1
|
Zhou W, Zhang Q, Huang K, Huang Z, Ding W, Sun J, Bai W. Accelerating the conversion of black chokeberry anthocyanins toward vinylphenolic pyranoanthocyanins by displaying phenolic acid decarboxylase from Lactiplantibacillus plantarum on the surface of Pichia pastoris. Food Chem 2025; 476:143408. [PMID: 39987802 DOI: 10.1016/j.foodchem.2025.143408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/09/2025] [Accepted: 02/12/2025] [Indexed: 02/25/2025]
Abstract
In fermented chokeberry products, hydroxycinnamic acids are enzymatically converted into 4-vinyl derivatives by phenolic acid decarboxylase (PAD), which react with anthocyanins (ACNs) to form stable pyranoanthocyanins (PACNs) that enhance color stability and exhibit excellent bioactivity. However, the fermentation process is usually acidic, the level of PAD secreted by microorganisms is limited and PAD has poor acid stability, resulting in low PACN production. To overcome this, we engineered a whole-cell biocatalyst (WCB) by displaying PAD from Lactiplantibacillus plantarum on Pichia pastoris GS115 (dLPPAD). This WCB showed improved acid tolerance and thermal stability, efficiently converting Aronia melanocarpa anthocyanins (AMAs) into PACNs. Additionally, we examined the relationship between hydroxycinnamic acid structure and LPPAD catalytic efficiency. This work introduces a cost-effective, impurity-free biocatalytic strategy to enhance PACN yields, with potential applications in berry fermentation products and related industries.
Collapse
Affiliation(s)
- Weijie Zhou
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangdong, China
| | - Qing Zhang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangdong, China
| | - Kuanchen Huang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangdong, China
| | - Zhang Huang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangdong, China
| | - Weiqiu Ding
- Institute of Biomedicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Jianxia Sun
- Department of Food Science and Engineering, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangdong, China
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangdong, China.
| |
Collapse
|
2
|
Zhang Q, Li Y, Han Y, Zhou W, Li X, Sun J, Bai W. Lactiplantibacillus plantarum FEED8 Biosynthesis of Pyranoanthocyanin (Cyanidin-3-glucoside-4-vinylcatechol) Improves Oxidative Stress and Inflammation of the Gut Microbiome in Cadmium-Exposed Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:7187-7201. [PMID: 40067836 DOI: 10.1021/acs.jafc.5c01093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
The study is to explore the biosynthesis of cyanidin-3-glucoside-4-vinylcatechol (C3G_VC) through Lactiplantibacillus plantarum-fermented caffeic acid and cyanidin-3-glucoside (C3G) extract (molar ratio = 1:30) in the model medium. C3G_VC was isolated and purified by a venusil ASB-C18 column with a medium-pressure liquid chromatography (MPLC) system. The chemical structure of C3G_VC was identified by high-performance liquid chromatography (HPLC), which showed the maximum absorption wavelength of 505.57 nm. This study showed that Cd exposure of mice induced liver damage, oxidative stress, and inflammation of the gut microbiome. Our findings demonstrated that C3G_VC intervention in Cd-exposed mice significantly mitigated oxidative stress injury by declining the malondialdehyde (MDA) level and increasing the activity of superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX) in the liver, meanwhile alleviating liver injury by decreasing the bile acid (BA) level and accelerating the excretion of fecal BA. Moreover, the Cd_C3G_VC group showed elevated levels of mRNA expression of pro-inflammatory cytokines (IL6, IL1β, and TNF-α) and inhibited BA synthesis (CYP7A1) in Cd-exposed mice. The fermentation results in vitro showed that C3G_VC had a higher residue than that of cyanidin-3-glucoside. The 16S rRNA high-throughput sequencing disclosed that C3G_VC intervention in Cd-exposed mice significantly increased the abundance of Faecalibaculum and unidentified_Lachnospiraceae. It is noteworthy that the C3G_VC supplement increased the abundance of Akkermansia. Overall, this study demonstrated that C3G_VC intervention in Cd-exposed mice had the potential to decrease the occurrence of inflammatory and oxidative stress and maintain bile acid homeostasis by regulating gut microflora.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, Guangdong, China
| | - Yue Li
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, Guangdong, China
| | - Yudi Han
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, Guangdong, China
| | - Weijie Zhou
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, Guangdong, China
| | - Xusheng Li
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, Guangdong, China
| | - Jianxia Sun
- Department of Food Science and Engineering, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510632, Guangdong, China
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, Guangdong, China
| |
Collapse
|
3
|
Deng H, Gu Q, Yu X, Zhou J, Liu X. Surface-displayed phenolic acid decarboxylase for increased vinylphenolic pyranoanthocyanins in blueberry wine. Curr Res Food Sci 2024; 8:100730. [PMID: 38623272 PMCID: PMC11016931 DOI: 10.1016/j.crfs.2024.100730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/25/2024] [Accepted: 04/02/2024] [Indexed: 04/17/2024] Open
Abstract
During the fruit wine production, phenolic acid decarboxylase (PAD) converts free hydroxycinnamic acid into 4-vinyl derivatives that can then react spontaneously with anthocyanins, generating more stable pyranoanthocyanins that are responsible for the color stability of fruit wine. Nevertheless, the low PAD activity in yeast under the winemaking conditions has largely limited the generation of 4-vinyl derivatives. To bridge this gap, we expressed PAD from Bacillus amyloliquefaciens in Pichia pastoris and surface-displayed it on Saccharomyces cerevisiae. As a result, S. cerevisiae surface-displayed PAD (SDPAD) exhibited an enhanced thermal stability and tolerance to acidic conditions. Fermentation experiments showed that SDPAD can significantly increase the content of vinylphenolic pyranoanthocyanins and thus maintain the color stability of blueberry wine. Our study demonstrated the feasibility of surface display technology for color stability enhancement during the production of blueberry wine, providing a new and effective solution to increase the content of vinylphenolic pyranoanthocyanins in the fruit-based wines.
Collapse
Affiliation(s)
- Huaili Deng
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Qiuya Gu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Xiaobin Yu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Jianli Zhou
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), School of Liquor and Food Engineering, Guizhou University, Guiyang, 550025, China
| | - Xiaobo Liu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China
| |
Collapse
|
4
|
Odinot E, Bisotto-Mignot A, Frezouls T, Bissaro B, Navarro D, Record E, Cadoret F, Doan A, Chevret D, Fine F, Lomascolo A. A New Phenolic Acid Decarboxylase from the Brown-Rot Fungus Neolentinus lepideus Natively Decarboxylates Biosourced Sinapic Acid into Canolol, a Bioactive Phenolic Compound. Bioengineering (Basel) 2024; 11:181. [PMID: 38391667 PMCID: PMC10886158 DOI: 10.3390/bioengineering11020181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/24/2024] Open
Abstract
Rapeseed meal (RSM) is a cheap, abundant and renewable feedstock, whose biorefinery is a current challenge for the sustainability of the oilseed sector. RSM is rich in sinapic acid (SA), a p-hydroxycinnamic acid that can be decarboxylated into canolol (2,6-dimethoxy-4-vinylphenol), a valuable bioactive compound. Microbial phenolic acid decarboxylases (PADs), mainly described for the non-oxidative decarboxylation of ferulic and p-coumaric acids, remain very poorly documented to date, for SA decarboxylation. The species Neolentinus lepideus has previously been shown to biotransform SA into canolol in vivo, but the enzyme responsible for bioconversion of the acid has never been characterized. In this study, we purified and characterized a new PAD from the canolol-overproducing strain N. lepideus BRFM15. Proteomic analysis highlighted a sole PAD-type protein sequence in the intracellular proteome of the strain. The native enzyme (NlePAD) displayed an unusual outstanding activity for decarboxylating SA (Vmax of 600 U.mg-1, kcat of 6.3 s-1 and kcat/KM of 1.6 s-1.mM-1). We showed that NlePAD (a homodimer of 2 × 22 kDa) is fully active in a pH range of 5.5-7.5 and a temperature range of 30-55 °C, with optima of pH 6-6.5 and 37-45 °C, and is highly stable at 4 °C and pH 6-8. Relative ratios of specific activities on ferulic, sinapic, p-coumaric and caffeic acids, respectively, were 100:24.9:13.4:3.9. The enzyme demonstrated in vitro effectiveness as a biocatalyst for the synthesis of canolol in aqueous medium from commercial SA, with a molar yield of 92%. Then, we developed processes to biotransform naturally-occurring SA from RSM into canolol by combining the complementary potentialities of an Aspergillus niger feruloyl esterase type-A, which is able to release free SA from the raw meal by hydrolyzing its conjugated forms, and NlePAD, in aqueous medium and mild conditions. NlePAD decarboxylation of biobased SA led to an overall yield of 1.6-3.8 mg canolol per gram of initial meal. Besides being the first characterization of a fungal PAD able to decarboxylate SA, this report shows that NlePAD is very promising as new biotechnological tool to generate biobased vinylphenols of industrial interest (especially canolol) as valuable platform chemicals for health, nutrition, cosmetics and green chemistry.
Collapse
Affiliation(s)
- Elise Odinot
- OléoInnov, 19 Rue du Musée, F-13001 Marseille, France
| | - Alexandra Bisotto-Mignot
- INRAE, Aix-Marseille Université, UMR1163 BBF Fungal Biodiversity and Biotechnology, 163 Avenue de Luminy, F-13009 Marseille, France
| | - Toinou Frezouls
- INRAE, Aix-Marseille Université, UMR1163 BBF Fungal Biodiversity and Biotechnology, 163 Avenue de Luminy, F-13009 Marseille, France
| | - Bastien Bissaro
- INRAE, Aix-Marseille Université, UMR1163 BBF Fungal Biodiversity and Biotechnology, 163 Avenue de Luminy, F-13009 Marseille, France
| | - David Navarro
- INRAE, Aix-Marseille Université, UMR1163 BBF Fungal Biodiversity and Biotechnology, 163 Avenue de Luminy, F-13009 Marseille, France
| | - Eric Record
- INRAE, Aix-Marseille Université, UMR1163 BBF Fungal Biodiversity and Biotechnology, 163 Avenue de Luminy, F-13009 Marseille, France
| | - Frédéric Cadoret
- INRAE, Aix-Marseille Université, UMR1163 BBF Fungal Biodiversity and Biotechnology, 163 Avenue de Luminy, F-13009 Marseille, France
| | - Annick Doan
- INRAE, Aix-Marseille Université, UMR1163 BBF Fungal Biodiversity and Biotechnology, 163 Avenue de Luminy, F-13009 Marseille, France
| | - Didier Chevret
- INRAE, UMR1319 MICALIS Institute, PAPPSO, Domaine de Vilvert, F-78350 Jouy-en-Josas, France
| | - Frédéric Fine
- TERRES INOVIA, Parc Industriel, 11 Rue Monge, F-33600 Pessac, France
| | - Anne Lomascolo
- INRAE, Aix-Marseille Université, UMR1163 BBF Fungal Biodiversity and Biotechnology, 163 Avenue de Luminy, F-13009 Marseille, France
| |
Collapse
|
5
|
Lomascolo A, Odinot E, Villeneuve P, Lecomte J. Challenges and advances in biotechnological approaches for the synthesis of canolol and other vinylphenols from biobased p-hydroxycinnamic acids: a review. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:173. [PMID: 37964324 PMCID: PMC10644543 DOI: 10.1186/s13068-023-02425-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/02/2023] [Indexed: 11/16/2023]
Abstract
p-Hydroxycinnamic acids, such as sinapic, ferulic, p-coumaric and caffeic acids, are among the most abundant phenolic compounds found in plant biomass and agro-industrial by-products (e.g. cereal brans, sugar-beet and coffee pulps, oilseed meals). These p-hydroxycinnamic acids, and their resulting decarboxylation products named vinylphenols (canolol, 4-vinylguaiacol, 4-vinylphenol, 4-vinylcatechol), are bioactive molecules with many properties including antioxidant, anti-inflammatory and antimicrobial activities, and potential applications in food, cosmetic or pharmaceutical industries. They were also shown to be suitable precursors of new sustainable polymers and biobased substitutes for fine chemicals such as bisphenol A diglycidyl ethers. Non-oxidative microbial decarboxylation of p-hydroxycinnamic acids into vinylphenols involves cofactor-free and metal-independent phenolic acid decarboxylases (EC 4.1.1 carboxyl lyase family). Historically purified from bacteria (Bacillus, Lactobacillus, Pseudomonas, Enterobacter genera) and some yeasts (e.g. Brettanomyces or Candida), these enzymes were described for the decarboxylation of ferulic and p-coumaric acids into 4-vinylguaiacol and 4-vinylphenol, respectively. The catalytic mechanism comprised a first step involving p-hydroxycinnamic acid conversion into a semi-quinone that then decarboxylated spontaneously into the corresponding vinyl compound, in a second step. Bioconversion processes for synthesizing 4-vinylguaiacol and 4-vinylphenol by microbial decarboxylation of ferulic and p-coumaric acids historically attracted the most research using bacterial recombinant phenolic acid decarboxylases (especially Bacillus enzymes) and the processes developed to date included mono- or biphasic systems, and the use of free- or immobilized cells. More recently, filamentous fungi of the Neolentinus lepideus species were shown to natively produce a more versatile phenolic acid decarboxylase with high activity on sinapic acid in addition to the others p-hydroxycinnamic acids, opening the way to the production of canolol by biotechnological processes applied to rapeseed meal. Few studies have described the further microbial/enzymatic bioconversion of these vinylphenols into valuable compounds: (i) synthesis of flavours such as vanillin, 4-ethylguaiacol and 4-ethylphenol from 4-vinylguaiacol and 4-vinylphenol, (ii) laccase-mediated polymer synthesis from canolol, 4-vinylguaiacol and 4-vinylphenol.
Collapse
Affiliation(s)
- Anne Lomascolo
- Aix Marseille Univ., INRAE, UMR1163 BBF Biodiversité et Biotechnologie Fongiques, 13009, Marseille, France.
| | - Elise Odinot
- OléoInnov, 19 rue du Musée, 13001, Marseille, France
| | - Pierre Villeneuve
- CIRAD, UMR Qualisud, 34398, Montpellier, France
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
| | - Jérôme Lecomte
- CIRAD, UMR Qualisud, 34398, Montpellier, France
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
| |
Collapse
|
6
|
Terholsen H, Myrtollari K, Larva M, Möller C, Taden A, Kourist R, Bornscheuer UT, Kracher D. Spectrophotometric and Fluorimetric High-Throughput Assays for Phenolic Acid Decarboxylase. Chembiochem 2023; 24:e202300207. [PMID: 37191502 DOI: 10.1002/cbic.202300207] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/17/2023]
Abstract
Biocatalytic decarboxylation of hydroxycinnamic acids yields phenolic styrenes, which are important precursors for antioxidants, epoxy coatings, adhesives and other polymeric materials. Bacillus subtilis decarboxylase (BsPAD) is a cofactor-independent enzyme that catalyzes the cleavage of carbon dioxide from p-coumaric-, caffeic-, and ferulic acid with high catalytic efficiency. Real-time spectroscopic assays for decarboxylase reactions remove the necessity of extensive sample workup, which is required for HPLC, mass spectrometry, gas chromatography, or NMR methods. This work presents two robust and sensitive assays based on photometry and fluorimetry that allow decarboxylation reactions to be followed with high sensitivity while avoiding product extraction and long analysis times. Optimized assay procedures were used to measure BsPAD activity in cell lysates and to determine the kinetic constants (KM and Vmax ) of the purified enzyme for p-coumaric-, caffeic- and ferulic acid. Substrate inhibition was shown for caffeic acid.
Collapse
Affiliation(s)
- Henrik Terholsen
- Institute of Biochemistry Department of Biotechnology and Enzyme Catalysis, University of Greifswald, Felix-Hausdorff-Straße 4, 17487, Greifswald, Germany
| | - Kamela Myrtollari
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010, Graz, Austria
- Henkel AG & Co. KGaA, Adhesive Research, Henkelstraße 67, 40191, Düsseldorf, Germany
| | - Mirna Larva
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010, Graz, Austria
| | - Christina Möller
- Institute of Biochemistry Department of Biotechnology and Enzyme Catalysis, University of Greifswald, Felix-Hausdorff-Straße 4, 17487, Greifswald, Germany
| | - Andreas Taden
- Henkel AG & Co. KGaA, Adhesive Research, Henkelstraße 67, 40191, Düsseldorf, Germany
| | - Robert Kourist
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010, Graz, Austria
- acib - Austrian Centre of Industrial Biotechnology, Petersgasse 14, 8010, Graz, Austria
- BioTechMed-Graz, Mozartgasse 12/II, 8010, Graz, Austria
| | - Uwe T Bornscheuer
- Institute of Biochemistry Department of Biotechnology and Enzyme Catalysis, University of Greifswald, Felix-Hausdorff-Straße 4, 17487, Greifswald, Germany
| | - Daniel Kracher
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010, Graz, Austria
- BioTechMed-Graz, Mozartgasse 12/II, 8010, Graz, Austria
| |
Collapse
|
7
|
Tang S, Chen Y, Liao D, Lin Y, Han S, Zheng S. A process for p-hydroxystyrene production from glycerol based on cell-free biosynthesis system. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2023.108927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
|
8
|
Zhao Y, Wang Y, Li H, Zhou Z, Wu Z, Zhang W. Integrating metabolomics and metatranscriptomics to explore the formation pathway of aroma-active volatile phenolics and metabolic profile during industrial radish paocai fermentation. Food Res Int 2023; 167:112719. [PMID: 37087217 DOI: 10.1016/j.foodres.2023.112719] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/28/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023]
Abstract
The aroma profile of industrial Sichuan paocai is formed and regulated by complex physiological and biochemical reactions and microbial metabolism, but little is known so far. In this study, we comprehensively analyzed the changes of metabolic profile and gene expression profile, mainly explored the formation pathways of two skeleton aroma-active compounds, 4-ethylphenol and 4-ethylguaiacol, and verified the pathways at multiple levels. The results showed that a total of 136 volatile metabolites and 560 non-volatile metabolites were identified in the whole fermentation process. The types and concentrations of metabolites in paocai were higher than those in brine, and gradually converged with fermentation. Differential analysis of metabolism and transcription levels were both enriched in three pathways: amino acid metabolism, phenylpropanoid metabolism and lipid metabolism. Among them, 4-ethylphenol and 4-ethylguaiacol, the products of the phenylpropanoid metabolism, were converted from p-coumaric acid and ferulic acid in plant cell walls, respectively. Under the action of decarboxylase produced by yeast (such as Debaryomyces Hansenii) and lactic acid bacteria (such as Lactobacillus versmoldensis), intermediate metabolites vinylphenols were produced, and the intermediate metabolites further produce the final products under the action of vinylphenol reductase. The key gene copy number, enzyme activity, and metabolite concentration in the pathways were detected to provide stronger evidence for the formation pathways. This study provided meaningful new insights for the development of aroma-producing enzymes and further guidance for the flavor improvement of industrial paocai.
Collapse
|
9
|
Engineering and linker-mediated co-immobilization of carotenoid cleavage oxygenase with phenolic acid decarboxylase for efficiently converting ferulic acid into vanillin. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Zhao X, Xue Y, Tang F, Cai W, Hao G, Shan C. Quality improvement of jujube wine through mixed fermentation with Saccharomyces cerevisiae and Bacillus licheniformis. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Wang YL, Wang WK, Wu QC, Yang HJ. The release and catabolism of ferulic acid in plant cell wall by rumen microbes: A review. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 9:335-344. [PMID: 35600541 PMCID: PMC9108465 DOI: 10.1016/j.aninu.2022.02.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 12/29/2021] [Accepted: 02/13/2022] [Indexed: 11/30/2022]
Abstract
Ferulic acid (FA) is one of the most abundant hydroxycinnamic acids in the plant world, especially in the cell wall of grain bran, in comparison with forage and crop residues. Previous studies noted that FA was mainly linked with arabinoxylans and lignin in plant cell walls in ester and ether covalent forms. After forages were ingested by ruminant animals or encountered rumen microbial fermentation in vitro, these cross-linkages form physical and chemical barriers to protect cell-wall carbohydrates from microbial attack and enzymatic hydrolysis. Additionally, increasing studies noted that FA presented some toxic effect on microbial growth in the rumen. In recent decades, many studies have addressed the relationships of ester and/or ether-linked FA with rumen nutrient digestibility, and there is still some controversy whether these linkages could be used as a predicator of forage digestibility in ruminants. The authors in this review summarized the possible relationships between ester and/or ether-linked FA and fiber digestion in ruminants. Rumen microbes, especially bacteria and fungi, were found capable of breaking down the ester linkages within plant cell walls by secreting feruloyl and p-coumaroyl esterase, resulting in the release of free FA and improvement of cell wall digestibility. The increasing evidence noted that these esterases secreted by rumen microbes presented synergistic effects with xylanase and cellulase to effectively hydrolyze forage cell walls. Some released FA were absorbed through the rumen wall directly and entered into blood circulation and presented antioxidant effects on host animals. The others were partially catabolized into volatile fatty acids by rumen microbes, and the possible catabolic pathways discussed. To better understand plant cell wall degradation in the rumen, the metabolic fate of FA along with lignin decomposition mechanisms are needed to be explored via future microbial isolation and incubation studies with aims to maximize dietary fiber intake and enhance fiber digestion in ruminant animals.
Collapse
Affiliation(s)
- Yan-Lu Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Wei-Kang Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Qi-Chao Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Hong-Jian Yang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
12
|
Coffee brews as food matrices for delivering probiotics: Opportunities, challenges, and potential health benefits. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2021.11.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
13
|
Contreras-Jácquez V, Grajales-Hernández DA, Armendáriz-Ruiz M, Rodríguez-González J, Valenzuela-Soto EM, Asaff-Torres A, Mateos-Díaz JC. In-Cell Crosslinked Enzymes: Improving Bacillus megaterium whole-cell biocatalyst stability for the decarboxylation of ferulic acid. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.07.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
14
|
Rodriguez A, Meadows JA, Sun N, Simmons BA, Gladden JM. Evaluation of bacterial hosts for conversion of lignin-derived p-coumaric acid to 4-vinylphenol. Microb Cell Fact 2021; 20:181. [PMID: 34526022 PMCID: PMC8442356 DOI: 10.1186/s12934-021-01670-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/30/2021] [Indexed: 11/16/2022] Open
Abstract
Hydroxycinnamic acids such as p-coumaric acid (CA) are chemically linked to lignin in grassy biomass with fairly labile ester bonds and therefore represent a straightforward opportunity to extract and valorize lignin components. In this work, we investigated the enzymatic conversion of CA extracted from lignocellulose to 4-vinylphenol (4VP) by expressing a microbial phenolic acid decarboxylase in Corynebacterium glutamicum, Escherichia coli, and Bacillus subtilis. The performance of the recombinant strains was evaluated in response to the substrate concentration in rich medium or a lignin liquor and the addition of an organic overlay to perform a continuous product extraction in batch cultures. We found that using undecanol as an overlay enhanced the 4VP titers under high substrate concentrations, while extracting > 97% of the product from the aqueous phase. C. glutamicum showed the highest tolerance to CA and resulted in the accumulation of up to 187 g/L of 4VP from pure CA in the overlay with a 90% yield when using rich media, or 17 g/L of 4VP with a 73% yield from CA extracted from lignin. These results indicate that C. glutamicum is a suitable host for the high-level production of 4VP and that further bioprocess engineering strategies should be explored to optimize the production, extraction, and purification of 4VP from lignin with this organism.
Collapse
Affiliation(s)
- Alberto Rodriguez
- Joint BioEnergy Institute, 5885 Hollis St, Emeryville, CA, 94608, USA.,Sandia National Laboratories, 7011 East Ave, Livermore, CA, 94551, USA
| | - Jamie A Meadows
- Sandia National Laboratories, 7011 East Ave, Livermore, CA, 94551, USA
| | - Ning Sun
- Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA
| | - Blake A Simmons
- Joint BioEnergy Institute, 5885 Hollis St, Emeryville, CA, 94608, USA.,Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA
| | - John M Gladden
- Joint BioEnergy Institute, 5885 Hollis St, Emeryville, CA, 94608, USA. .,Sandia National Laboratories, 7011 East Ave, Livermore, CA, 94551, USA.
| |
Collapse
|
15
|
Intasian P, Prakinee K, Phintha A, Trisrivirat D, Weeranoppanant N, Wongnate T, Chaiyen P. Enzymes, In Vivo Biocatalysis, and Metabolic Engineering for Enabling a Circular Economy and Sustainability. Chem Rev 2021; 121:10367-10451. [PMID: 34228428 DOI: 10.1021/acs.chemrev.1c00121] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Since the industrial revolution, the rapid growth and development of global industries have depended largely upon the utilization of coal-derived chemicals, and more recently, the utilization of petroleum-based chemicals. These developments have followed a linear economy model (produce, consume, and dispose). As the world is facing a serious threat from the climate change crisis, a more sustainable solution for manufacturing, i.e., circular economy in which waste from the same or different industries can be used as feedstocks or resources for production offers an attractive industrial/business model. In nature, biological systems, i.e., microorganisms routinely use their enzymes and metabolic pathways to convert organic and inorganic wastes to synthesize biochemicals and energy required for their growth. Therefore, an understanding of how selected enzymes convert biobased feedstocks into special (bio)chemicals serves as an important basis from which to build on for applications in biocatalysis, metabolic engineering, and synthetic biology to enable biobased processes that are greener and cleaner for the environment. This review article highlights the current state of knowledge regarding the enzymatic reactions used in converting biobased wastes (lignocellulosic biomass, sugar, phenolic acid, triglyceride, fatty acid, and glycerol) and greenhouse gases (CO2 and CH4) into value-added products and discusses the current progress made in their metabolic engineering. The commercial aspects and life cycle assessment of products from enzymatic and metabolic engineering are also discussed. Continued development in the field of metabolic engineering would offer diversified solutions which are sustainable and renewable for manufacturing valuable chemicals.
Collapse
Affiliation(s)
- Pattarawan Intasian
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Kridsadakorn Prakinee
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Aisaraphon Phintha
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand.,Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Duangthip Trisrivirat
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Nopphon Weeranoppanant
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand.,Department of Chemical Engineering, Faculty of Engineering, Burapha University, 169, Long-hard Bangsaen, Saensook, Muang, Chonburi 20131, Thailand
| | - Thanyaporn Wongnate
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Pimchai Chaiyen
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| |
Collapse
|
16
|
Improving the catalytic characteristics of phenolic acid decarboxylase from Bacillus amyloliquefaciens by the engineering of N-terminus and C-terminus. BMC Biotechnol 2021; 21:44. [PMID: 34311732 PMCID: PMC8311932 DOI: 10.1186/s12896-021-00705-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 06/22/2021] [Indexed: 11/10/2022] Open
Abstract
Background 4-vinylphenols produced by phenolic acid degradation catalyzed by phenolic acid decarboxylase can be used in food additives as well as flavor and fragrance industry. Improving the catalytic characters of phenolic acid decarboxylase is of great significance to enhance its practical application. Results A phenolic acid decarboxylase (P-WT) was created from Bacillus amyloliquefaciens ZJH-01. Mutants such as P-C, P-N, P-m1, P-m2, P-Nm1, and P-Nm2 were constructed by site-directed mutagenesis of P-WT. P-C showed better substrate affinities and higher turnover rates than P-WT for p-coumaric acid, ferulic acid, and sinapic acid; however, P-N had reduced affinity toward p-coumaric acid. The extension of the C-terminus increased its acid resistance, whereas the extension of the N-terminus contributed to the alkali resistance and heat resistance. The affinity of P-m1 to four substrates and that of P-m2 to p-coumaric acid and ferulic acid were greatly improved. However, the affinity of P-Nm2 to four phenolic acids was greatly reduced. The residual enzyme activities of P-Nm1 and P-Nm2 considerably improved compared with those of P-m1 and P-m2 after incubation at 50 °C for 60 min. Conclusions The extension of the N-terminus may be more conducive to the combination of the binding cavity with the substrate in an alkaline environment and may make its structure more stable. Supplementary Information The online version contains supplementary material available at 10.1186/s12896-021-00705-7.
Collapse
|
17
|
Bioproduction of 4-Vinylphenol and 4-Vinylguaiacol β-Primeverosides Using Transformed Bamboo Cells Expressing Bacterial Phenolic Acid Decarboxylase. Appl Biochem Biotechnol 2021; 193:2061-2075. [PMID: 33544364 DOI: 10.1007/s12010-021-03522-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/27/2021] [Indexed: 10/22/2022]
Abstract
Phenolic acid decarboxylase (PAD) catalyzes the decarboxylation of hydroxycinnamic acids to produce hydroxystyrenes, which serve as starting materials for the production of polymers. Bamboo (Phyllostachys nigra; Pn) cells, a suitable host for producing phenylpropanoid-derived compounds, were transformed to express PAD of Bacillus amyloliquefaciens (BaPAD). BaPAD-transformed cells accumulated several metabolites that were not detected in wild-type Pn cells or BaPAD-negative transformant. Two major metabolites were isolated from BaPAD-transformed cells, and elucidation of their chemical structures confirmed these as 4-vinylphenol β-primeveroside (4-VPP) and 4-vinylguaiacol β-primeveroside (4-VGP). The production titers of 4-VPP and 4-VGP reached 48 and 33 mg/L at the maximum, respectively. Feeding experiments with 4-vinylphenol (4-VP), 4-vinylguaiacol (4-VG), and their glucosides indicated that 4-VPP and 4-VGP are formed by sequential glycosylation of 4-VP and 4-VG via their corresponding glucosides. Our results demonstrate the versatility of Pn cells for producing styrene derivatives, and indicate the presence of a unique glycosylation pathway to produce 4-VPP and 4-VGP in Pn cells.
Collapse
|
18
|
|
19
|
Büscher N, Spille C, Kracht JK, Sayoga GV, Dawood AWH, Maiwald MI, Herzog D, Schlüter M, Liese A. Countercurrently Operated Reactive Extractor with an Additively Manufactured Enzyme Carrier Structure. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.0c00205] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Niclas Büscher
- Institute of Technical Biocatalysis, Hamburg University of Technology, Denickestr. 15, 21073 Hamburg, Germany
| | - Claas Spille
- Institute of Multiphase Flows, Hamburg University of Technology, Eißendorfer Str. 38, 21073 Hamburg, Germany
| | - John K. Kracht
- Institute of Technical Biocatalysis, Hamburg University of Technology, Denickestr. 15, 21073 Hamburg, Germany
| | - Giovanni V. Sayoga
- Institute of Technical Biocatalysis, Hamburg University of Technology, Denickestr. 15, 21073 Hamburg, Germany
| | - Ayad W. H. Dawood
- Institute of Technical Biocatalysis, Hamburg University of Technology, Denickestr. 15, 21073 Hamburg, Germany
| | - Maria Isabelle Maiwald
- Institute of Laser and System Technologies, Hamburg University of Technology, Denickestr. 17, 21073 Hamburg, Germany
| | - Dirk Herzog
- Institute of Laser and System Technologies, Hamburg University of Technology, Denickestr. 17, 21073 Hamburg, Germany
| | - Michael Schlüter
- Institute of Multiphase Flows, Hamburg University of Technology, Eißendorfer Str. 38, 21073 Hamburg, Germany
| | - Andreas Liese
- Institute of Technical Biocatalysis, Hamburg University of Technology, Denickestr. 15, 21073 Hamburg, Germany
| |
Collapse
|
20
|
Li D, Long L, Ding S. Alkaline organosolv pretreatment of different sorghum stem parts for enhancing the total reducing sugar yields and p-coumaric acid release. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:106. [PMID: 32536971 PMCID: PMC7288516 DOI: 10.1186/s13068-020-01746-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The sorghum stem can be divided into the pith and rind parts with obvious differences in cell type and chemical composition, thus arising the different recalcitrance to enzyme hydrolysis and demand for different pretreatment conditions. The introduction of organic solvents in the pretreatment can reduce over-degradation of cellulose and hemicellulose, but significance of organic solvent addition in pretreatment of different parts of sorghum stem is still unclear. Valorization of each component is critical for economy of sorghum biorefinery. Therefore, in this study, NaOH-ethanol pretreatment condition for different parts of the sorghum stem was optimized to maximize p-coumaric acid release and total reducing sugar recovery. RESULT Ethanol addition improved p-coumaric acid release and delignification efficiency, but significantly reduced hemicellulose deconstruction in NaOH-ethanol pretreatment. Optimization using the response surface methodology revealed that the pith, rind and whole stem require different NaOH-ethanol pretreatment conditions for maximal p-coumaric acid release and xylan preservation. By respective optimal NaOH-ethanol pretreatment, the p-coumaric acid release yields reached 94.07%, 97.24% and 95.05% from pith, rind and whole stem, which increased by 8.16%, 8.38% and 8.39% compared to those of NaOH-pretreated samples. The xylan recoveries of pith, rind and whole stem reached 76.80%, 88.46% and 85.01%, respectively, which increased by 47.75%, 15.11% and 35.97% compared to NaOH pretreatment. Adding xylanase significantly enhanced the enzymatic saccharification of pretreated residues. The total reducing sugar yields after respective optimal NaOH-ethanol pretreatment and enzymatic hydrolysis reached 84.06%, 82.29% and 84.09% for pith, rind and whole stem, respectively, which increased by 29.56%, 23.67% and 25.56% compared to those of NaOH-pretreated samples. Considering the separation cost of the different stem parts, whole sorghum stem can be directly used as feedstock in industrial biorefinery. CONCLUSION These results indicated that NaOH-ethanol is effective for the efficient fractionation and pretreatment of sorghum biomass. This work will help to understand the differences of different parts of sorghum stem under NaOH-ethanol pretreatment, thereby improving the full-component utilization of sorghum stem.
Collapse
Affiliation(s)
- Dandan Li
- The Co-innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Liangkun Long
- The Co-innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Shaojun Ding
- The Co-innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
21
|
Han Z, Long L, Ding S. Expression and Characterization of Carotenoid Cleavage Oxygenases From Herbaspirillum seropedicae and Rhodobacteraceae bacterium Capable of Biotransforming Isoeugenol and 4-Vinylguaiacol to Vanillin. Front Microbiol 2019; 10:1869. [PMID: 31456782 PMCID: PMC6700365 DOI: 10.3389/fmicb.2019.01869] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 07/29/2019] [Indexed: 11/13/2022] Open
Abstract
HsCCO and RbCCO from Herbaspirillum seropedicae and Rhodobacteraceae bacterium were selected and characterized from five putative bacterial carotenoid cleavage oxygenase gene sequences, due to merits in expression solubility and catalytic properties. Both enzymes can convert 4-vinylguaiacol and isoeugenol to vanillin. HsCCO showed maximum activity at 40°C and pH 7.0 and was stable at pH 6.5-10 and temperature around 25°C, retaining over 90 and 80% of initial activity, respectively. RbCCO showed maximum activity at 35°C and pH 9.0 and was stable at pH 6-11 and temperatures of 25-30°C, retaining over 80% of initial activity. The kinetic constants K m of HsCCO for isoeugenol and 4-vinylguaiacol were 1.55 and 1.65 mM and V max were 74.09 and 27.91 nmol min-1 mg-1, respectively. The kinetic constants K m of RbCCO for isoeugenol and 4-vinylguaiacol were 2.24 and 0.85 mM and V max were 76.48 and 19.96 nmol min-1 mg-1, respectively. The transformed Escherichia coli cells harboring HsCCO converted isoeugenol and 4-vinylguaiacol at molar conversion yields of 80 and 55% and the maximum vanillin concentrations were up to 1.22 and 0.84 g L-1, respectively. Comparably, the molar conversion yields of the transformed E. coli cells harboring RbCCO against isoeugenol 4-vinylguaiacol were 75 and 58%, and the maximum vanillin yields were up to 1.14 and 0.88 g L-1, respectively.
Collapse
Affiliation(s)
- Zichun Han
- The Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Liangkun Long
- The Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Shaojun Ding
- The Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
22
|
Li L, Long L, Ding S. Bioproduction of High-Concentration 4-Vinylguaiacol Using Whole-Cell Catalysis Harboring an Organic Solvent-Tolerant Phenolic Acid Decarboxylase From Bacillus atrophaeus. Front Microbiol 2019; 10:1798. [PMID: 31447812 PMCID: PMC6691155 DOI: 10.3389/fmicb.2019.01798] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 07/22/2019] [Indexed: 12/14/2022] Open
Abstract
The compound 4-vinyl guaiacol (4-VG) is highly valued and widely applied in the pharmaceutical, cosmetic, and food industries. The bioproduction of 4-VG from ferulic acid (FA) by non-oxidative decarboxylation using phenolic acid decarboxylases is promising but has been hampered by low conversion yields and final product concentrations due to the toxicities of 4-VG and FA. In the current study, a new phenolic acid decarboxylase (BaPAD) was characterized from Bacillus atrophaeus. The BaPAD possessed excellent catalytic activity and stability in various organic solvents. Whole Escherichia coli cells harboring intracellular BaPAD exhibited greater tolerances to FA and 4-VG than those of free BaPAD. A highly efficient aqueous-organic biphasic system was established using 1-octanol as the optimal organic phase for whole-cell catalysis. In this system, a very high concentration (1580 mM, 237.3 g/L) of 4-VG was achieved in a 2 L working volume bioreactor, and the molar conversion yield and productivity reached 98.9% and 18.3 g/L/h in 13 h, respectively.
Collapse
Affiliation(s)
- Lulu Li
- The Co-innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Liangkun Long
- The Co-innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Shaojun Ding
- The Co-innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
23
|
Functional Autodisplay of Phenolic Acid Decarboxylase using a GDSL Autotransporter on Escherichia coli for Efficient Catalysis of 4-Hydroxycinnamic Acids to Vinylphenol Derivatives. Catalysts 2019. [DOI: 10.3390/catal9080634] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Bioproduction of vinylphenol derivatives, such as 4-vinylguaiacol (4-VG) and 4-vinylphenol (4-VP), from 4-hydroxycinnamic acids, such as ferulic acid (FA) and p-coumaric acid (pCA), employing whole cells expressing phenolic acid decarboxylases (PAD) as a biocatalyst has attracted much attention in recent years. However, the accumulation of 4-VG or 4-VP in the cell may cause high cytotoxicity to Escherichia coli (E. coli) and consequently cell death during the process. In this study, we firstly report the functional display of a phenolic acid decarboxylase (BLPAD) from Bacillus licheniformis using a GDSL autotransporter from Pseudomonas putida on the cell surface of E. coli. Expression and localization of BLPAD on E. coli were verified by SDS-PAGE and protease accessibility. The PelB signal peptide is more effective in guiding the translocation of BLPAD on the cell surface than the native signal peptide of GDSL, and the cell surface displaying BLPAD activity reached 19.72 U/OD600. The cell surface displaying BLPAD showed good reusability and retained 63% of residual activity after 7 cycles of repeated use. In contrast, the residual activity of the intracellular expressing cells was approximately 11% after 3 cycles of reuse. The molar bioconversion yields of 72.6% and 80.4% were achieved at the concentration of 300 mM of FA and pCA in a biphasic toluene/Na2HPO4–citric acid buffer system, respectively. Its good reusability and efficient catalysis suggested that the cell surface displaying BLPAD can be used as a whole-cell biocatalyst for efficient production of 4-VG and 4-VP.
Collapse
|
24
|
Baqueiro-Peña I, Contreras-Jácquez V, Kirchmayr MR, Mateos-Díaz JC, Valenzuela-Soto EM, Asaff-Torres A. Isolation and Characterization of a New Ferulic-Acid-Biotransforming Bacillus megaterium from Maize Alkaline Wastewater (Nejayote). Curr Microbiol 2019; 76:1215-1224. [DOI: 10.1007/s00284-019-01726-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 06/20/2019] [Indexed: 02/05/2023]
|
25
|
Tang J, Long L, Cao Y, Ding S. Expression and characterization of two glucuronoyl esterases from Thielavia terrestris and their application in enzymatic hydrolysis of corn bran. Appl Microbiol Biotechnol 2019; 103:3037-3048. [DOI: 10.1007/s00253-019-09662-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 01/08/2019] [Accepted: 01/22/2019] [Indexed: 01/13/2023]
|
26
|
Exploring the substrate scope of ferulic acid decarboxylase (FDC1) from Saccharomyces cerevisiae. Sci Rep 2019; 9:647. [PMID: 30679592 PMCID: PMC6345843 DOI: 10.1038/s41598-018-36977-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 11/25/2018] [Indexed: 12/17/2022] Open
Abstract
Ferulic acid decarboxylase from Saccharomyces cerevisiae (ScFDC1) was described to possess a novel, prenylated flavin mononucleotide cofactor (prFMN) providing the first enzymatic 1,3-dipolar cycloaddition mechanism. The high tolerance of the enzyme towards several non-natural substrates, combined with its high quality, atomic resolution structure nominates FDC1 an ideal candidate as flexible biocatalyst for decarboxylation reactions leading to synthetically valuable styrenes. Herein the substrate scope of ScFDC1 is explored on substituted cinnamic acids bearing different functional groups (–OCH3, –CF3 or –Br) at all positions of the phenyl ring (o−, m−, p−), as well as on several biaryl and heteroaryl cinnamic acid analogues or derivatives with extended alkyl chain. It was found that E. coli whole cells expressing recombinant ScFDC1 could transform a large variety of substrates with high conversion, including several bulky aryl and heteroaryl cinnamic acid analogues, that characterize ScFDC1 as versatile and highly efficient biocatalyst. Computational studies revealed energetically favoured inactive binding positions and limited active site accessibility for bulky and non-linear substrates, such as 2-phenylthiazol-4-yl-, phenothiazine-2-yl- and 5-(4-bromophenyl)furan-2-yl) acrylic acids. In accordance with the computational predictions, site-directed mutagenesis of residue I330 provided variants with catalytic activity towards phenothiazine-2-yl acrylic acid and provides a basis for altering the substrate specificity of ScFDC1 by structure based rational design.
Collapse
|
27
|
Cloning and characterization of a Flavin-free oxygen-insensitive azoreductase from Klebsiella oxytoca GS-4-08. Biotechnol Lett 2019; 41:371-378. [DOI: 10.1007/s10529-019-02647-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 01/09/2019] [Indexed: 10/27/2022]
|
28
|
Ni J, Wu YT, Tao F, Peng Y, Xu P. A Coenzyme-Free Biocatalyst for the Value-Added Utilization of Lignin-Derived Aromatics. J Am Chem Soc 2018; 140:16001-16005. [DOI: 10.1021/jacs.8b08177] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Jun Ni
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| | - Yu-Tong Wu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| | - Fei Tao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| | - Yuan Peng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| |
Collapse
|
29
|
Tang J, Shi L, Li L, Long L, Ding S. Expression and characterization of a 9-cis-epoxycarotenoid dioxygenase from Serratia sp. ATCC 39006 capable of biotransforming isoeugenol and 4-vinylguaiacol to vanillin. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2018; 18:e00253. [PMID: 29881703 PMCID: PMC5989660 DOI: 10.1016/j.btre.2018.e00253] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 04/16/2018] [Indexed: 11/23/2022]
Abstract
A 9-cis-epoxycarotenoid dioxygenase gene from Serratia sp. ATCC 39,006 (SeNCED) was overexpressed in soluble form in E.coli. SeNCED showed the maximum activity at 30 °C and pH 8.0, and it was stable relatively at range of pH 5-10 and temperature of 20 °C to 30 °C. SeNCED effectively catalyzes the side chain double bond cleavage of isoeugenol and 4-vinylguaiacol to vanillin. The kinetic constant Km values toward isoeugenol and 4-vinylguaiacol were 18.92 mM and 6.31 mM and Vmax values were 50.73 IU/g and 4.77 IU/g, respectively. Moreover, the SeNCED exhibited an excellent organic solvent tolerance and the enzyme activity was substantially improved at presence of 10% of trichloromethane. The produced vanillin was achieved at an around 0.53 g/L (3.47 mM) and 0.33 g/L (2.17 mM) after 8 h reaction at 4 mM of isoeugenol and 4-vinylguaiacol, respectively, using transformed Escherichia coli cells harboring SeNCED in the presence of trichloromethane.
Collapse
Affiliation(s)
| | | | | | | | - Shaojun Ding
- The Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|
30
|
Tinikul R, Chenprakhon P, Maenpuen S, Chaiyen P. Biotransformation of Plant-Derived Phenolic Acids. Biotechnol J 2018; 13:e1700632. [DOI: 10.1002/biot.201700632] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/10/2017] [Indexed: 01/18/2023]
Affiliation(s)
- Ruchanok Tinikul
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology; Faculty of Science; Mahidol University; Bangkok 10400 Thailand
| | - Pirom Chenprakhon
- Institute for Innovative Learning; Mahidol University; Nakhon Pathom 73170 Thailand
| | - Somchart Maenpuen
- Department of Biochemistry; Faculty of Science; Burapha University; Chonburi 20131 Thailand
| | - Pimchai Chaiyen
- Department of Biomolecular Science and Engineering; School of Biomolecular Science & Engineering; Vidyasirimedhi Institute of Science and Technology (VISTEC); Wangchan Valley Rayong 21210 Thailand
| |
Collapse
|
31
|
Odinot E, Fine F, Sigoillot JC, Navarro D, Laguna O, Bisotto A, Peyronnet C, Ginies C, Lecomte J, Faulds CB, Lomascolo A. A Two-Step Bioconversion Process for Canolol Production from Rapeseed Meal Combining an Aspergillus niger Feruloyl Esterase and the Fungus Neolentinus lepideus. Microorganisms 2017; 5:microorganisms5040067. [PMID: 29036919 PMCID: PMC5748576 DOI: 10.3390/microorganisms5040067] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 10/02/2017] [Accepted: 10/11/2017] [Indexed: 11/24/2022] Open
Abstract
Rapeseed meal is a cheap and abundant raw material, particularly rich in phenolic compounds of biotechnological interest. In this study, we developed a two-step bioconversion process of naturally occurring sinapic acid (4-hydroxy-3,5-dimethoxycinnamic acid) from rapeseed meal into canolol by combining the complementary potentialities of two filamentous fungi, the micromycete Aspergillus niger and the basidiomycete Neolentinus lepideus. Canolol could display numerous industrial applications because of its high antioxidant, antimutagenic and anticarcinogenic properties. In the first step of the process, the use of the enzyme feruloyl esterase type-A (named AnFaeA) produced with the recombinant strain A. niger BRFM451 made it possible to release free sinapic acid from the raw meal by hydrolysing the conjugated forms of sinapic acid in the meal (mainly sinapine and glucopyranosyl sinapate). An amount of 39 nkat AnFaeA per gram of raw meal, at 55 °C and pH 5, led to the recovery of 6.6 to 7.4 mg of free sinapic acid per gram raw meal, which corresponded to a global hydrolysis yield of 68 to 76% and a 100% hydrolysis of sinapine. Then, the XAD2 adsorbent (a styrene and divinylbenzene copolymer resin), used at pH 4, enabled the efficient recovery of the released sinapic acid, and its concentration after elution with ethanol. In the second step, 3-day-old submerged cultures of the strain N. lepideus BRFM15 were supplied with the recovered sinapic acid as the substrate of bioconversion into canolol by a non-oxidative decarboxylation pathway. Canolol production reached 1.3 g/L with a molar yield of bioconversion of 80% and a productivity of 100 mg/L day. The same XAD2 resin, when used at pH 7, allowed the recovery and purification of canolol from the culture broth of N. lepideus. The two-step process used mild conditions compatible with green chemistry.
Collapse
Affiliation(s)
- Elise Odinot
- INRA Institut National de la Recherche Agronomique, Aix Marseille Univ., UMR1163 BBF Biodiversité et Biotechnologie Fongiques, 163 Avenue de Luminy, 13288 Marseille CEDEX 09, France.
| | - Frédéric Fine
- Terres Inovia, Parc Industriel, 11 Rue Monge, 33600 Pessac, France.
| | - Jean-Claude Sigoillot
- INRA Institut National de la Recherche Agronomique, Aix Marseille Univ., UMR1163 BBF Biodiversité et Biotechnologie Fongiques, 163 Avenue de Luminy, 13288 Marseille CEDEX 09, France.
| | - David Navarro
- INRA Institut National de la Recherche Agronomique, Aix Marseille Univ., UMR1163 BBF Biodiversité et Biotechnologie Fongiques, 163 Avenue de Luminy, 13288 Marseille CEDEX 09, France.
- Centre International de Ressources Microbiennes, Champignons Filamenteux, CIRM-CF, Case 925, 163 Avenue de Luminy, 13288 Marseille CEDEX 09, France.
| | - Oscar Laguna
- CIRAD Centre de coopération Internationale en Recherche Agronomique pour le Développement, UMR IATE Montpellier SupAgro-INRA, 2, Place Pierre Viala, 34060 Montpellier, France.
| | - Alexandra Bisotto
- INRA Institut National de la Recherche Agronomique, Aix Marseille Univ., UMR1163 BBF Biodiversité et Biotechnologie Fongiques, 163 Avenue de Luminy, 13288 Marseille CEDEX 09, France.
| | - Corinne Peyronnet
- Terres Univia, 11 rue Monceau, CS60003, 75378 Paris CEDEX 8, France.
| | - Christian Ginies
- Sécurité et Qualité des Produits d'Origine Végétale, INRA Institut National de la Recherche Agronomique UMR408 SQPOV, Université d'Avignon, 33 rue Louis Pasteur, 84029 Avignon, France.
| | - Jérôme Lecomte
- CIRAD Centre de coopération Internationale en Recherche Agronomique pour le Développement, UMR IATE Montpellier SupAgro-INRA, 2, Place Pierre Viala, 34060 Montpellier, France.
| | - Craig B Faulds
- INRA Institut National de la Recherche Agronomique, Aix Marseille Univ., UMR1163 BBF Biodiversité et Biotechnologie Fongiques, 163 Avenue de Luminy, 13288 Marseille CEDEX 09, France.
| | - Anne Lomascolo
- INRA Institut National de la Recherche Agronomique, Aix Marseille Univ., UMR1163 BBF Biodiversité et Biotechnologie Fongiques, 163 Avenue de Luminy, 13288 Marseille CEDEX 09, France.
| |
Collapse
|
32
|
Pesci L, Baydar M, Glueck S, Faber K, Liese A, Kara S. Development and Scaling-Up of the Fragrance Compound 4-Ethylguaiacol Synthesis via a Two-Step Chemo-Enzymatic Reaction Sequence. Org Process Res Dev 2016. [DOI: 10.1021/acs.oprd.6b00362] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lorenzo Pesci
- Institute
of Technical Biocatalysis, Hamburg University of Technology, Denickestr. 15, 21073 Hamburg, Germany
| | - Maik Baydar
- Institute
of Technical Biocatalysis, Hamburg University of Technology, Denickestr. 15, 21073 Hamburg, Germany
| | - Silvia Glueck
- ACIB GmbH, Petersgasse 14, 8010 Graz, Austria
- Department of Chemistry, Organic & Bioorganic Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria
| | - Kurt Faber
- Department of Chemistry, Organic & Bioorganic Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria
| | - Andreas Liese
- Institute
of Technical Biocatalysis, Hamburg University of Technology, Denickestr. 15, 21073 Hamburg, Germany
| | - Selin Kara
- Institute
of Technical Biocatalysis, Hamburg University of Technology, Denickestr. 15, 21073 Hamburg, Germany
| |
Collapse
|
33
|
Fujiwara R, Noda S, Kawai Y, Tanaka T, Kondo A. 4-Vinylphenol production from glucose using recombinant Streptomyces mobaraense expressing a tyrosine ammonia lyase from Rhodobacter sphaeroides. Biotechnol Lett 2016; 38:1543-9. [DOI: 10.1007/s10529-016-2126-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 05/11/2016] [Indexed: 12/30/2022]
|
34
|
Jiang K, Li L, Long L, Ding S. Comparison of alkali treatments for efficient release of p-coumaric acid and enzymatic saccharification of sorghum pith. BIORESOURCE TECHNOLOGY 2016; 207:1-10. [PMID: 26868149 DOI: 10.1016/j.biortech.2016.01.116] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 01/29/2016] [Accepted: 01/30/2016] [Indexed: 05/07/2023]
Abstract
Two separate temperature and time ranges were respectively conducted for optimizing release of p-coumaric acid and enzymatic saccharification of sorghum pith by NaOH pretreatment using response surface methodology. Two desirable pretreatment conditions were selected as follows: 37°C, 2% NaOH and 12h, and 100°C, 1.75% NaOH and 37min in the low and high temperature ranges, respectively. Under these conditions, the enzymatic glucose yields were 85.6% and 90.4% respectively, whereas p-coumaric acid yields were 95.1% and 98.1% respectively. The final recovery of esterified p-coumaric acid reached 82.8% and 87.4% respectively after further separation with HP-20 resin. Interestingly, strong linear correlations exist between p-coumaric acid release with glucan saccharification yield and lignin dissolution. These results indicate that sorghum pith could be an attractive source for natural p-coumaric acid and efficient release of p-coumaric acid and enzymatic saccharification of sorghum pith can be achieved by mild NaOH pretreatment.
Collapse
Affiliation(s)
- Kankan Jiang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Lulu Li
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Liangkun Long
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Shaojun Ding
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| |
Collapse
|