1
|
Li T, Wang X, Wang X, Huang J, Shen L. Mechanisms Driving the Distribution and Activity of Mineralization and Nitrification in the Reservoir Riparian Zone. MICROBIAL ECOLOGY 2023; 86:1829-1846. [PMID: 36702929 DOI: 10.1007/s00248-023-02180-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
The riparian zone ecosystems have greater energy flow and elemental cycling than adjacent terrestrial and aquatic ecosystems. Mineralization and nitrification are important initiating processes in the nitrogen cycle, but their distribution and activity under different environmental conditions in the riparian zone and the driving mechanisms are still not clear. We investigated the effects of environmental and microbial factors on mineralization and nitrification activities by analyzing the community of alkaline (apr) and neutral (npr) metallopeptidase, ammonia-oxidizing archaea (AOA), and bacteria (AOB) in soils and sediments under different land-use types in the riparian zone of Miyun Reservoir, as well as measuring potential nitrogen mineralization and ammonia oxidation rates (AOR). The results showed that the mineralization and nitrification activities of soils were greater than those of sediments. AOA and AOB dominate the ammonia oxidation activity of soil and sediment, respectively. NH4+ content was a key factor influencing the ecological niche differentiation between AOA and AOB. The high carbon and nitrogen content of the woodland significantly increased mineralization and nitrification activity. Microbial communities were significantly clustered in the woodland. The land-use type, not the flooding condition, determined the distribution of microbial community structure. The diversity of npr was significantly correlated with potential N mineralization rates, while the transcript abundance of AOA was significantly correlated with ammonia oxidation rates. Our study suggests that environmental changes regulate the distribution and activity of mineralization and nitrification processes in the reservoir riparian zone by affecting the transcript abundance, diversity and community structure of the microbial functional genes.
Collapse
Affiliation(s)
- Tingting Li
- College of Resources, Environment and Tourism, Capital Normal University, No. 105, North West Third Ring Road, Haidian District, Beijing, 100048, China
| | - Xiaoyan Wang
- College of Resources, Environment and Tourism, Capital Normal University, No. 105, North West Third Ring Road, Haidian District, Beijing, 100048, China.
| | - Xia Wang
- College of Resources, Environment and Tourism, Capital Normal University, No. 105, North West Third Ring Road, Haidian District, Beijing, 100048, China
| | - Jingyu Huang
- College of Resources, Environment and Tourism, Capital Normal University, No. 105, North West Third Ring Road, Haidian District, Beijing, 100048, China
| | - Lei Shen
- College of Resources, Environment and Tourism, Capital Normal University, No. 105, North West Third Ring Road, Haidian District, Beijing, 100048, China
| |
Collapse
|
2
|
Duan L, Fan J, Wang Y, Wu Y, Xie C, Ye F, Lv J, Mao M, Sun Y. Interaction mechanism between nitrogen conversion and the microbial community in the hydrodynamic heterogeneous interaction zone. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:5799-5814. [PMID: 35980525 DOI: 10.1007/s11356-022-22549-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
To study the inorganic nitrogen in the process of interaction of river and groundwater and the changes in the microbial community, a vertical simulation device was used to simulate groundwater recharge to river water (upwelling) and river water recharge to groundwater (downwelling). The inorganic nitrogen concentrations in the soil and water solution as well as the characteristics of the microbial community were assessed to determine the inorganic nitrogen transformation and microbial community response in the heterogeneous interaction zone under hydrodynamic action, and the interaction mechanism between nitrogen transformation and the microbial community in the interaction zone was revealed. The removal rates of NO3--N in the simulated solution reached 99.1% and 99.3% under the two fluid-groundwater conversion modes, and the prolonged hydraulic retention time (HRT) of the oxidization-reduction layer in the fine clay area and the high organic matter content made the inorganic nitrogen transformation process dominated by microorganisms more complete. The denitrification during upwelling, dominated by denitrifying bacteria in Sphingomonas, Pseudomonas, Bacillus, and Arthrobacter, was stronger than that during downwelling. Dissimilatory nitrate reduction to ammonium (DNRA), controlled by some aerobic bacteria in Pseudomonas, Bacillus, and Desulfovibrio, was more intense in downflow mode than upflow mode.
Collapse
Affiliation(s)
- Lei Duan
- School of Hydraulic Engineering and Environment, Chang'an University, Xi'an, 710061, China
- Key Laboratory of Underground Hydrology and Ecological Effects in Arid Regions, Ministry of Education, Xi'an, 710064, China
| | - Jinghui Fan
- School of Hydraulic Engineering and Environment, Chang'an University, Xi'an, 710061, China
- Key Laboratory of Underground Hydrology and Ecological Effects in Arid Regions, Ministry of Education, Xi'an, 710064, China
| | - Yike Wang
- School of Hydraulic Engineering and Environment, Chang'an University, Xi'an, 710061, China
- Key Laboratory of Underground Hydrology and Ecological Effects in Arid Regions, Ministry of Education, Xi'an, 710064, China
| | - Yakun Wu
- School of Hydraulic Engineering and Environment, Chang'an University, Xi'an, 710061, China
- Key Laboratory of Underground Hydrology and Ecological Effects in Arid Regions, Ministry of Education, Xi'an, 710064, China
| | - Chenchen Xie
- School of Hydraulic Engineering and Environment, Chang'an University, Xi'an, 710061, China
- Key Laboratory of Underground Hydrology and Ecological Effects in Arid Regions, Ministry of Education, Xi'an, 710064, China
| | - Fei Ye
- School of Hydraulic Engineering and Environment, Chang'an University, Xi'an, 710061, China
- Key Laboratory of Underground Hydrology and Ecological Effects in Arid Regions, Ministry of Education, Xi'an, 710064, China
| | - Jiajia Lv
- School of Hydraulic Engineering and Environment, Chang'an University, Xi'an, 710061, China
- Key Laboratory of Underground Hydrology and Ecological Effects in Arid Regions, Ministry of Education, Xi'an, 710064, China
| | - Ming Mao
- School of Hydraulic Engineering and Environment, Chang'an University, Xi'an, 710061, China
- Key Laboratory of Underground Hydrology and Ecological Effects in Arid Regions, Ministry of Education, Xi'an, 710064, China
| | - Yaqiao Sun
- School of Hydraulic Engineering and Environment, Chang'an University, Xi'an, 710061, China.
- Key Laboratory of Underground Hydrology and Ecological Effects in Arid Regions, Ministry of Education, Xi'an, 710064, China.
| |
Collapse
|
3
|
Liu Y, Cong R, Liao S, Guo Q, Li X, Ren T, Lu Z, Lu J. Rapid soil rewetting promotes limited N 2O emissions and suppresses NH 3 volatilization under urea addition. ENVIRONMENTAL RESEARCH 2022; 212:113402. [PMID: 35526581 DOI: 10.1016/j.envres.2022.113402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/18/2022] [Accepted: 04/28/2022] [Indexed: 06/14/2023]
Abstract
The alternation of dry and wet is an important environmental factor affecting the emission of nitrous oxide from soil. However, the consistent or opposite effects on NH3 and N2O emissions caused by adding exogenous urea in this process have not been fully considered. Here, we controlled the initial (slow drying) and final (adding water) water-filled pore space (WFPS) at 70%, 60%, or 50% through microculture experiment to simulate a process of slow drying-fertilization and rapid wetting of the soil from rice harvest to dryland crop fertilization. Through measuring soil chemical properties and the abundance and composition of related microbial communities during drying process, we studied the pathways of influence of drying and rewetting on the emission of N2O and NH3 after urea application. During the progressive drying process (WFPS decreasing from 70% to 60% and 50%), soil N2O and NH3 emissions decreased by 49.77%-72.13% and 17.89%-42.19%, respectively. After rapid rewetting (WFPS increasing from 60% to 70%, 50%-60% and 70%), N2O emissions showed a slight increase, while NH3 volatilization continued to decrease. Soil NH4+-N and DOC contents both decreased during progressive drying, while the soil NO3--N content was enhanced. The drying process changed the community structure of ureC and amoA-b and reduced their abundance but had no effect on amoA-a, nirK or nirS. Correlation analysis indicated that the reductions in NH4+-N content and the abundances of ureC and amoA-b were the main factors suppressing N2O and NH3 emissions. We believe that drying process limits the related microbial activity and substrate supply during ammonia oxidation process in terms of N2O emissions, while in terms of NH3 volatilization, it reduces the related microbial activity of urea hydrolysis process and increases the ammonium adsorption to the soil.
Collapse
Affiliation(s)
- Yu Liu
- Microelement Research Center, Huazhong Agricultural University, Wuhan, 430070, China; State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Ministry of Ecological Environment, Wuhan, 430070, China; Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
| | - Rihuan Cong
- Microelement Research Center, Huazhong Agricultural University, Wuhan, 430070, China; State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Ministry of Ecological Environment, Wuhan, 430070, China; Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
| | - Shipeng Liao
- Microelement Research Center, Huazhong Agricultural University, Wuhan, 430070, China; State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Ministry of Ecological Environment, Wuhan, 430070, China; Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
| | - Qi Guo
- Microelement Research Center, Huazhong Agricultural University, Wuhan, 430070, China; State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Ministry of Ecological Environment, Wuhan, 430070, China; Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
| | - Xiaokun Li
- Microelement Research Center, Huazhong Agricultural University, Wuhan, 430070, China; State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Ministry of Ecological Environment, Wuhan, 430070, China; Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
| | - Tao Ren
- Microelement Research Center, Huazhong Agricultural University, Wuhan, 430070, China; State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Ministry of Ecological Environment, Wuhan, 430070, China; Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
| | - Zhifeng Lu
- Microelement Research Center, Huazhong Agricultural University, Wuhan, 430070, China; State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Ministry of Ecological Environment, Wuhan, 430070, China; Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
| | - Jianwei Lu
- Microelement Research Center, Huazhong Agricultural University, Wuhan, 430070, China; State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Ministry of Ecological Environment, Wuhan, 430070, China; Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China.
| |
Collapse
|
4
|
Bhaduri D, Sihi D, Bhowmik A, Verma BC, Munda S, Dari B. A review on effective soil health bio-indicators for ecosystem restoration and sustainability. Front Microbiol 2022; 13:938481. [PMID: 36060788 PMCID: PMC9428492 DOI: 10.3389/fmicb.2022.938481] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/29/2022] [Indexed: 11/30/2022] Open
Abstract
Preventing degradation, facilitating restoration, and maintaining soil health is fundamental for achieving ecosystem stability and resilience. A healthy soil ecosystem is supported by favorable components in the soil that promote biological productivity and provide ecosystem services. Bio-indicators of soil health are measurable properties that define the biotic components in soil and could potentially be used as a metric in determining soil functionality over a wide range of ecological conditions. However, it has been a challenge to determine effective bio-indicators of soil health due to its temporal and spatial resolutions at ecosystem levels. The objective of this review is to compile a set of effective bio-indicators for developing a better understanding of ecosystem restoration capabilities. It addresses a set of potential bio-indicators including microbial biomass, respiration, enzymatic activity, molecular gene markers, microbial metabolic substances, and microbial community analysis that have been responsive to a wide range of ecosystem functions in agricultural soils, mine deposited soil, heavy metal contaminated soil, desert soil, radioactive polluted soil, pesticide polluted soil, and wetland soils. The importance of ecosystem restoration in the United Nations Sustainable Development Goals was also discussed. This review identifies key management strategies that can help in ecosystem restoration and maintain ecosystem stability.
Collapse
Affiliation(s)
- Debarati Bhaduri
- ICAR-National Rice Research Institute, Cuttack, India
- *Correspondence: Debarati Bhaduri
| | - Debjani Sihi
- Department of Environmental Sciences, Emory University, Atlanta, GA, United States
| | - Arnab Bhowmik
- Department of Natural Resources and Environmental Design, North Carolina Agricultural and Technical State University, Greensboro, NC, United States
- Arnab Bhowmik
| | - Bibhash C. Verma
- Central Rainfed Upland Rice Research Station (ICAR-NRRI), Hazaribagh, India
| | | | - Biswanath Dari
- Agriculture and Natural Resources, Cooperative Extension at North Carolina Agricultural and Technical State University, Greensboro, NC, United States
| |
Collapse
|
5
|
Li T, Wang X, Huang J, Wang Y, Song S. Distribution of ammonia oxidizers and their role in N 2 O emissions in the reservoir riparian zone. J Basic Microbiol 2022; 62:1179-1192. [PMID: 35730619 DOI: 10.1002/jobm.202200190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/07/2022] [Accepted: 06/11/2022] [Indexed: 11/09/2022]
Abstract
As a transitional boundary between terrestrial and aquatic ecosystems, the riparian zone is considered a hotspot for N2 O production because of the active nitrogen processes. Ammoxidation is an important microbial pathway for N2 O production, but the distribution of ammonia oxidizers under different land-use types in the reservoir riparian zone and what role they played in N2 O emissions are still not clear. We investigated spatiotemporal distributions of ammonia-oxidizing archaea (AOA) and bacteria (AOB) and their role in N2 O emissions in different land-use types along the riparian zone of Miyun Reservoir: grassland, sparse woods, and woodland. We found significant differences in both AOA abundance and AOB diversity indices among land-use types. AOA and AOB communities were significantly separated by different land-use types. The main drivers to determine the distribution of ammonia-oxidizing microbial community were soil water content, NH4 + , NO3 - , and total organic carbon (TOC). In situ N2 O flux was highest in woodland with a mean value of 12.28 μg/m2 ·h, and it was substantially decreased by 121% and 123% in sparse woods and grassland. TOC content was decreased by 20% and 40% in sparse woods and grassland compared with woodland, and it was significantly positively correlated with in situ N2 O flux. Meanwhile, AOB diversity indices were significantly correlated with in situ N2 O flux. These results showed that the heterogeneity of physicochemical properties among different land-use types affected the community of AOA and AOB in riparian zones. AOB not AOA, and community diversity rather than abundance, played a role in N2 O emissions.
Collapse
Affiliation(s)
- Tingting Li
- College of Resources, Environment and Tourism, Capital Normal University, Beijing, China
| | - Xiaoyan Wang
- College of Resources, Environment and Tourism, Capital Normal University, Beijing, China
| | - Jingyu Huang
- College of Resources, Environment and Tourism, Capital Normal University, Beijing, China
| | - Yubing Wang
- College of Resources, Environment and Tourism, Capital Normal University, Beijing, China
| | - Shuang Song
- College of Resources, Environment and Tourism, Capital Normal University, Beijing, China
| |
Collapse
|
6
|
Soils and sediments host Thermoplasmata archaea encoding novel copper membrane monooxygenases (CuMMOs). THE ISME JOURNAL 2022; 16:1348-1362. [PMID: 34987183 PMCID: PMC9038741 DOI: 10.1038/s41396-021-01177-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 12/02/2021] [Accepted: 12/10/2021] [Indexed: 01/22/2023]
Abstract
Copper membrane monooxygenases (CuMMOs) play critical roles in the global carbon and nitrogen cycles. Organisms harboring these enzymes perform the first, and rate limiting, step in aerobic oxidation of ammonia, methane, or other simple hydrocarbons. Within archaea, only organisms in the order Nitrososphaerales (Thaumarchaeota) encode CuMMOs, which function exclusively as ammonia monooxygenases. From grassland and hillslope soils and aquifer sediments, we identified 20 genomes from distinct archaeal species encoding divergent CuMMO sequences. These archaea are phylogenetically clustered in a previously unnamed Thermoplasmatota order, herein named the Ca. Angelarchaeales. The CuMMO proteins in Ca. Angelarchaeales are more similar in structure to those in Nitrososphaerales than those of bacteria, and contain all functional residues required for general monooxygenase activity. Ca. Angelarchaeales genomes are significantly enriched in blue copper proteins (BCPs) relative to sibling lineages, including plastocyanin-like electron carriers and divergent nitrite reductase-like (nirK) 2-domain cupredoxin proteins co-located with electron transport machinery. Ca. Angelarchaeales also encode significant capacity for peptide/amino acid uptake and degradation and share numerous electron transport mechanisms with the Nitrososphaerales. Ca. Angelarchaeales are detected at high relative abundance in some of the environments where their genomes originated from. While the exact substrate specificities of the novel CuMMOs identified here have yet to be determined, activity on ammonia is possible given their metabolic and ecological context. The identification of an archaeal CuMMO outside of the Nitrososphaerales significantly expands the known diversity of CuMMO enzymes in archaea and suggests previously unaccounted organisms contribute to critical global nitrogen and/or carbon cycling functions.
Collapse
|
7
|
Chen S, Gao R, Xiang X, Yang H, Ma H, Zheng T, Xiao Y, Zhang X, Li H, Fan G, Yu Y. Straw mulching and nitrogen application altered ammonia oxidizers communities and improved soil quality in the alkaline purple soil of southwest China. AMB Express 2021; 11:52. [PMID: 33825988 PMCID: PMC8026789 DOI: 10.1186/s13568-021-01211-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 03/22/2021] [Indexed: 01/04/2023] Open
Abstract
Microbe-mediated ammonia oxidation is a key process in soil nitrogen cycle. However, the effect of maize straw mulching on the ammonia oxidizers in the alkaline purple soil remains largely unknown. A three-year positioning experiment was designed as follows: straw mulching measures as the main-plot treatment and three kinds of nitrogen application as the sub-plot treatment. We found the contents of soil organic carbon (SOC), total nitrogen (TN), available potassium (AK), available nitrogen (AN), available phosphorus (AP), and NH4+-N were increased after straw mulching and nitrogen application in alkaline purple soil, so did the amoA genes abundance of ammonia-oxidizing archaeal (AOA) and bacterial (AOB). Terminal restriction fragment length polymorphism (T-RFLP) analysis revealed that Thaumarchaeote (448-bp T-RF) was dominated the AOA communities, whereas Nitrosospira sp (111-bp T-RF) dominated the AOB communities. The community compositions of both AOA and AOB were altered by straw mulching and nitrogen application in alkaline purple soil, however, the AOB communities was more responsive than AOA communities to the straw mulching and nitrogen application. Further analysis indicated that SOC and AP were the main factors affecting the abundance and community compositions of AOA and AOB in alkaline purple soil. The present study reported that straw mulching and nitrogen strategies differently shape the soil ammonia oxidizers community structure and abundance, which should be considered when evaluating agricultural management strategies regarding their sustainability and soil quality.
Collapse
|
8
|
Li S, Gang D, Zhao S, Qi W, Liu H. Response of ammonia oxidation activities to water-level fluctuations in riparian zones in a column experiment. CHEMOSPHERE 2021; 269:128702. [PMID: 33162161 DOI: 10.1016/j.chemosphere.2020.128702] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/29/2020] [Accepted: 10/19/2020] [Indexed: 06/11/2023]
Abstract
Biogeochemical hotspots of nitrogen cycling such as ammonia oxidation commonly occur in riparian ecosystems. However, the responses of ammonia-oxidizing archaea (AOA) and bacteria (AOB) to water-level fluctuations (WLF) in riparian zones remain unclear. In this study, two patterns of WLF (gradual waterlogging and drying) were investigated in a 9-month column experiment, and the abundances and activities of AOA and AOB were investigated. The recovery evaluation revealed AOB abundance had not returned to the initial level at the end of the experiment, while AOA abundance had recovered nearly completely. AOA outnumbered AOB at almost all depths, and AOA showed higher resistance and adaptation to WLF than AOB. However, higher microbial abundance was not always linked to the larger contribution to nitrification. Changes in environmental parameters such as moisture and dissolved oxygen caused by WLF instead of ammonia-oxidizing microorganism (AOM) abundance might play a key role in regulating the expression of amoA gene and thus the activity of ammonia oxidizers. In addition, the community structure of AOM evolved over the incubation period. The composition of AOA species in sediment changed in the same way as that in soil, and the Nitrosopumilus cluster showed strong resistance to WLF. Conversely, waterlogging changed the community structure of AOB in soil while drying had no significant effect on the AOB community structure in sediment. This study suggests that the ammonia oxidizers will respond to WLF and eventually affect N fate in riparian ecosystems considering the coupling with other N transformation processes.
Collapse
Affiliation(s)
- Siling Li
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, 100084, Beijing, China
| | - Diga Gang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Shuangju Zhao
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Weixiao Qi
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, 100084, Beijing, China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Huijuan Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, 100084, Beijing, China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
9
|
Cai F, Luo P, Yang J, Irfan M, Zhang S, An N, Dai J, Han X. Effect of Long-Term Fertilization on Ammonia-Oxidizing Microorganisms and Nitrification in Brown Soil of Northeast China. Front Microbiol 2021; 11:622454. [PMID: 33613469 PMCID: PMC7890093 DOI: 10.3389/fmicb.2020.622454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/22/2020] [Indexed: 11/13/2022] Open
Abstract
The objective of this study was to find out changes in ammonia oxidation microorganisms with respect to fertilizer as investigated by real-time polymerase chain reaction and high-throughput sequencing. The treatments included control (CK); chemical fertilizer nitrogen low (N) and high (N2); nitrogen and phosphorus (NP); nitrogen phosphorus and potassium (NPK) and organic manure fertilizer (M); MN; MN2; MNPK. The results showed that long-term fertilization influenced soil fertility and affected the abundance and community of ammonia-oxidizing microorganisms by changing the physical and chemical properties of the soil. The abundance and community structure of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) was influenced by soil organic carbon, total nitrogen, total soil phosphorus, available phosphorus, available potassium, and soil nitrate. Soil environmental factors affected the nitrification potential by affecting the structure of ammonia-oxidizing microorganisms; specific and rare AOA and AOB rather than the whole AOA or AOB community played dominant role in nitrification.
Collapse
Affiliation(s)
- Fangfang Cai
- College of Land and Environment, Shenyang Agricultural University, Shenyang, China.,National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Tai'an, China.,Northeast Scientific Observation Station of Corn Nutrition and Fertilization of Ministry of Agriculture, Shenyang, China
| | - Peiyu Luo
- College of Land and Environment, Shenyang Agricultural University, Shenyang, China.,National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Tai'an, China.,Northeast Scientific Observation Station of Corn Nutrition and Fertilization of Ministry of Agriculture, Shenyang, China
| | - Jinfeng Yang
- College of Land and Environment, Shenyang Agricultural University, Shenyang, China.,National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Tai'an, China.,Northeast Scientific Observation Station of Corn Nutrition and Fertilization of Ministry of Agriculture, Shenyang, China
| | - Muhammad Irfan
- Department of Biotechnology, University of Sargodha, Sargodha, Pakistan
| | - Shiyu Zhang
- College of Land and Environment, Shenyang Agricultural University, Shenyang, China.,National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Tai'an, China.,Northeast Scientific Observation Station of Corn Nutrition and Fertilization of Ministry of Agriculture, Shenyang, China
| | - Ning An
- College of Land and Environment, Shenyang Agricultural University, Shenyang, China.,National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Tai'an, China.,Northeast Scientific Observation Station of Corn Nutrition and Fertilization of Ministry of Agriculture, Shenyang, China
| | - Jian Dai
- College of Land and Environment, Shenyang Agricultural University, Shenyang, China.,National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Tai'an, China.,Northeast Scientific Observation Station of Corn Nutrition and Fertilization of Ministry of Agriculture, Shenyang, China
| | - Xiaori Han
- College of Land and Environment, Shenyang Agricultural University, Shenyang, China.,National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Tai'an, China.,Northeast Scientific Observation Station of Corn Nutrition and Fertilization of Ministry of Agriculture, Shenyang, China
| |
Collapse
|
10
|
He Y, Zhou Y, Weng R, Wang J, Chen J, Huang M. Responses of Ammonia-Oxidizing Archaea and Bacteria in Malodorous River Sediments to Different Remediation Techniques. MICROBIAL ECOLOGY 2021; 81:314-322. [PMID: 32935184 DOI: 10.1007/s00248-020-01597-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 09/01/2020] [Indexed: 06/11/2023]
Abstract
In this study, the joint use of high throughput sequencing, real-time quantitative PCR, and ammonia-oxidizing bacteria (AOB)-inhibiting allylthiourea was used to differentiate between the contributions of ammonia-oxidizing archaea (AOA) vs AOB to ammonia oxidation and ascertain how AOA and AOB responded to two widely used river remediation techniques (aeration and Ca(NO3)2 injection). Results showed that ammonia oxidation was largely attributed to ATU-sensitive AOB rather than AOA and Nitrosomonas was the predominant AOB-related genus (53.86%) in the malodorous river. The contribution of AOB to ammonia oxidation in the context of aeration and Ca(NO3)2 injection was 75.51 ± 2.77% and 60.19 ± 10.44%, respectively. The peak of AOB/AOA ratio and the marked increase of relative abundances of Nitrosomonas and Nitrosospira in aeration runs further demonstrated aeration favored the ammonia oxidation of AOB. Comparatively, Ca(NO3)2 injection could increase the ammonia oxidation contribution of AOA from 31.32 ± 6.06 to 39.81 ± 10.44% and was significantly correlated with Nitrosococcus of AOB (r = 0.796, p < 0.05), Candidatus_Nitrosopelagicus of AOA (r = 0.986, p < 0.01), and AOA Simpson diversity (r = - 0.791, p < 0.05). Moreover, Candidatus_Nitrosopelagicus was only present in Ca(NO3)2 runs. Taken together, Ca(NO3)2 was recognized as an important factor in mediating the growth and ecological niches of ammonia oxidizers.Graphical abstract.
Collapse
Affiliation(s)
- Yan He
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, Institute of Eco-Chongming, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, East China Normal University, Shanghai, 200241, China.
| | - Yunchang Zhou
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, Institute of Eco-Chongming, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, East China Normal University, Shanghai, 200241, China
| | - Rui Weng
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, Institute of Eco-Chongming, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, East China Normal University, Shanghai, 200241, China
| | - Jianhua Wang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, Institute of Eco-Chongming, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, East China Normal University, Shanghai, 200241, China
| | - Jinghan Chen
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, Institute of Eco-Chongming, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, East China Normal University, Shanghai, 200241, China
| | - Minsheng Huang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, Institute of Eco-Chongming, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
11
|
Hu J, Zhao Y, Yang W, Wang J, Liu H, Zheng P, Hu B. Surface ammonium loading rate shifts ammonia-oxidizing communities in surface water-fed rapid sand filters. FEMS Microbiol Ecol 2020; 96:5899051. [PMID: 32860687 DOI: 10.1093/femsec/fiaa179] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 08/26/2020] [Indexed: 01/15/2023] Open
Abstract
Nitrification is important in drinking water treatment plants (DWTPs) for ammonia removal and is widely considered as a stepwise process mediated by ammonia- and nitrite-oxidizing microorganisms. The recent discovery of complete ammonia oxidizers (comammox) has challenged the long-held assumption that the division of metabolic labor in nitrification is obligate. However, little is known about the role of comammox Nitrospira in DWTPs. Here, we explored the relative importance of comammox Nitrospira, canonical ammonia-oxidizing archaea (AOA) and bacteria (AOB) in 12 surface water-fed rapid sand filters (RSFs). Quantitative PCR results showed that all the three ammonia-oxidizing guilds had the potential to dominate nitrification in DWTPs. Spearman's correlation and redundancy analysis revealed that the surface ammonium loading rate (SLR) was the key environmental factor influencing ammonia-oxidizing communities. Comammox Nitrospira were likely to dominate the nitrification under a higher SLR. PCR and phylogenetic analysis indicated that most comammox Nitrospira belonged to clade A, with clade B comammox Nitrospira almost absent. This work reveals obvious differences in ammonia-oxidizing communities between surface water-fed and groundwater-fed RSFs. The presence of comammox Nitrospira can support the stability of drinking water production systems under high SLR and warrants further investigation of their impact on drinking water quality.
Collapse
Affiliation(s)
- Jiajie Hu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Yuxiang Zhao
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Weiling Yang
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Jiaqi Wang
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Huan Liu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Ping Zheng
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Baolan Hu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China.,Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, China
| |
Collapse
|
12
|
Liu H, Hu Z, Zhou M, Zhang H, Li Z, Zhang H, Hu J, Yao X, Lou L, Xi C, Zhu L, Xu X, Zheng P, Hu B. Airborne microorganisms exacerbate the formation of atmospheric ammonium and sulfate. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114293. [PMID: 32208227 DOI: 10.1016/j.envpol.2020.114293] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 02/10/2020] [Accepted: 02/28/2020] [Indexed: 06/10/2023]
Abstract
Haze pollution is inseparable from the transformation of air pollutants especially the ammonium and sulfate. Chemical and physical processes play important roles in this transformation. However, the role of microbial processes has rarely been studied. In this report, we applied the cultivation-independent metagenomic approach to study airborne microorganisms, investigating the potential microbial-catalyzed transformation of ammonium and sulfate in PM2.5 samples. Functional genes predict that airborne microorganisms have the potential to catalyze ammonium formation but not ammonium oxidation since no ammoxidation genes were identified. We also found that the frequency of sulfate-forming genes was 1.56 times of those for sulfate-reducing genes. It was speculated that microbial metabolisms in the atmosphere could contribute to the accumulation of ammonium and sulfate. With the increase of PM2.5 concentration, the frequency of functional genes and the relative abundance of genera which involved in nitrogen and sulfur metabolisms increased. That suggested air pollution was conducive to the microbial-mediated formation of ammonium and sulfate. Overall, our results provided evidence for the possible role of microbial processes in the air pollutant transformation and brought a new perspective for studying the formation of secondary air pollutants.
Collapse
Affiliation(s)
- Huan Liu
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhichao Hu
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Meng Zhou
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Huihui Zhang
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zheng Li
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hao Zhang
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jiajie Hu
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiangwu Yao
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Liping Lou
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chuanwu Xi
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Lizhong Zhu
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiangyang Xu
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ping Zheng
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Baolan Hu
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Research Center for Air Pollution and Health, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
13
|
He X, Ji G. Responses of AOA and AOB activity and DNA/cDNA community structure to allylthiourea exposure in the water level fluctuation zone soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:15233-15244. [PMID: 32072408 DOI: 10.1007/s11356-020-07952-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 01/30/2020] [Indexed: 06/10/2023]
Abstract
Ammonia oxidation is mainly performed by ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB). Allylthiourea (ATU) has been found to specifically inhibit ammonia oxidation. However, the effect of ATU on AOA and AOB transcription has been infrequently studied. In the present study, we examined the responses of AOA and AOB activity and DNA/cDNA community structure to ATU exposure. The ammonia oxidation activity in the 100-mg/L ATU group was 4.3% of that in the control group after 7 days. When exposed to ATU, the gene abundance of AOA was favored compared with that of AOB, and there were no statistically significant differences in the abundance of AOB amoA in DNA and cDNA between the two groups. Compared with the control group, the gene abundance of AOA significantly increased by 5.23 times, while the transcription of AOA significantly decreased by 0.70 times. Moreover, the transcriptional ratio of AOA in the ATU group was only 0.05 times as high as that in the control group. ATU selectively affected AOB and completely inhibited Nitrosomonas europaea and Bacterium amoA.22.HaldeII.kultur at the genetic level. Under ATU exposure, all AOA clusters were transcribed, but three AOB clusters were not transcribed. Our results indicated that the ammonia oxidation potential of the soil of water level fluctuation areas, based on ATU inhibition, was associated mainly with AOA amoA gene abundance and AOB community shifts in DNA and cDNA.
Collapse
Affiliation(s)
- Xiangjun He
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, China
| | - Guodong Ji
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
14
|
Ginawi A, Wang L, Wang H, Yu B, Yunjun Y. Effects of environmental variables on abundance of ammonia-oxidizing communities in sediments of Luotian River, China. PeerJ 2020; 8:e8256. [PMID: 31934502 PMCID: PMC6951284 DOI: 10.7717/peerj.8256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 11/20/2019] [Indexed: 12/14/2022] Open
Abstract
Ammonia-oxidizing communities play important functional roles in the nitrification. However, environmental stresses can significantly affect this process by controlling the abundant communities of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) communities. In this study, we examined the abundance variations of ammonia-oxidizing communities using quantitative polymerase chain reaction (qPCR) and terminal-restriction fragment length polymorphism (T-RFLP) in a typical subtropical river, Luotian County, South Dabie Mountains, China. Clone libraries were conducted to evaluate the community structure and abundance of AOA and AOB in sediments. Results showed that Nitrososphaera sp and Nitrosopumilus sp were the most dominant AOA. The abundance of the AOA and AOB amoA gene ranged from 5.28 × 108 gene copies (g-soil−1) to 2.23 × 108 gene copies (g-soil−1) and 5.45 × 108 gene copies (g-soil−1) to 3.30 × 107 gene copies (g-soil−1), respectively. Five environmental variables, namely, ORP, DO, NO\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}${}_{3}^{-}$\end{document}3−, Temp, and NH\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}${}_{4}^{+}$\end{document}4+ were played a major function in microbial communities of AOA and AOB in sediments. The T-RFLP profiles of AOA showed that 488 and 116 bp T-RFs were dominated. Overall, the results of this study showed that anthropogenic activities andenvironmental stress in rivers can alter the structure and function of microbes in their variable environment.
Collapse
Affiliation(s)
- Amjed Ginawi
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Faculty of Marine Science and Fisheries, Red Sea University, Port Sudan, Red Sea State, Sudan
| | - Lixiao Wang
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huading Wang
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bingbing Yu
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yan Yunjun
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
15
|
Hu J, Liu S, Yang W, He Z, Wang J, Liu H, Zheng P, Xi C, Ma F, Hu B. Ecological Success of the Nitrosopumilus and Nitrosospira Clusters in the Intertidal Zone. MICROBIAL ECOLOGY 2019; 78:555-564. [PMID: 30903203 DOI: 10.1007/s00248-019-01359-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 03/07/2019] [Indexed: 06/09/2023]
Abstract
The intertidal zone is an important buffer and a nitrogen sink between land and sea. Ammonia oxidation is the rate-limiting step of nitrification, conducted by ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB). However, it remains a debatable issue regarding dominant ammonia oxidizers in this region, and environmental factors driving their spatiotemporal niche differentiation have yet to be identified. In this study, intertidal and subtidal zones of Zhoushan Islands were selected for seasonal sampling. Ammonia-oxidizing activity, quantitative PCR, and 454 high-throughput sequencing were performed to study the nitrification potential, abundance, and community structure of ammonia-oxidizing archaea and bacteria. AOA and AOB amoA abundance (107-108amoA gene copies/g dry weight sediment) varied spatiotemporally independently of environmental factors. AOA surpassed AOB in most samples, driven by sediment temperature, moisture, and total nitrogen. The diversity of both AOA and AOB differed spatiotemporally. The Nitrosopumilus and Nitrosospira clusters accounted for an absolutely dominant percentage of AOA (> 99%) and AOB (> 99%) respectively, indicating a negligible contribution of other clusters to ammonia oxidation. However, there was no significant correlation between nitrification potential and the abundance of AOA or AOB. Overall, the present study showed that AOA dominated over AOB spatiotemporally in the intertidal zone of Zhoushan Islands due to fluctuations in environmental factors, and the Nitrosopumilus and Nitrosospira clusters ecologically succeeded in the intertidal zone of Zhoushan Islands.
Collapse
Affiliation(s)
- Jiajie Hu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Shuai Liu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Weiling Yang
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Zhanfei He
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Jiaqi Wang
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Huan Liu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Ping Zheng
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Chuanwu Xi
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Fang Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Baolan Hu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China.
- Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, China.
| |
Collapse
|
16
|
Hu A, Li S, Zhang L, Wang H, Yang J, Luo Z, Rashid A, Chen S, Huang W, Yu CP. Prokaryotic footprints in urban water ecosystems: A case study of urban landscape ponds in a coastal city, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 242:1729-1739. [PMID: 30064876 DOI: 10.1016/j.envpol.2018.07.097] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 07/19/2018] [Accepted: 07/22/2018] [Indexed: 06/08/2023]
Abstract
The urban water ecosystems, such as the landscape ponds are commonly considered under the influence of anthropogenic disturbances, which can lead to the deterioration of the water quality. The prokaryotic communities are considered as one of the best indicators of the water quality. However, there are significant gaps in understanding the ecological processes that shape the composition and function of prokaryotic communities in the urban water ecosystems. Here, we investigated the biogeographic distribution of prokaryotic assemblages in water environments including landscape ponds, drinking water reservoirs, influents (IFs) and effluents (EFs) of wastewater treatment plants of a coastal city (Xiamen), China, by using 16S rDNA amplicon sequencing. Our results indicated that the ponds had higher α-diversity of prokaryotic communities than those in the reservoirs, while there were significant variations in the community compositions among ponds, reservoirs, IFs and EFs. Moreover, ponds harbored a significantly higher proportion of sewage- and fecal-indicator taxa than those in the reservoirs, suggesting the occurrence of exogenous pollution in the urban ponds. Null model analysis revealed that dispersal limitation was the main ecological processes resulting in the divergence of prokaryotic community compositions between ponds and other environments, while dispersal limitation and variable selection played an essential role in the formation of unique prokaryotic assemblages in the reservoirs. Function predication analysis demonstrated that the ponds shared more similar functional profiles with IFs or EFs (e.g., chemoheterotrophy, fermentation, chlorate reducers, nitrate reduction and respiration) than the reservoirs, whereas dominance of photoautotrophy was observed in the reservoirs. Overall, this study provides a profound insight of the ecological mechanisms underlying the responses of prokaryotic communities in the urban landscape ponds to the anthropogenic disturbances.
Collapse
Affiliation(s)
- Anyi Hu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Shuang Li
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lanping Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongjie Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Yang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Zhuanxi Luo
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Azhar Rashid
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Nuclear Institute for Food and Agriculture, Tarnab, Peshawar, Pakistan
| | - Shaoqing Chen
- Village Planning and Construction Management Station of Jimei District, Xiamen 361022, China
| | - Weixiong Huang
- Xinglin Construction and Development Co. LTD., Xiamen 361022, China
| | - Chang-Ping Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Graduate Institute of Environmental Engineering, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
17
|
Ye F, Ma MH, Op den Camp HJM, Chatzinotas A, Li L, Lv MQ, Wu SJ, Wang Y. Different Recovery Processes of Soil Ammonia Oxidizers from Flooding Disturbance. MICROBIAL ECOLOGY 2018; 76:1041-1052. [PMID: 29644407 DOI: 10.1007/s00248-018-1183-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 03/26/2018] [Indexed: 06/08/2023]
Abstract
Understanding how microorganisms respond to environmental disturbance is one of the key focuses in microbial ecology. Ammonia-oxidizing bacteria (AOB) and archaea (AOA) are responsible for ammonia oxidation which is a crucial step in the nitrogen cycle. Although the physiology, distribution, and activity of AOA and AOB in soil have been extensively investigated, their recovery from a natural disturbance remains largely unknown. To assess the recovery capacities, including resistance and resilience, of AOA and AOB, soil samples were taken from a reservoir riparian zone which experienced periodically water flooding. The samples were classified into three groups (flooding, recovery, and control) for a high-throughput sequencing and quantitative PCR analysis. We used a relative quantitative index of both the resistance (RS) and resilience (RL) to assess the variation of gene abundance, alpha-diversity, and community composition. The AOA generally demonstrated a better recovery capability after the flooding disturbance compared to AOB. In particular, AOA were more resilient after the flooding disturbance. Taxa within the AOA and AOB showed different RS and RL values, with the most abundant taxa showing in general the highest RS indices. Soil NH4+ and Fe2+/Fe3+ were the main variables controlling the key taxa of AOA and AOB and probably influenced the resistance and resilience properties of AOA and AOB communities. The distinct mechanisms of AOA and AOB in maintaining community stability against the flooding disturbance might be linked to the different life-history strategies: the AOA community was more likely to represent r-strategists in contrast to the AOB community following a K-life strategy. Our results indicated that the AOA may play a vital role in ammonia oxidation in a fluctuating habitat and contribute to the stability of riparian ecosystem.
Collapse
Affiliation(s)
- Fei Ye
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mao-Hua Ma
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Huub J M Op den Camp
- Department of Microbiology, IWWR, Radboud University Nijmegen, Nijmegen, 6525 AJ, the Netherlands
| | - Antonis Chatzinotas
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, 04318, Leipzig, Germany
- Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103, Leipzig, Germany
| | - Lei Li
- Beijing Academy of Science and Technology, Beijing, 100048, China
| | - Ming-Quan Lv
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sheng-Jun Wu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China.
| | - Yu Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China.
| |
Collapse
|
18
|
Wang H, Zhao Y, Wei Y, Zhao Y, Lu Q, Liu L, Jiang N, Wei Z. Biostimulation of nutrient additions on indigenous microbial community at the stage of nitrogen limitations during composting. WASTE MANAGEMENT (NEW YORK, N.Y.) 2018; 74:194-202. [PMID: 29242114 DOI: 10.1016/j.wasman.2017.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 12/04/2017] [Accepted: 12/06/2017] [Indexed: 06/07/2023]
Abstract
Microorganisms can play a crucial role in the efficiency for composting, which are essential for converting the organic wastes into a well-stabilized, value added product. However, the activity of most of the key functional microorganisms were inhibited due to the limited special nutrient substances or other physiochemical factors during composting, which further affected the quality of compost. The study was conducted to investigate the effects of enriched ammonium (NH4+-N) and organic nitrogen (Org-N) on indigenous microbial community and whether nitrogen (N) nutrient additions could modify the special species during composting. The results showed that the abundance and structure of bacterial community had distinctly diverse responses to different N nutritional treatments (no nutrient addition, NH4+-N addition, and Org-N addition). The addition of N sources enhanced the abundance of corresponding uncultured indigenous species negatively related to the factor of NH4+ and Org-N in redundancy analysis (RDA) during composting but the effect of NH4+ was more significant than Org-N. Nonmetric multidimensional scaling ordination (NMDS) demonstrated that both the two N additions changed bacterial community but had different duration for affecting bacterial composition. Conclusively, an optimized method for regulating the key stains with special biological capacity is proposed by controlling the single limiting-nutrient factor sharply decreasing at one of composting stages and negatively related to the key species in RDA.
Collapse
Affiliation(s)
- Huan Wang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yue Zhao
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yuquan Wei
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yi Zhao
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Qian Lu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Lina Liu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Nan Jiang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Zimin Wei
- College of Life Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
19
|
Dang C, Liu W, Lin Y, Zheng M, Jiang H, Chen Q, Ni J. Dominant role of ammonia-oxidizing bacteria in nitrification due to ammonia accumulation in sediments of Danjiangkou reservoir, China. Appl Microbiol Biotechnol 2018; 102:3399-3410. [PMID: 29497800 DOI: 10.1007/s00253-018-8865-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/31/2018] [Accepted: 02/12/2018] [Indexed: 11/29/2022]
Abstract
Surface sediments are the inner source of contaminations in aquatic systems and usually maintain aerobic conditions. As the key participators of nitrification process, little is known about the activities and contributions of ammonia-oxidizing archaea (AOA) and bacteria (AOB) in the surface sediments. In this study, we determined the net and potential nitrification rates and used 1-octyne as an AOB specific inhibitor to detect the contributions of AOA and AOB to nitrification in surface sediments of Danjiangkou reservoir, which is the water source area of the middle route of South-to-North Water Diversion Project in China. Quantitative PCR and Illumina high-throughput sequencing were used to evaluate the abundance and diversity of the amoA gene. The net and potential nitrification rates ranged from 0.42 to 1.93 and 2.06 to 8.79 mg N kg-1 dry sediments d-1, respectively. AOB dominated in both net and potential nitrification, whose contribution accounted for 52.7-78.6% and 59.9-88.1%, respectively. The cell-specific ammonia oxidation rate calculation also revealed the cell-specific rates of AOB were higher than that of AOA. The Spearman's rank correlation analysis suggested that ammonia accumulation led to the AOB predominant role in net nitrification activity, and AOB abundance played the key role in potential nitrification activity. Furthermore, phylogenetic analysis suggested AOB were predominantly characterized by the Nitrosospira cluster, while AOA by the Nitrososphaera and Nitrososphaera sister clusters. This study will help us to better understand the contributions and characteristics of AOA and AOB in aquatic sediments and provide improved strategies for nitrogen control in large reservoirs.
Collapse
Affiliation(s)
- Chenyuan Dang
- College of Environmental Sciences and Engineering, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing, 100871, People's Republic of China
| | - Wen Liu
- College of Environmental Sciences and Engineering, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing, 100871, People's Republic of China.,School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Yaxuan Lin
- College of Environmental Sciences and Engineering, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing, 100871, People's Republic of China
| | - Maosheng Zheng
- MOE Key Laboratory of Regional Energy Systems Optimization, Sino-Canada Resources and Environmental Research Academy, North China Electric Power University, Beijing, 102206, People's Republic of China
| | - Huan Jiang
- College of Environmental Sciences and Engineering, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing, 100871, People's Republic of China
| | - Qian Chen
- College of Environmental Sciences and Engineering, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing, 100871, People's Republic of China
| | - Jinren Ni
- College of Environmental Sciences and Engineering, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing, 100871, People's Republic of China.
| |
Collapse
|
20
|
Chen J, Wang PF, Wang C, Wang X, Gao H. Effects of decabromodiphenyl ether and planting on the abundance and community composition of nitrogen-fixing bacteria and ammonia oxidizers in mangrove sediments: A laboratory microcosm study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 616-617:1045-1055. [PMID: 29100689 DOI: 10.1016/j.scitotenv.2017.10.214] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 10/15/2017] [Accepted: 10/21/2017] [Indexed: 06/07/2023]
Abstract
While nitrogen (N) fixation and ammonia oxidation by microorganisms are two important N cycling processes, little is known about how the microbes that drive these two processes respond when sediments are contaminated with persistent organic pollutants. In this study, we carried out a laboratory microcosm experiment to examine the effects of decabromodiphenyl ether (BDE-209), either on its own or combined with a common mangrove species, Avicennia marina, on the abundance, diversity, and community composition of N-fixing bacteria (NFB) and ammonia-oxidizing archaea (AOA) and bacteria (AOB) in mangrove sediments. The sediments were very N-limited after one year. The rates of N fixation and NFB abundance were significantly higher in the sediments that contaminated by BDE-209, especially in the planted sediment, indicating that both BDE-209 and planting stimulated N fixation in N-limited mangrove sediments. In contrast, the potential nitrification rate and abundance of AOA and AOB decreased significantly under BDE-209 and planting, and the inhibitory effects were stronger in the sediment with both planting and BDE-209 than in the sediments with either BDE-209 or planting. The results from pyrosequencing showed that the richness and diversity of NFB increased, while those of AOA and AOB decreased, in the sediments treated with BDE-209 only and with BDE-209 combined with planting. The community compositions of NFB, AOA, and AOB in the sediments shifted significantly because of BDE-209, either alone or particularly when combined with planting, as shown by the increases in some NFB from the Proteobacteria phylum and decreases in AOA in the Nitrosopumilus genus and AOB in the Nitrosospira genus, respectively.
Collapse
Affiliation(s)
- Juan Chen
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Pei-Fang Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China.
| | - Chao Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Xun Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Han Gao
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| |
Collapse
|
21
|
Wei Y, Wei Z, Cao Z, Zhao Y, Zhao X, Lu Q, Wang X, Zhang X. A regulating method for the distribution of phosphorus fractions based on environmental parameters related to the key phosphate-solubilizing bacteria during composting. BIORESOURCE TECHNOLOGY 2016; 211:610-617. [PMID: 27043056 DOI: 10.1016/j.biortech.2016.03.141] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 03/25/2016] [Accepted: 03/27/2016] [Indexed: 06/05/2023]
Abstract
This study was conducted to assess the abundance, incidence and diversity of the culturable phosphate-solubilizing bacteria (PSB) community during different organic wastes composting. The key PSB affecting different phosphorus (P) fractions and their relationship with environmental variables were analyzed by redundancy analysis (RDA). The results showed that there were distinct differences in amounts, incidence and community composition of PSB for the composts from different sources. Regression analysis demonstrated significant corrections between the density and incidence of PSB and pH, temperature, OM and DOC/DON. Most of culturable PSB showed high percentages of identity with the phyla of Firmicutes and Proteobacteria. There were thirteen key PSB correlated closely (p<0.05) with different P fractions variation. Conclusively, we suggested a process control method to regulate the distribution of P fractions during composting based on the relationship between the key PSB and P fractions as well as environmental parameters.
Collapse
Affiliation(s)
- Yuquan Wei
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Zimin Wei
- College of Life Science, Northeast Agricultural University, Harbin 150030, China.
| | - Zhenyu Cao
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yue Zhao
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Xinyu Zhao
- Laboratory of Water Environmental System Engineering, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Qian Lu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Xueqin Wang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Xu Zhang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|