1
|
Shokouhy M, Sarvnaz H, Taslimi Y, Lajevardi MS, Habibzadeh S, Mizbani A, Shekari F, Behbahani M, Torrecilhas AC, Rafati S. Isolation, characterization, and functional study of extracellular vesicles derived from Leishmania tarentolae. Front Cell Infect Microbiol 2022; 12:921410. [PMID: 35992172 PMCID: PMC9381964 DOI: 10.3389/fcimb.2022.921410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
Leishmania (L.) species are protozoan parasites with a complex life cycle consisting of a number of developmental forms that alternate between the sand fly vector and their host. The non-pathogenic species L. tarentolae is not able to induce an active infection in a human host. It has been observed that, in pathogenic species, extracellular vesicles (EVs) could exacerbate the infection. However, so far, there is no report on the identification, isolation, and characterization of L. tarentolae EVs. In this study, we have isolated and characterized EVs from L. tarentolaeGFP+ (tEVs) along with L. majorGFP+ as a reference and positive control. The EVs secreted by these two species demonstrated similar particle size distribution (approximately 200 nm) in scanning electron microscopy and nanoparticle tracking analysis. Moreover, the said EVs showed similar protein content, and GFP and GP63 proteins were detected in both using dot blot analysis. Furthermore, we could detect Leishmania-derived GP63 protein in THP-1 cells treated with tEVs. Interestingly, we observed a significant increase in the production of IFN-γ, TNF-α, and IL-1β, while there were no significant differences in IL-6 levels in THP-1 cells treated with tEVs following an infection with L. major compared with another group of macrophages that were treated with L. major EVs prior to the infection. Another exciting observation of this study was a significant decrease in parasite load in tEV-treated Leishmania-infected macrophages. In addition, in comparison with another group of Leishmania-infected macrophages which was not exposed to any EVs, tEV managed to increase IFN-γ and decrease IL-6 and the parasite burden. In conclusion, we report for the first time that L. tarentolae can release EVs and provide evidence that tEVs are able to control the infection in human macrophages, making them a great potential platform for drug delivery, at least for parasitic infections.
Collapse
Affiliation(s)
- Mehrdad Shokouhy
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Hamzeh Sarvnaz
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Yasaman Taslimi
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Mahya Sadat Lajevardi
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Sima Habibzadeh
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Amir Mizbani
- Department of Health Science and Technology, Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
| | - Faezeh Shekari
- Department of Stem Cells and Developmental Biology Cell Science, Research Center, Royan Institute for Stem Cell Biology and Technology, Academic center tor Education, Culture and Research (ACECR), Tehran, Iran
| | - Mandana Behbahani
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Ana Claudia Torrecilhas
- Laboratório de Imunologia Celular e Bioquímica de Fungos e Protozoários, Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo (UNIFESP), Diadema, Brazil
- *Correspondence: Ana Claudia Torrecilhas, ; Sima Rafati, ;
| | - Sima Rafati
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
- *Correspondence: Ana Claudia Torrecilhas, ; Sima Rafati, ;
| |
Collapse
|
2
|
Nahidi S, Gholami E, Taslimi Y, Habibzadeh S, Seyed N, Davarpanah E, Ghanadan A, Rafati S, Taheri T. The outcome of arginase activity inhibition in BALB/c mice hosting Leishmania tropica. Parasite Immunol 2020; 42:e12691. [PMID: 31811772 DOI: 10.1111/pim.12691] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 11/25/2019] [Accepted: 12/03/2019] [Indexed: 11/29/2022]
Abstract
Two species of Leishmania (L), L. tropica and L. major, are among the main causative agents of cutaneous leishmaniasis. Arginase (ARG) is an essential enzyme for cell growth, thus an attractive drug target. In this study, we tried to survey the inhibitory impact of ARG by nor-NOHA (N-ω-hydroxy-L-nor-arginine) on in vivo infection caused by L. tropica. BALB/c mice were inoculated with L. tropicaEGFP-LUC (Ltrop) or L. majorEGFP-LUC (Lmj) and then were treated by nor-NOHA. ARG inhibitor only indicated a delay in generation of a cutaneous lesion in inoculated footpad with nor-NOHA-Ltrop and nor-NOHA-Lmj. ARG activity has been significantly reduced in nor-NOHA-Ltrop group. In this group, ARG activity inhibition correlated with increased levels of nitric oxide (NO). In both inoculated mice with Ltrop or Lmj, parasite load showed a significant decrease at later steps during the CL course post-treatment. In vivo bioluminescence intensity did not show any ARG's inhibitory effect on treated-Ltrop. The findings verified that the ARG activity may partially control the L. tropica infection in BALB/c mice through reduction of parasite proliferation and parasite killing through NO generation. This effect is dose-dependent.
Collapse
Affiliation(s)
- Shima Nahidi
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Elham Gholami
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Yasaman Taslimi
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Sima Habibzadeh
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Negar Seyed
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Elaheh Davarpanah
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Alireza Ghanadan
- Depatment of Dermatopathology, Razi Hospital, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pathology, Cancer Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Sima Rafati
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Tahereh Taheri
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
3
|
Davarpanah E, Seyed N, Bahrami F, Rafati S, Safaralizadeh R, Taheri T. Lactococcus lactis expressing sand fly PpSP15 salivary protein confers long-term protection against Leishmania major in BALB/c mice. PLoS Negl Trop Dis 2020; 14:e0007939. [PMID: 31899767 PMCID: PMC6941807 DOI: 10.1371/journal.pntd.0007939] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 11/20/2019] [Indexed: 02/06/2023] Open
Abstract
Cutaneous leishmaniasisis a vector-borne disease transmitted by Leishmania infected sand flies. PpSP15 is an immunogenic salivary protein from the sand fly Phlebotomus papatasi. Immunization with PpSP15 was shown to protect against Leishmania major infection. Lactococcus lactis is a safe non-pathogenic delivery system that can be used to express antigens in situ. Here, the codon-optimized Ppsp15-egfp gene was cloned in pNZ8121 vector downstream of the PrtP signal peptide that is responsible for expression and secretion of the protein on the cell wall. Expression of PpSP15-EGFP recombinant protein was monitored by immunofluorescence, flow cytometry and Western blot. Also, expression of protein in cell wall compartment was verified using whole cell ELISA, Western blot and TEM microscopy. BALB/c mice were immunized three times with recombinant L. lactis-PpSP15-EGFPcwa, and the immune responses were followed up, at short-term (ST, 2 weeks) and long-term (LT, 6 months) periods. BALB/c mice were challenged with L. major plus P. papatasi Salivary Gland Homogenate. Evaluation of footpad thickness and parasite burden showed a delay in the development of the disease and significantly decreased parasite numbers in PpSP15 vaccinated animals as compared to control group. In addition, immunized mice showed Th1 type immune responses. Importantly, immunization with L. lactis-PpSP15-EGFPcwa stimulated the long-term memory in mice which lasted for at least 6 months.
Collapse
Affiliation(s)
- Elaheh Davarpanah
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Negar Seyed
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Fariborz Bahrami
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | - Sima Rafati
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Reza Safaralizadeh
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Tahereh Taheri
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
4
|
Diupotex M, Martínez-Salazar MB, Escalona-Montaño AR, Zamora-Chimal J, Salaiza-Suazo N, Ruiz-Remigio A, Roldán-Salgado A, Aguirre-García MM, Martínez-Calvillo S, Gaytán P, Becker I. The mKate fluorescent protein expressed by Leishmania mexicana modifies the parasite immunopathogenicity in BALB/c mice. Parasite Immunol 2019; 41:e12608. [PMID: 30500992 DOI: 10.1111/pim.12608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/22/2018] [Accepted: 11/23/2018] [Indexed: 11/27/2022]
Abstract
Parasites have been engineered to express fluorescent reporter proteins, yet the impact of red fluorescent proteins on Leishmania infections remains largely unknown. We analysed the infection outcome of Leishmania mexicana parasites engineered for the constitutive expression of mKate protein and evaluated their immunogenicity in BALB/c mice. Infection of BALB/c mice with mKate transfected L. mexicana (LmexmKate ) parasites caused enlarged lesion sizes, leading to ulceration, and containing more parasites, as compared to LmexWT . The mKate protein showed immunogenic properties inducing antibody production against the mKate protein, as well as enhancing antibody production against the parasite. The augmented lesion sizes and ulcers, together with the more elevated antibody production, were related to an enhanced number of TNF-α and IL-1β producing cells in the infected tissues. We conclude that mKate red fluorescent protein is an immunogenic protein, capable of modifying disease evolution of L. mexicana.
Collapse
Affiliation(s)
- Mariana Diupotex
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Hospital General de México, Ciudad de México, México
| | - María Berenice Martínez-Salazar
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Hospital General de México, Ciudad de México, México
| | - Alma Reyna Escalona-Montaño
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Hospital General de México, Ciudad de México, México
| | - Jaime Zamora-Chimal
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Hospital General de México, Ciudad de México, México
| | - Norma Salaiza-Suazo
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Hospital General de México, Ciudad de México, México
| | - Adriana Ruiz-Remigio
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Hospital General de México, Ciudad de México, México
| | | | - María Magdalena Aguirre-García
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Hospital General de México, Ciudad de México, México
| | - Santiago Martínez-Calvillo
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, México
| | - Paul Gaytán
- Instituto de Biotecnología-Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Ingeborg Becker
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Hospital General de México, Ciudad de México, México
| |
Collapse
|
5
|
Abdossamadi Z, Taheri T, Seyed N, Montakhab-Yeganeh H, Zahedifard F, Taslimi Y, Habibzadeh S, Gholami E, Gharibzadeh S, Rafati S. Live Leishmania tarentolae secreting HNP1 as an immunotherapeutic tool against Leishmania infection in BALB/c mice. Immunotherapy 2018; 9:1089-1102. [PMID: 29032739 DOI: 10.2217/imt-2017-0076] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
AIM Several disadvantages about chemotherapy for leishmaniasis has reinforced discovery of novel therapeutic agents especially immunotherapeutics. HNP1, as a member of the mammalian antimicrobial peptides family, is an attractive molecule due to its broad functional spectrum. Here, the in vivo potency of HNP1 in transgenic Leishmania tarentolae as an immunotherapy tool against Leishmania major-infected BALB/c mice was examined. METHODS & RESULTS 3 weeks after infection with L. major, the treatment effect of L. tarentolae-HNP1-EGFP was pursued. The results were promising in respect to parasite load control and Th1 immune response polarization compared with controls. CONCLUSION Immunotherapy by live L. tarentolae secreting HNP1 can elicit cellular immune response in a susceptible mouse model in order to control L. major infection.
Collapse
Affiliation(s)
- Zahra Abdossamadi
- Department of Immunotherapy & Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran, 13194
| | - Tahereh Taheri
- Department of Immunotherapy & Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran, 13194
| | - Negar Seyed
- Department of Immunotherapy & Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran, 13194
| | - Hossein Montakhab-Yeganeh
- Department of Immunotherapy & Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran, 13194
| | - Farnaz Zahedifard
- Department of Immunotherapy & Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran, 13194
| | - Yasaman Taslimi
- Department of Immunotherapy & Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran, 13194
| | - Sima Habibzadeh
- Department of Immunotherapy & Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran, 13194
| | - Elham Gholami
- Department of Immunotherapy & Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran, 13194
| | - Safoora Gharibzadeh
- Department of Epidemiology & Biostatistics, Pasteur institute of Iran, Tehran, Iran
| | - Sima Rafati
- Department of Immunotherapy & Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran, 13194
| |
Collapse
|
6
|
Abdossamadi Z, Seyed N, Zahedifard F, Taheri T, Taslimi Y, Montakhab-Yeganeh H, Badirzadeh A, Vasei M, Gharibzadeh S, Rafati S. Human Neutrophil Peptide 1 as immunotherapeutic agent against Leishmania infected BALB/c mice. PLoS Negl Trop Dis 2017; 11:e0006123. [PMID: 29253854 PMCID: PMC5749894 DOI: 10.1371/journal.pntd.0006123] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 01/02/2018] [Accepted: 11/21/2017] [Indexed: 12/11/2022] Open
Abstract
Human Neutrophil Peptide 1 (HNP1) produced by neutrophils, is a well-known antimicrobial peptide which plays a role both in innate as well as in adaptive immunity and is under intensive investigation as a potential therapeutic agent. Previous in vitro experiments have indicated the leishmaniacidal effect of recombinant HNP1 on Leishmania major (L. major) promastigotes and amastigotes. In the current study, we further extended the idea to explore the remedial effect of HNP1 in the two modalities of peptide therapy (folded HNP1) and gene therapy in L. major infected BALB/c mice. To this end, mice in five different groups received synthetic folded HNP1 (G1), pcDNA-HNP1-EGFP (G2), pcDNA-EGFP (G3), Amphotericin B (G4) and PBS (G5), which was started three weeks after infection for three consecutive weeks. Footpad swelling was monitored weekly and a day after the therapy ended, IFN-γ, IL-4, IL-10, IL-6 and nitric oxide produced by splenocytes were analyzed together with the parasite load in draining lymph nodes. Arginase activity and dermal histopathological changes were also analyzed in the infected footpads. We demonstrated that both therapeutic approaches effectively induced Th1 polarization and restricted parasite burden. It can control disease progression in contrast to non-treated groups. However, pcDNA-HNP1-EGFP is more promising in respect to parasite control than folded HNP1, but less effective than AmB treatment. We concluded with the call for a future approach, that is, a DNA-based expression of HNP1 combined with AmB as it can improve the leishmaniacidal efficacy. The outbreak level of cutaneous leishmaniasis is approximated between one and 1.5 million individuals per year. Owning to several disadvantages of current therapies, special attention to expand novel and efficient therapies has been demanded. Among Anti-Microbial Peptides (AMPs), Human Neutrophil Peptide 1 (HNP1) is one of the most potential defensins. Our promising in vitro experiments have shown the leishmaniacidal effect of recombinant HNP1. Here, we displayed the remedial effect of HNP1 in two approaches including peptide therapy and gene therapy in susceptible mice infected with L. major. Our investigation showed that although both approaches could decrease the parasite load and induce Th1 immune response compared to the control group, pcDNA-HNP1-EGFP has a better effect compared to the folded HNP1. Hence, immunotherapy by HNP1 can help elicit proper immunity despite the direct effect on promastigotes and amastigotes forms of parasite.
Collapse
Affiliation(s)
- Zahra Abdossamadi
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur institute of Iran, Tehran, Iran
| | - Negar Seyed
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur institute of Iran, Tehran, Iran
| | - Farnaz Zahedifard
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur institute of Iran, Tehran, Iran
| | - Tahereh Taheri
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur institute of Iran, Tehran, Iran
| | - Yasaman Taslimi
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur institute of Iran, Tehran, Iran
| | - Hossein Montakhab-Yeganeh
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur institute of Iran, Tehran, Iran
| | - Alireza Badirzadeh
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur institute of Iran, Tehran, Iran
| | - Mohammad Vasei
- Cell-Based Therapies Research Center, Digestive Disease Research Institute and Department of Pathology, Shariati Hospital, Tehran University of Medical Science, Tehran, Iran
| | - Safoora Gharibzadeh
- Department of Epidemiology and Biostatistics, Pasteur Institute of Iran, Tehran, Iran
| | - Sima Rafati
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur institute of Iran, Tehran, Iran
- * E-mail: ,
| |
Collapse
|