1
|
Ujie Y, Saito S, Banno T, Yaguchi T, Arai MA. Co-culture of Aspergillus niger IFM 59706 and RAW264 cells enhances the production of aurasperone A with nitric oxide inhibitory activity. Biosci Biotechnol Biochem 2025; 89:541-547. [PMID: 39737716 DOI: 10.1093/bbb/zbae211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 12/23/2024] [Indexed: 01/01/2025]
Abstract
Most actinomycetes and fungi have a multitude of silent biosynthetic genes whose activation could lead to the production of new natural products. Our group recently designed and used a co-culture method to isolate new natural products, based on the idea that pathogens might produce immune suppressors to avoid attack by immune cells. Here, we searched for compounds produced by the co-culture of immune cells with pathogenic fungi isolated from clinical specimens. The production of dimeric naphtho-γ-pyrone aurasperone A (1) was enhanced by the co-culture of pathogenic fungus Aspergillus niger IFM 59706 and RAW264 mouse macrophage-like cells. The absolute configuration of 1 was confirmed by comparison with the reported electronic circular dichroism spectrum. This is the first report of the inhibitory activity of 1 on nitric oxide production, an inflammatory mediator.
Collapse
Affiliation(s)
- Yukiko Ujie
- Department of Biosciences & Informatics, Faculty of Science and Technology, Keio University, Yokohama, Japan
| | - Shun Saito
- Department of Biosciences & Informatics, Faculty of Science and Technology, Keio University, Yokohama, Japan
| | - Tomoya Banno
- Department of Biosciences & Informatics, Faculty of Science and Technology, Keio University, Yokohama, Japan
| | - Takashi Yaguchi
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Midori A Arai
- Department of Biosciences & Informatics, Faculty of Science and Technology, Keio University, Yokohama, Japan
| |
Collapse
|
2
|
Li XH, Lu HZ, Yao JB, Zhang C, Shi TQ, Huang H. Recent advances in the application of CRISPR/Cas-based gene editing technology in Filamentous Fungi. Biotechnol Adv 2025; 81:108561. [PMID: 40086675 DOI: 10.1016/j.biotechadv.2025.108561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/03/2025] [Accepted: 03/07/2025] [Indexed: 03/16/2025]
Abstract
Filamentous fungi are essential industrial microorganisms that can serve as sources of enzymes, organic acids, terpenoids, and other bioactive compounds with significant applications in food, medicine, and agriculture. However, the underdevelopment of gene editing tools limits the full exploitation of filamentous fungi, which still present numerous untapped potential applications. In recent years, the CRISPR/Cas (clustered regularly interspaced short palindromic repeats) system, a versatile genome-editing tool, has advanced significantly and been widely applied in filamentous fungi, showcasing considerable research potential. This review examines the development and mechanisms of genome-editing tools in filamentous fungi, and contrasts the CRISPR/Cas9 and CRISPR/Cpf1 systems. The transformation and delivery strategies of the CRISPR/Cas system in filamentous fungi are also examined. Additionally, recent applications of CRISPR/Cas systems in filamentous fungi are summarized, such as gene disruption, base editing, and gene regulation. Strategies to enhance editing efficiency and reduce off-target effects are also highlighted, with the aim of providing insights for the future construction and optimization of CRISPR/Cas systems in filamentous fungi.
Collapse
Affiliation(s)
- Xu-Hong Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, China
| | - Hui-Zhi Lu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, China
| | - Ji-Bao Yao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, China
| | - Chi Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, China.
| | - Tian-Qiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, China.
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, China
| |
Collapse
|
3
|
Shi H, Lin B, Zheng M, Gan F, Lin Z, Xin X, Zhao J, Qu X, An F. Strategy of employing plug-and-play vectors and LC-MS screening to facilitate the discovery of natural products using Aspergillus oryzae. BIORESOUR BIOPROCESS 2025; 12:2. [PMID: 39776300 PMCID: PMC11711427 DOI: 10.1186/s40643-024-00833-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Aspergillus oryzae is a widely used host for heterologous expression of fungal natural products. However, the vectors previously developed are not convenient for use and screening positive transformants by PCR and fermentation is time- and effort-consuming. Hence, three plug-and-play vectors were developed here for multi-gene expression and liquid chromatography mass spectrometry detection was introduced to screen positive transformants. Using rug BGC for verification, we demonstrated that the vectors we developed perform well and liquid chromatography mass spectrometry detection is feasible to screen positive transformants. For deleterious gene expression, PxyrA rather than PamyB was employed. Utilizing the toolkit described here to express natural products, dozen days can be saved.
Collapse
Affiliation(s)
- Hanliang Shi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
| | - Beibei Lin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
| | - Mengmeng Zheng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 201203, China
| | - Fengyu Gan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
| | - Zhi Lin
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 201203, China
| | - Xiujuan Xin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
| | - Jian Zhao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
- Department of Applied Biology, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
| | - Xudong Qu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 201203, China
| | - Faliang An
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China.
- Marine Biomedical Science and Technology Innovation Platform of Lin-Gang Special Area, No. 4, Lane 218, Haiji Sixth Road, Shanghai, 201306, China.
| |
Collapse
|
4
|
Ren S, Yan Y, Zhou Y, Han Y, Yuan S, Chen J, Guo H, Lin Z, Lin Q, Chen S, Liu L, Qiao Y, Gao Z. Genome mining of nonenzymatic ortho-quinone methide-based pseudonatural products from ascidian-derived fungus Diaporthe sp.SYSU-MS4722. Bioorg Chem 2025; 154:108081. [PMID: 39742673 DOI: 10.1016/j.bioorg.2024.108081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/01/2024] [Accepted: 12/18/2024] [Indexed: 01/04/2025]
Abstract
Ortho-quinone methides (o-QMs), generated by oxidative dehydration of clavatol, are highly reactive intermediates in biosynthesis that give rise to a variety of clavatol-containing pseudonatural products (PNPs) in fungi through intra- and intermolecular nonenzymatic cyclization/addition reaction, and some compounds have significant biological activities. Here we report our genome mining efforts on a cryptic clavatol biosynthetic gene cluster (BGC) from an ascidian-derived fungus Diaporthe sp. SYSU-MS4722. The core genes NR-PKS (DiaG), Esterase (DiaF) derived from the fungus Diaporthe sp. SYSU-MS4722 clavatol BGC and the known α-ketoglutarate-dependent nonheme iron enzymes (ClaD) were heterologously expressed in the Aspergillus oryzae NSAR1 (A. oryzae NSAR1). Thirteen new monomeric, dimeric, and trimeric clavatol-based PNPs (7-19), together with three known compounds (20-22) were isolated from the above transformant. Their structures including absolute configurations were elucidated by spectroscopic analysis (UV, IR, HR-ESI-MS, 1D and 2D NMR data), complemented with the X-ray crystallography, the comparison of the experimental and calculated ECD spectra, and gauge-independent atomic orbital (GIAO) NMR calculations. Based on the structural characteristics, their plausible biosynthetic pathways were proposed. Notably, Compounds 8, 9, 14 and 16 exhibited potent anti-fibrotic activity with EC50 values of 28.9, 10.0, 3.5 and 30.1 μM, respectively.
Collapse
Affiliation(s)
- Shuya Ren
- School of Marine Sciences, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China; Dermatology Hospital, Southern Medical University, Guangzhou 510091,China
| | - Yan Yan
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
| | - Yuran Zhou
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
| | - Yanhong Han
- Centre for Biological Science and Technology, Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519000, China
| | - Siwen Yuan
- School of Marine Sciences, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China
| | - Junjie Chen
- School of Marine Sciences, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China
| | - Heng Guo
- School of Marine Sciences, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China
| | - Zhenjian Lin
- School of Marine Sciences, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China
| | - Qifeng Lin
- School of Marine Sciences, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China
| | - Senhua Chen
- School of Marine Sciences, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China
| | - Lan Liu
- School of Marine Sciences, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China
| | - Yongkang Qiao
- Centre for Biological Science and Technology, Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519000, China.
| | - Zhizeng Gao
- School of Marine Sciences, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China.
| |
Collapse
|
5
|
Olumakaiye R, Corre C, Alberti F. Identification of a terpene synthase arsenal using long-read sequencing and genome assembly of Aspergillus wentii. BMC Genomics 2024; 25:1141. [PMID: 39592925 PMCID: PMC11600568 DOI: 10.1186/s12864-024-11064-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Fungi are talented producers of secondary metabolites with applications in the pharmaceutical and agrochemical sectors. Aspergillus wentii CBS 141173 has gathered research interest due to its ability to produce high-value norditerpenoid compounds, including anticancer molecules. In this study, we aimed to expand the genomic information available for A. wentii to facilitate the identification of terpenoid biosynthetic genes that may be involved in the production of bioactive molecules. RESULTS Long-read genome sequencing of Aspergillus wentii CBS 141173 was conducted using Oxford Nanopore Technologies (ONT) MinION MK1C. In addition, paired-end stranded RNA-seq data from two time points, 7 days and 30 days, was used for functional annotation of the assembled genome. Overall, we assembled a genome of approximately 31.2 Mb and identified 66 biosynthetic gene clusters from the annotated genome. Metabolic extracts of A. wentii were analysed and the production of the bioactive terpenoid asperolide A was confirmed. We further mined the assembled and annotated genome for BGCs involved in terpenoid pathways using a combination of antiSMASH and local BlastP and identified 16 terpene synthases. Phylogenetic analysis was conducted and allowed us to establish relationships with other characterised terpene synthases. We identified two terpene clusters potentially involved in pimarane-like diterpenoid biosynthesis. Finally, the analysis of the 16 terpene synthases in our 7-day and 30-day transcriptomic data suggested that only four of them were constitutively expressed under laboratory conditions. CONCLUSION These results provide a scaffold for the future exploration of terpenoid biosynthetic pathways for bioactive molecules in A. wentii. The terpenoid clusters identified in this study are candidates for heterologous gene expression and/or gene disruption experiments. The description and availability of the long-read genome assembly of A. wentii CBS 141173 further provides the basis for downstream genome analysis and biotechnological exploitation of this species.
Collapse
Affiliation(s)
| | - Christophe Corre
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Fabrizio Alberti
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK.
| |
Collapse
|
6
|
Zheng YY, Mao JQ, Liu Y, Han N, Lv L, Zhang YH, Chen M, Liu ZQ, Shao CL, Yao GS, Wang CY. Pleiotropically activation of azaphilone biosynthesis by overexpressing a pathway-specific transcription factor in marine-derived Aspergillus terreus RA2905. Bioorg Chem 2024; 153:107832. [PMID: 39317039 DOI: 10.1016/j.bioorg.2024.107832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/17/2024] [Accepted: 09/17/2024] [Indexed: 09/26/2024]
Abstract
The genome sequencing of Aspergillus terreus reveals that the vast number of predicted biosynthetic gene clusters have not reflected by the metabolic profile observed under conventional culture conditions. In this study, a silent azaphilone biosynthetic gene cluster was activated by overexpressing a pathway-specific transcription factor gene2642 in marine-derived fungus A. terreus RA2905. Consequently, twenty azaphilone compounds were identified from the OE2642 mutant, including 11 new azaphilones and their precursors, azasperones C-J (1-5, 7-9) and preazasperones A-C (15-17). The structures of those new compounds were unambiguously determined on the basis of NMR and HRESIMS spectra analysis, and the absolute configurations were established depending on ECD calculations. Compounds 1 and 2 were the rarely reported naturally occurring azaphilones with 2-N coupled phenyl-derivative. The bioactivity assay revealed that compounds 18-20 exhibited significant anti-inflammatory activity. Based on the occurrence of diverse intermediates and the putative gene functions, a plausible biosynthetic pathway of these compounds was proposed. The above results demonstrated that overexpression of the pathway-specific transcription factor presents a promising approach for enriching fungal secondary metabolites and accelerating the targeted discovery of novel biosynthetic products.
Collapse
Affiliation(s)
- Yao-Yao Zheng
- Key Laboratory of Marine Drugs, the Ministry of Education of China, Institute of Evolution & Marine Biodiversity, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Jun-Qiu Mao
- Key Laboratory of Marine Drugs, the Ministry of Education of China, Institute of Evolution & Marine Biodiversity, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Yang Liu
- Institute for Insect Biotechnology, Justus-Liebig-University of Giessen, 35392 Giessen, Germany; Department of Bioresources of the Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), 35392 Giessen, Germany
| | - Na Han
- Key Laboratory of Marine Drugs, the Ministry of Education of China, Institute of Evolution & Marine Biodiversity, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Ling Lv
- Key Laboratory of Marine Drugs, the Ministry of Education of China, Institute of Evolution & Marine Biodiversity, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Ya-Hui Zhang
- Key Laboratory of Marine Drugs, the Ministry of Education of China, Institute of Evolution & Marine Biodiversity, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Min Chen
- Marine Science & Technology Institute, College of Environmental Science & Engineering, Yangzhou University, 196#, Huayang West Street, Yangzhou 225127, China
| | - Zhi-Qing Liu
- Key Laboratory of Marine Drugs, the Ministry of Education of China, Institute of Evolution & Marine Biodiversity, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Chang-Lun Shao
- Key Laboratory of Marine Drugs, the Ministry of Education of China, Institute of Evolution & Marine Biodiversity, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Guang-Shan Yao
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Institute of Oceanography, Minjiang University, Fuzhou 350108, China.
| | - Chang-Yun Wang
- Key Laboratory of Marine Drugs, the Ministry of Education of China, Institute of Evolution & Marine Biodiversity, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
7
|
Pierre HC, Amrine CSM, Doyle MG, Salvi A, Raja HA, Chekan JR, Huntsman AC, Fuchs JR, Liu K, Burdette JE, Pearce CJ, Oberlies NH. Verticillins: fungal epipolythiodioxopiperazine alkaloids with chemotherapeutic potential. Nat Prod Rep 2024; 41:1327-1345. [PMID: 38629495 PMCID: PMC11409914 DOI: 10.1039/d3np00068k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Covering: 1970 through June of 2023Verticillins are epipolythiodioxopiperazine (ETP) alkaloids, many of which possess potent, nanomolar-level cytotoxicity against a variety of cancer cell lines. Over the last decade, their in vivo activity and mode of action have been explored in detail. Notably, recent studies have indicated that these compounds may be selective inhibitors of histone methyltransferases (HMTases) that alter the epigenome and modify targets that play a crucial role in apoptosis, altering immune cell recognition, and generating reactive oxygen species. Verticillin A (1) was the first of 27 analogues reported from fungal cultures since 1970. Subsequent genome sequencing identified the biosynthetic gene cluster responsible for producing verticillins, allowing a putative pathway to be proposed. Further, molecular sequencing played a pivotal role in clarifying the taxonomic characterization of verticillin-producing fungi, suggesting that most producing strains belong to the genus Clonostachys (i.e., Bionectria), Bionectriaceae. Recent studies have explored the total synthesis of these molecules and the generation of analogues via both semisynthetic and precursor-directed biosynthetic approaches. In addition, nanoparticles have been used to deliver these molecules, which, like many natural products, possess challenging solubility profiles. This review summarizes over 50 years of chemical and biological research on this class of fungal metabolites and offers insights and suggestions on future opportunities to push these compounds into pre-clinical and clinical development.
Collapse
Affiliation(s)
- Herma C Pierre
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, P.O. Box 26170, Greensboro, North Carolina 27402, USA.
| | - Chiraz Soumia M Amrine
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, P.O. Box 26170, Greensboro, North Carolina 27402, USA.
- Department of Physical and Earth Sciences. Arkansas Tech University, 1701 N. Boulder Ave., Russellville, Arkansas 72801, USA
| | - Michael G Doyle
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, P.O. Box 26170, Greensboro, North Carolina 27402, USA.
| | - Amrita Salvi
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, 900 S. Ashland Ave (M/C 870), Chicago, Illinois 60607, USA
| | - Huzefa A Raja
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, P.O. Box 26170, Greensboro, North Carolina 27402, USA.
| | - Jonathan R Chekan
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, P.O. Box 26170, Greensboro, North Carolina 27402, USA.
| | - Andrew C Huntsman
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Ohio State University, 500 W. 12th Ave., Columbus, Ohio 43210, USA
| | - James R Fuchs
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Ohio State University, 500 W. 12th Ave., Columbus, Ohio 43210, USA
| | - Kebin Liu
- Department of Biochemistry and Molecular Biology and the Georgia Cancer Center, Medical College of Georgia, Augusta, GA 30912, USA
- Charlie Norwood Veterans Affairs Medical Center, Augusta, GA 30904, USA
| | - Joanna E Burdette
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, 900 S. Ashland Ave (M/C 870), Chicago, Illinois 60607, USA
| | | | - Nicholas H Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, P.O. Box 26170, Greensboro, North Carolina 27402, USA.
| |
Collapse
|
8
|
Zhou J, Chen X, Li SM. Construction of an expression platform for fungal secondary metabolite biosynthesis in Penicillium crustosum. Appl Microbiol Biotechnol 2024; 108:427. [PMID: 39046587 PMCID: PMC11269504 DOI: 10.1007/s00253-024-13259-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/08/2024] [Accepted: 07/16/2024] [Indexed: 07/25/2024]
Abstract
Filamentous fungi are prolific producers of bioactive natural products and play a vital role in drug discovery. Yet, their potential cannot be fully exploited since many biosynthetic genes are silent or cryptic under laboratory culture conditions. Several strategies have been applied to activate these genes, with heterologous expression as one of the most promising approaches. However, successful expression and identification of new products are often hindered by host-dependent factors, such as low gene targeting efficiencies, a high metabolite background, or a lack of selection markers. To overcome these challenges, we have constructed a Penicillium crustosum expression host in a pyrG deficient strain by combining the split-marker strategy and CRISPR-Cas9 technology. Deletion of ligD and pcribo improved gene targeting efficiencies and enabled the use of an additional selection marker in P. crustosum. Furthermore, we reduced the secondary metabolite background by inactivation of two highly expressed gene clusters and abolished the formation of the reactive ortho-quinone methide. Finally, we replaced the P. crustosum pigment gene pcr4401 with the commonly used Aspergillus nidulans wA expression site for convenient use of constructs originally designed for A. nidulans in our P. crustosum host strain. As proof of concept, we successfully expressed a single polyketide synthase gene and an entire gene cluster at the P. crustosum wA locus. Resulting transformants were easily detected by their albino phenotype. With this study, we provide a highly efficient platform for heterologous expression of fungal genes. KEY POINTS: Construction of a highly efficient Penicillium crustosum heterologous expression host Reduction of secondary metabolite background by genetic dereplication strategy Integration of wA site to provide an alternative host besides Aspergillus nidulans.
Collapse
Affiliation(s)
- Jenny Zhou
- Institut Für Pharmazeutische Biologie Und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Robert-Koch-Straße 4, 35037, Marburg, Germany
| | - Xiaoling Chen
- Institut Für Pharmazeutische Biologie Und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Robert-Koch-Straße 4, 35037, Marburg, Germany
| | - Shu-Ming Li
- Institut Für Pharmazeutische Biologie Und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Robert-Koch-Straße 4, 35037, Marburg, Germany.
| |
Collapse
|
9
|
Lu Z, Chen Z, Liu Y, Hua X, Gao C, Liu J. Morphological Engineering of Filamentous Fungi: Research Progress and Perspectives. J Microbiol Biotechnol 2024; 34:1197-1205. [PMID: 38693049 PMCID: PMC11239417 DOI: 10.4014/jmb.2402.02007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/22/2024] [Accepted: 03/06/2024] [Indexed: 05/03/2024]
Abstract
Filamentous fungi are important cell factories for the production of high-value enzymes and chemicals for the food, chemical, and pharmaceutical industries. Under submerged fermentation, filamentous fungi exhibit diverse fungal morphologies that are influenced by environmental factors, which in turn affect the rheological properties and mass transfer of the fermentation system, and ultimately the synthesis of products. In this review, we first summarize the mechanisms of mycelial morphogenesis and then provide an overview of current developments in methods and strategies for morphological regulation, including physicochemical and metabolic engineering approaches. We also anticipate that rapid developments in synthetic biology and genetic manipulation tools will accelerate morphological engineering in the future.
Collapse
Affiliation(s)
- Zhengwu Lu
- College of Life Sciences, Linyi University, Linyi 276000, P. R. China
| | - Zhiqun Chen
- College of Life Sciences, Linyi University, Linyi 276000, P. R. China
| | - Yunguo Liu
- College of Life Sciences, Linyi University, Linyi 276000, P. R. China
| | - Xuexue Hua
- Shandong Fufeng Fermentation Co., Ltd., Linyi 276600, P. R. China
| | - Cuijuan Gao
- College of Life Sciences, Linyi University, Linyi 276000, P. R. China
| | - Jingjing Liu
- College of Life Sciences, Linyi University, Linyi 276000, P. R. China
| |
Collapse
|
10
|
Jia X, Song J, Wu Y, Feng S, Sun Z, Hu Y, Yu M, Han R, Zeng B. Strategies for the Enhancement of Secondary Metabolite Production via Biosynthesis Gene Cluster Regulation in Aspergillus oryzae. J Fungi (Basel) 2024; 10:312. [PMID: 38786667 PMCID: PMC11121810 DOI: 10.3390/jof10050312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
The filamentous fungus Aspergillus oryzae (A. oryzae) has been extensively used for the biosynthesis of numerous secondary metabolites with significant applications in agriculture and food and medical industries, among others. However, the identification and functional prediction of metabolites through genome mining in A. oryzae are hindered by the complex regulatory mechanisms of secondary metabolite biosynthesis and the inactivity of most of the biosynthetic gene clusters involved. The global regulatory factors, pathway-specific regulatory factors, epigenetics, and environmental signals significantly impact the production of secondary metabolites, indicating that appropriate gene-level modulations are expected to promote the biosynthesis of secondary metabolites in A. oryzae. This review mainly focuses on illuminating the molecular regulatory mechanisms for the activation of potentially unexpressed pathways, possibly revealing the effects of transcriptional, epigenetic, and environmental signal regulation. By gaining a comprehensive understanding of the regulatory mechanisms of secondary metabolite biosynthesis, strategies can be developed to enhance the production and utilization of these metabolites, and potential functions can be fully exploited.
Collapse
Affiliation(s)
- Xiao Jia
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China; (X.J.); (J.S.); (Y.W.); (S.F.); (Z.S.); (Y.H.); (M.Y.); (R.H.)
- College of Materials and Energy, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Jiayi Song
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China; (X.J.); (J.S.); (Y.W.); (S.F.); (Z.S.); (Y.H.); (M.Y.); (R.H.)
- College of Life and Health Sciences, Northeastern University, No. 3-11, Wenhua Road, Shenyang 110819, China
| | - Yijian Wu
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China; (X.J.); (J.S.); (Y.W.); (S.F.); (Z.S.); (Y.H.); (M.Y.); (R.H.)
| | - Sai Feng
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China; (X.J.); (J.S.); (Y.W.); (S.F.); (Z.S.); (Y.H.); (M.Y.); (R.H.)
| | - Zeao Sun
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China; (X.J.); (J.S.); (Y.W.); (S.F.); (Z.S.); (Y.H.); (M.Y.); (R.H.)
| | - Yan Hu
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China; (X.J.); (J.S.); (Y.W.); (S.F.); (Z.S.); (Y.H.); (M.Y.); (R.H.)
| | - Mengxue Yu
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China; (X.J.); (J.S.); (Y.W.); (S.F.); (Z.S.); (Y.H.); (M.Y.); (R.H.)
| | - Rui Han
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China; (X.J.); (J.S.); (Y.W.); (S.F.); (Z.S.); (Y.H.); (M.Y.); (R.H.)
| | - Bin Zeng
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China; (X.J.); (J.S.); (Y.W.); (S.F.); (Z.S.); (Y.H.); (M.Y.); (R.H.)
| |
Collapse
|
11
|
Bejenari M, Spedtsberg EML, Mathiesen J, Jeppesen AC, Cernat L, Toussaint A, Apostol C, Stoianov V, Pedersen TB, Nielsen MR, Sørensen JL. First-class - biosynthesis of 6-MSA and bostrycoidin type I polyketides in Yarrowia lipolytica. FRONTIERS IN FUNGAL BIOLOGY 2024; 5:1327777. [PMID: 38586602 PMCID: PMC10995274 DOI: 10.3389/ffunb.2024.1327777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/09/2024] [Indexed: 04/09/2024]
Abstract
Fungal polyketides are a large group of secondary metabolites, valuable due to their diverse spectrum of pharmacological activities. Polyketide biosynthesis in filamentous fungi presents some challenges: small yield and low-purity titers. To tackle these issues, we switched to the yeast Yarrowia lipolytica, an easily cultivable heterologous host. As an oleaginous yeast, Y. lipolytica displays a high flux of acetyl- and malonyl-CoA precursors used in lipid synthesis. Likewise, acetyl- and malonyl-CoA are the building blocks of many natural polyketides, and we explored the possibility of redirecting this flux toward polyketide production. Despite its promising prospect, Y. lipolytica has so far only been used for heterologous expression of simple type III polyketide synthases (PKSs) from plants. Therefore, we decided to evaluate the potential of Y. lipolytica by targeting the more complex fungal polyketides synthesized by type I PKSs. We employed a CRISPR-Cas9-mediated genome editing method to achieve markerless gene integration of the genes responsible for bostrycoidin biosynthesis in Fusarium solani (fsr1, fsr2, and fsr3) and 6-methylsalicylic acid (6-MSA) biosynthesis in Aspergillus hancockii (6MSAS). Moreover, we attempted titer optimization through metabolic engineering by overexpressing two enzymes, TGL4 and AOX2, involved in lipid β-oxidation, but we did not observe an effect on polyketide production. With maximum titers of 403 mg/L 6-MSA and 35 mg/L bostrycoidin, the latter being substantially higher than our previous results in Saccharomyces cerevisiae (2.2 mg/L), this work demonstrates the potential of Y. lipolytica as a platform for heterologous production of complex fungal polyketides.
Collapse
Affiliation(s)
- Mihaela Bejenari
- Department of Chemistry and Bioscience, Aalborg University, Esbjerg, Denmark
| | - Eva Mie Lang Spedtsberg
- Department of Chemistry and Bioscience, Aalborg University, Esbjerg, Denmark
- Department of Energy, Aalborg University, Esbjerg, Denmark
| | - Julie Mathiesen
- Department of Chemistry and Bioscience, Aalborg University, Esbjerg, Denmark
| | | | - Lucia Cernat
- Department of Chemistry and Bioscience, Aalborg University, Esbjerg, Denmark
| | - Aouregane Toussaint
- Université Grenoble Alpes, Laboratoire de Physiologie Cellulaire Végétale, CEA, CNRS, INRA, IRIG-LPCV, Grenoble, France
| | - Cristina Apostol
- Department of Chemistry and Bioscience, Aalborg University, Esbjerg, Denmark
| | - Victor Stoianov
- Department of Chemistry and Bioscience, Aalborg University, Esbjerg, Denmark
| | | | - Mikkel Rank Nielsen
- Department of Chemistry and Bioscience, Aalborg University, Esbjerg, Denmark
| | | |
Collapse
|
12
|
Omran BA, Baek KH. Dual extracellular mycofabrication of cobalt and zinc nano metal oxides mediated by mycelial-cell free filtrate of Aspergillus sojae: Characterization and assessment of antibacterial activity. J Mol Struct 2024; 1300:137190. [DOI: 10.1016/j.molstruc.2023.137190] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
13
|
Wang W, Huang J, Liao L, Yang X, Chen C, Liu J, Zhu H, Zhang Y. Chae-type cytochalasans from coculture of Aspergillus flavipes and Chaetomium globosum. PHYTOCHEMISTRY 2024; 219:113961. [PMID: 38182030 DOI: 10.1016/j.phytochem.2023.113961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 01/07/2024]
Abstract
Cocultivation of the high cytochalasan-producing fungi Aspergillus flavipes and Chaetomium globosum resulted in the isolation of 11 undescribed Chae-type cytochalasans. Their structures were determined by spectroscopic data and NMR data calculations. Asperchaetoglobin A (1) was the first Chae-type cytochalasan possessing an unprecedented nitrogen bridge between C-17 and C-20 to generate a surprising 5/6/12/5 multiple ring system; asperchaetoglobins B and C (2 and 3) displayed higher oxidation with an additional epoxide at the thirteen-member ring; asperchaetoglobin D (4) was the second Chae-type cytochalasin featuring a 5/6/12 tricyclic ring system. The cytotoxic activities against five human cancer cell lines and antibacterial activities against Staphylococcus aureus and Colon bacillus of selected compounds were evaluated in vitro.
Collapse
Affiliation(s)
- Wenjing Wang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, People's Republic of China
| | - Junguo Huang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, People's Republic of China
| | - Liangxiu Liao
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, People's Republic of China
| | - Xiaolong Yang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, People's Republic of China
| | - Chunmei Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Junjun Liu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Hucheng Zhu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
14
|
Cox RJ. Engineered and total biosynthesis of fungal specialized metabolites. Nat Rev Chem 2024; 8:61-78. [PMID: 38172201 DOI: 10.1038/s41570-023-00564-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2023] [Indexed: 01/05/2024]
Abstract
Filamentous fungi produce a very wide range of complex and often bioactive metabolites, demonstrating their inherent ability as hosts of complex biosynthetic pathways. Recent advances in molecular sciences related to fungi have afforded the development of new tools that allow the rational total biosynthesis of highly complex specialized metabolites in a single process. Increasingly, these pathways can also be engineered to produce new metabolites. Engineering can be at the level of gene deletion, gene addition, formation of mixed pathways, engineering of scaffold synthases and engineering of tailoring enzymes. Combination of these approaches with hosts that can metabolize low-value waste streams opens the prospect of one-step syntheses from garbage.
Collapse
Affiliation(s)
- Russell J Cox
- Institute for Organic Chemistry and BMWZ, Leibniz University of Hannover, Hannover, Germany.
| |
Collapse
|
15
|
Lu ZM, Zhang RT, Huang XB, Cao XT, Shen XY, Fan L, Hou CL. Optimisation of hypocrellin production in Shiraia-like fungi via genetic modification involving a transcription factor gene and a putative monooxygenase gene. Mycology 2023; 15:272-281. [PMID: 38813477 PMCID: PMC11133952 DOI: 10.1080/21501203.2023.2295406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 12/11/2023] [Indexed: 05/31/2024] Open
Abstract
Shiraia-like fungi, which are rare parasitic fungi found around bamboo, play an important role in traditional medicine. Their main active component, hypocrellin, is widely used in medicine, food, and cosmetics. By comparing strains with different hypocrellin yields, we identified a transcription factor (SbTF) in the hypocrellin biosynthesis pathway. SbTF from high-yielding zzz816 and low-yielding CNUCC C72 differed in its protein structure. Subsequently, SbTF from high-yielding zzz816 was overexpressed in several strains. This stabilised the yield in zzz816 and significantly increased the yield in low-yielding CNUCC C72. Comparing downstream non-essential genes between wild type and SbTF-overexpressing CNUCC C72 showed that SbMNF was significantly up-regulated. Therefore, it was selected for further study. SbMNF overexpression increased the hypocrellin yield in low-yielding CNUCC C72 and altered the composition of compounds in high-yielding CNUCC 1353PR and zzz816. This involved an increased elsinochrome C yield in CNUCC 1353PR and an increased hypocrellin B yield in zzz816 (by 2 and 70.3 times that in the corresponding wild type, respectively). This study is the first to alter hypocrellin synthesis to alter the levels of one bioactive agent compared to another. The results provide new insights regarding genetic modification and will help to optimise fungal fermentation.
Collapse
Affiliation(s)
- Zi-Min Lu
- College of Life Science, Capital Normal University, Beijing, China
| | - Run-Tong Zhang
- College of Life Science, Capital Normal University, Beijing, China
| | - Xiao-Bo Huang
- College of Life Science, Capital Normal University, Beijing, China
| | - Xue-Ting Cao
- College of Life Science, Capital Normal University, Beijing, China
| | - Xiao-Ye Shen
- College of Life Science, Capital Normal University, Beijing, China
| | - Li Fan
- College of Life Science, Capital Normal University, Beijing, China
| | - Cheng-Lin Hou
- College of Life Science, Capital Normal University, Beijing, China
| |
Collapse
|
16
|
Salazar-Cerezo S, de Vries RP, Garrigues S. Strategies for the Development of Industrial Fungal Producing Strains. J Fungi (Basel) 2023; 9:834. [PMID: 37623605 PMCID: PMC10455633 DOI: 10.3390/jof9080834] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/31/2023] [Accepted: 08/04/2023] [Indexed: 08/26/2023] Open
Abstract
The use of microorganisms in industry has enabled the (over)production of various compounds (e.g., primary and secondary metabolites, proteins and enzymes) that are relevant for the production of antibiotics, food, beverages, cosmetics, chemicals and biofuels, among others. Industrial strains are commonly obtained by conventional (non-GMO) strain improvement strategies and random screening and selection. However, recombinant DNA technology has made it possible to improve microbial strains by adding, deleting or modifying specific genes. Techniques such as genetic engineering and genome editing are contributing to the development of industrial production strains. Nevertheless, there is still significant room for further strain improvement. In this review, we will focus on classical and recent methods, tools and technologies used for the development of fungal production strains with the potential to be applied at an industrial scale. Additionally, the use of functional genomics, transcriptomics, proteomics and metabolomics together with the implementation of genetic manipulation techniques and expression tools will be discussed.
Collapse
Affiliation(s)
- Sonia Salazar-Cerezo
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands (R.P.d.V.)
| | - Ronald P. de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands (R.P.d.V.)
| | - Sandra Garrigues
- Food Biotechnology Department, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, VLC, Spain
| |
Collapse
|
17
|
Correia J, Borges A, Simões M, Simões LC. Beyond Penicillin: The Potential of Filamentous Fungi for Drug Discovery in the Age of Antibiotic Resistance. Antibiotics (Basel) 2023; 12:1250. [PMID: 37627670 PMCID: PMC10451904 DOI: 10.3390/antibiotics12081250] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Antibiotics are a staple in current medicine for the therapy of infectious diseases. However, their extensive use and misuse, combined with the high adaptability of bacteria, has dangerously increased the incidence of multi-drug-resistant (MDR) bacteria. This makes the treatment of infections challenging, especially when MDR bacteria form biofilms. The most recent antibiotics entering the market have very similar modes of action to the existing ones, so bacteria rapidly catch up to those as well. As such, it is very important to adopt effective measures to avoid the development of antibiotic resistance by pathogenic bacteria, but also to perform bioprospecting of new molecules from diverse sources to expand the arsenal of drugs that are available to fight these infectious bacteria. Filamentous fungi have a large and vastly unexplored secondary metabolome and are rich in bioactive molecules that can be potential novel antimicrobial drugs. Their production can be challenging, as the associated biosynthetic pathways may not be active under standard culture conditions. New techniques involving metabolic and genetic engineering can help boost antibiotic production. This study aims to review the bioprospection of fungi to produce new drugs to face the growing problem of MDR bacteria and biofilm-associated infections.
Collapse
Affiliation(s)
- João Correia
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, Department of Chemical Engineering, University of Porto, 4200-465 Porto, Portugal; (J.C.); (A.B.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| | - Anabela Borges
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, Department of Chemical Engineering, University of Porto, 4200-465 Porto, Portugal; (J.C.); (A.B.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| | - Manuel Simões
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, Department of Chemical Engineering, University of Porto, 4200-465 Porto, Portugal; (J.C.); (A.B.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| | - Lúcia C. Simões
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal;
- LABBELS—Associate Laboratory in Biotechnology, Bioengineering and Microelectromechanical Systems, 4710-057 Braga, Portugal
| |
Collapse
|
18
|
Barona-Gómez F, Chevrette MG, Hoskisson PA. On the evolution of natural product biosynthesis. Adv Microb Physiol 2023; 83:309-349. [PMID: 37507161 DOI: 10.1016/bs.ampbs.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Natural products are the raw material for drug discovery programmes. Bioactive natural products are used extensively in medicine and agriculture and have found utility as antibiotics, immunosuppressives, anti-cancer drugs and anthelminthics. Remarkably, the natural role and what mechanisms drive evolution of these molecules is relatively poorly understood. The exponential increase in genome and chemical data in recent years, coupled with technical advances in bioinformatics and genetics have enabled progress to be made in understanding the evolution of biosynthetic gene clusters and the products of their enzymatic machinery. Here we discuss the diversity of natural products, incorporating the mechanisms that govern evolution of metabolic pathways and how this can be applied to biosynthetic gene clusters. We build on the nomenclature of natural products in terms of primary, integrated, secondary and specialised metabolism and place this within an ecology-evolutionary-developmental biology framework. This eco-evo-devo framework we believe will help to clarify the nature and use of the term specialised metabolites in the future.
Collapse
Affiliation(s)
| | - Marc G Chevrette
- Department of Microbiology and Cell Sciences, University of Florida, Museum Drive, Gainesville, FL, United States; University of Florida Genetics Institute, University of Florida, Mowry Road, Gainesville, FL, United States
| | - Paul A Hoskisson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Cathedral Street, Glasgow, United Kingdom.
| |
Collapse
|
19
|
Katayama T, Maruyama JI. Trace copper-mediated asexual development via a superoxide dismutase and induction of AobrlA in Aspergillus oryzae. Front Microbiol 2023; 14:1135012. [PMID: 36970664 PMCID: PMC10030727 DOI: 10.3389/fmicb.2023.1135012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 02/15/2023] [Indexed: 03/11/2023] Open
Abstract
The filamentous fungus Aspergillus oryzae, in which sexual reproduction remains to be discovered, proliferates mainly via asexual spores (conidia). Therefore, despite its industrial importance in food fermentation and recombinant protein production, breeding beneficial strains by genetic crosses is difficult. In Aspergillus flavus, which is genetically close to A. oryzae, structures known as sclerotia are formed asexually, but they are also related to sexual development. Sclerotia are observed in some A. oryzae strains, although no sclerotia formation has been reported in most strains. A better understanding of the regulatory mechanisms underlying sclerotia formation in A. oryzae may contribute to discover its sexual development. Some factors involved in sclerotia formation have been previously identified, but their regulatory mechanisms have not been well studied in A. oryzae. In this study, we found that copper strongly inhibited sclerotia formation and induced conidiation. Deletion of AobrlA encoding a core regulator of conidiation and ecdR involved in transcriptional induction of AobrlA suppressed the copper-mediated inhibition of sclerotia formation, suggesting that AobrlA induction in response to copper leads not only to conidiation but also to inhibition of sclerotia formation. In addition, deletion of the copper-dependent superoxide dismutase (SOD) gene and its copper chaperone gene partially suppressed such copper-mediated induction of conidiation and inhibition of sclerotia formation, indicating that copper regulates asexual development via the copper-dependent SOD. Taken together, our results demonstrate that copper regulates asexual development, such as sclerotia formation and conidiation, via the copper-dependent SOD and transcriptional induction of AobrlA in A. oryzae.
Collapse
Affiliation(s)
- Takuya Katayama
- Department of Biotechnology, The University of Tokyo, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| | - Jun-ichi Maruyama
- Department of Biotechnology, The University of Tokyo, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
- *Correspondence: Jun-ichi Maruyama,
| |
Collapse
|
20
|
Rousta N, Aslan M, Yesilcimen Akbas M, Ozcan F, Sar T, Taherzadeh MJ. Effects of fungal based bioactive compounds on human health: Review paper. Crit Rev Food Sci Nutr 2023; 64:7004-7027. [PMID: 36794421 DOI: 10.1080/10408398.2023.2178379] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Since the first years of history, microbial fermentation products such as bread, wine, yogurt and vinegar have always been noteworthy regarding their nutritional and health effects. Similarly, mushrooms have been a valuable food product in point of both nutrition and medicine due to their rich chemical components. Alternatively, filamentous fungi, which can be easier to produce, play an active role in the synthesis of some bioactive compounds, which are also important for health, as well as being rich in protein content. Therefore, this review presents some important bioactive compounds (bioactive peptides, chitin/chitosan, β-glucan, gamma-aminobutyric acid, L-carnitine, ergosterol and fructooligosaccharides) synthesized by fungal strains and their health benefits. In addition, potential probiotic- and prebiotic fungi were researched to determine their effects on gut microbiota. The current uses of fungal based bioactive compounds for cancer treatment were also discussed. The use of fungal strains in the food industry, especially to develop innovative food production, has been seen as promising microorganisms in obtaining healthy and nutritious food.
Collapse
Affiliation(s)
- Neda Rousta
- Swedish Centre for Resource Recovery, University of Borås, Borås, Sweden
| | - Melissa Aslan
- Swedish Centre for Resource Recovery, University of Borås, Borås, Sweden
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze-Kocaeli, Turkey
| | - Meltem Yesilcimen Akbas
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze-Kocaeli, Turkey
| | - Ferruh Ozcan
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze-Kocaeli, Turkey
| | - Taner Sar
- Swedish Centre for Resource Recovery, University of Borås, Borås, Sweden
| | | |
Collapse
|
21
|
Bai X, Sheng Y, Tang Z, Pan J, Wang S, Tang B, Zhou T, Shi L, Zhang H. Polyketides as Secondary Metabolites from the Genus Aspergillus. J Fungi (Basel) 2023; 9:261. [PMID: 36836375 PMCID: PMC9962652 DOI: 10.3390/jof9020261] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
Polyketides are an important class of structurally diverse natural products derived from a precursor molecule consisting of a chain of alternating ketone and methylene groups. These compounds have attracted the worldwide attention of pharmaceutical researchers since they are endowed with a wide array of biological properties. As one of the most common filamentous fungi in nature, Aspergillus spp. is well known as an excellent producer of polyketide compounds with therapeutic potential. By extensive literature search and data analysis, this review comprehensively summarizes Aspergillus-derived polyketides for the first time, regarding their occurrences, chemical structures and bioactivities as well as biosynthetic logics.
Collapse
Affiliation(s)
- Xuelian Bai
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Yue Sheng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Zhenxing Tang
- School of Culinary Arts, Tourism College of Zhejiang, Hangzhou 311231, China
| | - Jingyi Pan
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Shigui Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Bin Tang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Ting Zhou
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Lu’e Shi
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Huawei Zhang
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
22
|
Löhr NA, Urban MC, Eisen F, Platz L, Hüttel W, Gressler M, Müller M, Hoffmeister D. The Ketosynthase Domain Controls Chain Length in Mushroom Oligocyclic Polyketide Synthases. Chembiochem 2023; 24:e202200649. [PMID: 36507600 PMCID: PMC10108026 DOI: 10.1002/cbic.202200649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022]
Abstract
The nonreducing iterative type I polyketide synthases (NR-PKSs) CoPKS1 and CoPKS4 of the webcap mushroom Cortinarius odorifer share 88 % identical amino acids. CoPKS1 almost exclusively produces a tricyclic octaketide product, atrochrysone carboxylic acid, whereas CoPKS4 shows simultaneous hepta- and octaketide synthase activity and also produces the bicyclic heptaketide 6-hydroxymusizin. To identify the region(s) controlling chain length, four chimeric enzyme variants were constructed and assayed for activity in Aspergillus niger as heterologous expression platform. We provide evidence that the β-ketoacyl synthase (KS) domain determines chain length in these mushroom NR-PKSs, even though their KS domains differ in only ten amino acids. A unique proline-rich linker connecting the acyl carrier protein with the thioesterase domain varies most between these two enzymes but is not involved in chain length control.
Collapse
Affiliation(s)
- Nikolai A. Löhr
- Department Pharmaceutical MicrobiologyHans-Knöll-InstituteFriedrich-Schiller-UniversitätBeutenbergstrasse 11a07745JenaGermany
| | - Maximilian C. Urban
- Department Pharmaceutical MicrobiologyHans-Knöll-InstituteFriedrich-Schiller-UniversitätBeutenbergstrasse 11a07745JenaGermany
| | - Frederic Eisen
- Institute of Pharmaceutical SciencesAlbert-Ludwigs-Universität FreiburgAlbertstrasse 2579104FreiburgGermany
| | - Lukas Platz
- Institute of Pharmaceutical SciencesAlbert-Ludwigs-Universität FreiburgAlbertstrasse 2579104FreiburgGermany
| | - Wolfgang Hüttel
- Institute of Pharmaceutical SciencesAlbert-Ludwigs-Universität FreiburgAlbertstrasse 2579104FreiburgGermany
| | - Markus Gressler
- Department Pharmaceutical MicrobiologyHans-Knöll-InstituteFriedrich-Schiller-UniversitätBeutenbergstrasse 11a07745JenaGermany
| | - Michael Müller
- Institute of Pharmaceutical SciencesAlbert-Ludwigs-Universität FreiburgAlbertstrasse 2579104FreiburgGermany
| | - Dirk Hoffmeister
- Department Pharmaceutical MicrobiologyHans-Knöll-InstituteFriedrich-Schiller-UniversitätBeutenbergstrasse 11a07745JenaGermany
| |
Collapse
|
23
|
Zhang L, Wang C, Chen K, Zhong W, Xu Y, Molnár I. Engineering the biosynthesis of fungal nonribosomal peptides. Nat Prod Rep 2023; 40:62-88. [PMID: 35796260 DOI: 10.1039/d2np00036a] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Covering: 2011 up to the end of 2021.Fungal nonribosomal peptides (NRPs) and the related polyketide-nonribosomal peptide hybrid products (PK-NRPs) are a prolific source of bioactive compounds, some of which have been developed into essential drugs. The synthesis of these complex natural products (NPs) utilizes nonribosomal peptide synthetases (NRPSs), multidomain megaenzymes that assemble specific peptide products by sequential condensation of amino acids and amino acid-like substances, independent of the ribosome. NRPSs, collaborating polyketide synthase modules, and their associated tailoring enzymes involved in product maturation represent promising targets for NP structure diversification and the generation of small molecule unnatural products (uNPs) with improved or novel bioactivities. Indeed, reprogramming of NRPSs and recruiting of novel tailoring enzymes is the strategy by which nature evolves NRP products. The recent years have witnessed a rapid development in the discovery and identification of novel NRPs and PK-NRPs, and significant advances have also been made towards the engineering of fungal NRP assembly lines to generate uNP peptides. However, the intrinsic complexities of fungal NRP and PK-NRP biosynthesis, and the large size of the NRPSs still present formidable conceptual and technical challenges for the rational and efficient reprogramming of these pathways. This review examines key examples for the successful (and for some less-successful) re-engineering of fungal NRPS assembly lines to inform future efforts towards generating novel, biologically active peptides and PK-NRPs.
Collapse
Affiliation(s)
- Liwen Zhang
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, P. R. China.
| | - Chen Wang
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, P. R. China.
| | - Kang Chen
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, P. R. China.
| | - Weimao Zhong
- Southwest Center for Natural Products Research, University of Arizona, 250 E. Valencia Rd., Tucson, AZ 85706, USA
| | - Yuquan Xu
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, P. R. China.
| | - István Molnár
- Southwest Center for Natural Products Research, University of Arizona, 250 E. Valencia Rd., Tucson, AZ 85706, USA.,VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044 VTT, Espoo, Finland.
| |
Collapse
|
24
|
Munusamy M, Tan K, Nge CE, Gakuubi MM, Crasta S, Kanagasundaram Y, Ng SB. Diversity and Biosynthetic Potential of Fungi Isolated from St. John's Island, Singapore. Int J Mol Sci 2023; 24:1033. [PMID: 36674548 PMCID: PMC9861175 DOI: 10.3390/ijms24021033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/01/2022] [Accepted: 12/13/2022] [Indexed: 01/06/2023] Open
Abstract
Adaptation to a wide variety of habitats allows fungi to develop unique abilities to produce diverse secondary metabolites with diverse bioactivities. In this study, 30 Ascomycetes fungi isolated from St. John's Island, Singapore were investigated for their general biosynthetic potential and their ability to produce antimicrobial secondary metabolites (SMs). All the 30 fungal isolates belong to the Phylum Ascomycota and are distributed into 6 orders and 18 genera with Order Hypocreales having the highest number of representative (37%). Screening for polyketide synthase (PKS) and nonribosomal peptide synthetase (NRPS) genes using degenerate PCR led to the identification of 23 polyketide synthases (PKSs) and 5 nonribosomal peptide synthetases (NRPSs) grouped into nine distinct clades based on their reduction capabilities. Some of the identified PKSs genes share high similarities between species and known reference genes, suggesting the possibility of conserved biosynthesis of closely related compounds from different fungi. Fungal extracts were tested for their antimicrobial activity against S. aureus, Methicillin-resistant S. aureus (MRSA), and Candida albicans. Bioassay-guided fractionation of the active constituents from two promising isolates resulted in the isolation of seven compounds: Penilumamides A, D, and E from strain F4335 and xanthomegnin, viomellein, pretrichodermamide C and vioxanthin from strain F7180. Vioxanthin exhibited the best antibacterial activity with IC50 values of 3.0 μM and 1.6 μM against S. aureus and MRSA respectively. Viomellein revealed weak antiproliferative activity against A549 cells with an IC50 of 42 μM. The results from this study give valuable insights into the diversity and biosynthetic potential of fungi from this unique habitat and forms a background for an in-depth analysis of the biosynthetic capability of selected strains of interest with the aim of discovering novel fungal natural products.
Collapse
Affiliation(s)
- Madhaiyan Munusamy
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, #01-02 Nanos, Singapore 138669, Singapore
| | - Kenneth Tan
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, #01-02 Nanos, Singapore 138669, Singapore
| | - Choy Eng Nge
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, #01-02 Nanos, Singapore 138669, Singapore
| | - Martin Muthee Gakuubi
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, #01-02 Nanos, Singapore 138669, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Sharon Crasta
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, #01-02 Nanos, Singapore 138669, Singapore
| | - Yoganathan Kanagasundaram
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, #01-02 Nanos, Singapore 138669, Singapore
| | - Siew Bee Ng
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, #01-02 Nanos, Singapore 138669, Singapore
| |
Collapse
|
25
|
A novel high-throughput approach for transforming filamentous fungi employing a droplet-based microfluidic platform. N Biotechnol 2022; 72:149-158. [PMID: 36442794 DOI: 10.1016/j.nbt.2022.11.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/27/2022]
Abstract
Droplet-based microfluidic technology is a powerful tool for single-cell cultivation and rapid isolation of bacteria, yeasts and algae. However, it has been of limited use for studies of filamentous fungi due to the fast growth of their branched hyphae. The long regeneration time for fungal protoplasts and low-throughput screening methods are inherent problems for current genetic transformation techniques. Therefore, we have developed a novel droplet-based method for the filamentous fungus Trichoderma reesei expressing green fluorescent protein (GFP) as a marker. This approach presented several outstanding advantages over the traditional transformation method, including a 7-fold reduction in time for T. reesei protoplast regeneration, an 8-fold increase in regeneration frequency, and a screening speed of up to 8,000 droplets min-1. In this study, we encapsulated and incubated the gfp-transformed T. reesei protoplasts in droplets for 24 h, screened the droplets in a high-throughput assay, and eventually collected a transformant library with over 96 % of the candidates transformed with the marker gene. This versatile approach should make fungi more amenable to genetic manipulation and encourage strain improvements for industrial applications.
Collapse
|
26
|
Umemura M, Tamano K. How to improve the production of peptidyl compounds in filamentous fungi. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:1085624. [PMID: 37746201 PMCID: PMC10512285 DOI: 10.3389/ffunb.2022.1085624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/02/2022] [Indexed: 09/26/2023]
Abstract
Peptidyl compounds produced by filamentous fungi, which are nonribosomal peptides (NRPs) and ribosomally synthesized and post-translationally modified peptides (RiPPs), are rich sources of bioactive compounds with a wide variety of structures. Some of these peptidyl compounds are useful as pharmaceuticals and pesticides. However, for industrial use, their low production often becomes an obstacle, and various approaches have been challenged to overcome this weakness. In this article, we summarize the successful attempts to increase the production of NRPs and RiPPs in filamentous fungi and present our perspectives on how to improve it further.
Collapse
Affiliation(s)
- Maiko Umemura
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Koichi Tamano
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Japan
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| |
Collapse
|
27
|
Baldin C, Kühbacher A, Merschak P, Wagener J, Gsaller F. Modular Inducible Multigene Expression System for Filamentous Fungi. Microbiol Spectr 2022; 10:e0367022. [PMID: 36350143 PMCID: PMC9769661 DOI: 10.1128/spectrum.03670-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022] Open
Abstract
Inducible promoters are indispensable elements when considering the possibility to modulate gene expression on demand. Desirable traits of conditional expression systems include their capacity for tight downregulation, high overexpression, and in some instances for fine-tuning, to achieve a desired product's stoichiometry. Although the number of inducible systems is slowly increasing, suitable promoters comprising these features are rare. To date, the concomitant use of multiple regulatable promoter platforms for controlled multigene expression has been poorly explored. This work provides pioneer work in the human pathogenic fungus Aspergillus fumigatus, wherein we investigated different inducible systems, elucidated three candidate promoters, and proved for the first time that up to three systems can be used simultaneously without interfering with each other. Proof of concept was obtained by conditionally expressing three antifungal drug targets within the ergosterol biosynthetic pathway under the control of the xylose-inducible PxylP system, the tetracycline-dependent Tet-On system, and the thiamine-repressible PthiA system. IMPORTANCE In recent years, inducible promoters have gained increasing interest for industrial or laboratory use and have become key instruments for protein expression, synthetic biology, and metabolic engineering. Constitutive, high-expressing promoters can be used to achieve high expression yields; however, the continuous overexpression of specific proteins can lead to an unpredictable metabolic burden. To prevent undesirable effects on the expression host's metabolism, the utilization of tunable systems that allow expression of a gene product on demand is indispensable. Here, we elucidated several excellent tunable promoter systems and verified that each can be independently induced in a single strain to ultimately develop a unique conditional multigene expression system. This highly efficient, modular toolbox has the potential to significantly advance applications in fundamental as well as applied research in which regulatable expression of several genes is a key requirement.
Collapse
Affiliation(s)
- Clara Baldin
- Institute of Molecular Biology, Biocenter Innsbruck, Medical University of Innsbruck, Innsbruck, Austria
| | - Alexander Kühbacher
- Institute of Molecular Biology, Biocenter Innsbruck, Medical University of Innsbruck, Innsbruck, Austria
| | - Petra Merschak
- Institute of Molecular Biology, Biocenter Innsbruck, Medical University of Innsbruck, Innsbruck, Austria
| | - Johannes Wagener
- Department of Clinical Microbiology, School of Medicine, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Fabio Gsaller
- Institute of Molecular Biology, Biocenter Innsbruck, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
28
|
Hu QY, Pu XJ, Li GH, Li CQ, Lei HM, Zhang KQ, Zhao PJ. Identification and Mechanism of Action of the Global Secondary Metabolism Regulator SaraC in Stereum hirsutum. Microbiol Spectr 2022; 10:e0262422. [PMID: 36409127 PMCID: PMC9769804 DOI: 10.1128/spectrum.02624-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 11/04/2022] [Indexed: 11/23/2022] Open
Abstract
DNA methylation is an important factor in the regulation of gene expression. In analyzing genomic data of Stereum hirsutum FP-91666, we found a hypothetical bifunctional transcription regulator/O6Meguanine-DNA methyltransferase (named SaraC), which is widely present in both bacteria and fungi, and confirmed that its function in bacteria is mainly for DNA reparation. In this paper, we confirmed that SaraC has the function of DNA binding and demethylation through surface plasma resonance and reaction experiments in vitro. Then, we achieved the overexpression of SaraC (OES) in S. hirsutum, sequenced the methylation and transcription levels of the whole-genome, and further conducted untargeted metabolomics analyses of the OES transformants and the wild type (WT). The results confirmed that the overall-methylation levels of the transformants were significantly downregulated, and various genes related to secondary metabolism were upregulated. Through comparative untargeted metabolomic analyses, it showed that OES SA6 transformant produced a greater number of hybrid polyketides, and we identified 2 novel hybrid polyketides from the fermentation products of SA6. Our results show that overexpression SaraC can effectively stimulate the expression of secondary-metabolism-related genes, which could be a broad-spectrum tool for discovery of metabolites due to its cross-species conservation. IMPORTANCE Fungi are one of the important sources of active compounds. However, in fungi, most of the secondary metabolic biosynthetic gene clusters are weakly expressed or silenced under conventional culture conditions. How to efficiently excavate potential new compounds contained in fungi is becoming a research hot spot in the world. In this study, we found a DNA demethylation protein (SaraC) and confirmed that it is a global secondary metabolism regulator in Stereum hirsutum FP-91666. In the past, SaraC-like proteins were mainly regarded as DNA repair proteins, but our findings proved that it will be a powerful tool for mining secondary metabolites for overexpression of SaraC, which can effectively stimulate the expression of genes related to secondary metabolism.
Collapse
Affiliation(s)
- Qian-Yi Hu
- State key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Xue-Juan Pu
- State key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Guo-Hong Li
- State key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Chun-Qiang Li
- State key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Hong-Mei Lei
- State key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Ke-Qin Zhang
- State key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Pei-Ji Zhao
- State key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| |
Collapse
|
29
|
Ning Y, Xu Y, Jiao B, Lu X. Application of Gene Knockout and Heterologous Expression Strategy in Fungal Secondary Metabolites Biosynthesis. Mar Drugs 2022; 20:705. [PMID: 36355028 PMCID: PMC9699552 DOI: 10.3390/md20110705] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/12/2022] Open
Abstract
The in-depth study of fungal secondary metabolites (SMs) over the past few years has led to the discovery of a vast number of novel fungal SMs, some of which possess good biological activity. However, because of the limitations of the traditional natural product mining methods, the discovery of new SMs has become increasingly difficult. In recent years, with the rapid development of gene sequencing technology and bioinformatics, new breakthroughs have been made in the study of fungal SMs, and more fungal biosynthetic gene clusters of SMs have been discovered, which shows that the fungi still have a considerable potential to produce SMs. How to study these gene clusters to obtain a large number of unknown SMs has been a research hotspot. With the continuous breakthrough of molecular biology technology, gene manipulation has reached a mature stage. Methods such as gene knockout and heterologous expression techniques have been widely used in the study of fungal SM biosynthesis and have achieved good effects. In this review, the representative studies on the biosynthesis of fungal SMs by gene knockout and heterologous expression under the fungal genome mining in the last three years were summarized. The techniques and methods used in these studies were also briefly discussed. In addition, the prospect of synthetic biology in the future under this research background was proposed.
Collapse
Affiliation(s)
| | | | | | - Xiaoling Lu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Naval Medical University, Shanghai 200433, China
| |
Collapse
|
30
|
Chiang YM, Lin TS, Wang CCC. Total Heterologous Biosynthesis of Fungal Natural Products in Aspergillus nidulans. JOURNAL OF NATURAL PRODUCTS 2022; 85:2484-2518. [PMID: 36173392 PMCID: PMC9621686 DOI: 10.1021/acs.jnatprod.2c00487] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Fungal natural products comprise a wide range of bioactive compounds including important drugs and agrochemicals. Intriguingly, bioinformatic analyses of fungal genomes have revealed that fungi have the potential to produce significantly more natural products than what have been discovered so far. It has thus become widely accepted that most biosynthesis pathways of fungal natural products are silent or expressed at very low levels under laboratory cultivation conditions. To tap into this vast chemical reservoir, the reconstitution of entire biosynthetic pathways in genetically tractable fungal hosts (total heterologous biosynthesis) has become increasingly employed in recent years. This review summarizes total heterologous biosynthesis of fungal natural products accomplished before 2020 using Aspergillus nidulans as heterologous hosts. We review here Aspergillus transformation, A. nidulans hosts, shuttle vectors for episomal expression, and chromosomal integration expression. These tools, collectively, not only facilitate the discovery of cryptic natural products but can also be used to generate high-yield strains with clean metabolite backgrounds. In comparison with total synthesis, total heterologous biosynthesis offers a simplified strategy to construct complex molecules and holds potential for commercial application.
Collapse
Affiliation(s)
- Yi-Ming Chiang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90089, United States
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan
| | - Tzu-Shyang Lin
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90089, United States
| | - Clay C C Wang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90089, United States
- Department of Chemistry, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
31
|
Vignolle GA, Mach RL, Mach-Aigner AR, Zimmermann C. FunOrder 2.0 - a method for the fully automated curation of co-evolved genes in fungal biosynthetic gene clusters. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:1020623. [PMID: 37746171 PMCID: PMC10512238 DOI: 10.3389/ffunb.2022.1020623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/03/2022] [Indexed: 09/26/2023]
Abstract
Coevolution is an important biological process that shapes interacting proteins - may it be physically interacting proteins or consecutive enzymes in a metabolic pathway, such as the biosynthetic pathways for secondary metabolites. Previously, we developed FunOrder, a semi-automated method for the detection of co-evolved genes, and demonstrated that FunOrder can be used to identify essential genes in biosynthetic gene clusters from different ascomycetes. A major drawback of this original method was the need for a manual assessment, which may create a user bias and prevents a high-throughput application. Here we present a fully automated version of this method termed FunOrder 2.0. In the improved version, we use several mathematical indices to determine the optimal number of clusters in the FunOrder output, and a subsequent k-means clustering based on the first three principal components of a principal component analysis of the FunOrder output to automatically detect co-evolved genes. Further, we replaced the BLAST tool with the DIAMOND tool as a prerequisite for using larger proteome databases. Potentially, FunOrder 2.0 may be used for the assessment of complete genomes, which has not been attempted yet. However, the introduced changes slightly decreased the sensitivity of this method, which is outweighed by enhanced overall speed and specificity.
Collapse
Affiliation(s)
- Gabriel A. Vignolle
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria
- Center for Health & Bioresources, Competence Unit Molecular Diagnostics, AIT Austrian Institute of Technology GmbH, Vienna, Austria
| | - Robert L. Mach
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria
| | - Astrid R. Mach-Aigner
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria
| | - Christian Zimmermann
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria
| |
Collapse
|
32
|
Production of fungal biomass from oat flour for the use as a nutritious food source. NFS JOURNAL 2022. [DOI: 10.1016/j.nfs.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
33
|
Awasthi MK, Harirchi S, Sar T, Vs V, Rajendran K, Gómez-García R, Hellwig C, Binod P, Sindhu R, Madhavan A, Kumar ANA, Kumar V, Kumar D, Zhang Z, Taherzadeh MJ. Myco-biorefinery approaches for food waste valorization: Present status and future prospects. BIORESOURCE TECHNOLOGY 2022; 360:127592. [PMID: 35809874 DOI: 10.1016/j.biortech.2022.127592] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/30/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
Increases in population and urbanization leads to generation of a large amount of food waste (FW) and its effective waste management is a major concern. But putrescible nature and high moisture content is a major limiting factor for cost effective FW valorization. Bioconversion of FW for the production of value added products is an eco-friendly and economically viable strategy for addressing these issues. Targeting on production of multiple products will solve these issues to greater extent. This article provides an overview of bioconversion of FW to different value added products.
Collapse
Affiliation(s)
- Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China.
| | - Sharareh Harirchi
- Swedish Centre for Resource Recovery, University of Borås, Borås 50190, Sweden
| | - Taner Sar
- Swedish Centre for Resource Recovery, University of Borås, Borås 50190, Sweden
| | - Vigneswaran Vs
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh 522240, India
| | - Karthik Rajendran
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh 522240, India
| | - Ricardo Gómez-García
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Coralie Hellwig
- Swedish Centre for Resource Recovery, University of Borås, Borås 50190, Sweden
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, Kerala, India
| | - Raveendran Sindhu
- Department of Food Technology, TKM Institute of Technology, Kollam 691 505, Kerala, India
| | - Aravind Madhavan
- Rajiv Gandhi Centre for Biotechnology, Jagathy, Thiruvananthapuram 695 014, Kerala, India
| | - A N Anoop Kumar
- Centre for Research in Emerging Tropical Diseases (CRET-D), Department of Zoology, University of Calicut, Malappuram 673635, Kerala, India
| | - Vinod Kumar
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - Deepak Kumar
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, 402 Walters Hall, 1 Forestry Drive, Syracuse, NY 13210, USA
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | | |
Collapse
|
34
|
Hellwig C, Rousta N, Wikandari R, Taherzadeh MJ, Häggblom-Kronlöf G, Bolton K, Rousta K. Household fermentation of leftover bread to nutritious food. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 150:39-47. [PMID: 35792440 DOI: 10.1016/j.wasman.2022.06.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/02/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Resource dependency of food production is aggravated when food is wasted. In Sweden, it is estimated that 37% of the total bread waste is generated at the household level. This work aimed to assess whether fermentation using edible filamentous fungi at households can provide a solution to valorize leftover bread in the production of fungi-based food for consumption. Bread was fermented in household and laboratory conditions with Neurospora intermedia and Rhizopus oligosporus. The results show that bread can be successfully and easily fermented at households, without signs of microbial contamination even though the conditions were not sterile. Fermentation at the household resulted in higher protein, fat and fiber content as well as greater starch reduction compared to the samples fermented under laboratory conditions. Household engagement in bread fermentation will likely depend on values that motivate reusing leftover bread. Perceived values that are expected to motivate engagement vary across individuals, but may include improved nutritional benefits, food waste prevention, convenience, responsibilities, and being part of sustainable societies and actions.
Collapse
Affiliation(s)
- Coralie Hellwig
- Swedish Centre for Resource Recovery, University of Borås, 50190 Borås, Sweden.
| | - Neda Rousta
- Swedish Centre for Resource Recovery, University of Borås, 50190 Borås, Sweden
| | - Rachma Wikandari
- Department of Food and Agricultural Product Technology, Faculty of Agricultural Technology, Gadjah Mada University, Jalan Flora, Bulaksumur, Yogyakarta 55281, Indonesia
| | | | - Greta Häggblom-Kronlöf
- Institute of Neuroscience and Physiology, Section for Health and Rehabilitation, The Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Kim Bolton
- Swedish Centre for Resource Recovery, University of Borås, 50190 Borås, Sweden
| | - Kamran Rousta
- Swedish Centre for Resource Recovery, University of Borås, 50190 Borås, Sweden
| |
Collapse
|
35
|
Pérez-Pérez WD, Carrasco-Navarro U, García‑Estrada C, Kosalková K, Gutiérrez-Ruíz MC, Barrios-González J, Fierro F. bZIP transcription factors PcYap1 and PcRsmA link oxidative stress response to secondary metabolism and development in Penicillium chrysogenum. Microb Cell Fact 2022; 21:50. [PMID: 35366869 PMCID: PMC8977021 DOI: 10.1186/s12934-022-01765-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 02/27/2022] [Indexed: 01/23/2023] Open
Abstract
Abstract
Background
Reactive oxygen species (ROS) trigger different morphogenic processes in filamentous fungi and have been shown to play a role in the regulation of the biosynthesis of some secondary metabolites. Some bZIP transcription factors, such as Yap1, AtfA and AtfB, mediate resistance to oxidative stress and have a role in secondary metabolism regulation. In this work we aimed to get insight into the molecular basis of this regulation in the industrially important fungus Penicillium chrysogenum through the characterization of the role played by two effectors that mediate the oxidative stress response in development and secondary metabolism.
Results
In P. chrysogenum, penicillin biosynthesis and conidiation are stimulated by the addition of H2O2 to the culture medium, and this effect is mediated by the bZIP transcription factors PcYap1 and PcRsmA. Silencing of expression of both proteins by RNAi resulted in similar phenotypes, characterized by increased levels of ROS in the cell, reduced conidiation, higher sensitivity of conidia to H2O2 and a decrease in penicillin production. Both PcYap1 and PcRsmA are able to sense H2O2-generated ROS in vitro and change its conformation in response to this stimulus. PcYap1 and PcRsmA positively regulate the expression of brlA, the first gene of the conidiation central regulatory pathway. PcYap1 binds in vitro to a previously identified regulatory sequence in the promoter of the penicillin gene pcbAB: TTAGTAA, and to a TTACTAA sequence in the promoter of the brlA gene, whereas PcRsmA binds to the sequences TGAGACA and TTACGTAA (CRE motif) in the promoters of the pcbAB and penDE genes, respectively.
Conclusions
bZIP transcription factors PcYap1 and PcRsmA respond to the presence of H2O2-generated ROS and regulate oxidative stress response in the cell. Both proteins mediate ROS regulation of penicillin biosynthesis and conidiation by binding to specific regulatory elements in the promoters of key genes. PcYap1 is identified as the previously proposed transcription factor PTA1 (Penicillin Transcriptional Activator 1), which binds to the regulatory sequence TTAGTAA in the pcbAB gene promoter. This is the first report of a Yap1 protein directly regulating transcription of a secondary metabolism gene. A model describing the regulatory network mediated by PcYap1 and PcRsmA is proposed.
Collapse
|
36
|
Dao TT, Williams K, de Mattos-Shipley KMJ, Song Z, Takebayashi Y, Simpson TJ, Spencer J, Bailey AM, Willis CL. Cladobotric Acids: Metabolites from Cultures of Cladobotryum sp., Semisynthetic Analogues and Antibacterial Activity. JOURNAL OF NATURAL PRODUCTS 2022; 85:572-580. [PMID: 35170975 PMCID: PMC9097583 DOI: 10.1021/acs.jnatprod.1c01063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Indexed: 06/14/2023]
Abstract
Three new polyketide-derived natural products, cladobotric acids G-I (1-3), and six known metabolites (4, 5, 8-11) were isolated from fermentation of the fungus Cladobotryum sp. grown on rice. Their structures were elucidated by extensive spectroscopic methods. Two metabolites, cladobotric acid A (4) and pyrenulic acid A (10), were converted to a series of new products (12-20) by semisynthesis. The antibacterial activities of all these compounds were investigated against the Gram-positive pathogen Staphylococcus aureus including methicillin-susceptible (MSSA), methicillin-resistant and vancomycin-intermediate (MRSA/VISA), and heterogeneous vancomycin-intermediate (hVISA) strains. Results of these antibacterial assays revealed structural features of the unsaturated decalins important for biological activity.
Collapse
Affiliation(s)
- Trong-Tuan Dao
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS, U.K.
| | - Katherine Williams
- School
of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, U.K.
| | - Kate M. J. de Mattos-Shipley
- School
of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, U.K.
| | - Zhongshu Song
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS, U.K.
| | - Yuiko Takebayashi
- School
of Cellular and Molecular Medicine, University
of Bristol, University Walk, Bristol, BS8 1TD, U.K.
| | - Thomas J. Simpson
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS, U.K.
| | - James Spencer
- School
of Cellular and Molecular Medicine, University
of Bristol, University Walk, Bristol, BS8 1TD, U.K.
| | - Andrew M. Bailey
- School
of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, U.K.
| | - Christine L. Willis
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS, U.K.
| |
Collapse
|
37
|
Fierro F, Vaca I, Castillo NI, García-Rico RO, Chávez R. Penicillium chrysogenum, a Vintage Model with a Cutting-Edge Profile in Biotechnology. Microorganisms 2022; 10:573. [PMID: 35336148 PMCID: PMC8954384 DOI: 10.3390/microorganisms10030573] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 12/20/2022] Open
Abstract
The discovery of penicillin entailed a decisive breakthrough in medicine. No other medical advance has ever had the same impact in the clinical practise. The fungus Penicillium chrysogenum (reclassified as P. rubens) has been used for industrial production of penicillin ever since the forties of the past century; industrial biotechnology developed hand in hand with it, and currently P. chrysogenum is a thoroughly studied model for secondary metabolite production and regulation. In addition to its role as penicillin producer, recent synthetic biology advances have put P. chrysogenum on the path to become a cell factory for the production of metabolites with biotechnological interest. In this review, we tell the history of P. chrysogenum, from the discovery of penicillin and the first isolation of strains with high production capacity to the most recent research advances with the fungus. We will describe how classical strain improvement programs achieved the goal of increasing production and how the development of different molecular tools allowed further improvements. The discovery of the penicillin gene cluster, the origin of the penicillin genes, the regulation of penicillin production, and a compilation of other P. chrysogenum secondary metabolites will also be covered and updated in this work.
Collapse
Affiliation(s)
- Francisco Fierro
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Unidad Iztapalapa, Ciudad de México 09340, Mexico
| | - Inmaculada Vaca
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile;
| | - Nancy I. Castillo
- Grupo de Investigación en Ciencias Biológicas y Químicas, Facultad de Ciencias, Universidad Antonio Nariño, Bogotá 110231, Colombia;
| | - Ramón Ovidio García-Rico
- Grupo de Investigación GIMBIO, Departamento De Microbiología, Facultad de Ciencias Básicas, Universidad de Pamplona, Pamplona 543050, Colombia;
| | - Renato Chávez
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170020, Chile;
| |
Collapse
|
38
|
Tamizi AA, Mat-Amin N, Weaver JA, Olumakaiye RT, Akbar MA, Jin S, Bunawan H, Alberti F. Genome Sequencing and Analysis of Trichoderma (Hypocreaceae) Isolates Exhibiting Antagonistic Activity against the Papaya Dieback Pathogen, Erwinia mallotivora. J Fungi (Basel) 2022; 8:246. [PMID: 35330248 PMCID: PMC8949440 DOI: 10.3390/jof8030246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 01/13/2023] Open
Abstract
Erwinia mallotivora, the causal agent of papaya dieback disease, is a devastating pathogen that has caused a tremendous decrease in Malaysian papaya export and affected papaya crops in neighbouring countries. A few studies on bacterial species capable of suppressing E. mallotivora have been reported, but the availability of antagonistic fungi remains unknown. In this study, mycelial suspensions from five rhizospheric Trichoderma isolates of Malaysian origin were found to exhibit notable antagonisms against E. mallotivora during co-cultivation. We further characterised three isolates, Trichoderma koningiopsis UKM-M-UW RA5, UKM-M-UW RA6, and UKM-M-UW RA3a, that showed significant growth inhibition zones on plate-based inhibition assays. A study of the genomes of the three strains through a combination of Oxford nanopore and Illumina sequencing technologies highlighted potential secondary metabolite pathways that might underpin their antimicrobial properties. Based on these findings, the fungal isolates are proven to be useful as potential biological control agents against E. mallotivora, and the genomic data opens possibilities to further explore the underlying molecular mechanisms behind their antimicrobial activity, with potential synthetic biology applications.
Collapse
Affiliation(s)
- Amin-Asyraf Tamizi
- Agri-Omics and Bioinformatics Programme, Biotechnology and Nanotechnology Research Centre, Malaysian Agricultural Research and Development Institute Headquarters (MARDI), Serdang 43400, Selangor, Malaysia; (A.-A.T.); (N.M.-A.)
| | - Noriha Mat-Amin
- Agri-Omics and Bioinformatics Programme, Biotechnology and Nanotechnology Research Centre, Malaysian Agricultural Research and Development Institute Headquarters (MARDI), Serdang 43400, Selangor, Malaysia; (A.-A.T.); (N.M.-A.)
| | - Jack A. Weaver
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK; (J.A.W.); (R.T.O.); (S.J.)
| | - Richard T. Olumakaiye
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK; (J.A.W.); (R.T.O.); (S.J.)
| | - Muhamad Afiq Akbar
- Institute of Systems Biology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia;
| | - Sophie Jin
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK; (J.A.W.); (R.T.O.); (S.J.)
| | - Hamidun Bunawan
- Institute of Systems Biology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia;
| | - Fabrizio Alberti
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK; (J.A.W.); (R.T.O.); (S.J.)
| |
Collapse
|
39
|
Pedersen TB, Nielsen MR, Kristensen SB, Spedtsberg EML, Sørensen T, Petersen C, Muff J, Sondergaard TE, Nielsen KL, Wimmer R, Gardiner DM, Sørensen JL. Speed dating for enzymes! Finding the perfect phosphopantetheinyl transferase partner for your polyketide synthase. Microb Cell Fact 2022; 21:9. [PMID: 35012550 PMCID: PMC8751348 DOI: 10.1186/s12934-021-01734-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/29/2021] [Indexed: 11/24/2022] Open
Abstract
The biosynthetic pathways for the fungal polyketides bikaverin and bostrycoidin, from Fusarium verticillioides and Fusarium solani respectively, were reconstructed and heterologously expressed in S. cerevisiae alongside seven different phosphopantetheinyl transferases (PPTases) from a variety of origins spanning bacterial, yeast and fungal origins. In order to gauge the efficiency of the interaction between the ACP-domains of the polyketide synthases (PKS) and PPTases, each were co-expressed individually and the resulting production of target polyketides were determined after 48 h of growth. In co-expression with both biosynthetic pathways, the PPTase from Fusarium verticillioides (FvPPT1) proved most efficient at producing both bikaverin and bostrycoidin, at 1.4 mg/L and 5.9 mg/L respectively. Furthermore, the remaining PPTases showed the ability to interact with both PKS's, except for a single PKS-PPTase combination. The results indicate that it is possible to boost the production of a target polyketide, simply by utilizing a more optimal PPTase partner, instead of the commonly used PPTases; NpgA, Gsp and Sfp, from Aspergillus nidulans, Brevibacillus brevis and Bacillus subtilis respectively.
Collapse
Affiliation(s)
- Tobias Bruun Pedersen
- Department of Chemistry and Bioscience, Aalborg University Esbjerg, Niels Bohrs Vej 8, 6700, Esbjerg, Denmark
| | - Mikkel Rank Nielsen
- Department of Chemistry and Bioscience, Aalborg University Esbjerg, Niels Bohrs Vej 8, 6700, Esbjerg, Denmark
| | | | - Eva Mie Lang Spedtsberg
- Department of Chemistry and Bioscience, Aalborg University Esbjerg, Niels Bohrs Vej 8, 6700, Esbjerg, Denmark
| | - Trine Sørensen
- Department of Chemistry and Bioscience, Aalborg University Aalborg, Fredrik Bajers Vej 7H, 9220, Aalborg, Denmark
| | - Celine Petersen
- Department of Chemistry and Bioscience, Aalborg University Aalborg, Fredrik Bajers Vej 7H, 9220, Aalborg, Denmark
| | - Jens Muff
- Department of Chemistry and Bioscience, Aalborg University Esbjerg, Niels Bohrs Vej 8, 6700, Esbjerg, Denmark
| | - Teis Esben Sondergaard
- Department of Chemistry and Bioscience, Aalborg University Aalborg, Fredrik Bajers Vej 7H, 9220, Aalborg, Denmark
| | - Kåre Lehmann Nielsen
- Department of Chemistry and Bioscience, Aalborg University Aalborg, Fredrik Bajers Vej 7H, 9220, Aalborg, Denmark
| | - Reinhard Wimmer
- Department of Chemistry and Bioscience, Aalborg University Aalborg, Fredrik Bajers Vej 7H, 9220, Aalborg, Denmark
| | - Donald Max Gardiner
- The University of Queensland, 306 Carmody Rd, St Lucia, Brisbane, QLD, 4072, Australia
| | - Jens Laurids Sørensen
- Department of Chemistry and Bioscience, Aalborg University Esbjerg, Niels Bohrs Vej 8, 6700, Esbjerg, Denmark.
| |
Collapse
|
40
|
Extremophilic Fungi from Marine Environments: Underexplored Sources of Antitumor, Anti-Infective and Other Biologically Active Agents. Mar Drugs 2022; 20:md20010062. [PMID: 35049917 PMCID: PMC8781577 DOI: 10.3390/md20010062] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 02/07/2023] Open
Abstract
Marine environments are underexplored terrains containing fungi that produce a diversity of natural products given unique environmental pressures and nutrients. While bacteria are commonly the most studied microorganism for natural products in the marine world, marine fungi are also abundant but remain an untapped source of bioactive metabolites. Given that their terrestrial counterparts have been a source of many blockbuster antitumor agents and anti-infectives, including camptothecin, the penicillins, and cyclosporin A, marine fungi also have the potential to produce new chemical scaffolds as leads to potential drugs. Fungi are more phylogenetically diverse than bacteria and have larger genomes that contain many silent biosynthetic gene clusters involved in making bioactive compounds. However, less than 5% of all known fungi have been cultivated under standard laboratory conditions. While the number of reported natural products from marine fungi is steadily increasing, their number is still significantly lower compared to those reported from their bacterial counterparts. Herein, we discuss many varied cytotoxic and anti-infective fungal metabolites isolated from extreme marine environments, including symbiotic associations as well as extreme pressures, temperatures, salinity, and light. We also discuss cultivation strategies that can be used to produce new bioactive metabolites or increase their production. This review presents a large number of reported structures though, at times, only a few of a large number of related structures are shown.
Collapse
|
41
|
Qian Z, Liu Q, Cai M. Investigating Fungal Biosynthetic Pathways Using Pichia pastoris as a Heterologous Host. Methods Mol Biol 2022; 2489:115-127. [PMID: 35524048 DOI: 10.1007/978-1-0716-2273-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Fungal natural products have extensive biological activities, and thus have been largely commercialized in the pharmaceutical, agricultural, and food industries. Recently, heterologous expression has become an irreplaceable technique to functionalize fungal biosynthetic gene clusters and synthesize fungal natural products in various chassis organisms. This chapter describes the general method of using Pichia pastoris as a chassis host to investigate fungal biosynthetic pathways.
Collapse
Affiliation(s)
- Zhilan Qian
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai, China
| | - Qi Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai, China
| | - Menghao Cai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.
- Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai, China.
| |
Collapse
|
42
|
Katayama T, Maruyama JI. CRISPR/Cpf1-mediated mutagenesis and gene deletion in industrial filamentous fungi Aspergillus oryzae and Aspergillus sojae. J Biosci Bioeng 2022; 133:353-361. [DOI: 10.1016/j.jbiosc.2021.12.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/19/2021] [Accepted: 12/30/2021] [Indexed: 12/28/2022]
|
43
|
Lin Z, Xu K, Cai G, Liu Y, Li Y, Zhang Z, Nielsen J, Shi S, Liu Z. Characterization of cross-species transcription and splicing from Penicillium to Saccharomyces cerevisiae. J Ind Microbiol Biotechnol 2021; 48:kuab054. [PMID: 34387324 PMCID: PMC8788760 DOI: 10.1093/jimb/kuab054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 08/04/2021] [Indexed: 11/14/2022]
Abstract
Heterologous expression of eukaryotic gene clusters in yeast has been widely used for producing high-value chemicals and bioactive secondary metabolites. However, eukaryotic transcription cis-elements are still undercharacterized, and the cross-species expression mechanism remains poorly understood. Here we used the whole expression unit (including original promoter, terminator, and open reading frame with introns) of orotidine 5'-monophosphate decarboxylases from 14 Penicillium species as a showcase, and analyzed their cross-species expression in Saccharomyces cerevisiae. We found that pyrG promoters from the Penicillium species could drive URA3 expression in yeast, and that inefficient cross-species splicing of Penicillium introns might result in weak cross-species expression. Thus, this study demonstrates cross-species expression from Penicillium to yeast, and sheds light on the opportunities and challenges of cross-species expression of fungi expression units and gene clusters in yeast without refactoring for novel natural product discovery.
Collapse
Affiliation(s)
- Zhenquan Lin
- College of Life Science and Technology, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029 Beijing, China
| | - Kang Xu
- College of Life Science and Technology, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029 Beijing, China
| | - Guang Cai
- College of Life Science and Technology, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029 Beijing, China
| | - Yangqingxue Liu
- College of Life Science and Technology, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029 Beijing, China
| | - Yi Li
- College of Life Science and Technology, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029 Beijing, China
| | - Zhihao Zhang
- College of Life Science and Technology, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029 Beijing, China
| | - Jens Nielsen
- College of Life Science and Technology, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029 Beijing, China
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
- BioInnovation Institute, Ole Maaløes Vej 3, DK 2200 Copenhagen N, Denmark
| | - Shuobo Shi
- College of Life Science and Technology, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029 Beijing, China
| | - Zihe Liu
- College of Life Science and Technology, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029 Beijing, China
| |
Collapse
|
44
|
Rousta N, Ferreira JA, Taherzadeh MJ. Production of L-carnitine-enriched edible filamentous fungal biomass through submerged cultivation. Bioengineered 2021; 12:358-368. [PMID: 33323030 PMCID: PMC8806343 DOI: 10.1080/21655979.2020.1863618] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/09/2020] [Indexed: 02/08/2023] Open
Abstract
The edible filamentous fungi are hot candidate for future supply of functional food and feed with e.g. protein, essential amino acids, and compounds with immunostimulant activity. L-carnitine that plays a crucial role in energy metabolism represents a functional compound normally produced by Zygomycetes filamentous fungus Rhizopus oligosporus in solid-state fermentation. The present study provides the first insights on production of L-carnitine-enriched edible fungal biomass through submerged cultivation of several Ascomycetes and Zygomycetes including Aspergillus oryzae, Neurospora intermedia, Rhizopus oryzae, and Rhizopus oligosporus. A. oryzae with 3 mg L-carnitine yield per gram of fungal biomass, indicates great potential on production of this bioactive compound which is remarkably higher than the other tested fungi in this work and also previous studies. In addition to fungal strain, other factors such as cultivation time and presence of yeast extract were found to play a role. Further studies on submerged growth optimization of A. oryzae in both high-quality recipes and in medium based on low-value substrates are proposed in order to clarify its potential for production of L-carnitine-enriched fungal biomass.
Collapse
Affiliation(s)
- Neda Rousta
- Swedish Centre for Resource Recovery, University of Borås, Borås, Sweden
| | - Jorge A. Ferreira
- Swedish Centre for Resource Recovery, University of Borås, Borås, Sweden
| | | |
Collapse
|
45
|
Biosynthesis and regulation of terpenoids from basidiomycetes: exploration of new research. AMB Express 2021; 11:150. [PMID: 34779947 PMCID: PMC8594250 DOI: 10.1186/s13568-021-01304-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/16/2021] [Indexed: 12/15/2022] Open
Abstract
Basidiomycetes, also known as club fungi, consist of a specific group of fungi. Basidiomycetes produce a large number of secondary metabolites, of which sesquiterpenoids, diterpenoids and triterpenoids are the primary components. However, these terpenoids tend to be present in low amounts, which makes it difficult to meet application requirements. Terpenoid biosynthesis improves the quantity of these secondary metabolites. However, current understanding of the biosynthetic mechanism of terpenoids in basidiomycetes is insufficient. Therefore, this article reviews the latest research on the biosynthesis of terpenoids in basidiomycetes and summarizes the CYP450 involved in the biosynthesis of terpenoids in basidiomycetes. We also propose opportunities and challenges for chassis microbial heterologous production of terpenoids in basidiomycetes and provide a reference basis for the better development of basidiomycete engineering.
Collapse
|
46
|
Meng X, Fang Y, Ding M, Zhang Y, Jia K, Li Z, Collemare J, Liu W. Developing fungal heterologous expression platforms to explore and improve the production of natural products from fungal biodiversity. Biotechnol Adv 2021; 54:107866. [PMID: 34780934 DOI: 10.1016/j.biotechadv.2021.107866] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/04/2021] [Accepted: 11/05/2021] [Indexed: 12/14/2022]
Abstract
Natural products from fungi represent an important source of biologically active metabolites notably for therapeutic agent development. Genome sequencing revealed that the number of biosynthetic gene clusters (BGCs) in fungi is much larger than expected. Unfortunately, most of them are silent or barely expressed under laboratory culture conditions. Moreover, many fungi in nature are uncultivable or cannot be genetically manipulated, restricting the extraction and identification of bioactive metabolites from these species. Rapid exploration of the tremendous number of cryptic fungal BGCs necessitates the development of heterologous expression platforms, which will facilitate the efficient production of natural products in fungal cell factories. Host selection, BGC assembly methods, promoters used for heterologous gene expression, metabolic engineering strategies and compartmentalization of biosynthetic pathways are key aspects for consideration to develop such a microbial platform. In the present review, we summarize current progress on the above challenges to promote research effort in the relevant fields.
Collapse
Affiliation(s)
- Xiangfeng Meng
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No. 72 Binhai Road, Qingdao 266237, PR China
| | - Yu Fang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No. 72 Binhai Road, Qingdao 266237, PR China
| | - Mingyang Ding
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No. 72 Binhai Road, Qingdao 266237, PR China
| | - Yanyu Zhang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No. 72 Binhai Road, Qingdao 266237, PR China
| | - Kaili Jia
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No. 72 Binhai Road, Qingdao 266237, PR China
| | - Zhongye Li
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No. 72 Binhai Road, Qingdao 266237, PR China
| | - Jérôme Collemare
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands.
| | - Weifeng Liu
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No. 72 Binhai Road, Qingdao 266237, PR China.
| |
Collapse
|
47
|
Rousta N, Hellwig C, Wainaina S, Lukitawesa L, Agnihotri S, Rousta K, Taherzadeh MJ. Filamentous Fungus Aspergillus oryzae for Food: From Submerged Cultivation to Fungal Burgers and Their Sensory Evaluation-A Pilot Study. Foods 2021; 10:foods10112774. [PMID: 34829052 PMCID: PMC8623592 DOI: 10.3390/foods10112774] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/04/2021] [Accepted: 11/09/2021] [Indexed: 11/16/2022] Open
Abstract
New food sources are explored to provide food security in sustainable ways. The submerged fermentation of edible filamentous fungi is a promising strategy to provide nutritious and affordable food that is expected to have a low environmental impact. The aim of the current study was to assess the novel use of Aspergillus oryzae cultivated in submerged fermentation on oat flour as a source for food products that do not undergo secondary fermentation or significant downstream processing. The fungus was cultivated in a pilot-scale airlift bioreactor, and the biomass concentration and protein content of the biomass were assessed. A tasting with an untrained panel assessed consumer preferences regarding the taste and texture of minimally processed vegetarian and vegan burger patties made from the biomass, and how the patties fared against established meat-alternative-based patties. The cultivation of Aspergillus oryzae resulted in a yield of 6 g/L dry biomass with a protein content of 37% on a dry weight basis. The taste and texture of the minimally processed fungal burger patties were to the liking of some participants. This was also reflected in diverse feedback provided by the participants. The cultivation of the fungus on oat flour and its utilization in developing burger patties shows its promising potential for the production of nutritious food. The applications of the fungus can be further developed by exploring other favorable ways to texture and season this relatively new functional food source to the preferences of consumers.
Collapse
|
48
|
Vignolle GA, Schaffer D, Zehetner L, Mach RL, Mach-Aigner AR, Derntl C. FunOrder: A robust and semi-automated method for the identification of essential biosynthetic genes through computational molecular co-evolution. PLoS Comput Biol 2021; 17:e1009372. [PMID: 34570757 PMCID: PMC8476034 DOI: 10.1371/journal.pcbi.1009372] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 08/23/2021] [Indexed: 11/24/2022] Open
Abstract
Secondary metabolites (SMs) are a vast group of compounds with different structures and properties that have been utilized as drugs, food additives, dyes, and as monomers for novel plastics. In many cases, the biosynthesis of SMs is catalysed by enzymes whose corresponding genes are co-localized in the genome in biosynthetic gene clusters (BGCs). Notably, BGCs may contain so-called gap genes, that are not involved in the biosynthesis of the SM. Current genome mining tools can identify BGCs, but they have problems with distinguishing essential genes from gap genes. This can and must be done by expensive, laborious, and time-consuming comparative genomic approaches or transcriptome analyses. In this study, we developed a method that allows semi-automated identification of essential genes in a BGC based on co-evolution analysis. To this end, the protein sequences of a BGC are blasted against a suitable proteome database. For each protein, a phylogenetic tree is created. The trees are compared by treeKO to detect co-evolution. The results of this comparison are visualized in different output formats, which are compared visually. Our results suggest that co-evolution is commonly occurring within BGCs, albeit not all, and that especially those genes that encode for enzymes of the biosynthetic pathway are co-evolutionary linked and can be identified with FunOrder. In light of the growing number of genomic data available, this will contribute to the studies of BGCs in native hosts and facilitate heterologous expression in other organisms with the aim of the discovery of novel SMs. The discovery and description of novel fungal secondary metabolites promises novel antibiotics, pharmaceuticals, and other useful compounds. A way to identify novel secondary metabolites is to express the corresponding genes in a suitable expression host. Consequently, a detailed knowledge or an accurate prediction of these genes is necessary. In fungi, the genes are co-localized in so-called biosynthetic gene clusters. Notably, the clusters may also contain genes that are not necessary for the biosynthesis of the secondary metabolites, so-called gap genes. We developed a method to detect co-evolved genes within the clusters and demonstrated that essential genes are co-evolving and can thus be differentiated from the gap genes. This adds an additional layer of information, which can support researchers with their decisions on which genes to study and express for the discovery of novel secondary metabolites.
Collapse
Affiliation(s)
- Gabriel A. Vignolle
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria
| | - Denise Schaffer
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria
| | - Leopold Zehetner
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria
| | - Robert L. Mach
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria
| | - Astrid R. Mach-Aigner
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria
| | - Christian Derntl
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria
- * E-mail:
| |
Collapse
|
49
|
Beck C, Blin K, Gren T, Jiang X, Mohite OS, Palazzotto E, Tong Y, Charusanti P, Weber T. Metabolic Engineering of Filamentous Actinomycetes. Metab Eng 2021. [DOI: 10.1002/9783527823468.ch17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
50
|
Khoshbakht M, Srey J, Adpressa DA, Jagels A, Loesgen S. Precursor-Directed Biosynthesis of Aminofulvenes: New Chalanilines from Endophytic Fungus Chalara sp. Molecules 2021; 26:4418. [PMID: 34361574 PMCID: PMC8347292 DOI: 10.3390/molecules26154418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/17/2021] [Accepted: 07/19/2021] [Indexed: 01/02/2023] Open
Abstract
The plant endophyte Chalara sp. is able to biotransform the epigenetic modifier vorinostat to form unique, aniline-containing polyketides named chalanilines. Here, we sought to expand the chemical diversity of chalaniline A-type molecules by changing the aniline moiety in the precursor vorinostat. In total, twenty-three different vorinostat analogs were prepared via two-step synthesis, and nineteen were incorporated by the fungus into polyketides. The highest yielding substrates were selected for large-scale precursor-directed biosynthesis and five novel compounds, including two fluorinated chalanilines, were isolated, purified, and structurally characterized. Structure elucidation relied on 1D and 2D NMR techniques and was supported by low- and high-resolution mass spectrometry. All compounds were tested for their bioactivity but were not active in antimicrobial or cell viability assays. Aminofulvene-containing natural products are rare, and this high-yielding, precursor-directed process allows for the diversification of this class of compounds.
Collapse
Affiliation(s)
- Mahsa Khoshbakht
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA; (M.K.); (J.S.); (D.A.A.)
| | - Jason Srey
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA; (M.K.); (J.S.); (D.A.A.)
| | - Donovon A. Adpressa
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA; (M.K.); (J.S.); (D.A.A.)
| | - Annika Jagels
- Whitney Laboratory for Marine Bioscience, Department of Chemistry, University of Florida, Gainesville, FL 32080, USA;
| | - Sandra Loesgen
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA; (M.K.); (J.S.); (D.A.A.)
- Whitney Laboratory for Marine Bioscience, Department of Chemistry, University of Florida, Gainesville, FL 32080, USA;
| |
Collapse
|