1
|
Wilson JS, Fortier LC, Fagan RP, Bullough PA. Molecular mechanism of bacteriophage contraction structure of an S-layer-penetrating bacteriophage. Life Sci Alliance 2025; 8:e202403088. [PMID: 40139691 PMCID: PMC11948020 DOI: 10.26508/lsa.202403088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 03/03/2025] [Accepted: 03/04/2025] [Indexed: 03/29/2025] Open
Abstract
The molecular details of phage tail contraction and bacterial cell envelope penetration remain poorly understood and are completely unknown for phages infecting bacteria enveloped by proteinaceous S-layers. Here, we reveal the extended and contracted atomic structures of an intact contractile-tailed phage (φCD508) that binds to and penetrates the protective S-layer of the Gram-positive human pathogen Clostridioides difficile The tail is unusually long (225 nm), and it is also notable that the tail contracts less than those studied in related contractile injection systems such as the model phage T4 (∼20% compared with ∼50%). Surprisingly, we find no evidence of auxiliary enzymatic domains that other phages exploit in cell wall penetration, suggesting that sufficient energy is released upon tail contraction to penetrate the S-layer and the thick cell wall without enzymatic activity. Instead, the unusually long tail length, which becomes more flexible upon contraction, likely contributes toward the required free energy release for envelope penetration.
Collapse
Affiliation(s)
- Jason S Wilson
- Molecular Microbiology, School of Biosciences, University of Sheffield, Sheffield, UK
| | - Louis-Charles Fortier
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Canada
| | - Robert P Fagan
- Molecular Microbiology, School of Biosciences, University of Sheffield, Sheffield, UK
- The Florey Institute, University of Sheffield, Sheffield, UK
| | - Per A Bullough
- Molecular Microbiology, School of Biosciences, University of Sheffield, Sheffield, UK
- The Florey Institute, University of Sheffield, Sheffield, UK
| |
Collapse
|
2
|
Zhang D, Jiao R, Cheng B, Zhang X, Chen H, Li H, Cheng X, Ling N, Ye Y. Prevalence of hypervirulent Klebsiella pneumoniae and application of the novel Klebsiella phage vB_KpnP_D39 for biocontrol of serotypes K1, K2, and K57 in prepared food-related samples. Int J Food Microbiol 2025; 435:111170. [PMID: 40132242 DOI: 10.1016/j.ijfoodmicro.2025.111170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 03/02/2025] [Accepted: 03/20/2025] [Indexed: 03/27/2025]
Abstract
In recent years, the contamination of Klebsiella pneumoniae has raised significant concerns about the potential risks to human health. The presence of K. pneumoniae in prepared food-related samples and efficient control is of importance for ensuring food safety. In this study, 300 samples were collected from markets in Hefei, China, and 45 K. pneumoniae isolates were isolated from aquatic products (n = 30), vegetables (n = 9), and ready-to-eat foods (n = 6), respectively. Among these isolates, the capsular serotypes K1, K2, and K57 accounted for the highest percentage, totaling 33.33 % (15/45), and the predominant sequence types were ST23, ST412, and ST11. Additionally, twenty-six isolates (26.9 %) were identified as hypervirulent K. pneumoniae (hvKp), and all were multidrug-resistant (MDR). Notably, the strains carrying iucA generate higher levels of siderophores compared to those that were negative for iucA (P < 0.01). Furthermore, a novel lytic phage vB_KpnP_D39 (D39), which specifically targets multiple hypervirulent capsular serotypes (K1, K2, and K57), was isolated from sewage samples collected from an effluent treatment plant in Hefei, China. D39 maintained highly lytic activity over a pH range of 3.0 to 11.0 and from 20 to 60 °C. Using transmission electron microscopy, a typical podovirus morphotype of D39 was observed. Genomic analysis indicated that D39 belongs to a novel species within genus Przondovirus, and genes associated with virulence and antibiotic resistance were not identified. In practical applications, D39 has been confirmed to significantly destroy biofilm formation and effectively prevent contamination by K. pneumoniae in food production. These findings provide information about the contamination of prepared food-related samples by MDR-hvKp, and a potential biocontrol agent for prevention and control.
Collapse
Affiliation(s)
- Diwei Zhang
- School of Food Science and Engineering, Engineering Research Center of Bio-Process, Ministry of Education, Key Laboratory for Animal Food Green Manufacturing and Resource Mining of Anhui Province, Hefei University of Technology, Hefei 230009, China
| | - Rui Jiao
- School of Food Science and Engineering, Engineering Research Center of Bio-Process, Ministry of Education, Key Laboratory for Animal Food Green Manufacturing and Resource Mining of Anhui Province, Hefei University of Technology, Hefei 230009, China
| | - Bin Cheng
- School of Food Science and Engineering, Engineering Research Center of Bio-Process, Ministry of Education, Key Laboratory for Animal Food Green Manufacturing and Resource Mining of Anhui Province, Hefei University of Technology, Hefei 230009, China
| | - Xiyan Zhang
- School of Food Science and Engineering, Engineering Research Center of Bio-Process, Ministry of Education, Key Laboratory for Animal Food Green Manufacturing and Resource Mining of Anhui Province, Hefei University of Technology, Hefei 230009, China
| | - Hanfang Chen
- Provincial Key Laboratory of Microbial Safety and Health, Institute of Microbiology, Academy of Sciences, Guangzhou 510070, China
| | - Hui Li
- School of Food Science and Engineering, Engineering Research Center of Bio-Process, Ministry of Education, Key Laboratory for Animal Food Green Manufacturing and Resource Mining of Anhui Province, Hefei University of Technology, Hefei 230009, China
| | - Xiangyu Cheng
- School of Food Science and Engineering, Engineering Research Center of Bio-Process, Ministry of Education, Key Laboratory for Animal Food Green Manufacturing and Resource Mining of Anhui Province, Hefei University of Technology, Hefei 230009, China
| | - Na Ling
- School of Food Science and Engineering, Engineering Research Center of Bio-Process, Ministry of Education, Key Laboratory for Animal Food Green Manufacturing and Resource Mining of Anhui Province, Hefei University of Technology, Hefei 230009, China; Provincial Key Laboratory of Microbial Safety and Health, Institute of Microbiology, Academy of Sciences, Guangzhou 510070, China.
| | - Yingwang Ye
- School of Food Science and Engineering, Engineering Research Center of Bio-Process, Ministry of Education, Key Laboratory for Animal Food Green Manufacturing and Resource Mining of Anhui Province, Hefei University of Technology, Hefei 230009, China; Provincial Key Laboratory of Microbial Safety and Health, Institute of Microbiology, Academy of Sciences, Guangzhou 510070, China.
| |
Collapse
|
3
|
Kim J, Liao X, Zhang S, Ding T, Ahn J. Application of phage-derived enzymes for enhancing food safety. Food Res Int 2025; 209:116318. [PMID: 40253159 DOI: 10.1016/j.foodres.2025.116318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 03/13/2025] [Accepted: 03/17/2025] [Indexed: 04/21/2025]
Abstract
Foodborne pathogens such as Salmonella, Escherichia coli, Listeria monocytogenes, and Staphylococcus aureus present significant public health threats, causing widespread illness and economic loss. Contaminated food is responsible for an estimated 600 million illnesses and 420,000 deaths annually, with low- and middle-income countries facing losses of approximately $110 billion each year. Traditional methods to ensure food safety, including antimicrobials and preservatives, can contribute to the development of antimicrobial-resistant bacteria, highlighting the need for alternative strategies. Bacteriophages are gaining renewed attention as promising alternatives to conventional antibiotics due to their specifically target bacteria and their lower potential for causing adverse effects. However, their practical application is limited by challenges such as narrow host ranges, the emergence of phage-resistant bacteria, and stability issues. Recent research has shifted focus towards phage-derived enzymes, including endolysins, depolymerases, holins, and spanins, which are involved in the phage lytic cycle. These enzymes, as potential approaches to food safety, have demonstrated significant efficacy in targeting and lysing bacterial pathogens, making them suitable for controlling foodborne pathogens and preventing foodborne illnesses. Phage-derived enzymes also show promise in controlling biofilms and enhancing antimicrobial activity when combined with other antimicrobials. Therefore, this review emphasizes recent advancements in the use of the phage-derived enzymes for food safety, addresses their limitations, and suggests strategies to enhance their effectiveness in food processing and storage environments.
Collapse
Affiliation(s)
- Junhwan Kim
- Department of Biomedical Science, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Xinyu Liao
- Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang 314100, China
| | - Song Zhang
- Department of Biomedical Science, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Tian Ding
- Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang 314100, China; College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Juhee Ahn
- Department of Biomedical Science, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea; Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang 314100, China.
| |
Collapse
|
4
|
Unverdorben LV, Pirani A, Gontjes K, Moricz B, Holmes CL, Snitkin ES, Bachman MA. Klebsiella pneumoniae evolution in the gut leads to spontaneous capsule loss and decreased virulence potential. mBio 2025:e0236224. [PMID: 40162782 DOI: 10.1128/mbio.02362-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 02/26/2025] [Indexed: 04/02/2025] Open
Abstract
Klebsiella pneumoniae (Kp) is an opportunistic pathogen that poses a major threat in healthcare settings. The gut is a primary Kp reservoir in hospitalized patients, and colonization is a major risk factor for Kp infection. The stability of virulence determinants such as capsule and lipopolysaccharide during gut colonization is largely unexplored. In a murine gut colonization model, we demonstrated that spontaneous capsule loss occurs rapidly but varies by Kp pathotype. A classical Kp strain and a carbapenem-resistant strain of the epidemic sequence type 258 lineage had significant levels (median of 25% and 9.5%, respectively) of capsule loss. In contrast, a hypervirulent strain did not lose capsule to a significant degree (median 0.1%), despite readily losing capsule during in vitro passage. Insertion sequences (ISs) or mutations were found disrupting capsule operon genes of all isolates and in O-antigen encoding genes in a subset of isolates. Mouse-derived acapsular isolates from two pathotypes had significant fitness defects in a murine pneumonia model. Removal of the IS in the capsule operon in a mouse-derived acapsular classical isolate restored capsule production to wild-type levels. Genomic analysis of Klebsiella rectal isolates from hospitalized patients found that 18 of 245 strains (7%) had at least one IS disrupting the capsule operon. Combined, these data indicate that Kp capsule loss can occur during gut colonization in a strain-dependent manner, not only impacting strain virulence but also potentially altering patient infection risk. IMPORTANCE In hospitalized patients, gut colonization by the bacterial pathogen Klebsiella pneumoniae (Kp) is a major risk factor for the development of infections. The genome of Kp varies across isolates, and the presence of certain virulence genes is associated with the ability to progress from colonization to infection. Here, we identified that virulence genes encoding capsule and lipopolysaccharide, which normally protect bacteria from the immune system, are disrupted by mutations during murine gut colonization. These mutations occurred frequently in some isolates of Kp but not others, and these virulence gene mutants from the gut were defective in causing infections. An analysis of 245 human gut isolates demonstrated that this capsule loss also occurred in patients. This work highlights that mutations that decrease virulence occur during gut colonization, the propensity for these mutations differs by isolate, and that stability of virulence genes is important to consider when assessing infection risk in patients.
Collapse
Affiliation(s)
- Lavinia V Unverdorben
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Ali Pirani
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Kyle Gontjes
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Bridget Moricz
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Caitlyn L Holmes
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Evan S Snitkin
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Michael A Bachman
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
5
|
Jiao X, Wang M, Liu Y, Yang S, Yu Q, Qiao J. Bacteriophage-derived depolymerase: a review on prospective antibacterial agents to combat Klebsiella pneumoniae. Arch Virol 2025; 170:70. [PMID: 40057622 DOI: 10.1007/s00705-025-06257-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 12/21/2024] [Indexed: 03/29/2025]
Abstract
Klebsiella pneumoniae is a Gram-negative bacterium that colonizes mucosal surfaces and is a common cause of nosocomial infections. The emergence of antimicrobial resistance in K. pneumoniae, particularly carbapenem-resistant strains, poses a significant threat to human health, with high mortality rates and healthcare costs. Another major problem is that hypervirulent K. pneumoniae tends to form biofilms. Bacteriophage-derived depolymerases, a class of enzymes that degrade diverse bacterial surface carbohydrates, have been exploited as antibiofilm and antimicrobial adjuvants because of their high stability, specificity, strong antimicrobial activity, and low incidence of bacterial resistance. This review presents a summary of the structure and properties of depolymerase, as well as an overview of both in vitro and in vivo studies of depolymerase therapy for multidrug-resistant or biofilm-forming K. pneumoniae infections. These studies employed a range of approaches, including utilizing a single depolymerase or combinations of depolymerase and phages or antibiotics. Furthermore, this review outlines the current challenges facing depolymerase therapy and potential future approaches for treating K. pneumoniae infections.
Collapse
Affiliation(s)
- Xin Jiao
- School of Medical Laboratory, Shandong Second Medical University, Weifang, 261053, Shandong, People's Republic of China
| | - Menglu Wang
- School of Medical Laboratory, Shandong Second Medical University, Weifang, 261053, Shandong, People's Republic of China
| | - Yanxia Liu
- School of Medical Laboratory, Shandong Second Medical University, Weifang, 261053, Shandong, People's Republic of China
- Department of Clinical Laboratory, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, Shandong, People's Republic of China
| | - Shuqi Yang
- School of Medical Laboratory, Shandong Second Medical University, Weifang, 261053, Shandong, People's Republic of China
| | - Qianhui Yu
- School of Medical Laboratory, Shandong Second Medical University, Weifang, 261053, Shandong, People's Republic of China
| | - Jinjuan Qiao
- School of Medical Laboratory, Shandong Second Medical University, Weifang, 261053, Shandong, People's Republic of China.
- Institutional Key Laboratory of Clinical Laboratory Diagnostics, 12th 5-Year Project of Shandong Province, Shandong Second Medical University, Weifang, 261053, Shandong, People's Republic of China.
| |
Collapse
|
6
|
Hao Q, Bai Y, Bao X, Wang S, Hao Y, Shao R, Kang X, Zhang L, Lyu M, Wang S. Screening and Identification of Vibrio cholerae Bacteriophages VC3 and Its Role in the Inhibition and Removal of Biofilms in Seafood. Foodborne Pathog Dis 2025. [PMID: 40040479 DOI: 10.1089/fpd.2024.0106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025] Open
Abstract
As biological control agents, bacteriophages can both inhibit the pathogenic bacteria and remove the bacterial biofilms from the seafood. Vibrio cholerae is the pathogen of cholera and the severe infection could lead watery diarrhea and even death. The double-layer agar plate method was used to isolate and screen the V. cholerae bacteriophages from the samples of aquaculture water and sewage. Purified bacteriophages were examined through genome sequencing, as well as morphological and biological characterizations. Among the isolated bacteriophages, bacteriophage VC3 was found to be a long-tailed bacteriophage. Whole-genome sequencing showed that the full length of VC3 genome was 27,645 bp. It was a circular dsDNA, with 40.37% G + C content. The optimal multiplicity of infection was 1, the incubation period was 20 min, the burst period was 40 min, and the lysis volume was 73 PFU/cell. Bacteriophage VC3 exhibited good activity under low temperatures and neutral pH conditions. Bacteriophage VC3 could effectively inhibit and eliminate the biofilm of V. cholerae. In addition, bacteriophage VC3 significantly inhibited V. cholerae in fish fillets and shrimp meat. At the same time, it also showed lytic activity against 9 pathogenic bacteria, indicating that it has the potential to inhibit a variety of pathogenic bacteria.
Collapse
Affiliation(s)
- Qingfang Hao
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Yue Bai
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Xiuli Bao
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Siyuan Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Yue Hao
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Ruxue Shao
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Xinxin Kang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Lei Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Mingsheng Lyu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Shujun Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| |
Collapse
|
7
|
Hu H, Popp PF, Hughes TCD, Roa-Eguiara A, Rutbeek NR, Martin FJO, Hendriks IA, Payne LJ, Yan Y, Humolli D, Klein-Sousa V, Songailiene I, Wang Y, Nielsen ML, Berry RM, Harms A, Erhardt M, Jackson SA, Taylor NMI. Structure and mechanism of the Zorya anti-phage defence system. Nature 2025; 639:1093-1101. [PMID: 39662505 PMCID: PMC11946911 DOI: 10.1038/s41586-024-08493-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 12/04/2024] [Indexed: 12/13/2024]
Abstract
Zorya is a recently identified and widely distributed bacterial immune system that protects bacteria from viral (phage) infections. Three Zorya subtypes have been identified, each containing predicted membrane-embedded ZorA-ZorB (ZorAB) complexes paired with soluble subunits that differ among Zorya subtypes, notably ZorC and ZorD in type I Zorya systems1,2. Here we investigate the molecular basis of Zorya defence using cryo-electron microscopy, mutagenesis, fluorescence microscopy, proteomics and functional studies. We present cryo-electron microscopy structures of ZorAB and show that it shares stoichiometry and features of other 5:2 inner membrane ion-driven rotary motors. The ZorA5B2 complex contains a dimeric ZorB peptidoglycan-binding domain and a pentameric α-helical coiled-coil tail made of ZorA that projects approximately 70 nm into the cytoplasm. We also characterize the structure and function of the soluble Zorya components ZorC and ZorD, finding that they have DNA-binding and nuclease activity, respectively. Comprehensive functional and mutational analyses demonstrate that all Zorya components work in concert to protect bacterial cells against invading phages. We provide evidence that ZorAB operates as a proton-driven motor that becomes activated after sensing of phage invasion. Subsequently, ZorAB transfers the phage invasion signal through the ZorA cytoplasmic tail to recruit and activate the soluble ZorC and ZorD effectors, which facilitate the degradation of the phage DNA. In summary, our study elucidates the foundational mechanisms of Zorya function as an anti-phage defence system.
Collapse
Affiliation(s)
- Haidai Hu
- Structural Biology of Molecular Machines Group, Protein Structure & Function Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Philipp F Popp
- Institute of Biology/Molecular Microbiology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Thomas C D Hughes
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Aritz Roa-Eguiara
- Structural Biology of Molecular Machines Group, Protein Structure & Function Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicole R Rutbeek
- Structural Biology of Molecular Machines Group, Protein Structure & Function Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Freddie J O Martin
- Structural Biology of Molecular Machines Group, Protein Structure & Function Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ivo Alexander Hendriks
- Proteomics program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Leighton J Payne
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Yumeng Yan
- Structural Biology of Molecular Machines Group, Protein Structure & Function Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Dorentina Humolli
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Victor Klein-Sousa
- Structural Biology of Molecular Machines Group, Protein Structure & Function Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Inga Songailiene
- Structural Biology of Molecular Machines Group, Protein Structure & Function Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Yong Wang
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Michael Lund Nielsen
- Proteomics program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Richard M Berry
- Department of Physics and Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Alexander Harms
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Marc Erhardt
- Institute of Biology/Molecular Microbiology, Humboldt-Universität zu Berlin, Berlin, Germany.
- Max Planck Unit for the Science of Pathogens, Berlin, Germany.
| | - Simon A Jackson
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand.
| | - Nicholas M I Taylor
- Structural Biology of Molecular Machines Group, Protein Structure & Function Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
8
|
Selim HMRM, Gomaa FAM, Alshahrani MY, Morgan RN, Aboshanab KM. Phage therapeutic delivery methods and clinical trials for combating clinically relevant pathogens. Ther Deliv 2025; 16:247-269. [PMID: 39545771 PMCID: PMC11875505 DOI: 10.1080/20415990.2024.2426824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024] Open
Abstract
The ongoing global health crisis caused by multidrug-resistant (MDR) bacteria necessitates quick interventions to introduce new management strategies for MDR-associated infections and antimicrobial agents' resistance. Phage therapy emerges as an antibiotic substitute for its high specificity, efficacy, and safety profiles in treating MDR-associated infections. Various in vitro and in vivo studies denoted their eminent bactericidal and anti-biofilm potential. This review addresses the latest developments in phage therapy regarding their attack strategies, formulations, and administration routes. It additionally discusses and elaborates on the status of phage therapy undergoing clinical trials, and the challenges encountered in their usage, and explores prospects in phage therapy research and application.
Collapse
Affiliation(s)
- Heba Mohammed Refat M. Selim
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, AlMaarefa University, Riyadh, Saudi Arabia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhar University (Girls), Cairo, Egypt
| | - Fatma Alzahraa M. Gomaa
- Department of Pharmacognosy and Medicinal Herbs, Faculty of Pharmacy, Al-Baha University, Al-Baha, Saudi Arabia
| | - Mohammad Y. Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Radwa N. Morgan
- National Centre for Radiation Research and Technology (NCRRT), Drug Radiation Research Department, Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Khaled M. Aboshanab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, University Technology MARA (UiTM), Bandar Puncak Alam, Malaysia
| |
Collapse
|
9
|
Guliy OI, Evstigneeva SS. Bacteria- and Phage-Derived Proteins in Phage Infection. FRONT BIOSCI-LANDMRK 2025; 30:24478. [PMID: 40018916 DOI: 10.31083/fbl24478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/04/2024] [Accepted: 08/07/2024] [Indexed: 03/01/2025]
Abstract
Phages have exerted severe evolutionary pressure on prokaryotes over billions of years, resulting in major rearrangements. Without every enzyme involved in the phage-bacterium interaction being examined; bacteriophages cannot be used in practical applications. Numerous studies conducted in the past few years have uncovered a huge variety of bacterial antiphage defense systems; nevertheless, the mechanisms of most of these systems are not fully understood. Understanding the interactions between bacteriophage and bacterial proteins is important for efficient host cell infection. Phage proteins involved in these bacteriophage-host interactions often arise immediately after infection. Here, we review the main groups of phage enzymes involved in the first stage of viral infection and responsible for the degradation of the bacterial membrane. These include polysaccharide depolymerases (endosialidases, endorhamnosidases, alginate lyases, and hyaluronate lyases), and peptidoglycan hydrolases (ectolysins and endolysins). Host target proteins are inhibited, activated, or functionally redirected by the phage protein. These interactions determine the phage infection of bacteria. Proteins of interest are holins, endolysins, and spanins, which are responsible for the release of progeny during the phage lytic cycle. This review describes the main bacterial and phage enzymes involved in phage infection and analyzes the therapeutic potential of bacteriophage-derived proteins.
Collapse
Affiliation(s)
- Olga I Guliy
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 410049 Saratov, Russia
| | - Stella S Evstigneeva
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 410049 Saratov, Russia
| |
Collapse
|
10
|
Chrzastek K, Seal BS, Kulkarni A, Kapczynski DR. Whole-Genome Shotgun Sequencing from Chicken Clinical Tracheal Samples for Bacterial and Novel Bacteriophage Identification. Vet Sci 2025; 12:162. [PMID: 40005922 PMCID: PMC11861695 DOI: 10.3390/vetsci12020162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/30/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
A whole-genome shotgun sequencing (sWGS) approach was applied to chicken clinical tracheal swab samples during metagenomics investigations to identify possible microorganisms among poultry with respiratory diseases. After applying shotgun sequencing, Ornithobacterium rhinotracheale (ORT) and a putative prophage candidate were found in one of the swab samples. A multi-locus sequence typing (MLST) scheme of the ORT genome involved the adk, aroE, fumC, gdhA, pgi, and pmi genes. Antibiotic resistant analysis demonstrated tetracycline-resistan t ribosomal protection protein, tetQ, the aminoglycoside-(3)-acetyltransferase IV gene, aminoglycoside antibiotic inactivation and macrolide resistance, and the ermX gene in the ORT genome. A putative prophage candidate was predicted using Prophage Hunter and PHAST, while BLAST analyses were utilized to identify genes encoding bacteriophage proteins. Interestingly, genes encoding endolysins were detected in bacteriophage genomes. The gene products encoded in the prophage sequence were most closely related to bacteriophages in the N4-like family among the Authographiviridae in the Caudovirales. This study demonstrates the potential of sWGS for the rapid detection and characterization of etiologic agents found in clinical samples.
Collapse
Affiliation(s)
- Klaudia Chrzastek
- Exotic and Emerging Avian Diseases Research Unit, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture (USDA), 934 College Station Road, Athens, GA 30605, USA
- Center for Translational Antiviral Research, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Bruce S. Seal
- Biology Program, Oregon State University—Cascades, 1500 SW Chandler Avenue, Bend, OR 97702, USA;
| | - Arun Kulkarni
- Georgia Poultry Laboratory Network, 3235 Abit Massey Way, Gainesville, GA 30507, USA;
| | - Darrell R. Kapczynski
- Exotic and Emerging Avian Diseases Research Unit, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture (USDA), 934 College Station Road, Athens, GA 30605, USA
| |
Collapse
|
11
|
Dang J, Yu X, Zhang M, Dang L, Li Z, Shu J. Role of glycosylation in bacterial resistance to carbapenems. World J Microbiol Biotechnol 2025; 41:55. [PMID: 39883281 DOI: 10.1007/s11274-025-04272-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 01/21/2025] [Indexed: 01/31/2025]
Abstract
Carbapenems are a class of β-lactam antibacterial drugs with a broad antibacterial spectrum and strong activity, commonly used to treat serious bacterial infections. However, improper or excessive use of carbapenems can lead to increased bacterial resistance, which is a significant concern as they are often used as last resort for treating multidrug-resistant (MDR) gram-negative bacteria. Confronted with this challenge, it is crucial to comprehensively understand the mechanism of carbapenem resistance to develop effective therapeutic strategies and innovative drugs. In recent years, emerging research on the glycosylation of bacterial proteins has highlighted the crucial role of glycans in various bacterial processes, including carbapenem resistance. Given the limited understanding of bacterial glycosylation, its role in in carbapenem resistance may be more pivotal than currently acknowledged. In this review, we summarize the direct and multifunctional role of glycosylation in bacterial resistance as well as the classical and recently reported mechanisms of bacterial carbapenem resistance, focusing on illuminating the potential role of glycosylation in carbapenem resistance. We also discuss the potential of leveraging this knowledge to develop more effective strategies for combating clinically resistant bacteria.
Collapse
Affiliation(s)
- Jing Dang
- School of Medicine, Faculty of Life Science & Medicine, Northwest University, Xi'an, China
- Laboratory for Functional Glycomics, Faculty of Life Science & Medicine, Northwest University, Xi'an, China
| | - Xinlu Yu
- School of Medicine, Faculty of Life Science & Medicine, Northwest University, Xi'an, China
| | - Mengyuan Zhang
- Laboratory for Functional Glycomics, Faculty of Life Science & Medicine, Northwest University, Xi'an, China
| | - Liuyi Dang
- Laboratory for Functional Glycomics, Faculty of Life Science & Medicine, Northwest University, Xi'an, China
| | - Zheng Li
- Laboratory for Functional Glycomics, Faculty of Life Science & Medicine, Northwest University, Xi'an, China
| | - Jian Shu
- School of Medicine, Faculty of Life Science & Medicine, Northwest University, Xi'an, China.
- Laboratory for Functional Glycomics, Faculty of Life Science & Medicine, Northwest University, Xi'an, China.
- School of Medicine, Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai Beilu, Xi'an, Shaanxi, 710069, China.
| |
Collapse
|
12
|
Jintasakul V, Pattano J, Preeprem S, Mittraparp-Arthorn P. Characterization and genome analysis of lytic Vibrio phage VPK8 with potential in lysing Vibrio parahaemolyticus isolates from clinical and seafood sources. Virol J 2025; 22:21. [PMID: 39885536 PMCID: PMC11783711 DOI: 10.1186/s12985-025-02637-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 01/20/2025] [Indexed: 02/01/2025] Open
Abstract
BACKGROUND Vibrio parahaemolyticus is a marine bacterium causing seafood-associated gastrointestinal illness in humans and acute hepatopancreatic necrosis disease (AHPND) in shrimp. Bacteriophages have emerged as promising biocontrol agents against V. parahaemolyticus. This study characterizes Vibrio phage VPK8, focusing on host specificity, efficiency of plating (EOP) variability across V. parahaemolyticus isolates from diverse sources and other Vibrio species, morphology, genomic features, and bacteriolytic potential. METHODS Vibrio phage VPK8 was isolated from blood cockles in Thailand using a mixed-host approach and purified via the double-layer agar method. Host specificity was evaluated using spot assays and EOP measurements against 120 Vibrio strains, including AHPND-associated, clinical, and seafood isolates. Phage morphology was characterized by transmission electron microscopy (TEM), while genomic features were analyzed using next-generation sequencing. Lytic characteristics, including latent period and burst size, were determined through one-step growth curves, and bacterial growth reduction was evaluated over a 24-h. RESULTS Vibrio phage VPK8 is a lytic phage with a 42,866 bp linear double-stranded genome, G + C content of 49.4%, and 48 coding sequences. Phylogenetic analysis grouped it within the Autographiviridae family, showing 95.96% similarity to Vibrio phage vB_VpaP_MGD1. Viral proteomic analysis placed VPK8 within the Pseudomonadota host group. Spot assays indicated broad lytic activity, but EOP analysis revealed high infectivity in clinical and seafood V. parahaemolyticus isolates, as well as some V. cholerae and V. mimicus strains. TEM revealed an icosahedral head (~ 60 nm) and a short tail. At a multiplicity of infection of 0.01, VPK8 exhibited a latent period of 25 min, a burst size of 115, and effectively inhibited the reference host V. parahaemolyticus PSU5124 within 6 h, maintaining its lytic activity and stability for over 24 h. CONCLUSIONS This study provides a detailed characterization of Vibrio phage VPK8 which exhibits targeted infectivity with high EOP in clinical and seafood V. parahaemolyticus isolates, as well as selected Vibrio species. Its stable lytic performance, rapid replication, and genomic safety suggest its potential for phage-based applications. Further studies should explore its in vivo efficacy and the genetic features contributing to phage resistance mechanisms, enhancing its potential applicability in managing Vibrio-related diseases.
Collapse
Affiliation(s)
- Valalak Jintasakul
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
- Center of Research and Innovation Development of Microbiology for Sustainability (RIMS), Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Jiranan Pattano
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
- Center of Research and Innovation Development of Microbiology for Sustainability (RIMS), Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Sutima Preeprem
- Medical and Industrial Microbiology Program, Faculty of Science Technology and Agriculture, Yala Rajabhat University, Yala, 95000, Thailand
| | - Pimonsri Mittraparp-Arthorn
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand.
- Center of Research and Innovation Development of Microbiology for Sustainability (RIMS), Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand.
| |
Collapse
|
13
|
Kuc-Ciepluch D, Ciepluch K, Augustyniak D, Guła G, Maciejewska B, Kowalik A, Jop E, Drulis-Kawa Z, Arabski M. Exploiting gasdermin-mediated pyroptosis for enhanced antimicrobial activity of phage endolysin against Pseudomonas aeruginosa. mSystems 2025; 10:e0110624. [PMID: 39714210 PMCID: PMC11748493 DOI: 10.1128/msystems.01106-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 12/02/2024] [Indexed: 12/24/2024] Open
Abstract
Pyroptosis is an inflammatory immune response of eukaryotic cells to bacterial lipopolysaccharide (LPS) and other pathological stimuli, leading to the activation of the gasdermin D (GSDMD) and secretion of pore-forming domain GSDMDNterm, facilitating the release of cytokines. Additionally, GSDMDNterm exhibits antibacterial properties through interactions with bacterial outer membranes (OM). We explored alternative antimicrobial strategy to determine whether inducing natural pyroptosis via GSDMD activation by P. aeruginosa LPS could enhance the effectiveness of recombinant phage endopeptidase KP27 (peptidoglycan-degrading enzyme) against P. aeruginosa, enabling penetration through OM and bacterial killing synergistically. Our findings demonstrated that recombinant GSDMD alone exhibited antibacterial effects against wild-type P. aeruginosa with smooth LPS, while recombinant GSDMDNterm efficiently permeabilized both smooth LPS-bearing and O-chain-deficient P. aeruginosa potentially synergizing with endolysin KP27. Transcriptomic analyses revealed the activation of the immune system pathways in response to LPS, mainly in monocytic cells, in contrast to epithelial A549 or HeLa cell lines. LPS-induced pyroptosis in monocytes led to GSDMD cleavage and the release of interleukins, regardless of the nature/origin of the LPS used. However, the pyroptosis stimulation by LPS in the antibacterial assay was not effective enough for bacterial OM permeabilization and enhancement of endolysin activity. We assume that leveraging pyroptosis induction in monocytic cells to augment the bactericidal activity of endolysins may be limited. IMPORTANCE Recombinant GSDMDNterm protein was able to efficiently permeabilize P. aeruginosa outer membranes and increase endolysin activity against bacteria, producing either long LPS O-chains or lack them entirely. The obtained results suggest the limited possibility of using the natural process of pyroptosis occurring in monocytic cells to enhance the bactericidal effect of recombinant phage endolysins against Gram-negative bacteria infection.
Collapse
Affiliation(s)
- Dorota Kuc-Ciepluch
- Division of Medical Biology, Jan Kochanowski University in Kielce, Kielce, Poland
| | - Karol Ciepluch
- Division of Medical Biology, Jan Kochanowski University in Kielce, Kielce, Poland
| | - Daria Augustyniak
- Department of Pathogen Biology and Immunology, University of Wroclaw, Wroclaw, Poland
| | - Grzegorz Guła
- Department of Pathogen Biology and Immunology, University of Wroclaw, Wroclaw, Poland
| | - Barbara Maciejewska
- Department of Pathogen Biology and Immunology, University of Wroclaw, Wroclaw, Poland
| | - Artur Kowalik
- Division of Medical Biology, Jan Kochanowski University in Kielce, Kielce, Poland
- Department of Molecular Diagnostics, Holy Cross Cancer Centre, Kielce, Poland
| | - Ewelina Jop
- Department of Pathogen Biology and Immunology, University of Wroclaw, Wroclaw, Poland
| | - Zuzanna Drulis-Kawa
- Department of Pathogen Biology and Immunology, University of Wroclaw, Wroclaw, Poland
| | - Michał Arabski
- Division of Medical Biology, Jan Kochanowski University in Kielce, Kielce, Poland
| |
Collapse
|
14
|
Dams D, Pas C, Latka A, Drulis-Kawa Z, Fieseler L, Briers Y. A VersaTile Approach to Reprogram the Specificity of the R2-Type Tailocin Towards Different Serotypes of Escherichia coli and Klebsiella pneumoniae. Antibiotics (Basel) 2025; 14:104. [PMID: 39858389 PMCID: PMC11762384 DOI: 10.3390/antibiotics14010104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/17/2024] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Background: Phage tail-like bacteriocins, or tailocins, provide a competitive advantage to producer cells by killing closely related bacteria. Morphologically similar to headless phages, their narrow target specificity is determined by receptor-binding proteins (RBPs). While RBP engineering has been used to alter the target range of a selected R2 tailocin from Pseudomonas aeruginosa, the process is labor-intensive, limiting broader application. Methods: We introduce a VersaTile-driven R2 tailocin engineering and screening platform to scale up RBP grafting. Results: This platform achieved three key milestones: (I) engineering R2 tailocins specific to Escherichia coli serogroups O26, O103, O104, O111, O145, O146, and O157; (II) reprogramming R2 tailocins to target, for the first time, the capsule and a new species, specifically the capsular serotype K1 of E. coli and K11 and K63 of Klebsiella pneumoniae; (III) creating the first bivalent tailocin with a branched RBP and cross-species activity, effective against both E. coli K1 and K. pneumoniae K11. Over 90% of engineered tailocins were effective, with clear pathways for further optimization identified. Conclusions: This work lays the groundwork for a scalable platform for the development of engineered tailocins, marking an important step towards making R2 tailocins a practical therapeutic tool for targeted bacterial infections.
Collapse
Affiliation(s)
- Dorien Dams
- Department of Biotechnology, Ghent University, Valentin Vaerwyckweg 1, 9000 Gent, Belgium; (D.D.); (C.P.); (A.L.)
| | - Célia Pas
- Department of Biotechnology, Ghent University, Valentin Vaerwyckweg 1, 9000 Gent, Belgium; (D.D.); (C.P.); (A.L.)
| | - Agnieszka Latka
- Department of Biotechnology, Ghent University, Valentin Vaerwyckweg 1, 9000 Gent, Belgium; (D.D.); (C.P.); (A.L.)
- Department of Pathogen Biology and Immunology, University of Wroclaw, Przybyszewskiego 63, 51-148 Wroclaw, Poland;
| | - Zuzanna Drulis-Kawa
- Department of Pathogen Biology and Immunology, University of Wroclaw, Przybyszewskiego 63, 51-148 Wroclaw, Poland;
| | - Lars Fieseler
- Institute of Food and Beverage Innovation, Food Microbiology Research Group, Zurich University of Applied Sciences (ZHAW), Einsiedlerstrasse 35, 8820 Wädenswil, Switzerland;
| | - Yves Briers
- Department of Biotechnology, Ghent University, Valentin Vaerwyckweg 1, 9000 Gent, Belgium; (D.D.); (C.P.); (A.L.)
| |
Collapse
|
15
|
Volozhantsev NV, Makarova MA, Kartseva AS, Silkina MV, Krasilnikova VM, Denisenko EA, Borzilov AI, Firstova VV. Immunomodulatory Effect of Phage Depolymerase Dep_kpv74 with Therapeutic Potential Against K2-Hypervirulent Klebsiella pneumoniae. Antibiotics (Basel) 2025; 14:44. [PMID: 39858330 PMCID: PMC11761230 DOI: 10.3390/antibiotics14010044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/05/2025] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
Background: The emergence of multidrug-resistant hypervirulent Klebsiella pneumoniae (hvKp) has made it difficult to treat and control infections caused by this bacterium. Previously, the therapeutic effectiveness of phage-encoded depolymerase Dep_kpv74 in a mouse model of K. pneumoniae-induced thigh soft tissue infection was reported. In this study, the effect of Dep_kpv74 on blood parameters in mice, the proliferation and subpopulation composition of spleen lymphocytes, and the activity and stability of the enzyme at different pH and temperatures were further explored. Results: The stability tests showed that Dep_kpv74 remained active in the temperature range from 8 °C to 55 °C. The optimal pH value for maintaining the activity of Dep_kpv74 ranged from 5.0 to 9.0. The depolymerase was detected in the blood, spleen, and lungs of mice 10 min after intraperitoneal administration, reaching maximum activity values after 1-3 h and maintaining activity a day after administration. The introduction of Dep_kpv74 at the therapeutic dose (10 μg/mouse) or at a 10-fold higher dose did not lead to reliable changes in bloodstream cell content compared with the reference values of intact mice. The biochemical results of the studies indicated that Dep_kpv74 did not exert any toxic effects on liver and kidney functions. The results of the analysis of lymphocyte proliferative activity demonstrated that Dep_kpv74 depolymerase has a mild immunomodulatory effect. Conclusions: Thus, the results of this study provide one more confirmation that depolymerase Dep_kpv74 is a potential candidate for the treatment of infections caused by hvKp expressing K2 capsular polysaccharides.
Collapse
Affiliation(s)
- Nikolay V. Volozhantsev
- State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Russia; (M.A.M.); (A.S.K.); (M.V.S.); (V.M.K.); (E.A.D.); (A.I.B.)
| | | | | | | | | | | | | | - Victoria V. Firstova
- State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Russia; (M.A.M.); (A.S.K.); (M.V.S.); (V.M.K.); (E.A.D.); (A.I.B.)
| |
Collapse
|
16
|
Borzilov AI, Volozhantsev NV, Korobova OV, Kolupaeva LV, Pereskokova ES, Kombarova TI, Shneider MM, Miroshnikov KA, Dyatlov IA, Popova AV. Bacteriophage and Phage-Encoded Depolymerase Exhibit Antibacterial Activity Against K9-Type Acinetobacter baumannii in Mouse Sepsis and Burn Skin Infection Models. Viruses 2025; 17:70. [PMID: 39861859 PMCID: PMC11768871 DOI: 10.3390/v17010070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/31/2024] [Accepted: 01/04/2025] [Indexed: 01/27/2025] Open
Abstract
Acinetobacter baumannii is a widely distributed nosocomial pathogen that causes various acute and chronic infections, particularly in immunocompromised patients. In this study, the activities of the K9-specific virulent phage AM24 and phage-encoded depolymerase DepAPK09 were assessed using in vivo mouse sepsis and burn skin infection models. In the mouse sepsis model, in the case of prevention or early treatment, a single K9-specific phage or recombinant depolymerase injection was able to protect 100% of the mice after parenteral infection with a lethal dose of A. baumannii of the K9-type, with complete eradication of the pathogen. In the case of delayed treatment, mouse survival decreased to 70% when injected with the phage and to 40% when treated with the recombinant enzyme. In the mouse burn skin infection model, the number of A. baumannii cells on the surface of the wound and in the deep layers of the skin decreased by several-fold after treatment with both the K9-specific phage and the recombinant depolymerase. The phage and recombinant depolymerase were highly stable and retained activity under a wide range of temperatures and pH values. The results obtained contribute to expanding our understanding of the in vivo therapeutic potential of specific phages and phage-derived depolymerases interacting with A. baumannii of different capsular types.
Collapse
Affiliation(s)
- Alexander I. Borzilov
- State Research Center for Applied Microbiology and Biotechnology, City District Serpukhov, Moscow Region, 142279 Obolensk, Russia; (A.I.B.); (N.V.V.); (O.V.K.); (L.V.K.); (E.S.P.); (T.I.K.); (I.A.D.)
| | - Nikolay V. Volozhantsev
- State Research Center for Applied Microbiology and Biotechnology, City District Serpukhov, Moscow Region, 142279 Obolensk, Russia; (A.I.B.); (N.V.V.); (O.V.K.); (L.V.K.); (E.S.P.); (T.I.K.); (I.A.D.)
| | - Olga V. Korobova
- State Research Center for Applied Microbiology and Biotechnology, City District Serpukhov, Moscow Region, 142279 Obolensk, Russia; (A.I.B.); (N.V.V.); (O.V.K.); (L.V.K.); (E.S.P.); (T.I.K.); (I.A.D.)
| | - Lyubov V. Kolupaeva
- State Research Center for Applied Microbiology and Biotechnology, City District Serpukhov, Moscow Region, 142279 Obolensk, Russia; (A.I.B.); (N.V.V.); (O.V.K.); (L.V.K.); (E.S.P.); (T.I.K.); (I.A.D.)
| | - Evgenia S. Pereskokova
- State Research Center for Applied Microbiology and Biotechnology, City District Serpukhov, Moscow Region, 142279 Obolensk, Russia; (A.I.B.); (N.V.V.); (O.V.K.); (L.V.K.); (E.S.P.); (T.I.K.); (I.A.D.)
| | - Tatiana I. Kombarova
- State Research Center for Applied Microbiology and Biotechnology, City District Serpukhov, Moscow Region, 142279 Obolensk, Russia; (A.I.B.); (N.V.V.); (O.V.K.); (L.V.K.); (E.S.P.); (T.I.K.); (I.A.D.)
| | - Mikhail M. Shneider
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (M.M.S.); (K.A.M.)
| | - Konstantin A. Miroshnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (M.M.S.); (K.A.M.)
| | - Ivan A. Dyatlov
- State Research Center for Applied Microbiology and Biotechnology, City District Serpukhov, Moscow Region, 142279 Obolensk, Russia; (A.I.B.); (N.V.V.); (O.V.K.); (L.V.K.); (E.S.P.); (T.I.K.); (I.A.D.)
| | - Anastasia V. Popova
- State Research Center for Applied Microbiology and Biotechnology, City District Serpukhov, Moscow Region, 142279 Obolensk, Russia; (A.I.B.); (N.V.V.); (O.V.K.); (L.V.K.); (E.S.P.); (T.I.K.); (I.A.D.)
| |
Collapse
|
17
|
Papayova K, Bocanova L, Bauerova V, Bauer J, Halgasova N, Kajsikova M, Bukovska G. From sequence to function: Exploring biophysical properties of bacteriophage BFK20 lytic transglycosylase domain from the minor tail protein gp15. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2025; 1873:141044. [PMID: 39218139 DOI: 10.1016/j.bbapap.2024.141044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/20/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Bacteriophages have evolved different mechanisms of infection and penetration of bacterial cell walls. In Siphoviridae-like viruses, the inner tail proteins have a pivotal role in these processes and often encode lytic protein domains which increase infection efficiency. A soluble lytic transglycosylase (SLT) domain was identified in the minor tail protein gp15 from the BFK20 bacteriophage. Six fragments containing this SLT domain with adjacent regions of different lengths were cloned, expressed and purified. The biophysical properties of the two best expressing fragments were characterized by nanoDSF and CD spectroscopy, which showed that both fragments had a high refolding ability of 90 %. 3D modeling indicated that the bacteriophage BFK20 SLT domain is structurally similar to lysozyme. The degradation activity of these SLT proteins was evaluated using a lysozyme activity assay. BFK20 might use its transglycosylase activity to allow efficient phage DNA entry into the host cell by degrading bacterial peptidoglycan.
Collapse
Affiliation(s)
- Kristina Papayova
- Department of Genomics and Biotechnology, Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, 845 51 Bratislava, Slovakia.
| | - Lucia Bocanova
- Department of Genomics and Biotechnology, Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, 845 51 Bratislava, Slovakia.
| | - Vladena Bauerova
- Department of Biochemistry and Protein Structure, Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, 845 51 Bratislava, Slovakia.
| | - Jacob Bauer
- Department of Biochemistry and Protein Structure, Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, 845 51 Bratislava, Slovakia.
| | - Nora Halgasova
- Department of Genomics and Biotechnology, Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, 845 51 Bratislava, Slovakia.
| | - Maria Kajsikova
- Department of Genomics and Biotechnology, Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, 845 51 Bratislava, Slovakia.
| | - Gabriela Bukovska
- Department of Genomics and Biotechnology, Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, 845 51 Bratislava, Slovakia.
| |
Collapse
|
18
|
Cheetham MJ, Huo Y, Stroyakovski M, Cheng L, Wan D, Dell A, Santini JM. Specificity and diversity of Klebsiella pneumoniae phage-encoded capsule depolymerases. Essays Biochem 2024; 68:661-677. [PMID: 39668555 DOI: 10.1042/ebc20240015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/26/2024] [Accepted: 12/05/2024] [Indexed: 12/14/2024]
Abstract
Klebsiella pneumoniae is an opportunistic pathogen with significant clinical relevance. K. pneumoniae-targeting bacteriophages encode specific polysaccharide depolymerases with the ability to selectively degrade the highly varied protective capsules, allowing for access to the bacterial cell wall. Bacteriophage depolymerases have been proposed as novel antimicrobials to combat the rise of multidrug-resistant K. pneumoniae strains. These enzymes display extraordinary diversity, and are key determinants of phage host range, however with limited data available our current knowledge of their mechanisms and ability to predict their efficacy is limited. Insight into the resolved structures of Klebsiella-specific capsule depolymerases reveals varied catalytic mechanisms, with the intra-chain cleavage mechanism providing opportunities for recombinant protein engineering. A detailed comparison of the 58 characterised depolymerases hints at structural and mechanistic patterns, such as the conservation of key domains for substrate recognition and phage tethering, as well as diversity within groups of depolymerases that target the same substrate. Another way to understand depolymerase specificity is by analyzing the targeted capsule structures, as these may share similarities recognizable by bacteriophage depolymerases, leading to broader substrate specificities. Although we have only begun to explore the complexity of Klebsiella capsule depolymerases, further research is essential to thoroughly characterise these enzymes. This will be crucial for understanding their mechanisms, predicting their efficacy, and engineering optimized enzymes for therapeutic applications.
Collapse
Affiliation(s)
- Max J Cheetham
- Department of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6AA, U.K
| | - Yunlong Huo
- Department of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6AA, U.K
| | - Maria Stroyakovski
- Department of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6AA, U.K
| | - Li Cheng
- Department of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6AA, U.K
| | - Daniel Wan
- Department of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6AA, U.K
| | - Anne Dell
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, U.K
| | - Joanne M Santini
- Department of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6AA, U.K
| |
Collapse
|
19
|
Thung TY, Hall A, Jati AP, White ME, Bamert RS, Tan KS, Press C, Taiaroa G, Short FL, Dunstan RA, Lithgow T. Genetic variation in individuals from a population of the minimalist bacteriophage Merri-merri-uth nyilam marra-natj driving evolution of the virus. mBio 2024; 15:e0256424. [PMID: 39475328 PMCID: PMC11633184 DOI: 10.1128/mbio.02564-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 09/30/2024] [Indexed: 12/12/2024] Open
Abstract
In a survey of a waterway on Wurundjeri land, two sub-populations of the bacteriophage Merri-merri-uth nyilam marra-natj (phage MMNM) were isolated on a permissive host, Klebsiella B5055 of capsule-type K2, but were distinguished by minor phenotypic differences. The variant phage MMNM(Ala134) showed an inhibited activity against Klebsiella AJ174-2, and this was used as a basis to select for further variation through experimental evolution. Over the course of an evolution experiment, 20 phages that evolved distinct phenotypes in terms of the morphologies of plaques formed when they infected host Klebsiella were subject to whole-genome sequencing. The evolved phages had mutations in a small set of proteins that contribute to the baseplate portion of the phage virion. Phages MMNM and MMNM(Ala134) are minimalist phages, with baseplates formed from only five predicted subunits, akin to other minimalist phages Pam3 and XM1. The homology between all three minimalist phages provided a structural framework to interpret the two classes of mutations derived through evolution in the presence of the semi-permissive host: those that affect the interfacial surfaces between baseplate subunits, and those in a base-plate associated tail-fiber. This study evidences that multiple small mutations can be fixed into a sub-population of phage to provide a basis for phenotypic variation that we suggest could ultimately provide for a shift of virus properties, as an alternative evolutionary scenario to the major genetic events that result in more well-studied evolutionary mechanism of phage mosaicism. IMPORTANCE Bacteriophages (phages) are viruses that prey on bacteria. This study sampled natural phage populations to test the hypothesis that untapped genetic variation within a population can be the basis for the selection of phages to diversify their host-range. Sampling of a freshwater site revealed two populations of the phage Merri-merri-uth nyilam marra-natj (phage MMNM), differing by a variant residue (Val134Ala) in the baseplate protein MMNM_26. This sequence variation modulated bacterial killing in plaques, and further evolution of the phages on a semi-permissive bacterial host led to a new generation of phages with more diverse phenotypes in killing the bacterium Klebsiella pneumoniae.
Collapse
Affiliation(s)
- Tze Y. Thung
- Center to Impact AMR, Monash University, Clayton, Australia
- Infection Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Australia
| | - Alex Hall
- Center to Impact AMR, Monash University, Clayton, Australia
- Infection Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Australia
| | - Afif P. Jati
- Center to Impact AMR, Monash University, Clayton, Australia
- Infection Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Australia
| | - Murray E. White
- Center to Impact AMR, Monash University, Clayton, Australia
- Infection Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Australia
| | - Rebecca S. Bamert
- Center to Impact AMR, Monash University, Clayton, Australia
- Infection Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Australia
| | - Kher Shing Tan
- Center to Impact AMR, Monash University, Clayton, Australia
- Infection Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Australia
| | - Cara Press
- Center to Impact AMR, Monash University, Clayton, Australia
- Infection Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Australia
| | - George Taiaroa
- Department of Microbiology and Immunology, The Peter Doherty Institute, The University of Melbourne, Parkville, Australia
| | - Francesca L. Short
- Center to Impact AMR, Monash University, Clayton, Australia
- Infection Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Australia
| | - Rhys A. Dunstan
- Center to Impact AMR, Monash University, Clayton, Australia
- Infection Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Australia
| | - Trevor Lithgow
- Center to Impact AMR, Monash University, Clayton, Australia
- Infection Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Australia
| |
Collapse
|
20
|
Palma M, Qi B. Advancing Phage Therapy: A Comprehensive Review of the Safety, Efficacy, and Future Prospects for the Targeted Treatment of Bacterial Infections. Infect Dis Rep 2024; 16:1127-1181. [PMID: 39728014 DOI: 10.3390/idr16060092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/13/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Phage therapy, a treatment utilizing bacteriophages to combat bacterial infections, is gaining attention as a promising alternative to antibiotics, particularly for managing antibiotic-resistant bacteria. This study aims to provide a comprehensive review of phage therapy by examining its safety, efficacy, influencing factors, future prospects, and regulatory considerations. The study also seeks to identify strategies for optimizing its application and to propose a systematic framework for its clinical implementation. METHODS A comprehensive analysis of preclinical studies, clinical trials, and regulatory frameworks was undertaken to evaluate the therapeutic potential of phage therapy. This included an in-depth assessment of key factors influencing clinical outcomes, such as infection site, phage-host specificity, bacterial burden, and immune response. Additionally, innovative strategies-such as combination therapies, bioengineered phages, and phage cocktails-were explored to enhance efficacy. Critical considerations related to dosing, including inoculum size, multiplicity of infection, therapeutic windows, and personalized medicine approaches, were also examined to optimize treatment outcomes. RESULTS Phage therapy has demonstrated a favorable safety profile in both preclinical and clinical settings, with minimal adverse effects. Its ability to specifically target harmful bacteria while preserving beneficial microbiota underpins its efficacy in treating a range of infections. However, variable outcomes in some studies highlight the importance of addressing critical factors that influence therapeutic success. Innovative approaches, including combination therapies, bioengineered phages, expanded access to diverse phage banks, phage cocktails, and personalized medicine, hold significant promise for improving efficacy. Optimizing dosing strategies remains a key area for enhancement, with critical considerations including inoculum size, multiplicity of infection, phage kinetics, resistance potential, therapeutic windows, dosing frequency, and patient-specific factors. To support the clinical application of phage therapy, a streamlined four-step guideline has been developed, providing a systematic framework for effective treatment planning and implementation. CONCLUSION Phage therapy offers a highly adaptable, targeted, and cost-effective approach to addressing antibiotic-resistant infections. While several critical factors must be thoroughly evaluated to optimize treatment efficacy, there remains significant potential for improvement through innovative strategies and refined methodologies. Although phage therapy has yet to achieve widespread approval in the U.S. and Europe, its accessibility through Expanded Access programs and FDA authorizations for food pathogen control underscores its promise. Established practices in countries such as Poland and Georgia further demonstrate its clinical feasibility. To enable broader adoption, regulatory harmonization and advancements in production, delivery, and quality control will be essential. Notably, the affordability and scalability of phage therapy position it as an especially valuable solution for developing regions grappling with escalating rates of antibiotic resistance.
Collapse
Affiliation(s)
- Marco Palma
- Institute for Globally Distributed Open Research and Education (IGDORE), 03181 Torrevieja, Spain
- R&D Drug Discovery, Protheragen Inc., Holbrook, NY 11741, USA
| | - Bowen Qi
- Drug Discovery and Development, Creative Biolabs Inc., Shirley, NY 11967, USA
| |
Collapse
|
21
|
Lawal OU, Goodridge L. TSPDB: a curated resource of tailspike proteins with potential applications in phage research. Front Big Data 2024; 7:1437580. [PMID: 39664372 PMCID: PMC11631844 DOI: 10.3389/fdata.2024.1437580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 11/12/2024] [Indexed: 12/13/2024] Open
Affiliation(s)
- Opeyemi U. Lawal
- Canadian Research Institute for Food Safety (CRIFS), Department of Food Science, University of Guelph, Guelph, ON, Canada
| | - Lawrence Goodridge
- Canadian Research Institute for Food Safety (CRIFS), Department of Food Science, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
22
|
Zhao J, Wang J, Zhang C, Xu S, Ren H, Zou L, Ma J, Liu W. Characterization of a Salmonella abortus equi phage 4FS1 and its depolymerase. Front Vet Sci 2024; 11:1496684. [PMID: 39654841 PMCID: PMC11626802 DOI: 10.3389/fvets.2024.1496684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 11/04/2024] [Indexed: 12/12/2024] Open
Abstract
The significant economic losses caused by S. abortus equi in donkey husbandry have increased interest in exploring the potential of phages and their enzymes as control strategies. In this study, a S. abortus equi phage, designated 4FS1, was isolated from sewage at a donkey farm. Transmission electron microscopy (TEM) revealed a typical icosahedral head and a long, non-contractile tail. It exhibited a short latent period of 20 min and a burst size of 160 plaque-forming units (PFU) per cell. It demonstrated a broad host range, infecting 36 out of 60 salmonella strains, with an optimal multiplicity of infection (MOI) of 0.01 for S. abortus equi S1. The phage titer remained stable at 109 PFU/mL between 37°C and 50°C and exceeded 108 PFU/mL at pH from 5.0 to 10.0. After 1 h of UV exposure, the titer remained at 107 PFU/mL and showed no significant variation across NaCl concentrations from 2.5 to 15%. The genome of phage 4FS1 consists of a 42,485 bp linear double-stranded DNA molecule with a G + C content of 49.07%. Of the 56 predicted open reading frames (ORFs), 32 were functional annotated, with no virulence or drug resistance genes identified. ORF36 was predicted to encode a depolymerase responsible for endorhamnosidase activity. Recombinant expression of the Dpo36 protein in prokaryotes significantly reduced biofilm formation and removal. Combined with healthy donkey serum, Dpo36 inhibited bacterial growth in vitro and enhanced the survival rates of mice infected with S. abortus equi. These findings highlight the promising potential of phages and their depolymerases as novel therapeutic agents against S. abortus equi.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Wenhua Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
23
|
Wintachai P, Thaion F, Clokie MRJ, Thomrongsuwannakij T. Isolation and Characterization of a Novel Escherichia Bacteriophage with Potential to Control Multidrug-Resistant Avian Pathogenic Escherichia coli and Biofilms. Antibiotics (Basel) 2024; 13:1083. [PMID: 39596776 PMCID: PMC11590954 DOI: 10.3390/antibiotics13111083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/29/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: Avian pathogenic Escherichia coli (APEC) infection is a significant problem for the global chicken industry, as it decreases animal welfare and is associated with substantial economic losses. Traditionally, APEC infections have been controlled through the use of antibiotics, which has led to an increased prevalence of antibiotic-resistant E. coli. Therefore, developing alternative treatments for APEC infection is crucial. Methods: In this study, an Escherichia phage specific to multidrug-resistant (MDR) APEC, designated as phage vB_EcoP_PW8 (phage vECPW8), was isolated. The morphology, phage adsorption to host cells, one-step growth curve, thermal stability, pH stability, whole-genome sequencing, antibacterial ability, and antibiofilm efficacy of phage vECPW8 were evaluated. Results: The results demonstrated that phage vECPW8 has a Podoviridae morphology and is effective at lysing bacteria. Phage vECPW8 exhibited a high absorption rate to bacterial cells (more than 85% within 10 min) and had a latent period of 20 min, with a burst size of 143 plaque-forming units per cell. Additionally, phage vECPW8 showed good temperature and pH stability. The phage displayed strong antibacterial activity in vitro, and its efficacy in controlling bacteria was confirmed through scanning electron microscopy. Whole-genome sequencing revealed that the phage has a linear genome with 69,579 base pairs. The genome analysis supported the safety of the phage, as no toxin, virulence, or resistance-related genes were detected. Phage vECPW8 was identified as a novel lytic phage in the Gamaleyavirus genus and Schitoviridae family. The phage also demonstrated antibiofilm efficacy by reducing and preventing biofilm formation, as evidenced by biofilm biomass and bacterial cell viability measurements. Conclusions: These results indicate that phage vECPW8 is a promising candidate for the effective treatment of MDR APEC infections in poultry.
Collapse
Affiliation(s)
- Phitchayapak Wintachai
- Bacteriophage Laboratory, Walailak University, Thasala, Nakhon Si Thammarat 80161, Thailand;
- School of Science, Walailak University, Thasala, Nakhon Si Thammarat 80161, Thailand
- Functional Materials and Nanotechnology Center of Excellence, Walailak University, Thasala, Nakhon Si Thammarat 80161, Thailand
| | - Fahsai Thaion
- Bacteriophage Laboratory, Walailak University, Thasala, Nakhon Si Thammarat 80161, Thailand;
- School of Science, Walailak University, Thasala, Nakhon Si Thammarat 80161, Thailand
| | - Martha R. J. Clokie
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK;
| | - Thotsapol Thomrongsuwannakij
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80161, Thailand;
- Centre for One Health, Walailak University, Nakhon Si Thammarat 80161, Thailand
| |
Collapse
|
24
|
Grygiel I, Bajrak O, Wójcicki M, Krusiec K, Jończyk-Matysiak E, Górski A, Majewska J, Letkiewicz S. Comprehensive Approaches to Combatting Acinetobacter baumannii Biofilms: From Biofilm Structure to Phage-Based Therapies. Antibiotics (Basel) 2024; 13:1064. [PMID: 39596757 PMCID: PMC11591314 DOI: 10.3390/antibiotics13111064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024] Open
Abstract
Acinetobacter baumannii-a multidrug-resistant (MDR) pathogen that causes, for example, skin and soft tissue wounds; urinary tract infections; pneumonia; bacteremia; and endocarditis, particularly due to its ability to form robust biofilms-poses a significant challenge in clinical settings. This structure protects the bacteria from immune responses and antibiotic treatments, making infections difficult to eradicate. Given the rise in antibiotic resistance, alternative therapeutic approaches are urgently needed. Bacteriophage-based strategies have emerged as a promising solution for combating A. baumannii biofilms. Phages, which are viruses that specifically infect bacteria, offer a targeted and effective means of disrupting biofilm and lysing bacterial cells. This review explores the current advancements in bacteriophage therapy, focusing on its potential for treating A. baumannii biofilm-related infections. We described the mechanisms by which phages interact with biofilms, the challenges in phage therapy implementation, and the strategies being developed to enhance its efficacy (phage cocktails, engineered phages, combination therapies with antibiotics). Understanding the role of bacteriophages in both biofilm disruption and in inhibition of its forming could pave the way for innovative treatments in combating MDR A. baumannii infections as well as the prevention of their development.
Collapse
Affiliation(s)
- Ilona Grygiel
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (I.G.); (O.B.); (M.W.); (K.K.); (A.G.)
| | - Olaf Bajrak
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (I.G.); (O.B.); (M.W.); (K.K.); (A.G.)
| | - Michał Wójcicki
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (I.G.); (O.B.); (M.W.); (K.K.); (A.G.)
| | - Klaudia Krusiec
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (I.G.); (O.B.); (M.W.); (K.K.); (A.G.)
| | - Ewa Jończyk-Matysiak
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (I.G.); (O.B.); (M.W.); (K.K.); (A.G.)
| | - Andrzej Górski
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (I.G.); (O.B.); (M.W.); (K.K.); (A.G.)
- Phage Therapy Unit, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland;
- Professor Emeritus, Department of Immunology, The Medical University of Warsaw, 02-006 Warsaw, Poland
| | - Joanna Majewska
- Department of Pathogen Biology and Immunology, University of Wrocław, 51-148 Wrocław, Poland;
| | - Sławomir Letkiewicz
- Phage Therapy Unit, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland;
- Collegium Medicum, Jan Długosz University, 42-200 Częstochowa, Poland
| |
Collapse
|
25
|
Chaudhary V, Kajla P, Lather D, Chaudhary N, Dangi P, Singh P, Pandiselvam R. Bacteriophages: a potential game changer in food processing industry. Crit Rev Biotechnol 2024; 44:1325-1349. [PMID: 38228500 DOI: 10.1080/07388551.2023.2299768] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 08/16/2023] [Accepted: 10/03/2023] [Indexed: 01/18/2024]
Abstract
In the food industry, despite the widespread use of interventions such as preservatives and thermal and non-thermal processing technologies to improve food safety, incidences of foodborne disease continue to happen worldwide, prompting the search for alternative strategies. Bacteriophages, commonly known as phages, have emerged as a promising alternative for controlling pathogenic bacteria in food. This review emphasizes the potential applications of phages in biological sciences, food processing, and preservation, with a particular focus on their role as biocontrol agents for improving food quality and preservation. By shedding light on recent developments and future possibilities, this review highlights the significance of phages in the food industry. Additionally, it addresses crucial aspects such as regulatory status and safety concerns surrounding the use of bacteriophages. The inclusion of up-to-date literature further underscores the relevance of phage-based strategies in reducing foodborne pathogenic bacteria's presence in both food and the production environment. As we look ahead, new phage products are likely to be targeted against emerging foodborne pathogens. This will further advance the efficacy of approaches that are based on phages in maintaining the safety and security of food.
Collapse
Affiliation(s)
- Vandana Chaudhary
- Department of Dairy Technology, College of Dairy Science and Technology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Priyanka Kajla
- Department of Food Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, India
| | - Deepika Lather
- Department of Veterinary Pathology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Nisha Chaudhary
- Department of Food Science and Technology, College of Agriculture, Agriculture University, Jodhpur, Rajasthan, India
| | - Priya Dangi
- Department of Food and Nutrition and Food Technology, Institute of Home Economics, University of Delhi, New Delhi, India
| | - Punit Singh
- Department of Mechanical Engineering, Institute of Engineering and Technology, GLA University Mathura, Mathura, Uttar Pradesh, India
| | - Ravi Pandiselvam
- Physiology, Biochemistry and Post-Harvest Technology Division, ICAR -Central Plantation Crops Research Institute, Kasaragod, Kerala, India
| |
Collapse
|
26
|
Panhwar S, Keerio HA, Ilhan H, Boyacı IH, Tamer U. Principles, Methods, and Real-Time Applications of Bacteriophage-Based Pathogen Detection. Mol Biotechnol 2024; 66:3059-3076. [PMID: 37914863 DOI: 10.1007/s12033-023-00926-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/02/2023] [Indexed: 11/03/2023]
Abstract
Bacterial pathogens in water, food, and the environment are spreading diseases around the world. According to a World Health Organization (WHO) report, waterborne pathogens pose the most significant global health risks to living organisms, including humans and animals. Conventional bacterial detection approaches such as colony counting, microscopic analysis, biochemical analysis, and molecular analysis are expensive, time-consuming, less sensitive, and require a pre-enrichment step. However, the bacteriophage-based detection of pathogenic bacteria is a robust approach that utilizes bacteriophages, which are viruses that specifically target and infect bacteria, for rapid and accurate detection of targets. This review shed light on cutting-edge technologies about the novel structure of phages and the immobilization process on the surface of electrodes to detect targeted bacterial cells. Similarly, the purpose of this study was to provide a comprehensive assessment of bacteriophage-based biosensors utilized for pathogen detection, as well as their trends, outcomes, and problems. This review article summaries current phage-based pathogen detection strategies for the development of low-cost lab-on-chip (LOC) and point-of-care (POC) devices using electrochemical and optical methods such as surface-enhanced Raman spectroscopy (SERS).
Collapse
Affiliation(s)
- Sallahuddin Panhwar
- Department of Analytical Chemistry, Faculty of Pharmacy, Gazi University, 06330, Ankara, Turkey.
- Department of Civil Engineering, National University of Sciences and Technology, Quetta, 24090, Balochistan, Pakistan.
| | - Hareef Ahmed Keerio
- Department of Civil and Environmental Engineering, Hanyang University, Seoul, Republic of Korea
| | - Hasan Ilhan
- Department of Chemistry, Faculty of Science, Ordu University, Altinordu, 52200, Ordu, Turkey
| | - Ismail Hakkı Boyacı
- Department of Food Engineering, Faculty of Engineering, Hacettepe University, Beytepe, 06800, Ankara, Turkey
| | - Ugur Tamer
- Department of Analytical Chemistry, Faculty of Pharmacy, Gazi University, 06330, Ankara, Turkey.
- Metu MEMS Center, Ankara, Turkey.
| |
Collapse
|
27
|
Martins LF, dos Santos Junior AP, Nicastro GG, Scheunemann G, Angeli CB, Rossi FPN, Quaggio RB, Palmisano G, Sgro GG, Ishida K, Baldini RL, da Silva AM. Phages ZC01 and ZC03 require type-IV pilus for Pseudomonas aeruginosa infection and have a potential for therapeutic applications. Microbiol Spectr 2024; 12:e0152724. [PMID: 39470273 PMCID: PMC11619397 DOI: 10.1128/spectrum.01527-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/30/2024] [Indexed: 10/30/2024] Open
Abstract
There has been a growing interest in bacteriophages as therapeutic agents to treat multidrug-resistant bacterial infections. The present work aimed at expanding the microbiological and molecular characterization of lytic phages ZC01 and ZC03 and investigating their efficacy in the control of Pseudomonas aeruginosa infection in an invertebrate animal model. These two phages were previously isolated from composting using P. aeruginosa strain PA14 as the enrichment host and had their genomes sequenced. ZC01 and ZC03 present, respectively, siphovirus and podovirus morphotypes. ZC01 was recently classified into the genus Abidjanvirus, while ZC03 belongs to Zicotriavirus genus of the Schitoviridae N4-like viruses. Through proteomics analysis, we identified virion structural proteins of ZC01 and ZC03, including a large virion-associated RNA polymerase that is characteristic of N4-like viruses, some hypothetical proteins whose annotation should be changed to virion structural proteins and a putative peptidoglycan hydrolase. Phages ZC01 and ZC03 exhibit a limited yet distinct host range, with moderate to high efficiency of plating (EOP) values observed for a few P. aeruginosa clinical isolates. Phage susceptibility assays in PA14 mutant strains point to the type-IV pilus (T4P) as the primary receptor for phages ZC01 and ZC03, and the major pilin (PilAPA14) is the T4P component recognized by these phages. Moreover, both phages significantly increase survival of Galleria mellonella larvae infected with PA14 strain. Taken together, these results underpin the therapeutic potential of these phages to treat infections by P. aeruginosa and lay the groundwork for a more detailed investigation of phage-bacteria-specific recognition mechanisms.IMPORTANCEPhage therapy is gaining increasing interest in cases of difficult-to-treat bacterial human infections, such as carbapenem-resistant Pseudomonas aeruginosa. In this work, we investigated the molecular mechanism underlying the interaction of the lytic phages ZC01 and ZC03 with the highly virulent P. aeruginosa PA14 strain and their efficacy to treat PA14 infection in Galleria mellonella larvae, a commonly used invertebrate model for phage therapy. We depicted the protein composition of ZC01 and ZC03 viral particles and identified pilin A, the major component of type-4 pilus, as the receptor recognized by these phages. Our findings indicate that phages ZC01 and ZC03 may be further used for developing therapies to treat multidrug-resistant P. aeruginosa infections.
Collapse
Affiliation(s)
- Layla Farage Martins
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
- Biology of Bacteria and Bacteriophages Research Center (CEPID B3), São Paulo, Brazil
| | - Ariosvaldo Pereira dos Santos Junior
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
- Biology of Bacteria and Bacteriophages Research Center (CEPID B3), São Paulo, Brazil
| | | | - Gaby Scheunemann
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Claudia Blanes Angeli
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | | | - Ronaldo Bento Quaggio
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Giuseppe Palmisano
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
- School of Natural Sciences, Macquarie University, Sydney, Australia
| | - Germán Gustavo Sgro
- Biology of Bacteria and Bacteriophages Research Center (CEPID B3), São Paulo, Brazil
- Departamento de Ciências BioMoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Kelly Ishida
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Regina Lúcia Baldini
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
- Biology of Bacteria and Bacteriophages Research Center (CEPID B3), São Paulo, Brazil
| | - Aline Maria da Silva
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
- Biology of Bacteria and Bacteriophages Research Center (CEPID B3), São Paulo, Brazil
| |
Collapse
|
28
|
Rastegar S, Skurnik M, Tadjrobehkar O, Samareh A, Samare-Najaf M, Lotfian Z, Khajedadian M, Hosseini-Nave H, Sabouri S. Synergistic effects of bacteriophage cocktail and antibiotics combinations against extensively drug-resistant Acinetobacter baumannii. BMC Infect Dis 2024; 24:1208. [PMID: 39455951 PMCID: PMC11515142 DOI: 10.1186/s12879-024-10081-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND The extensively drug-resistant (XDR) strains of Acinetobacter baumannii have become a major cause of nosocomial infections, increasing morbidity and mortality worldwide. Many different treatments, including phage therapy, are attractive ways to overcome the challenges of antibiotic resistance. METHODS This study investigates the biofilm formation ability of 30 XDR A. baumannii isolates and the efficacy of a cocktail of four tempetate bacteriophages (SA1, Eve, Ftm, and Gln) and different antibiotics (ampicillin/sulbactam, meropenem, and colistin) in inhibiting and degrading the biofilms of these strains. RESULTS The majority (83.3%) of the strains exhibited strong biofilm formation. The bacteriophage cocktail showed varying degrees of effectiveness against A. baumannii biofilms, with higher concentrations generally leading to more significant inhibition and degradation rates. The antibiotics-bacteriophage cocktail combinations also enhanced the inhibition and degradation of biofilms. CONCLUSION The findings suggested that the bacteriophage cocktail is an effective tool in combating A. baumannii biofilms, with its efficacy depending on the concentration. Combining antibiotics with the bacteriophage cocktail improved the inhibition and removal of biofilms, indicating a promising strategy for managing A. baumannii infections. These results contribute to our understanding of biofilm dynamics and the potential of bacteriophage cocktails as a novel therapeutic approach to combat antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Sanaz Rastegar
- Student Research Committee, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mikael Skurnik
- Department of Bacteriology and Immunology, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Omid Tadjrobehkar
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Medical Microbiology(Bacteriology and Virology), Afzalipour School of Medicine, Kerman, Iran
| | - Ali Samareh
- Department of Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Samare-Najaf
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Zahra Lotfian
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Khajedadian
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Hossein Hosseini-Nave
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran.
- Department of Medical Microbiology(Bacteriology and Virology), Afzalipour School of Medicine, Kerman, Iran.
- Department of Microbiology and Virology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| | - Salehe Sabouri
- Extremophile and Productive Microorganisms Research Center, Kerman University of Medical Sciences, Kerman, Iran.
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
29
|
Islam MM, Mahbub NU, Shin WS, Oh MH. Phage-encoded depolymerases as a strategy for combating multidrug-resistant Acinetobacter baumannii. Front Cell Infect Microbiol 2024; 14:1462620. [PMID: 39512587 PMCID: PMC11540826 DOI: 10.3389/fcimb.2024.1462620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/26/2024] [Indexed: 11/15/2024] Open
Abstract
Acinetobacter baumannii, a predominant nosocomial pathogen, represents a grave threat to public health due to its multiple antimicrobial resistance. Managing patients afflicted with severe infections caused by multiple drug-resistant A. baumannii is particularly challenging, given the associated high mortality rates and unfavorable prognoses. The diminishing efficacy of antibiotics against this superbug underscores the urgent necessity for novel treatments or strategies to address this formidable issue. Bacteriophage-derived polysaccharide depolymerase enzymes present a potential approach to combating this pathogen. These enzymes target and degrade the bacterial cell's exopolysaccharide, capsular polysaccharide, and lipopolysaccharide, thereby disrupting biofilm formation and impairing the bacteria's defense mechanisms. Nonetheless, the narrow host range of phage depolymerases limits their therapeutic efficacy. Despite the benefits of these enzymes, phage-resistant strains have been identified, highlighting the complexity of phage-host interactions and the need for further investigation. While preliminary findings are encouraging, current investigations are limited, and clinical trials are imperative to advance this treatment approach for broader clinical applications. This review explores the potential of phage-derived depolymerase enzymes against A. baumannii infections.
Collapse
Affiliation(s)
- Md Minarul Islam
- Department of Microbiology, College of Science and Technology, Dankook University, Cheonan, Republic of Korea
- Smart Animal Bio Institute, Dankook University, Cheonan, Republic of Korea
| | - Nasir Uddin Mahbub
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Woo Shik Shin
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Man Hwan Oh
- Department of Microbiology, College of Science and Technology, Dankook University, Cheonan, Republic of Korea
- Smart Animal Bio Institute, Dankook University, Cheonan, Republic of Korea
- Center for Bio-Medical Engineering Core Facility, Dankook University, Cheonan, Republic of Korea
| |
Collapse
|
30
|
Ferriol-González C, Concha-Eloko R, Bernabéu-Gimeno M, Fernández-Cuenca F, Cañada-García JE, García-Cobos S, Sanjuán R, Domingo-Calap P. Targeted phage hunting to specific Klebsiella pneumoniae clinical isolates is an efficient antibiotic resistance and infection control strategy. Microbiol Spectr 2024; 12:e0025424. [PMID: 39194291 PMCID: PMC11448410 DOI: 10.1128/spectrum.00254-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024] Open
Abstract
Klebsiella pneumoniae is one of the most threatening multi-drug-resistant pathogens today, with phage therapy being a promising alternative for personalized treatments. However, the intrinsic capsule diversity in Klebsiella spp. poses a substantial barrier to the phage host range, complicating the development of broad-spectrum phage-based treatments. Here, we have isolated and genomically characterized phages capable of infecting each of the acquired 77 reference serotypes of Klebsiella spp., including capsular types widespread among high-risk K. pneumoniae clones causing nosocomial infections. We demonstrated the possibility of isolating phages for all capsular types in the collection, revealing high capsular specificity among taxonomically related phages, in contrast to a few phages that exhibited broad-spectrum infection capabilities. To decipher the determinants of the specificity of these phages, we focused on their receptor-binding proteins, with particular attention to depolymerases. We also explored the possibility of designing a broad-spectrum phage cocktail based on phages isolated in reference capsular-type strains and determining the ability to lyse relevant clinical isolates. A combination of 12 phages capable of infecting 55% of the reference Klebsiella spp. serotypes was tested on a panel of carbapenem-resistant K. pneumoniae clinical isolates. Thirty-one percent of isolates were susceptible to the phage cocktail. However, our results suggest that in a highly variable encapsulated bacterial host, phage hunting must be directed to the specific Klebsiella isolates. This work is a step forward in the understanding of the complexity of phage-host interactions and highlights the importance of implementing precise and phage-specific strategies to treat K. pneumoniae infections worldwide.IMPORTANCEThe emergence of resistant bacteria is a serious global health problem. In the absence of effective treatments, phages are a personalized and effective therapeutic alternative. However, little is still known about phage-host interactions, which are key to implementing effective strategies. Here, we focus on the study of Klebsiella pneumoniae, a highly pathogenic encapsulated bacterium. The complexity and variability of the capsule, where in most cases phage receptors are found, make it difficult for phage-based treatments. Here, we isolated a large collection of Klebsiella phages against all the reference strains and in a cohort of clinical isolates. Our results suggest that clinical isolates represent a challenge, especially high-risk clones. Thus, we propose targeted phage hunting as an effective strategy to implement phage-derived therapies. Our results are a step forward for new phage-based strategies to control K. pneumoniae infections, highlighting the importance of understanding phage-host interactions to design personalized treatments against Klebsiella spp.
Collapse
Affiliation(s)
- Celia Ferriol-González
- Instituto de Biología Integrativa de Sistemas, Universitat de València-CSIC, Paterna, Spain
| | - Robby Concha-Eloko
- Instituto de Biología Integrativa de Sistemas, Universitat de València-CSIC, Paterna, Spain
| | - Mireia Bernabéu-Gimeno
- Instituto de Biología Integrativa de Sistemas, Universitat de València-CSIC, Paterna, Spain
| | - Felipe Fernández-Cuenca
- Unidad Clínica de Enfermedades Infecciosas y Microbiología, Hospital Universitario Virgen Macarena, Sevilla, Spain
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen Macarena-CSIC-Universidad de Sevilla, Sevilla, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Javier E Cañada-García
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Silvia García-Cobos
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Rafael Sanjuán
- Instituto de Biología Integrativa de Sistemas, Universitat de València-CSIC, Paterna, Spain
| | - Pilar Domingo-Calap
- Instituto de Biología Integrativa de Sistemas, Universitat de València-CSIC, Paterna, Spain
| |
Collapse
|
31
|
Kunisch F, Campobasso C, Wagemans J, Yildirim S, Chan BK, Schaudinn C, Lavigne R, Turner PE, Raschke MJ, Trampuz A, Gonzalez Moreno M. Targeting Pseudomonas aeruginosa biofilm with an evolutionary trained bacteriophage cocktail exploiting phage resistance trade-offs. Nat Commun 2024; 15:8572. [PMID: 39362854 PMCID: PMC11450229 DOI: 10.1038/s41467-024-52595-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/12/2024] [Indexed: 10/05/2024] Open
Abstract
Spread of multidrug-resistant Pseudomonas aeruginosa strains threatens to render currently available antibiotics obsolete, with limited prospects for the development of new antibiotics. Lytic bacteriophages, the viruses of bacteria, represent a path to combat this threat. In vitro-directed evolution is traditionally applied to expand the bacteriophage host range or increase bacterial suppression in planktonic cultures. However, while up to 80% of human microbial infections are biofilm-associated, research towards targeted improvement of bacteriophages' ability to combat biofilms remains scarce. This study aims at an in vitro biofilm evolution assay to improve multiple bacteriophage parameters in parallel and the optimisation of bacteriophage cocktail design by exploiting a bacterial bacteriophage resistance trade-off. The evolved bacteriophages show an expanded host spectrum, improved antimicrobial efficacy and enhanced antibiofilm performance, as assessed by isothermal microcalorimetry and quantitative polymerase chain reaction, respectively. Our two-phage cocktail reveals further improved antimicrobial efficacy without incurring dual-bacteriophage-resistance in treated bacteria. We anticipate this assay will allow a better understanding of phenotypic-genomic relationships in bacteriophages and enable the training of bacteriophages against other desired pathogens. This, in turn, will strengthen bacteriophage therapy as a treatment adjunct to improve clinical outcomes of multidrug-resistant bacterial infections.
Collapse
Affiliation(s)
- Fabian Kunisch
- Faculty of Medicine, Universität Münster, Münster, Germany
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
- Center for Phage Biology and Therapy, Yale University, New Haven, CT, USA
| | - Claudia Campobasso
- Department of Biosystems, KU Leuven, Leuven, Belgium
- Department of Biology, Università di Pisa, Pisa, Italy
| | | | - Selma Yildirim
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany
| | - Benjamin K Chan
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
- Center for Phage Biology and Therapy, Yale University, New Haven, CT, USA
| | - Christoph Schaudinn
- Advanced Light and Electron Microscopy (Zentrum für Biologische Gefahren und Spezielle Pathogene 4), Robert Koch Institute, Berlin, Germany
| | - Rob Lavigne
- Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Paul E Turner
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
- Center for Phage Biology and Therapy, Yale University, New Haven, CT, USA
- Program in Microbiology, Yale School of Medicine, New Haven, CT, USA
| | - Michael J Raschke
- Faculty of Medicine, Universität Münster, Münster, Germany
- Department of Trauma, Hand and Reconstructive Surgery, Universitätsklinikum Münster, Münster, Germany
| | - Andrej Trampuz
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany.
| | - Mercedes Gonzalez Moreno
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany
| |
Collapse
|
32
|
Lach K, Skrzyniarz K, Takvor-Mena S, Łysek-Gładysińska M, Furmańczyk P, Barrios-Gumiel O, Sanchez-Nieves J, Ciepluch K. Endolysin CHAP domain-carbosilane metallodendrimer complexes with triple action on Gram-negative bacteria: Membrane destabilization, reactive oxygen species production and peptidoglycan degradation. Int J Biol Macromol 2024; 278:134634. [PMID: 39128760 DOI: 10.1016/j.ijbiomac.2024.134634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/31/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
Bacterial resistance to antibiotics is a significant challenge that is associated with increased morbidity and mortality. Gram-negative bacteria are particularly problematic due to an outer membrane (OM). Current alternatives to antibiotics include antimicrobial peptides or proteins and multifunctional systems such as dendrimers. Antimicrobial proteins such as lysins can degrade the bacterial cell wall, whereas dendrimers can permeabilize the OM, enhancing the activity of endolysins against gram-negative bacteria. In this study, we present a three-stage action of endolysin combined with two different carbosilane (CBS) silver metallodendrimers, in which the periphery is modified with N-heterocyclic carbene (NHC) ligands coordinating a silver atom. The different NHC ligands contained hydrophobic methyl or N-donor pyridyl moieties. The effects of these endolysin/dendrimer combinations are based on OM permeabilization, peptidoglycan degradation, and reactive oxygen species production. The results showed that CBS possess a permeabilization effect (first action), significantly reduced bacterial growth at higher concentrations alone and in the presence of endolysin, increased ROS production (second action), and led to bacterial cell damage (third action). The complex formed between the CHAP domain of endolysin and a CBS silver metallodendrimer, with a triple mechanism of action, may represent an excellent alternative to other antimicrobials with only one resistance mechanism.
Collapse
Affiliation(s)
- Karolina Lach
- Division of Medical Biology, Jan Kochanowski University, 25-406 Kielce, Poland
| | - Kinga Skrzyniarz
- Division of Medical Biology, Jan Kochanowski University, 25-406 Kielce, Poland
| | - Samuel Takvor-Mena
- Department of Organic and Inorganic Chemistry, Research Institute in Chemistry "Andrés M. del Río" (IQAR), University of Alcalá (UAH), 28805 Alcalá de Henares, Madrid. Spain
| | | | - Piotr Furmańczyk
- Department of Machine Design, Faculty of Mechatronics and Mechanical Engineering, Kielce University of Technology, 25-314 Kielce, Poland
| | - Oscar Barrios-Gumiel
- Department of Organic and Inorganic Chemistry, Research Institute in Chemistry "Andrés M. del Río" (IQAR), University of Alcalá (UAH), 28805 Alcalá de Henares, Madrid. Spain
| | - Javier Sanchez-Nieves
- Department of Organic and Inorganic Chemistry, Research Institute in Chemistry "Andrés M. del Río" (IQAR), University of Alcalá (UAH), 28805 Alcalá de Henares, Madrid. Spain; Networking Research Center for Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain; Ramón y Cajal Institute of Health Research (IRYCIS), Ctra. de Colmenar Viejo, Km. 9, 28034 Madrid, Spain
| | - Karol Ciepluch
- Division of Medical Biology, Jan Kochanowski University, 25-406 Kielce, Poland.
| |
Collapse
|
33
|
Nuytten M, Leprince A, Goulet A, Mahillon J. Deciphering the adsorption machinery of Deep-Blue and Vp4, two myophages targeting members of the Bacillus cereus group. J Virol 2024; 98:e0074524. [PMID: 39177355 PMCID: PMC11406892 DOI: 10.1128/jvi.00745-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/11/2024] [Indexed: 08/24/2024] Open
Abstract
In tailed phages, the baseplate is the macromolecular structure located at the tail distal part, which is directly implicated in host recognition and cell wall penetration. In myophages (i.e., with contractile tails), the baseplate is complex and comprises a central puncturing device and baseplate wedges connecting the hub to the receptor-binding proteins (RBPs). In this work, we investigated the structures and functions of adsorption-associated tail proteins of Deep-Blue and Vp4, two Herelleviridae phages infecting members of the Bacillus cereus group. Their interest resides in their different host spectrum despite a high degree of similarity. Analysis of their tail module revealed that the gene order is similar to that of the Listeria phage A511. Among their tail proteins, Gp185 (Deep-Blue) and Gp112 (Vp4) had no structural homolog, but the C-terminal variable parts of these proteins were able to bind B. cereus strains, confirming their implication in the phage adsorption. Interestingly, Vp4 and Deep-Blue adsorption to their hosts was also shown to require polysaccharides, which are likely to be bound by the arsenal of carbohydrate-binding modules (CBMs) of these phages' baseplates, suggesting that the adsorption does not rely solely on the RBPs. In particular, the BW Gp119 (Vp4), harboring a CBM fold, was shown to effectively bind to bacterial cells. Finally, we also showed that the putative baseplate hub proteins (i.e., Deep-Blue Gp189 and Vp4 Gp110) have a bacteriolytic activity against B. cereus strains, which supports their role as ectolysins locally degrading the peptidoglycan to facilitate genome injection. IMPORTANCE The Bacillus cereus group comprises closely related species, including some with pathogenic potential (e.g., Bacillus anthracis and Bacillus cytotoxicus). Their toxins represent the most frequently reported cause of food poisoning outbreaks at the European level. Bacteriophage research is undergoing a remarkable renaissance for its potential in the biocontrol and detection of such pathogens. As the primary site of phage-bacteria interactions and a prerequisite for successful phage infection, adsorption is a crucial process that needs further investigation. The current knowledge about B. cereus phage adsorption is currently limited to siphoviruses and tectiviruses. Here, we present the first insights into the adsorption process of Herelleviridae Vp4 and Deep-Blue myophages preying on B. cereus hosts, highlighting the importance of polysaccharide moieties in this process and confirming the binding to the host surface of Deep-Blue Gp185 and Vp4 Gp112 receptor-binding proteins and Gp119 baseplate wedge.
Collapse
Affiliation(s)
- Manon Nuytten
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Université Catholique de Louvain (UCLouvain), Louvain-la-Neuve, Belgium
| | - Audrey Leprince
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Université Catholique de Louvain (UCLouvain), Louvain-la-Neuve, Belgium
| | - Adeline Goulet
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie, Bioénergies et Biotechnologie (IM2B), CNRS and Aix-Marseille Université UMR7255, Marseille, France
| | - Jacques Mahillon
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Université Catholique de Louvain (UCLouvain), Louvain-la-Neuve, Belgium
| |
Collapse
|
34
|
E S, Gummadi SN. Advances in the applications of Bacteriophages and phage products against food-contaminating bacteria. Crit Rev Microbiol 2024; 50:702-727. [PMID: 37861086 DOI: 10.1080/1040841x.2023.2271098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/21/2023] [Accepted: 09/17/2023] [Indexed: 10/21/2023]
Abstract
Food-contaminating bacteria pose a threat to food safety and the economy by causing foodborne illnesses and spoilage. Bacteriophages, a group of viruses that infect only bacteria, have the potential to control bacteria throughout the "farm-to-fork continuum". Phage application offers several advantages, including targeted action against specific bacterial strains and minimal impact on the natural microflora of food. This review covers multiple aspects of bacteriophages applications in the food industry, including their use as biocontrol and biopreservation agents to fight over 20 different genera of food-contaminating bacteria, reduce cross-contamination and the risk of foodborne diseases, and also to prolong shelf life and preserve freshness. The review also highlights the benefits of using bacteriophages in bioprocesses to selectively inhibit undesirable bacteria, such as substrate competitors and toxin producers, which is particularly valuable in complex microbial bioprocesses where physical or chemical methods become inadequate. Furthermore, the review briefly discusses other uses of bacteriophages in the food industry, such as sanitizing food processing environments and detecting specific bacteria in food products. The review also explores strategies to enhance the effectiveness of phages, such as employing multi-phage cocktails, encapsulated phages, phage products, and synergistic hurdle approaches by combining them with antimicrobials.
Collapse
Affiliation(s)
- Suja E
- Applied and Industrial Microbiology Laboratory (AIM Lab), Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Sathyanarayana N Gummadi
- Applied and Industrial Microbiology Laboratory (AIM Lab), Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| |
Collapse
|
35
|
Mo Q, Nawaz S, Kulyar MF, Li K, Li Y, Zhang Z, Rahim MF, Ahmed AE, Ijaz F, Li J. Exploring the intricacies of Pasteurella multocida dynamics in high-altitude livestock and its consequences for bovine health: A personal exploration of the yak paradox. Microb Pathog 2024; 194:106799. [PMID: 39025382 DOI: 10.1016/j.micpath.2024.106799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/24/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
Pasturella multocida (P. multocida), a gram-negative bacterium, has long been a focus of interest in animal health because of its capacity to cause different infections, including hemorrhagic septicemia. Yaks, primarily found in high-altitude environments, are among the several livestock animals affected by these bacteria. Yaks are essential to the socioeconomic life of the people who depend on them since they are adapted to the cold and hypoxic conditions of highland environments. Nevertheless, these terrains exhibit a greater incidence of P. multocida despite the severe environmental complications. This predominance has been linked to the possible attenuation of the yak's immunological responses in such circumstances and the evolution of some bacterial strains to favor survival in the respiratory passages of the animals. Moreover, these particular strains threaten other cattle populations that interact with yaks, which might result in unanticipated outbreaks in areas previously thought to be low risk. Considering these findings, designing and executing preventative and control strategies suited explicitly for these distinct biological environments is imperative. Through such strategies, yaks' health will be guaranteed, and a larger bovine population will be safeguarded against unanticipated epidemics. The current review provides thorough insights that were previously dispersed among several investigations. Its distinct method of connecting the ecology of yaks with the dynamics of infection offers substantial background information for further studies and livestock management plans.
Collapse
Affiliation(s)
- Quan Mo
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Shah Nawaz
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Md F Kulyar
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China.
| | - Kewei Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Yan Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Zhao Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Muhammad Farhan Rahim
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Ahmed Ezzat Ahmed
- Department of Biology, College of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Farah Ijaz
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China.
| |
Collapse
|
36
|
Zhydzetski A, Głowacka-Grzyb Z, Bukowski M, Żądło T, Bonar E, Władyka B. Agents Targeting the Bacterial Cell Wall as Tools to Combat Gram-Positive Pathogens. Molecules 2024; 29:4065. [PMID: 39274911 PMCID: PMC11396672 DOI: 10.3390/molecules29174065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/16/2024] Open
Abstract
The cell wall is an indispensable element of bacterial cells and a long-known target of many antibiotics. Penicillin, the first discovered beta-lactam antibiotic inhibiting the synthesis of cell walls, was successfully used to cure many bacterial infections. Unfortunately, pathogens eventually developed resistance to it. This started an arms race, and while novel beta-lactams, either natural or (semi)synthetic, were discovered, soon upon their application, bacteria were developing resistance. Currently, we are facing the threat of losing the race since more and more multidrug-resistant (MDR) pathogens are emerging. Therefore, there is an urgent need for developing novel approaches to combat MDR bacteria. The cell wall is a reasonable candidate for a target as it differentiates not only bacterial and human cells but also has a specific composition unique to various groups of bacteria. This ensures the safety and specificity of novel antibacterial agents that target this structure. Due to the shortage of low-molecular-weight candidates for novel antibiotics, attention was focused on peptides and proteins that possess antibacterial activity. Here, we describe proteinaceous agents of various origins that target bacterial cell wall, including bacteriocins and phage and bacterial lysins, as alternatives to classic antibiotic candidates for antimicrobial drugs. Moreover, advancements in protein chemistry and engineering currently allow for the production of stable, specific, and effective drugs. Finally, we introduce the concept of selective targeting of dangerous pathogens, exemplified by staphylococci, by agents specifically disrupting their cell walls.
Collapse
Affiliation(s)
- Aliaksandr Zhydzetski
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa St. 7, 30-348 Cracow, Poland
| | - Zuzanna Głowacka-Grzyb
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa St. 7, 30-348 Cracow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Prof. St. Łojasiewicza St. 11, 30-348 Cracow, Poland
| | - Michal Bukowski
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa St. 7, 30-348 Cracow, Poland
| | - Tomasz Żądło
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa St. 7, 30-348 Cracow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Prof. St. Łojasiewicza St. 11, 30-348 Cracow, Poland
| | - Emilia Bonar
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa St. 7, 30-348 Cracow, Poland
| | - Benedykt Władyka
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa St. 7, 30-348 Cracow, Poland
| |
Collapse
|
37
|
Cai X, He Y, Yu I, Imani A, Scholl D, Miller JF, Zhou ZH. Atomic structures of a bacteriocin targeting Gram-positive bacteria. Nat Commun 2024; 15:7057. [PMID: 39152109 PMCID: PMC11329794 DOI: 10.1038/s41467-024-51038-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/29/2024] [Indexed: 08/19/2024] Open
Abstract
Due to envelope differences between Gram-positive and Gram-negative bacteria, engineering precision bactericidal contractile nanomachines requires atomic-level understanding of their structures; however, only those killing Gram-negative bacteria are currently known. Here, we report the atomic structures of an engineered diffocin, a contractile syringe-like molecular machine that kills the Gram-positive bacterium Clostridioides difficile. Captured in one pre-contraction and two post-contraction states, each structure fashions six proteins in the bacteria-targeting baseplate, two proteins in the energy-storing trunk, and a collar linking the sheath with the membrane-penetrating tube. Compared to contractile machines targeting Gram-negative bacteria, major differences reside in the baseplate and contraction magnitude, consistent with target envelope differences. The multifunctional hub-hydrolase protein connects the tube and baseplate and is positioned to degrade peptidoglycan during penetration. The full-length tape measure protein forms a coiled-coil helix bundle homotrimer spanning the entire diffocin. Our study offers mechanical insights and principles for designing potent protein-based precision antibiotics.
Collapse
Affiliation(s)
- Xiaoying Cai
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- The California NanoSystems Institute (CNSI), University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Yao He
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- The California NanoSystems Institute (CNSI), University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Iris Yu
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- The California NanoSystems Institute (CNSI), University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Anthony Imani
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- The California NanoSystems Institute (CNSI), University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Dean Scholl
- Pylum Biosciences, San Francisco, CA, 94080, USA
| | - Jeff F Miller
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA, USA.
- The California NanoSystems Institute (CNSI), University of California, Los Angeles (UCLA), Los Angeles, CA, USA.
| | - Z Hong Zhou
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA, USA.
- The California NanoSystems Institute (CNSI), University of California, Los Angeles (UCLA), Los Angeles, CA, USA.
| |
Collapse
|
38
|
Duarte AC, Fernández L, Jurado A, Campelo AB, Shen Y, Rodríguez A, García P. Synergistic removal of Staphylococcus aureus biofilms by using a combination of phage Kayvirus rodi with the exopolysaccharide depolymerase Dpo7. Front Microbiol 2024; 15:1438022. [PMID: 39171257 PMCID: PMC11335607 DOI: 10.3389/fmicb.2024.1438022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024] Open
Abstract
Introduction Bacteriophages have been shown to penetrate biofilms and replicate if they find suitable host cells. Therefore, these viruses appear to be a good option to tackle the biofilm problem and complement or even substitute more conventional antimicrobials. However, in order to successfully remove biofilms, in particular mature biofilms, phages may need to be administered along with other compounds. Phage-derived proteins, such as endolysins or depolymerases, offer a safer alternative to other compounds in the era of antibiotic resistance. Methods This study examined the interactions between phage Kayvirus rodi with a polysaccharide depolymerase (Dpo7) from another phage (Rockefellervirus IPLA7) against biofilms formed by different Staphylococcus aureus strains, as determined by crystal violet staining, viable cell counts and microscopy analysis. Results and discussion Our results demonstrated that there was synergy between the two antimicrobials, with a more significant decreased in biomass and viable cell number with the combination treatment compared to the phage and enzyme alone. This observation was confirmed by microscopy analysis, which also showed that polysaccharide depolymerase treatment reduced, but did not eliminate extracellular matrix polysaccharides. Activity assays on mutant strains did not identify teichoic acids or PNAG/PIA as the exclusive target of Dpo7, suggesting that may be both are degraded by this enzyme. Phage adsorption to S. aureus cells was not significantly altered by incubation with Dpo7, indicating that the mechanism of the observed synergistic interaction is likely through loosening of the biofilm structure. This would allow easier access of the phage particles to their host cells and facilitate infection progression within the bacterial population.
Collapse
Affiliation(s)
- Ana Catarina Duarte
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa, Spain
- DairySafe Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Lucía Fernández
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa, Spain
- DairySafe Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Andrea Jurado
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa, Spain
- DairySafe Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Ana Belén Campelo
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa, Spain
| | - Yang Shen
- Laboratory of Food Microbiology, Institute of Food, Nutrition and Health, Zurich, Switzerland
| | - Ana Rodríguez
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa, Spain
- DairySafe Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Pilar García
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa, Spain
- DairySafe Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| |
Collapse
|
39
|
Wortelboer K, Herrema H. Opportunities and challenges in phage therapy for cardiometabolic diseases. Trends Endocrinol Metab 2024; 35:687-696. [PMID: 38637223 DOI: 10.1016/j.tem.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/20/2024]
Abstract
The worldwide prevalence of cardiometabolic diseases (CMD) is increasing, and emerging evidence implicates the gut microbiota in this multifactorial disease development. Bacteriophages (phages) are viruses that selectively target a bacterial host; thus, phage therapy offers a precise means of modulating the gut microbiota, limiting collateral damage on the ecosystem. Several studies demonstrate the potential of phages in human disease, including alcoholic and steatotic liver disease. In this opinion article we discuss the potential of phage therapy as a predefined medicinal product for CMD and discuss its current challenges, including the generation of effective phage combinations, product formulation, and strict manufacturing requirements.
Collapse
Affiliation(s)
- Koen Wortelboer
- Department of Experimental Vascular Medicine, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, The Netherlands; Amsterdam Gastroenterology, Endocrinology, and Metabolism, Endocrinology, Metabolism and Nutrition, Amsterdam UMC, Amsterdam, The Netherlands; Amsterdam Cardiovascular Sciences, Diabetes, and Metabolism, Amsterdam UMC, Amsterdam, The Netherlands
| | - Hilde Herrema
- Department of Experimental Vascular Medicine, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, The Netherlands; Amsterdam Gastroenterology, Endocrinology, and Metabolism, Endocrinology, Metabolism and Nutrition, Amsterdam UMC, Amsterdam, The Netherlands; Amsterdam Cardiovascular Sciences, Diabetes, and Metabolism, Amsterdam UMC, Amsterdam, The Netherlands.
| |
Collapse
|
40
|
Sun X, Xue F, Cong C, Murtaza B, Wang L, Li X, Li S, Xu Y. Characterization of two virulent Salmonella phages and transient application in egg, meat and lettuce safety. Food Res Int 2024; 190:114607. [PMID: 38945617 DOI: 10.1016/j.foodres.2024.114607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/13/2024] [Accepted: 06/04/2024] [Indexed: 07/02/2024]
Abstract
Salmonella, a prominent foodborne pathogen, has posed enduring challenges to the advancement of food safety and global public health. The escalating concern over antibiotic misuse, resulting in the excessive presence of drug residues in animal-derived food products, necessitates urgent exploration of alternative strategies for Salmonella control. Bacteriophages emerge as promising green biocontrol agents against pathogenic bacteria. This study delineates the identification of two novel virulent Salmonella phages, namely phage vB_SalS_ABTNLsp11241 (referred to as sp11241) and phage 8-19 (referred to as 8-19). Both phages exhibited efficient infectivity against Salmonella enterica serotype Enteritidis (SE). Furthermore, this study evaluated the effectiveness of two phages to control SE in three different foods (whole chicken eggs, raw chicken meat, and lettuce) at different MOIs (1, 100, and 10000) at 4°C. It's worth noting that sp11241 and 8-19 achieved complete elimination of SE on eggs after 3 h and 6 h at MOI = 100, and after 2 h and 5 h at MOI = 10000, respectively. After 12 h of treatment with sp11241, a maximum reduction of 3.17 log10 CFU/mL in SE was achieved on raw chicken meat, and a maximum reduction of 3.00 log10 CFU/mL was achieved on lettuce. Phage 8-19 has the same effect on lettuce as sp11241, but is slightly less effective than sp11241 on chicken meat (a maximum 2.69 log10 CFU/mL reduction). In conclusion, sp11241 and 8-19 exhibit considerable potential for controlling Salmonella contamination in food at a low temperature and represent viable candidates as green antibacterial agents for food applications.
Collapse
Affiliation(s)
- XiaoWen Sun
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Fan Xue
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Cong Cong
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Bilal Murtaza
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, China; Dalian SEM Bio-Engineering Technology Co. Ltd., Dalian 116620, China
| | - LiLi Wang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, China; Center for Food Safety of Animal Origin, Ministry of Education, Dalian University of Technology, Dalian 116600, China
| | - XiaoYu Li
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, China; Center for Food Safety of Animal Origin, Ministry of Education, Dalian University of Technology, Dalian 116600, China
| | - ShuYing Li
- Dalian SEM Bio-Engineering Technology Co. Ltd., Dalian 116620, China
| | - YongPing Xu
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, China; Dalian SEM Bio-Engineering Technology Co. Ltd., Dalian 116620, China; Center for Food Safety of Animal Origin, Ministry of Education, Dalian University of Technology, Dalian 116600, China.
| |
Collapse
|
41
|
Meidaninikjeh S, Mohammadi P, Elikaei A. Bacteriophages and bacterial extracellular vesicles, threat or opportunity? Life Sci 2024; 350:122749. [PMID: 38821215 DOI: 10.1016/j.lfs.2024.122749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/25/2024] [Accepted: 05/23/2024] [Indexed: 06/02/2024]
Abstract
Emergence of antimicrobial-resistant bacteria (AMR) is one of the health major problems worldwide. The scientists are looking for a novel method to treat infectious diseases. Phage therapy is considered a suitable approach for treating infectious diseases. However, there are different challenges in this way. Some biological aspects can probably influence on therapeutic results and further investigations are necessary to reach a successful phage therapy. Bacteriophage activity can influence by bacterial defense system. Bacterial extracellular vesicles (BEVs) are one of the bacterial defense mechanisms which can modify the results of bacteriophage activity. BEVs have the significant roles in the gene transferring, invasion, escape, and spreading of bacteriophages. In this review, the defense mechanisms of bacteria against bacteriophages, especially BEVs secretion, the hidden linkage of BEVs and bacteriophages, and its possible consequences on the bacteriophage activity as well phage therapy will be discussed.
Collapse
Affiliation(s)
- Sepideh Meidaninikjeh
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran.
| | - Parisa Mohammadi
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran; Research Center for Applied Microbiology and Microbial Biotechnology, Alzahra University, Tehran, Iran.
| | - Ameneh Elikaei
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran; Research Center for Applied Microbiology and Microbial Biotechnology, Alzahra University, Tehran, Iran.
| |
Collapse
|
42
|
Bałdysz S, Nawrot R, Barylski J. "Tear down that wall"-a critical evaluation of bioinformatic resources available for lysin researchers. Appl Environ Microbiol 2024; 90:e0236123. [PMID: 38842338 PMCID: PMC11267937 DOI: 10.1128/aem.02361-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024] Open
Abstract
Lytic enzymes, or lysins for short, break down peptidoglycan and interrupt the continuity of the cell wall, which, in turn, causes osmotic lysis of the bacterium. Their ability to destroy bacteria from within makes them promising antimicrobial agents that can be used as alternatives or supplements to antibiotics. In this paper, we briefly summarize basic terms and concepts used to describe lysin sequences and delineate major lysin groups. More importantly, we describe the domain repertoire found in lysins and critically review bioinformatic tools or databases which are used in studies of these enzymes (with particular emphasis on the repositories of Hidden Markov models). Finally, we present a novel comprehensive, meticulously curated set of lysin-related family and domain models, sort them into clusters that reflect major families, and demonstrate that the selected models can be used to efficiently search for new lysins.
Collapse
Affiliation(s)
- Sophia Bałdysz
- Department of Molecular Virology, Institute of Experimental Biology, Adam Mickiewicz University, Poznań, Poland
| | - Robert Nawrot
- Department of Molecular Virology, Institute of Experimental Biology, Adam Mickiewicz University, Poznań, Poland
| | - Jakub Barylski
- Department of Molecular Virology, Institute of Experimental Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
43
|
Zhang Y, Shao Y, You H, Shen Y, Miao F, Yuan C, Chen X, Zhai M, Shen Y, Zhang J. Characterization and therapeutic potential of MRABP9, a novel lytic bacteriophage infecting multidrug-resistant Acinetobacter baumannii clinical strains. Virology 2024; 595:110098. [PMID: 38705084 DOI: 10.1016/j.virol.2024.110098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/13/2024] [Accepted: 04/23/2024] [Indexed: 05/07/2024]
Abstract
Acinetobacter baumannii is one of the most important pathogens of healthcare-associated infections. The rising prevalence of multidrug-resistant A. baumannii (MRAB) strains and biofilm formation impact the outcome of conventional treatment. Phage-related therapy is a promising strategy to tame troublesome multidrug-resistant bacteria. Here, we isolated and evaluated a highly efficient lytic phage called MRABP9 from hospital sewage. The phage was a novel species within the genus Friunavirus and exhibited lytic activity against 2 other identified MRAB strains. Genomic analysis revealed it was a safe virulent phage and a pectate lyase domain was identified within its tail spike protein. MRABP9 showed potent bactericidal and anti-biofilm activity against MRAB, significantly delaying the time point of bacterial regrowth in vitro. Phage administration could rescue the mice from acute lethal MRAB infection. Considering its features, MRABP9 has the potential as an efficient candidate for prophylactic and therapeutic use against acute infections caused by MRAB strains.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, 210009, China; Department of Critical Care Medicine, Zhongda Hospital, Jiangsu Provincial Key Laboratory of Critical Care Medicine, Medical School, Southeast University, Nanjing, 210009, China.
| | - Yong Shao
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Southeast University, Nanjing, 210018, China
| | - Hongyang You
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Southeast University, Nanjing, 210018, China
| | - Yuqing Shen
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, 210009, China; Department of Critical Care Medicine, Zhongda Hospital, Jiangsu Provincial Key Laboratory of Critical Care Medicine, Medical School, Southeast University, Nanjing, 210009, China
| | - Fengqin Miao
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, 210009, China
| | - Chenyan Yuan
- Department of Clinical Laboratory, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - Xin Chen
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, 210009, China
| | - Mengyan Zhai
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, 210009, China
| | - Yi Shen
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Southeast University, Nanjing, 210018, China
| | - Jianqiong Zhang
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, 210009, China; Department of Critical Care Medicine, Zhongda Hospital, Jiangsu Provincial Key Laboratory of Critical Care Medicine, Medical School, Southeast University, Nanjing, 210009, China; Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Southeast University, Nanjing, 210018, China
| |
Collapse
|
44
|
Graham EB, Camargo AP, Wu R, Neches RY, Nolan M, Paez-Espino D, Kyrpides NC, Jansson JK, McDermott JE, Hofmockel KS. A global atlas of soil viruses reveals unexplored biodiversity and potential biogeochemical impacts. Nat Microbiol 2024; 9:1873-1883. [PMID: 38902374 PMCID: PMC11222151 DOI: 10.1038/s41564-024-01686-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 03/25/2024] [Indexed: 06/22/2024]
Abstract
Historically neglected by microbial ecologists, soil viruses are now thought to be critical to global biogeochemical cycles. However, our understanding of their global distribution, activities and interactions with the soil microbiome remains limited. Here we present the Global Soil Virus Atlas, a comprehensive dataset compiled from 2,953 previously sequenced soil metagenomes and composed of 616,935 uncultivated viral genomes and 38,508 unique viral operational taxonomic units. Rarefaction curves from the Global Soil Virus Atlas indicate that most soil viral diversity remains unexplored, further underscored by high spatial turnover and low rates of shared viral operational taxonomic units across samples. By examining genes associated with biogeochemical functions, we also demonstrate the viral potential to impact soil carbon and nutrient cycling. This study represents an extensive characterization of soil viral diversity and provides a foundation for developing testable hypotheses regarding the role of the virosphere in the soil microbiome and global biogeochemistry.
Collapse
Affiliation(s)
- Emily B Graham
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA.
- School of Biological Sciences, Washington State University, Pullman, WA, USA.
| | - Antonio Pedro Camargo
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ruonan Wu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Russell Y Neches
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Institute for Chemical Research, Kyoto University, Kyoto, Japan
| | - Matt Nolan
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - David Paez-Espino
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Nikos C Kyrpides
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Janet K Jansson
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Jason E McDermott
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, USA
| | - Kirsten S Hofmockel
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
- Department of Agronomy, Iowa State University, Ames, IA, USA
| |
Collapse
|
45
|
Burnim AA, Dufault-Thompson K, Jiang X. The three-sided right-handed β-helix is a versatile fold for glycan interactions. Glycobiology 2024; 34:cwae037. [PMID: 38767844 PMCID: PMC11129586 DOI: 10.1093/glycob/cwae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024] Open
Abstract
Interactions between proteins and glycans are critical to various biological processes. With databases of carbohydrate-interacting proteins and increasing amounts of structural data, the three-sided right-handed β-helix (RHBH) has emerged as a significant structural fold for glycan interactions. In this review, we provide an overview of the sequence, mechanistic, and structural features that enable the RHBH to interact with glycans. The RHBH is a prevalent fold that exists in eukaryotes, prokaryotes, and viruses associated with adhesin and carbohydrate-active enzyme (CAZyme) functions. An evolutionary trajectory analysis on structurally characterized RHBH-containing proteins shows that they likely evolved from carbohydrate-binding proteins with their carbohydrate-degrading activities evolving later. By examining three polysaccharide lyase and three glycoside hydrolase structures, we provide a detailed view of the modes of glycan binding in RHBH proteins. The 3-dimensional shape of the RHBH creates an electrostatically and spatially favorable glycan binding surface that allows for extensive hydrogen bonding interactions, leading to favorable and stable glycan binding. The RHBH is observed to be an adaptable domain capable of being modified with loop insertions and charge inversions to accommodate heterogeneous and flexible glycans and diverse reaction mechanisms. Understanding this prevalent protein fold can advance our knowledge of glycan binding in biological systems and help guide the efficient design and utilization of RHBH-containing proteins in glycobiology research.
Collapse
Affiliation(s)
- Audrey A Burnim
- National Library of Medicine, National Institutes of Health, Building 38A, Room 6N607, 8600 Rockville Pike, Bethesda, MD 20894 United States
| | - Keith Dufault-Thompson
- National Library of Medicine, National Institutes of Health, Building 38A, Room 6N607, 8600 Rockville Pike, Bethesda, MD 20894 United States
| | - Xiaofang Jiang
- National Library of Medicine, National Institutes of Health, Building 38A, Room 6N607, 8600 Rockville Pike, Bethesda, MD 20894 United States
| |
Collapse
|
46
|
Kovacs CJ, Rapp EM, McKenzie SM, Mazur MZ, Mchale RP, Brasko B, Min MY, Burpo FJ, Barnhill JC. Disruption of Biofilm by Bacteriophages in Clinically Relevant Settings. Mil Med 2024; 189:e1294-e1302. [PMID: 37847552 DOI: 10.1093/milmed/usad385] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/29/2023] [Accepted: 09/19/2023] [Indexed: 10/18/2023] Open
Abstract
INTRODUCTION Antibiotic-resistant bacteria are a growing threat to civilian and military health today. Although infections were once easily treatable by antibiotics and wound cleaning, the frequent mutation of bacteria has created strains impermeable to antibiotics and physical attack. Bacteria further their pathogenicity because of their ability to form biofilms on wounds, medical devices, and implant surfaces. Methods for treating biofilms in clinical settings are limited, and when formed by antibiotic-resistant bacteria, can generate chronic infections that are recalcitrant to available therapies. Bacteriophages are natural viral predators of bacteria, and their ability to rapidly destroy their host has led to increased attention in potential phage therapy applications. MATERIALS AND METHODS The present article sought to address a knowledge gap in the available literature pertaining to the usage of bacteriophage in clinically relevant settings and the resolution of infections particular to military concerns. PRISMA guidelines were followed for a systematic review of available literature that met the criteria for analysis and inclusion. The research completed for this review article originated from the U.S. Military Academy's library "Scout" search engine, which complies results from 254 available databases (including PubMed, Google Scholar, and SciFinder). The search criteria included original studies that employed bacteriophage use against biofilms, as well as successful phage therapy strategies for combating chronic bacterial infections. We specifically explored the use of bacteriophage against antibiotic- and treatment-resistant bacteria. RESULTS A total of 80 studies were identified that met the inclusion criteria following PRISMA guidelines. The application of bacteriophage has been demonstrated to robustly disrupt biofilm growth in wounds and on implant surfaces. When traditional therapies have failed to disrupt biofilms and chronic infections, a combination of these treatments with phage has proven to be effective, often leading to complete wound healing without reinfection. CONCLUSIONS This review article examines the available literature where bacteriophages have been utilized to treat biofilms in clinically relevant settings. Specific attention is paid to biofilms on implant medical devices, biofilms formed on wounds, and clinical outcomes, where phage treatment has been efficacious. In addition to the clinical benefit of phage therapies, the military relevance and treatment of combat-related infections is also examined. Phages offer the ability to expand available treatment options in austere environments with relatively low cost and effort, allowing the impacted warfighter to return to duty quicker and healthier.
Collapse
Affiliation(s)
- Christopher J Kovacs
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA
- Defense Threat Reduction Agency, Fort Belvoir, VA 22060, USA
| | - Erika M Rapp
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA
| | - Sophia M McKenzie
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA
| | - Michael Z Mazur
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA
| | - Riley P Mchale
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA
| | - Briana Brasko
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA
| | - Michael Y Min
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA
| | - F John Burpo
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA
| | - Jason C Barnhill
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA
| |
Collapse
|
47
|
Evseev PV, Sukhova AS, Tkachenko NA, Skryabin YP, Popova AV. Lytic Capsule-Specific Acinetobacter Bacteriophages Encoding Polysaccharide-Degrading Enzymes. Viruses 2024; 16:771. [PMID: 38793652 PMCID: PMC11126041 DOI: 10.3390/v16050771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
The genus Acinetobacter comprises both environmental and clinically relevant species associated with hospital-acquired infections. Among them, Acinetobacter baumannii is a critical priority bacterial pathogen, for which the research and development of new strategies for antimicrobial treatment are urgently needed. Acinetobacter spp. produce a variety of structurally diverse capsular polysaccharides (CPSs), which surround the bacterial cells with a thick protective layer. These surface structures are primary receptors for capsule-specific bacteriophages, that is, phages carrying tailspikes with CPS-depolymerizing/modifying activities. Phage tailspike proteins (TSPs) exhibit hydrolase, lyase, or esterase activities toward the corresponding CPSs of a certain structure. In this study, the data on all lytic capsule-specific phages infecting Acinetobacter spp. with genomes deposited in the NCBI GenBank database by January 2024 were summarized. Among the 149 identified TSPs encoded in the genomes of 143 phages, the capsular specificity (K specificity) of 46 proteins has been experimentally determined or predicted previously. The specificity of 63 TSPs toward CPSs, produced by various Acinetobacter K types, was predicted in this study using a bioinformatic analysis. A comprehensive phylogenetic analysis confirmed the prediction and revealed the possibility of the genetic exchange of gene regions corresponding to the CPS-recognizing/degrading parts of different TSPs between morphologically and taxonomically distant groups of capsule-specific Acinetobacter phages.
Collapse
Affiliation(s)
- Peter V. Evseev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia;
- State Research Center for Applied Microbiology and Biotechnology, City District Serpukhov, Moscow Region, 142279 Obolensk, Russia; (A.S.S.); (Y.P.S.)
- Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Anastasia S. Sukhova
- State Research Center for Applied Microbiology and Biotechnology, City District Serpukhov, Moscow Region, 142279 Obolensk, Russia; (A.S.S.); (Y.P.S.)
| | - Nikolay A. Tkachenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia;
| | - Yuriy P. Skryabin
- State Research Center for Applied Microbiology and Biotechnology, City District Serpukhov, Moscow Region, 142279 Obolensk, Russia; (A.S.S.); (Y.P.S.)
| | - Anastasia V. Popova
- State Research Center for Applied Microbiology and Biotechnology, City District Serpukhov, Moscow Region, 142279 Obolensk, Russia; (A.S.S.); (Y.P.S.)
| |
Collapse
|
48
|
Peters DL, Gaudreault F, Chen W. Functional domains of Acinetobacter bacteriophage tail fibers. Front Microbiol 2024; 15:1230997. [PMID: 38690360 PMCID: PMC11058221 DOI: 10.3389/fmicb.2024.1230997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 03/08/2024] [Indexed: 05/02/2024] Open
Abstract
A rapid increase in antimicrobial resistant bacterial infections around the world is causing a global health crisis. The Gram-negative bacterium Acinetobacter baumannii is categorized as a Priority 1 pathogen for research and development of new antimicrobials by the World Health Organization due to its numerous intrinsic antibiotic resistance mechanisms and ability to quickly acquire new resistance determinants. Specialized phage enzymes, called depolymerases, degrade the bacterial capsule polysaccharide layer and show therapeutic potential by sensitizing the bacterium to phages, select antibiotics, and serum killing. The functional domains responsible for the capsule degradation activity are often found in the tail fibers of select A. baumannii phages. To further explore the functional domains associated with depolymerase activity, tail-associated proteins of 71 sequenced and fully characterized phages were identified from published literature and analyzed for functional domains using InterProScan. Multisequence alignments and phylogenetic analyses were conducted on the domain groups and assessed in the context of noted halo formation or depolymerase characterization. Proteins derived from phages noted to have halo formation or a functional depolymerase, but no functional domain hits, were modeled with AlphaFold2 Multimer, and compared to other protein models using the DALI server. The domains associated with depolymerase function were pectin lyase-like (SSF51126), tailspike binding (cd20481), (Trans)glycosidases (SSF51445), and potentially SGNH hydrolases. These findings expand our knowledge on phage depolymerases, enabling researchers to better exploit these enzymes for therapeutic use in combating the antimicrobial resistance crisis.
Collapse
Affiliation(s)
- Danielle L. Peters
- Human Health Therapeutics (HHT) Research Center, National Research Council Canada, Ottawa, ON, Canada
| | | | - Wangxue Chen
- Human Health Therapeutics (HHT) Research Center, National Research Council Canada, Ottawa, ON, Canada
- Department of Biology, Brock University, St. Catharines, ON, Canada
| |
Collapse
|
49
|
Cai X, He Y, Yu I, Imani A, Scholl D, Miller JF, Zhou ZH. Atomic structures of a bacteriocin targeting Gram-positive bacteria. RESEARCH SQUARE 2024:rs.3.rs-4007122. [PMID: 38586031 PMCID: PMC10996793 DOI: 10.21203/rs.3.rs-4007122/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Due to envelope differences between Gram-positive and Gram-negative bacteria1, engineering precision bactericidal contractile nanomachines2 requires atomic-level understanding of their structures; however, only those killing a Gram-negative bacterium are currently known3,4. Here, we report the atomic structures of an engineered diffocin, a contractile syringe-like molecular machine that kills the Gram-positive bacterium Clostridioides difficile. Captured in one pre-contraction and two post-contraction states, each structure fashions six proteins in the bacteria-targeting baseplate, two proteins in the energy-storing trunk, and a collar protein linking the sheath with the membrane-penetrating tube. Compared to contractile machines targeting Gram-negative bacteria, major differences reside in the baseplate and contraction magnitude, consistent with differences between their targeted envelopes. The multifunctional hub-hydrolase protein connects the tube and baseplate and is positioned to degrade peptidoglycan during penetration. The full-length tape measure protein forms a coiled-coil helix bundle homotrimer spanning the entire length of the diffocin. Our study offers mechanical insights and principles for designing potent protein-based precision antibiotics.
Collapse
Affiliation(s)
- Xiaoying Cai
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- The California NanoSystems Institute (CNSI), University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Yao He
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- The California NanoSystems Institute (CNSI), University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Iris Yu
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- The California NanoSystems Institute (CNSI), University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Anthony Imani
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- The California NanoSystems Institute (CNSI), University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Dean Scholl
- Pylum Biosciences, 100 Kimball Way S. San Francisco, CA 94080, USA
| | - Jeff F. Miller
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- The California NanoSystems Institute (CNSI), University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Z. Hong Zhou
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- The California NanoSystems Institute (CNSI), University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| |
Collapse
|
50
|
Kang D, Bagchi D, Chen IA. Pharmacokinetics and Biodistribution of Phages and their Current Applications in Antimicrobial Therapy. ADVANCED THERAPEUTICS 2024; 7:2300355. [PMID: 38933919 PMCID: PMC11198966 DOI: 10.1002/adtp.202300355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Indexed: 06/28/2024]
Abstract
Antimicrobial resistance remains a critical global health concern, necessitating the investigation of alternative therapeutic approaches. With the diminished efficacy of conventional small molecule drugs due to the emergence of highly resilient bacterial strains, there is growing interest in the potential for alternative therapeutic modalities. As naturally occurring viruses of bacteria, bacteriophage (or phage) are being re-envisioned as a platform to engineer properties that can be tailored to target specific bacterial strains and employ diverse antibacterial mechanisms. However, limited understanding of key pharmacological properties of phage is a major challenge to translating its use from preclinical to clinical settings. Here, we review modern advancements in phage-based antimicrobial therapy and discuss the in vivo pharmacokinetics and biodistribution of phage, addressing critical challenges in their application that must be overcome for successful clinical implementation.
Collapse
Affiliation(s)
- Dayeon Kang
- Department of Chemical and Biomolecular Engineering, Department of Chemistry and Biochemistry, University of California, Los Angeles, 90024 USA
| | - Damayanti Bagchi
- Department of Chemical and Biomolecular Engineering, Department of Chemistry and Biochemistry, University of California, Los Angeles, 90024 USA
| | - Irene A. Chen
- Department of Chemical and Biomolecular Engineering, Department of Chemistry and Biochemistry, University of California, Los Angeles, 90024 USA
| |
Collapse
|