to prevent or delay the emergence of resistance when used either alone or in combination with antibiotics.
Collapse
Affiliation(s)
- Sibel Dosler
- Department of Pharmaceutical Microbiology Faculty of Pharmacy, Istanbul University, 34116, Beyazit, Istanbul, Turkiye.
| | | |
Collapse
|
15
|
Barbour A, Philip K, Muniandy S. Enhanced production, purification, characterization and mechanism of action of salivaricin 9 lantibiotic produced by Streptococcus salivarius NU10. PLoS One 2013; 8:e77751. [PMID: 24147072 PMCID: PMC3797685 DOI: 10.1371/journal.pone.0077751] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 09/06/2013] [Indexed: 01/28/2023] Open
Abstract
Background Lantibiotics are small lanthionine-containing bacteriocins produced by lactic acid bacteria. Salivaricin 9 is a newly discovered lantibiotic produced by Streptococcus salivarius. In this study we present the mechanism of action of salivaricin 9 and some of its properties. Also we developed new methods to produce and purify the lantibiotic from strain NU10. Methodology / Principal Findings Salivaricin 9 was found to be auto-regulated when an induction assay was applied and this finding was used to develop a successful salivaricin 9 production system in liquid medium. A combination of XAD-16 and cation exchange chromatography was used to purify the secondary metabolite which was shown to have a molecular weight of approximately 3000 Da by SDS-PAGE. MALDI-TOF MS analysis indicated the presence of salivaricin 9, a 2560 Da lantibiotic. Salivaricin 9 is a bactericidal molecule targeting the cytoplasmic membrane of sensitive cells. The membrane permeabilization assay showed that salivaricin 9 penetrated the cytoplasmic membrane and induced pore formation which resulted in cell death. The morphological changes of test bacterial strains incubated with salivaricin 9 were visualized using Scanning Electron Microscopy which confirmed a pore forming mechanism of inhibition. Salivaricin 9 retained biological stability when exposed to high temperature (90-100°C) and stayed bioactive at pH ranging 2 to 10. When treated with proteinase K or peptidase, salivaricin 9 lost all antimicrobial activity, while it remained active when treated with lyticase, catalase and certain detergents. Conclusion The mechanism of antimicrobial action of a newly discovered lantibiotic salivaricin 9 was elucidated in this study. Salivaricin 9 penetrated the cytoplasmic membrane of its targeted cells and induced pore formation. This project has given new insights on lantibiotic peptides produced by S. salivarius isolated from the oral cavities of Malaysian subjects.
Collapse
Affiliation(s)
- Abdelahhad Barbour
- Institute of Biological Sciences, Microbiology Division, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | | | | |
Collapse
|
16
|
Abstract
Antibiotic discovery has a storied history. From the discovery of penicillin by Sir Alexander Fleming to the relentless quest for antibiotics by Selman Waksman, the stories have become like folklore used to inspire future generations of scientists. However, recent discovery pipelines have run dry at a time when multidrug-resistant pathogens are on the rise. Nature has proven to be a valuable reservoir of antimicrobial agents, which are primarily produced by modularized biochemical pathways. Such modularization is well suited to remodeling by an interdisciplinary approach that spans science and engineering. Herein, we discuss the biological engineering of small molecules, peptides, and non-traditional antimicrobials and provide an overview of the growing applicability of synthetic biology to antimicrobials discovery.
Collapse
Affiliation(s)
- Bijan Zakeri
- Synthetic Biology Group, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Department of Electrical Engineering & Computer Science and Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- MIT Synthetic Biology Center, 500 Technology Square, Cambridge MA 02139, USA
| | - Timothy K. Lu
- Synthetic Biology Group, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Department of Electrical Engineering & Computer Science and Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- MIT Synthetic Biology Center, 500 Technology Square, Cambridge MA 02139, USA
| |
Collapse
|
17
|
Garvicin A, a novel class IId bacteriocin from Lactococcus garvieae that inhibits septum formation in L. garvieae strains. Appl Environ Microbiol 2013; 79:4336-46. [PMID: 23666326 DOI: 10.1128/aem.00830-13] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lactococcus garvieae 21881, isolated in a human clinical case, produces a novel class IId bacteriocin, garvicin A (GarA), which is specifically active against other L. garvieae strains, including fish- and bovine-pathogenic isolates. Purification from active supernatants, sequence analyses, and plasmid-curing experiments identified pGL5, one of the five plasmids found in L. garvieae [M. Aguado-Urda et al., PLoS One 7(6):e40119, 2012], as the coding plasmid for the structural gene of GarA (lgnA), its putative immunity protein (lgnI), and the ABC transporter and its accessory protein (lgnC and lgnD). Interestingly, pGL5-cured strains were still resistant to GarA. Other putative bacteriocins encoded by the remaining plasmids were not detected during purification, pointing to GarA as the main inhibitor secreted by L. garvieae 21881. Mode-of-action studies revealed a potent bactericidal activity of GarA. Moreover, transmission microscopy showed that GarA seems to act by inhibiting septum formation in L. garvieae cells. This potent and species-specific inhibition by GarA holds promise for applications in the prevention or treatment of infections caused by pathogenic strains of L. garvieae in both veterinary and clinical settings.
Collapse
|
18
|
Wang HT, Li YH, Chou IP, Hsieh YH, Chen BJ, Chen CY. Albusin B modulates lipid metabolism and increases antioxidant defense in broiler chickens by a proteomic approach. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2013; 93:284-292. [PMID: 22729694 DOI: 10.1002/jsfa.5754] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 01/31/2012] [Accepted: 05/08/2012] [Indexed: 06/01/2023]
Abstract
BACKGROUND The present study was designed to investigate the effect of albusin B on lipid metabolism and antioxidant defense in broiler chickens by a proteomic approach. The bacteriocin, albusin B of Ruminococcus albus 7, expressed by yeast was applied in this study. Three dietary treatments, consisting of the basal diet (control), basal diet + albusin B (2.5 g kg⁻¹), and basal diet + nosiheptide (2.5 mg kg⁻¹) were randomly fed to 90 broiler chickens from 1 to 35 days of age, respectively. After 35 days of supplementation, the growth performance, lipid metabolism and antioxidant proteins in the jejunum and liver, intestinal protein profile, and plasma lipid profile were analyzed. RESULTS Broilers with albusin B supplementation had greater body weight than the control broilers. Compared with the control broilers, lower triglyceride and higher high-density lipoprotein concentration in the blood were observed in both broilers with albusin B and nosiheptide supplementation. In addition, albusin B suppressed the mRNA expression of fatty acid binding protein 2 and ATP binding cassette transporter G 5 in the jejunum. In the jejunal protein profiles, four antioxidant proteins were upregulated by albusin B and nosiheptide treatments. The jejunal antioxidant gene expression had a concordant pattern. Hepatic genes related to lipid metabolism, 3-hydroxy-3-methyl-glutaryl CoA reductase, and superoxide dismutase were upregulated by albusin B supplementation. CONCLUSION Albusin B supplementation modulated lipid metabolism and activated systemic antioxidant defense, which might partially contribute to the performance of broiler chickens.
Collapse
Affiliation(s)
- Han-Tsung Wang
- Department of Animal Science, Chinese Culture University, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
19
|
Koral G, Tuncer Y. Nisin Z-Producing Lactococcus lactis
Subsp. Lactis
GYl32 Isolated from Boza. J FOOD PROCESS PRES 2012. [DOI: 10.1111/jfpp.12061] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Gozde Koral
- Department of Food Engineering; Faculty of Engineering; Süleyman Demirel University; 32260 Isparta Turkey
| | - Yasin Tuncer
- Department of Food Engineering; Faculty of Engineering; Süleyman Demirel University; 32260 Isparta Turkey
| |
Collapse
|
20
|
Dosler S, Gerceker AA. In vitro activities of antimicrobial cationic peptides; melittin and nisin, alone or in combination with antibiotics against Gram-positive bacteria. J Chemother 2012; 24:137-43. [PMID: 22759757 DOI: 10.1179/1973947812y.0000000007] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
The In vitro activities of two antimicrobial cationic peptides, melittin and nisin alone and in combination with frequently used antibiotics (daptomycin, vancomycin, linezolid, ampicillin, and erythromycin), were assessed against clinical isolates of methicillin-susceptible Staphylococcus aureus, methicillin-resistant S. aureus and Enterococcus faecalis. Using the broth microdilution method, minimum inhibitory concentration (MIC) ranges of melittin and nisin against all strains were 2-8 μg/ml and 2-32 μg/ml respectively. In combination studies performed with the microdilution checkerboard method using a fractional inhibitory concentration index of ≤ 0.5 as borderline, synergistic interactions occurred more frequently with nisin-ampicillin combination against MSSA and nisin-daptomycin combination against E. faecalis strains. The results of the time-killing curve analysis demonstrated that the concentration dependent rapid bactericidal activity of nisin, and that synergism or early synergism was detected in most strains when nisin or melittin was used in combination with antibiotics even at concentrations of 0.5 × MIC.
Collapse
Affiliation(s)
- Sibel Dosler
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Istanbul University, Turkey.
| | | |
Collapse
|
21
|
Ustyugova EA, Timofeeva AV, Stoyanova LG, Netrusov AI, Katrukha GS. Characteristics and identification of bacteriocins produced by Lactococcus lactis subsp. lactis 194-K. APPL BIOCHEM MICRO+ 2012. [DOI: 10.1134/s0003683812060105] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
In vitro activities of antibiotics and antimicrobial cationic peptides alone and in combination against methicillin-resistant Staphylococcus aureus biofilms. Antimicrob Agents Chemother 2012; 56:6366-71. [PMID: 23070152 DOI: 10.1128/aac.01180-12] [Citation(s) in RCA: 181] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) strains are most often found as hospital- and community-acquired infections. The danger of MRSA infections results from not only the emergence of multidrug resistance but also the occurrence of bacteria that form strong biofilms. We investigated the in vitro activities of antibiotics (daptomycin, linezolid, teichoplanine, azithromycin, and ciprofloxacin) and antimicrobial cationic peptides {AMPs; indolicidin, CAMA [cecropin (1-7)-melittin A (2-9) amide], and nisin} alone or in combination against MRSA ATCC 43300 biofilms. The MICs and minimum biofilm eradication concentrations (MBECs) were determined by the broth microdilution technique. Antibiotic and AMP combinations were assessed using the checkerboard technique. For MRSA planktonic cells, MICs of antibiotics and AMPs ranged between 0.125 and 512 and 8 and 16 mg/liter, respectively, and the MBEC values were between 512 and 5,120 and 640 mg/liter, respectively. With a fractional inhibitory concentration of ≤0.5 as the borderline, synergistic interactions against MRSA biofilms were frequent with almost all antibiotic-antibiotic and antibiotic-AMP combinations. Against planktonic cells, they generally had an additive effect. No antagonism was observed. All of the antibiotics, AMPs, and their combinations were able to inhibit the attachment of bacteria at 1/10 MIC and biofilm formation at 1× MIC. Biofilm-associated MRSA was not affected by therapeutically achievable concentrations of antimicrobial agents. Use of a combination of antimicrobial agents can provide a synergistic effect, which rapidly enhances antibiofilm activity and may help prevent or delay the emergence of resistance. AMPs seem to be good candidates for further investigations in the treatment of MRSA biofilms, alone or in combination with antibiotics.
Collapse
|
23
|
Masuda Y, Zendo T, Sonomoto K. New type non-lantibiotic bacteriocins: circular and leaderless bacteriocins. Benef Microbes 2012; 3:3-12. [PMID: 22348904 DOI: 10.3920/bm2011.0047] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Bacteriocins are antimicrobial peptides that are ribosomally synthesised by bacteria. Bacteriocins produced by Gram-positive bacteria, including lactic acid bacteria, are under focus as the next generation of safe natural biopreservatives and as therapeutic alternatives to antibiotics. Recently, two novel types of non-lantibiotic class II bacteriocins have been reported with unique characteristics in their structure and biosynthesis mechanism. One is a circular bacteriocin that contains a head-to-tail structure in the mature form, and the other is a leaderless bacteriocin without an N-terminal extension in the precursor peptide. A circular structure can provide the peptide with remarkable stability against various stresses; indeed, circular bacteriocins are known to possess higher stability than general linear bacteriocins. Leaderless bacteriocins are distinct from general bacteriocins, because they do not contain N-terminal leader sequences, which are responsible for the recognition process during secretion and for inactivation of bacteriocins inside producer cells. Leaderless bacteriocins do not require any post-translational processing for activity. These two novel types of bacteriocins are promising antimicrobial compounds, and their biosynthetic mechanisms are expected to be applied in synthetic biology to design new peptides and for new mass production systems. However, many questions remain about their biosynthesis. In this review, we introduce recent studies on these types of bacteriocins and their potential to open a new world of antimicrobial peptides.
Collapse
Affiliation(s)
- Y Masuda
- Laboratory of Microbial Technology, Division of Applied Molecular Microbiology and Biomass Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, Hakozaki, Higashi-ku, Fukuoka, Japan
| | | | | |
Collapse
|
24
|
Intracellular vesicles as reproduction elements in cell wall-deficient L-form bacteria. PLoS One 2012; 7:e38514. [PMID: 22701656 PMCID: PMC3368840 DOI: 10.1371/journal.pone.0038514] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 05/07/2012] [Indexed: 11/19/2022] Open
Abstract
Cell wall-deficient bacteria, or L-forms, represent an extreme example of bacterial plasticity. Stable L-forms can multiply and propagate indefinitely in the absence of a cell wall. Data presented here are consistent with the model that intracellular vesicles in Listeria monocytogenes L-form cells represent the actual viable reproductive elements. First, small intracellular vesicles are formed along the mother cell cytoplasmic membrane, originating from local phospholipid accumulation. During growth, daughter vesicles incorporate a small volume of the cellular cytoplasm, and accumulate within volume-expanding mother cells. Confocal Raman microspectroscopy demonstrated the presence of nucleic acids and proteins in all intracellular vesicles, but only a fraction of which reveals metabolic activity. Following collapse of the mother cell and release of the daughter vesicles, they can establish their own membrane potential required for respiratory and metabolic processes. Premature depolarization of the surrounding membrane promotes activation of daughter cell metabolism prior to release. Based on genome resequencing of L-forms and comparison to the parental strain, we found no evidence for predisposing mutations that might be required for L-form transition. Further investigations revealed that propagation by intracellular budding not only occurs in Listeria species, but also in L-form cells generated from different Enterococcus species. From a more general viewpoint, this type of multiplication mechanism seems reminiscent of the physicochemical self-reproducing properties of abiotic lipid vesicles used to study the primordial reproduction pathways of putative prokaryotic precursor cells.
Collapse
|
25
|
Ahn JE, Kim JK, Lee HR, Eom HJ, Han NS. Isolation and Characterization of a Bacteriocin-Producing Lactobacillus sakei B16 from Kimchi. ACTA ACUST UNITED AC 2012. [DOI: 10.3746/jkfn.2012.41.5.721] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
26
|
Stoyanova LG, Ustyugova EA, Netrusov AI. Antibacterial metabolites of lactic acid bacteria: Their diversity and properties. APPL BIOCHEM MICRO+ 2012. [DOI: 10.1134/s0003683812030143] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Regioselective enzymatic procedure for preparing 3′-O-stearoyl-6-azauridine by using Burkholderia cepacia lipase. BIOTECHNOL BIOPROC E 2012. [DOI: 10.1007/s12257-011-0483-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
28
|
Dosler S, Gerceker AA. In vitro activities of nisin alone or in combination with vancomycin and ciprofloxacin against methicillin-resistant and methicillin-susceptible Staphylococcus aureus strains. Chemotherapy 2012; 57:511-6. [PMID: 22302084 DOI: 10.1159/000335598] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 12/04/2011] [Indexed: 11/19/2022]
Abstract
BACKGROUND We investigated the in vitro activities of nisin alone or in combination with vancomycin and ciprofloxacin against methicillin-resistant (MRSA) and -susceptible Staphylococcus aureus (MSSA) strains. METHODS The minimum inhibitory concentrations were determined by microbroth dilution technique. Antibiotic combinations were assessed using the checkerboard technique. The time-kill curve method was used for determining the bactericidal activity of nisin alone and in combination. RESULTS For both MSSA and MRSA strains, the minimum inhibitory concentrations of nisin ranged between 4 and 16 mg/l. With a fractional inhibitory concentration of ≥0.5 as borderline, synergistic interactions were seen in three of five isolates with nisin-ciprofloxacin compared to two of five isolates with nisin-vancomycin combinations against both MSSA and MRSA. No antagonism was observed. The results of time-kill curve analysis demonstrated concentration-dependent rapid bactericidal activity of nisin and synergism almost in all strains when nisin was used in combination with ciprofloxacin, and early synergistic interactions in some of the strains when it was used in combination with vancomycin. CONCLUSION Nisin seems to be a good candidate for further investigations in the treatment of Gram-positive bacteria, alone or in combination with antibiotics.
Collapse
Affiliation(s)
- Sibel Dosler
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Istanbul University, Turkey.
| | | |
Collapse
|
29
|
Killer peptide: a novel paradigm of antimicrobial, antiviral and immunomodulatory auto-delivering drugs. Future Med Chem 2012; 3:1209-31. [PMID: 21806382 DOI: 10.4155/fmc.11.71] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The incidence of life-threatening viral and microbial infections has dramatically increased over recent decades. Despite significant developments in anti-infective chemotherapy, many issues have increasingly narrowed the therapeutic options, making it imperative to discover new effective molecules. Among them, small peptides are arousing great interest. This review will focus in particular on a killer peptide, engineered from an anti-idiotypic recombinant antibody that mimics the activity of a wide-spectrum antimicrobial yeast killer toxin targeting β-glucan cell-wall receptors. The in vitro and in vivo antimicrobial, antiviral and immunomodulatory activities of killer peptide and its ability to spontaneously and reversibly self-assemble and slowly release its active dimeric form over time will be discussed as a novel paradigm of targeted auto-delivering drugs.
Collapse
|
30
|
Adhikari MD, Panda BR, Vudumula U, Chattopadhyay A, Ramesh A. A facile method for estimating viable bacterial cells in solution based on “subtractive-aggregation” of gold nanoparticles. RSC Adv 2012. [DOI: 10.1039/c1ra01023a] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
31
|
Garvieacin Q, a novel class II bacteriocin from Lactococcus garvieae BCC 43578. Appl Environ Microbiol 2011; 78:1619-23. [PMID: 22210221 DOI: 10.1128/aem.06891-11] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lactococcus garvieae BCC 43578 produces a novel class II bacteriocin, garvieacin Q (GarQ), 70 amino acids in length and containing a 20-amino-acid N-terminal leader peptide. It is cleaved at the Gly-Gly site to generate the mature GarQ (5,339 Da), which is especially inhibitory against Listeria monocytogenes ATCC 19115 and other L. garvieae strains.
Collapse
|
32
|
Kaplan CW, Sim JH, Shah KR, Kolesnikova-Kaplan A, Shi W, Eckert R. Selective membrane disruption: mode of action of C16G2, a specifically targeted antimicrobial peptide. Antimicrob Agents Chemother 2011; 55:3446-52. [PMID: 21518845 PMCID: PMC3122425 DOI: 10.1128/aac.00342-11] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 04/12/2011] [Indexed: 11/20/2022] Open
Abstract
The specifically targeted antimicrobial peptide (STAMP) C16G2 was developed to target the cariogenic oral pathogen Streptococcus mutans. Because the design of this peptide was novel, we sought to better understand the mechanism through which it functioned. Compared to antimicrobial peptides (AMPs) with wide spectra of activity, the STAMP C16G2 has demonstrated specificity for S. mutans in a mixed-culture environment, resulting in the complete killing of S. mutans while having minimal effect on the other streptococci. In the current study, we sought to further confirm the selectivity of C16G2 and also compare its membrane activity to that of melittin B, a classical toxic AMP, in order to determine the STAMP's mechanism of cell killing. Disruption of S. mutans cell membranes by C16G2 was demonstrated by increased SYTOX green uptake and ATP efflux from the cells similar to those of melittin B. Treatment with C16G2 also resulted in a loss of membrane potential as measured by DiSC(3)5 fluorescence. In comparison, the individual moieties of C16G2 demonstrated no specificity and limited antimicrobial activity compared to those of the STAMP C16G2. The data suggest that C16G2 has a mechanism of action similar to that of traditional AMPs and kills S. mutans through disruption of the cell membrane, allowing small molecules to leak out of the cell, which is followed by a loss of membrane potential and cell death. Interestingly, this membrane activity is rapid and potent against S. mutans, but not other noncariogenic oral streptococci.
Collapse
Affiliation(s)
| | | | | | | | - Wenyuan Shi
- School of Dentistry, University of California, Los Angeles, California 90095
| | | |
Collapse
|