1
|
Tao Z, Wang LT, Tang WJ, Zhang BR, Wang S, Wang L, Wu J, Liu ZZ. Loop engineering of cellobiose 2-epimerase from Dictyoglomus thermophilum for efficient synthesis of lactulose. Int J Biol Macromol 2025; 305:140974. [PMID: 39952538 DOI: 10.1016/j.ijbiomac.2025.140974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/10/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
Lactulose holds broad application due to its unique pharmaceutical and prebiotic properties. Cellobiose 2-epimerase (CE) efficiently catalyzes the production of lactulose, offering an eco-friendly biosynthetic alternative. However, its relatively low isomerization activity hampers widespread application in the manufacture of lactulose. In this study, we selected DtCE sourced from Dictyoglomus thermophilum and successfully generated mutants M4 and M5 through an innovative loop engineering process that integrates computer-aided design with directed evolution. Remarkably, the isomerization activities of the mutants M4 and M5 increased by 46.5 % and 81.8 %, respectively, marking a significant improvement compared to the wild-type. Conversely, their epimerization activities underwent a dramatic decline, dropping by 80.0 % and 50.0 %, respectively. Therefore, these mutants demonstrated considerable superiority in the synthesis of lactulose. Moreover, molecular dynamics simulations showed that modifications of the flexible loop affected protonation, enhancing isomerization selectivity. This study underscores the precision and efficacy of our engineering approach in customizing DtCE's properties to meet specific needs, while concurrently establishing a technical foundation for industrial-scale biosynthetic production of lactulose.
Collapse
Affiliation(s)
- Zun Tao
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Long-Tao Wang
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Wei-Jie Tang
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Bo-Ran Zhang
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Sheng Wang
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Lei Wang
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Jing Wu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
| | - Zhan-Zhi Liu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
| |
Collapse
|
2
|
Sadeeq M, Li Y, Wang C, Hou F, Zuo J, Xiong P. Unlocking the power of antimicrobial peptides: advances in production, optimization, and therapeutics. Front Cell Infect Microbiol 2025; 15:1528583. [PMID: 40365533 PMCID: PMC12070195 DOI: 10.3389/fcimb.2025.1528583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 03/19/2025] [Indexed: 05/15/2025] Open
Abstract
Antimicrobial peptides (AMPs) are critical effectors of innate immunity, presenting a compelling alternative to conventional antibiotics amidst escalating antimicrobial resistance. Their broad-spectrum efficacy and inherent low resistance development are countered by production challenges, including limited yields and proteolytic degradation, which restrict their clinical translation. While chemical synthesis offers precise structural control, it is often prohibitively expensive and complex for large-scale production. Heterologous expression systems provide a scalable, cost-effective platform, but necessitate optimization. This review comprehensively examines established and emerging AMP production strategies, encompassing fusion protein technologies, molecular engineering approaches, rational peptide design, and post-translational modifications, with an emphasis on maximizing yield, bioactivity, stability, and safety. Furthermore, we underscore the transformative role of artificial intelligence, particularly machine learning algorithms, in accelerating AMP discovery and optimization, thereby propelling their expanded therapeutic application and contributing to the global fight against drug-resistant infections.
Collapse
Affiliation(s)
| | | | | | | | - Jia Zuo
- Biosynthesis and Bio Transformation Center, School of Life Sciences and Medicine,
Shandong University of Technology (SDUT), Zibo, China
| | - Peng Xiong
- Biosynthesis and Bio Transformation Center, School of Life Sciences and Medicine,
Shandong University of Technology (SDUT), Zibo, China
| |
Collapse
|
3
|
Cao X, Wang X, Chen R, Chen L, Liu Y, Wang M. Improving Bacillus subtilis as Biological Chassis Performance by the CRISPR Genetic Toolkit. ACS Synth Biol 2025; 14:677-688. [PMID: 40040244 DOI: 10.1021/acssynbio.4c00844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Bacillus subtilis is the model Gram-positive and industrial chassis bacterium; it has blossomed as a robust and promising host for enzyme, biochemical, or bioflocculant production. However, synthetic biology and metabolic engineering technologies of B. subtilis have lagged behind the most widely used industrial chassis Saccharomyces cerevisiae and Escherichia coli. CRISPR (an acronym for clustered regularly interspaced short palindromic repeats) enables efficient, site-specific, and programmable DNA cleavage, which has revolutionized the manner of genome editing. In 2016, CRISPR technology was first introduced into B. subtilis and has been intensely upgraded since then. In this Review, we discuss recently developed key additions to CRISPR toolkit design in B. subtilis with gene editing, transcriptional regulation, and enzyme modulation. Second, advances in the B. subtilis chassis of efficient biochemicals and proteins with CRISPR engineering are discussed. Finally, we conclude with perspectives on the challenges and opportunities of CRISPR-based biotechnology in B. subtilis, wishing that B. subtilis can be comparable to traditional industrial microorganisms such as E. coli and S. cerevisiae someday soon.
Collapse
Affiliation(s)
- Xianhai Cao
- Instrumental Analysis and Research Center, Tianjin University of Traditional Chinese Medicine, 301617 Tianjin, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Xiaojuan Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Ruirui Chen
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Lu Chen
- Instrumental Analysis and Research Center, Tianjin University of Traditional Chinese Medicine, 301617 Tianjin, China
| | - Yang Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Meng Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| |
Collapse
|
4
|
Liu Q, Xuan G, Wang Y, Lin H, Wang J. Complete genome analysis and biological characterization of phage vB_Bsu_hmny2 infecting Bacillus subtilis. Arch Virol 2025; 170:75. [PMID: 40080182 DOI: 10.1007/s00705-025-06243-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 01/07/2025] [Indexed: 03/15/2025]
Abstract
Bacillus subtilis, a key microorganism in food fermentation, is frequently compromised by phage contamination, which can result in fermentation failures. Therefore, understanding and controlling B. subtilis-infecting phages is critical for enhancing fermentation stability. In this study, we characterized a novel lytic B. subtilis phage, vB_Bsu_hmny2, isolated from sewage collected at a seafood market in Qingdao, China. This phage has a linear double-stranded DNA genome of 18,762 bp with 25 open reading frames (ORFs), the functions of 17 of which were predicted. Transmission electron microscopy examination revealed that the phage exhibits podovirus morphology, with a head measuring 40 ± 10 nm in diameter and a short tail measuring 20 ± 6 nm in length. vB_Bsu_hmny2 exhibited stability across a range of temperatures and pH levels and was found to belong to the species Beecentumtrevirus Nf in the family Salasmaviridae. vB_Bsu_hmny2 is the first phage of the genus Beecentumtrevirus to undergo physiological characterization. This research addresses a gap in the functional analysis of phages, providing valuable insights for phage control in industrial fermentation processes.
Collapse
Affiliation(s)
- Qihong Liu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, 266400, China
| | - Guanhua Xuan
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, 266400, China.
| | - Yinfeng Wang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, 266400, China
| | - Hong Lin
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, 266400, China
| | - Jingxue Wang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, 266400, China.
| |
Collapse
|
5
|
Ren P, Dong Q, Zhou C, Chen T, Sun W, Chen Y, Ying H. Enhanced pullulanase production through expression system optimization and biofilm-immobilized fermentation strategies. Int J Biol Macromol 2025; 297:139933. [PMID: 39824400 DOI: 10.1016/j.ijbiomac.2025.139933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/31/2024] [Accepted: 01/14/2025] [Indexed: 01/20/2025]
Abstract
Pullulanase (PUL) plays a crucial role in breaking down α-1,6-glycosidic bonds in starch, a key process in starch processing and conversion. Based on PulB with high enzymatic activity, the expression of PUL in Bacillus subtilis was enhanced by plasmid screening, double promoter optimization, and signal peptide engineering. Furthermore, we innovatively employed a mussel foot protein to enhance the cell adhesion to carriers and utilized biofilm-based cell immobilization technology to optimize the fermentation process and stimulate biofilm formation. This approach led to a notably elevated enzyme activity, reaching 2233.56 U mL-1. The PUL crude enzyme solution, capable of generating high glucose syrup and resistant starch, paves the way for new avenues of exploration and advancement in research and industrial biotechnology.
Collapse
Affiliation(s)
- Peifang Ren
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Qiwei Dong
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Chaowei Zhou
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Tianpeng Chen
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Wenjun Sun
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China.
| | - Yong Chen
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China.
| | - Hanjie Ying
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China; Soochow University, Suzhou, Jiangsu 215123, PR China
| |
Collapse
|
6
|
Zhang K, Zhao W, Chen S, Su L, Wu J. High-Level Expression of Sucrose Isomerase in Bacillus subtilis Through Expression Element Optimization and Fermentation Optimization. Appl Biochem Biotechnol 2025; 197:926-942. [PMID: 39331329 DOI: 10.1007/s12010-024-05042-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2024] [Indexed: 09/28/2024]
Abstract
Sucrose isomerase is an important food enzyme that catalyzes the isomerization of sucrose into isomaltulose, a functional sugar widely used in food industry, while the production level of sucrose isomerase in food safe host strains was much lower than industrial requirement. Bacillus subtilis is an excellent host strain for recombinant protein expression, which owns the characteristics of powerful secretory capability and generally recognized as safe state. In this study, the expression of sucrose isomerase in B. subtilis was improved through expression element optimization and fermentation optimization. Firstly, the extracellular chaperone PrsA was overexpressed to enhance extracellular folding of sucrose isomerase, which improved the recombinant expression level by 80.02%. Then, the protein synthesis level was optimized through promoter screening, improving the recombinant expression level by 60.40%. On the basis of strain modification, the fermentation conditions including nitrogen source, carbon source, metal ion, pH and temperature were optimized successively in shake-flask. Finally, the 3 L bioreactor cultivation condition was optimized and yielding a sucrose isomerase activity of 862.86 U/mL, the highest level among the food safety strains. This study provides an effective strategy to improve the expression level of food enzymes in B. subtilis.
Collapse
Affiliation(s)
- Kang Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
- International Joint Laboratory On Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Wenchong Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
- International Joint Laboratory On Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Sheng Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
- International Joint Laboratory On Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Lingqia Su
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
- International Joint Laboratory On Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Jing Wu
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.
- International Joint Laboratory On Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.
| |
Collapse
|
7
|
Zhang K, Luo H, Zhu X, Liu W, Yu X, Tao W, Lin H, Hou M, Wu J. Construction of Bacillus subtilis chassis strain with enhanced α-amylase expression capability based on CRISPRi screening. Int J Biol Macromol 2024; 283:137497. [PMID: 39528193 DOI: 10.1016/j.ijbiomac.2024.137497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 11/08/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
Bacillus subtilis has been widely used in the expression of recombinant proteins due to its food safe and powerful secretion characteristic, but the current production level cannot meet the increasing industrial needs. To enhance the production of recombinant protein, we first screened target key genes that are directly or indirectly involved in protein synthesis, using CRISPRi technology targeting the whole genome, with industrial valuable Bacillus stearothermophilus α-amylase as the model protein. Then the screened key genes were combined, yielding a chassis strain that owning enhanced protein expression capability. Following overlaying molecular chaperone GroES/L and peptidoglycan glycosyltransferase PonA, α-amylase activity reached 102,893 U/mL in a 3-L fermenter, the highest level reported till now. Finally, transcriptome analysis showed that the enhanced recombinant expression may be due to more rational allocation of energy and resources. These strategies can be well implicated in engineering other microbial cell factories for higher industrial production.
Collapse
Affiliation(s)
- Kang Zhang
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Hui Luo
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Xuyang Zhu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Weiqiong Liu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Xinrui Yu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Wei Tao
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Huanliu Lin
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Minglei Hou
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Jing Wu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
8
|
Zhu X, Luo H, Yu X, Lv H, Su L, Zhang K, Wu J. Genome-Wide CRISPRi Screening of Key Genes for Recombinant Protein Expression in Bacillus Subtilis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404313. [PMID: 38952047 PMCID: PMC11434012 DOI: 10.1002/advs.202404313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/29/2024] [Indexed: 07/03/2024]
Abstract
Bacillus subtilis is an industrially important microorganism that is often used as a microbial cell factory for the production of recombinant proteins due to its food safety, rapid growth, and powerful secretory capacity. However, the lack of data on functional genes related to recombinant protein production has hindered the further development of B. subtilis cell factories. Here, a strategy combining genome-wide CRISPRi screening and targeted CRISPRa activation to enhance recombinant protein expression is proposed. First, a CRISPRi library covering a total of 4225 coding genes (99.7%) in the B. subtilis genome and built the corresponding high-throughput screening methods is constructed. Twelve key genes for recombinant protein expression are identified, including targets without relevant functional annotations. Meanwhile, the transcription of recombinant protein genes by CRISPRa is up-regulated. These screened or selected genes can be easily applied to metabolic engineering by constructing sgRNA arrays. The relationship between differential pathways and recombinant protein expression in engineered strains by transcriptome analysis is also revealed. High-density fermentation and generalisability validation results prove the reliability of the strategy. This method can be extended to other industrial hosts to support functional gene annotation and the design of novel cell factories.
Collapse
Affiliation(s)
- Xuyang Zhu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of EducationState Key Laboratory of Food Science and ResourcesInternational Joint Laboratory on Food SafetyJiangnan UniversityWuxi214122China
| | - Hui Luo
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of EducationState Key Laboratory of Food Science and ResourcesInternational Joint Laboratory on Food SafetyJiangnan UniversityWuxi214122China
| | - Xinrui Yu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of EducationState Key Laboratory of Food Science and ResourcesInternational Joint Laboratory on Food SafetyJiangnan UniversityWuxi214122China
| | - Huihui Lv
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of EducationState Key Laboratory of Food Science and ResourcesInternational Joint Laboratory on Food SafetyJiangnan UniversityWuxi214122China
| | - Lingqia Su
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of EducationState Key Laboratory of Food Science and ResourcesInternational Joint Laboratory on Food SafetyJiangnan UniversityWuxi214122China
| | - Kang Zhang
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of EducationState Key Laboratory of Food Science and ResourcesInternational Joint Laboratory on Food SafetyJiangnan UniversityWuxi214122China
| | - Jing Wu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of EducationState Key Laboratory of Food Science and ResourcesInternational Joint Laboratory on Food SafetyJiangnan UniversityWuxi214122China
| |
Collapse
|
9
|
Qi Z, Lei B, Xiong M, Li W, Liao Y, Cai D, Ma X, Zhang R, Chen S. High-level production of chitinase by multi-strategy combination optimization in Bacillus licheniformis. World J Microbiol Biotechnol 2024; 40:181. [PMID: 38668833 DOI: 10.1007/s11274-024-03995-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 04/19/2024] [Indexed: 05/01/2024]
Abstract
In view of the extensive potential applications of chitinase (ChiA) in various fields such as agriculture, environmental protection, medicine, and biotechnology, the development of a high-yielding strain capable of producing chitinase with enhanced activity holds significant importance. The objective of this study was to utilize the extracellular chitinase from Bacillus thuringiensis as the target, and Bacillus licheniformis as the expression host to achieve heterologous expression of ChiA with enhanced activity. Initially, through structural analysis and molecular dynamics simulation, we identified key amino acids to improve the enzymatic performance of chitinase, and the specific activity of chitinase mutant D116N/E118N was 48% higher than that of the natural enzyme, with concomitant enhancements in thermostability and pH stability. Subsequently, the expression elements of ChiA(D116N/E118N) were screened and modified in Bacillus licheniformis, resulting in extracellular ChiA activity reached 89.31 U/mL. Further efforts involved the successful knockout of extracellular protease genes aprE, bprA and epr, along with the gene clusters involved in the synthesis of by-products such as bacitracin and lichenin from Bacillus licheniformis. This led to the development of a recombinant strain, DW2△abelA, which exhibited a remarkable improvement in chitinase activity, reaching 145.56 U/mL. To further improve chitinase activity, a chitinase expression frame was integrated into the genome of DW2△abelA, resulting in a significant increas to 180.26 U/mL. Optimization of fermentation conditions and medium components further boosted shake flask enzyme activity shake flask enzyme activity, achieving 200.28 U/mL, while scale-up fermentation experiments yielded an impressive enzyme activity of 338.79 U/mL. Through host genetic modification, expression optimization and fermentation optimization, a high-yielding ChiA strain was successfully constructed, which will provide a solid foundation for the extracellular production of ChiA.
Collapse
Affiliation(s)
- Zhimin Qi
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuhan, Hubei, 430062, PR China
| | - Bo Lei
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuhan, Hubei, 430062, PR China
| | - Min Xiong
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuhan, Hubei, 430062, PR China
| | - Weijia Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuhan, Hubei, 430062, PR China
| | - Yongqing Liao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuhan, Hubei, 430062, PR China
| | - Dongbo Cai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuhan, Hubei, 430062, PR China
| | - Xin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuhan, Hubei, 430062, PR China
| | - Ruibin Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuhan, Hubei, 430062, PR China.
| | - Shouwen Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuhan, Hubei, 430062, PR China.
| |
Collapse
|
10
|
Vojnovic S, Aleksic I, Ilic-Tomic T, Stevanovic M, Nikodinovic-Runic J. Bacillus and Streptomyces spp. as hosts for production of industrially relevant enzymes. Appl Microbiol Biotechnol 2024; 108:185. [PMID: 38289383 PMCID: PMC10827964 DOI: 10.1007/s00253-023-12900-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/28/2023] [Accepted: 12/05/2023] [Indexed: 02/01/2024]
Abstract
The application of enzymes is expanding across diverse industries due to their nontoxic and biodegradable characteristics. Another advantage is their cost-effectiveness, reflected in reduced processing time, water, and energy consumption. Although Gram-positive bacteria, Bacillus, and Streptomyces spp. are successfully used for production of industrially relevant enzymes, they still lag far behind Escherichia coli as hosts for recombinant protein production. Generally, proteins secreted by Bacillus and Streptomyces hosts are released into the culture medium; their native conformation is preserved and easier recovery process enabled. Given the resilience of both hosts in harsh environmental conditions and their spore-forming capability, a deeper understanding and broader use of Bacillus and Streptomyces as expression hosts could significantly enhance the robustness of industrial bioprocesses. This mini-review aims to compare two expression hosts, emphasizing their specific advantages in industrial surroundings such are chemical, detergent, textile, food, animal feed, leather, and paper industries. The homologous sources, heterologous hosts, and molecular tools used for the production of recombinant proteins in these hosts are discussed. The potential to use both hosts as biocatalysts is also evaluated. Undoubtedly, Bacillus and Streptomyces spp. as production hosts possess the potential to take on a more substantial role, providing superior (bio-based) process robustness and flexibility. KEY POINTS: • Bacillus and Streptomyces spp. as robust hosts for enzyme production. • Industrially relevant enzyme groups for production in alternative hosts highlighted. • Molecular biology techniques are enabling easier utilization of both hosts.
Collapse
Affiliation(s)
- Sandra Vojnovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade 152, Serbia.
| | - Ivana Aleksic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade 152, Serbia
| | - Tatjana Ilic-Tomic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade 152, Serbia
| | - Milena Stevanovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade 152, Serbia
| | - Jasmina Nikodinovic-Runic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade 152, Serbia.
| |
Collapse
|
11
|
Yao D, Han X, Gao H, Wang B, Fang Z, Li H, Fang W, Xiao Y. Enhanced extracellular production of raw starch-degrading α-amylase in Bacillus subtilis through expression regulatory element modification and fermentation optimization. Microb Cell Fact 2023; 22:118. [PMID: 37381017 DOI: 10.1186/s12934-023-02116-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/17/2023] [Indexed: 06/30/2023] Open
Abstract
BACKGROUND Raw starch-degrading α-amylase (RSDA) can hydrolyze raw starch at moderate temperatures, thus contributing to savings in starch processing costs. However, the low production level of RSDA limits its industrial application. Therefore, improving the extracellular expression of RSDA in Bacillus subtilis, a commonly used industrial expression host, has great value. RESULTS In this study, the extracellular production level of Pontibacillus sp. ZY raw starch-degrading α-amylase (AmyZ1) in B. subtilis was enhanced by expression regulatory element modification and fermentation optimization. As an important regulatory element of gene expression, the promoter, signal peptide, and ribosome binding site (RBS) sequences upstream of the amyZ1 gene were sequentially optimized. Initially, based on five single promoters, the dual-promoter Pveg-PylB was constructed by tandem promoter engineering. Afterward, the optimal signal peptide SPNucB was obtained by screening 173 B. subtilis signal peptides. Then, the RBS sequence was optimized using the RBS Calculator to obtain the optimal RBS1. The resulting recombinant strain WBZ-VY-B-R1 showed an extracellular AmyZ1 activity of 4824.2 and 41251.3 U/mL during shake-flask cultivation and 3-L fermenter fermentation, which were 2.6- and 2.5-fold greater than those of the original strain WBZ-Y, respectively. Finally, the extracellular AmyZ1 activity of WBZ-VY-B-R1 was increased to 5733.5 U/mL in shake flask by optimizing the type and concentration of carbon source, nitrogen source, and metal ions in the fermentation medium. On this basis, its extracellular AmyZ1 activity was increased to 49082.1 U/mL in 3-L fermenter by optimizing the basic medium components as well as the ratio of carbon and nitrogen sources in the feed solution. This is the highest production level reported to date for recombinant RSDA production. CONCLUSIONS This study represents a report on the extracellular production of AmyZ1 using B. subtilis as a host strain, and achieved the current highest expression level. The results of this study will lay a foundation for the industrial application of RSDA. In addition, the strategies employed here also provide a promising way for improving other protein production in B. subtilis.
Collapse
Affiliation(s)
- Dongbang Yao
- School of Life Sciences, Anhui University, Hefei, 230601, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, 230601, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, 230601, China
- AHU Green Industry Innovation Research Institute, Hefei, 230088, China
| | - Xudong Han
- School of Life Sciences, Anhui University, Hefei, 230601, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, 230601, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, 230601, China
- AHU Green Industry Innovation Research Institute, Hefei, 230088, China
| | - Huanhuan Gao
- School of Life Sciences, Anhui University, Hefei, 230601, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, 230601, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, 230601, China
- AHU Green Industry Innovation Research Institute, Hefei, 230088, China
| | - Bin Wang
- School of Life Sciences, Anhui University, Hefei, 230601, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, 230601, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, 230601, China
- AHU Green Industry Innovation Research Institute, Hefei, 230088, China
| | - Zemin Fang
- School of Life Sciences, Anhui University, Hefei, 230601, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, 230601, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, 230601, China
- AHU Green Industry Innovation Research Institute, Hefei, 230088, China
| | - He Li
- School of Life Sciences, Anhui University, Hefei, 230601, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, 230601, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, 230601, China
- AHU Green Industry Innovation Research Institute, Hefei, 230088, China
| | - Wei Fang
- School of Life Sciences, Anhui University, Hefei, 230601, China.
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, 230601, China.
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, 230601, China.
- AHU Green Industry Innovation Research Institute, Hefei, 230088, China.
| | - Yazhong Xiao
- School of Life Sciences, Anhui University, Hefei, 230601, China.
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, 230601, China.
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, 230601, China.
- AHU Green Industry Innovation Research Institute, Hefei, 230088, China.
| |
Collapse
|
12
|
Boukid F, Ganeshan S, Wang Y, Tülbek MÇ, Nickerson MT. Bioengineered Enzymes and Precision Fermentation in the Food Industry. Int J Mol Sci 2023; 24:10156. [PMID: 37373305 DOI: 10.3390/ijms241210156] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/06/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Enzymes have been used in the food processing industry for many years. However, the use of native enzymes is not conducive to high activity, efficiency, range of substrates, and adaptability to harsh food processing conditions. The advent of enzyme engineering approaches such as rational design, directed evolution, and semi-rational design provided much-needed impetus for tailor-made enzymes with improved or novel catalytic properties. Production of designer enzymes became further refined with the emergence of synthetic biology and gene editing techniques and a plethora of other tools such as artificial intelligence, and computational and bioinformatics analyses which have paved the way for what is referred to as precision fermentation for the production of these designer enzymes more efficiently. With all the technologies available, the bottleneck is now in the scale-up production of these enzymes. There is generally a lack of accessibility thereof of large-scale capabilities and know-how. This review is aimed at highlighting these various enzyme-engineering strategies and the associated scale-up challenges, including safety concerns surrounding genetically modified microorganisms and the use of cell-free systems to circumvent this issue. The use of solid-state fermentation (SSF) is also addressed as a potentially low-cost production system, amenable to customization and employing inexpensive feedstocks as substrate.
Collapse
Affiliation(s)
- Fatma Boukid
- ClonBio Group Ltd., 6 Fitzwilliam Pl, D02 XE61 Dublin, Ireland
| | | | - Yingxin Wang
- Saskatchewan Food Industry Development Centre, Saskatoon, SK S7M 5V1, Canada
| | | | - Michael T Nickerson
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| |
Collapse
|
13
|
Zhu X, Zhang K, Luo H, Wu J. Overexpression of the class A penicillin-binding protein PonA in Bacillus improves recombinant protein production. BIORESOURCE TECHNOLOGY 2023; 383:129219. [PMID: 37217145 DOI: 10.1016/j.biortech.2023.129219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 05/24/2023]
Abstract
The bottleneck of recombinant protein production in microbial cell factories is sometimes determined by limited manipulable targets and the lack of gene annotation related to protein expression. PonA is the major class A penicillin-binding protein in Bacillus, which polymerizes and cross-links peptidoglycan. Here, we described its novel functions during recombinant protein expression in Bacillus subtilis and analyzed the mechanism of its chaperone activity. When PonA was overexpressed, the expression of hyperthermophilic amylase significantly increased 3.96- and 1.26-fold in shake flasks and fed-batch processes, respectively. Increased cell diameter and reinforced cell walls were observed in PonA-overexpressing strains. Furthermore, the FN3 structural domain and the natural dimeric structure of PonA may be critical for exerting its chaperone activity. These data suggest that PonA can be an effective target for modification of the expression of recombinant proteins in B. subtilis.
Collapse
Affiliation(s)
- Xuyang Zhu
- State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology Ministry of Education, and International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Kang Zhang
- State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology Ministry of Education, and International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Hui Luo
- State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology Ministry of Education, and International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jing Wu
- State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology Ministry of Education, and International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| |
Collapse
|
14
|
Kolasinliler G, Aagre MM, Akkale C, Kaya HB. The use of CRISPR-Cas-based systems in bacterial cell factories. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2023.108880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
15
|
Yu X, Li S, Feng H, Liao X, Xing XH, Bai Z, Liu X, Zhang C. CRISPRi-microfluidics screening enables genome-scale target identification for high-titer protein production and secretion. Metab Eng 2023; 75:192-204. [PMID: 36572334 DOI: 10.1016/j.ymben.2022.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 12/25/2022]
Abstract
Genome-scale target identification promises to guide microbial cell factory engineering for higher-titer production of biomolecules such as recombinant proteins (r-protein), but challenges remain due to the need not only for comprehensive genotypic perturbation but also in conjunction with high-throughput phenotypic screening strategies. Here, we developed a CRISPRi-microfluidics screening platform to systematically identify crucial gene targets that can be engineered to enhance r-protein secretion in Corynebacterium glutamicum. We created a CRISPR interference (CRISPRi) library containing 46,549 single-guide RNAs, where we aimed to unbiasedly target all genes for repression. Meanwhile, we developed a highly efficient droplet-based microfluidics system integrating the FlAsH-tetracysteine assay that enables screening of millions of strains to identify potential knockdowns conducive to nanobody VHH secretion. Among our highest-ranking candidates are a slew of previously unknown targets involved in transmembrane transport, amino-acid metabolism and redox regulation. Guided by these findings, we eventually constructed a hyperproducer for multiple proteins via combinatorial engineering of redox-response transcription factors. As the near-universal applicability of CRISPRi technology and the FlAsH-based screening platform, this procedure might be expanded to include a varied variety of microbial species and recombinant proteins.
Collapse
Affiliation(s)
- Xinyu Yu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214122, China; MOE Key Laboratory for Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Shuang Li
- MOE Key Laboratory for Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Huibao Feng
- MOE Key Laboratory for Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Xihao Liao
- MOE Key Laboratory for Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Xin-Hui Xing
- MOE Key Laboratory for Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China; Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China
| | - Zhonghu Bai
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| | - Xiuxia Liu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China.
| | - Chong Zhang
- MOE Key Laboratory for Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
16
|
De novo engineering of a bacterial lifestyle program. Nat Chem Biol 2022; 19:488-497. [PMID: 36522463 DOI: 10.1038/s41589-022-01194-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 09/30/2022] [Indexed: 12/23/2022]
Abstract
Synthetic biology has shown remarkable potential to program living microorganisms for applications. However, a notable discrepancy exists between the current engineering practice-which focuses predominantly on planktonic cells-and the ubiquitous observation of microbes in nature that constantly alternate their lifestyles on environmental variations. Here we present the de novo construction of a synthetic genetic program that regulates bacterial life cycle and enables phase-specific gene expression. The program is orthogonal, harnessing an engineered protein from 45 candidates as the biofilm matrix building block. It is also highly controllable, allowing directed biofilm assembly and decomposition as well as responsive autonomous planktonic-biofilm phase transition. Coupling to synthesis modules, it is further programmable for various functional realizations that conjugate phase-specific biomolecular production with lifestyle alteration. This work establishes a versatile platform for microbial engineering across physiological regimes, thereby shedding light on a promising path for gene circuit applications in complex contexts.
Collapse
|
17
|
Research Progress on the Effect of Autolysis to Bacillus subtilis Fermentation Bioprocess. FERMENTATION 2022. [DOI: 10.3390/fermentation8120685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Bacillus subtilis is a gram-positive bacterium, a promising microorganism due to its strong extracellular protein secretion ability, non-toxic, and relatively mature industrial fermentation technology. However, cell autolysis during fermentation restricts the industrial application of B. subtilis. With the fast advancement of molecular biology and genetic engineering technology, various advanced procedures and gene editing tools have been used to successfully construct autolysis-resistant B. subtilis chassis cells to manufacture various biological products. This paper first analyses the causes of autolysis in B. subtilis from a mechanistic perspective and outlines various strategies to address autolysis in B. subtilis. Finally, potential strategies for solving the autolysis problem of B. subtilis are foreseen.
Collapse
|
18
|
Enhanced extracellular raw starch-degrading α-amylase production in Bacillus subtilis through signal peptide and translation efficiency optimization. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
19
|
Li Y, Wu Y, Liu Y, Li J, Du G, Lv X, Liu L. A genetic toolkit for efficient production of secretory protein in Bacillus subtilis. BIORESOURCE TECHNOLOGY 2022; 363:127885. [PMID: 36064082 DOI: 10.1016/j.biortech.2022.127885] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Bacillus subtilis is a microbial cell factory widely used to produce recombinant proteins, but the expression of heterologous proteins is often severely hampered. This study constructed a genetic toolkit for improving the secretory efficiency of heterologous proteins in Bacillus subtilis. First, the protease-deficient hosts were reconstructed. Then, two endogenous constitutive promoters, Phag and PspovG, were screened. Next, a method called systemic combinatorial optimization of ribosome binding site (RBS) equipped with signal peptide (SCORES) was designed for optimizing the secretion and translation of the heterologous protein. Finally, Serratia marcescens nonspecific endonuclease (SMNE), which causes cell death by degrading nucleic acids, was expressed. The enzyme activity in the shake flask reached 7.5 × 106 U/L, which was 7.5-times that of the control RBS and signal peptide combination (RS0). This study not only expanded on the synthetic biology toolbox in B. subtilis but also provided strategies to create a prokaryotic protein expression system.
Collapse
Affiliation(s)
- Yang Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Yaokang Wu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
20
|
Krüger A, Welsch N, Dürwald A, Brundiek H, Wardenga R, Piascheck H, Mengers HG, Krabbe J, Beyer S, Kabisch JF, Popper L, Hübel T, Antranikian G, Schweder T. A host-vector toolbox for improved secretory protein overproduction in Bacillus subtilis. Appl Microbiol Biotechnol 2022; 106:5137-5151. [PMID: 35802157 PMCID: PMC9329435 DOI: 10.1007/s00253-022-12062-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 11/29/2022]
Abstract
Abstract
Target proteins in biotechnological applications are highly diverse. Therefore, versatile flexible expression systems for their functional overproduction are required. In order to find the right heterologous gene expression strategy, suitable host-vector systems, which combine different genetic circuits, are useful. In this study, we designed a novel Bacillus subtilis expression toolbox, which allows the overproduction and secretion of potentially toxic enzymes. This toolbox comprises a set of 60 expression vectors, which combine two promoter variants, four strong secretion signals, a translation-enhancing downstream box, and three plasmid backbones. This B. subtilis toolbox is based on a tailor-made, clean deletion mutant strain, which is protease and sporulation deficient and exhibits reduced autolysis and secondary metabolism. The appropriateness of this alternative expression platform was tested for the overproduction of two difficult-to-produce eukaryotic model proteins. These included the sulfhydryl oxidase Sox from Saccharomyces cerevisiae, which forms reactive hydrogen peroxide and undesired cross-linking of functional proteins, and the human interleukin-1β, a pro-inflammatory cytokine. For the best performing Sox and interleukin, overproducing and secreting variants of these new B. subtilis toolbox fermentation strategies were developed and tested. This study demonstrates the suitability of the prokaryotic B. subtilis host-vector system for the extracellular production of two eukaryotic proteins with biotechnological relevance. Key points • Construction of a versatile Bacillus subtilis gene expression toolbox. • Verification of the toolbox by the secretory overproduction of two difficult-to-express proteins. • Fermentation strategy for an acetoin-controlled overproduction of heterologous proteins. Supplementary Information The online version contains supplementary material available at 10.1007/s00253-022-12062-2.
Collapse
Affiliation(s)
- Anna Krüger
- Institute of Technical Microbiology, Hamburg University of Technology, Kasernenstr. 12, 21073, Hamburg, Germany
| | - Norma Welsch
- Pharmaceutical Biotechnology, Institute of Pharmacy, University of Greifswald, Felix-Hausdorff-Str. 3, 17487, Greifswald, Germany.,Institute of Marine Biotechnology, Walther-Rathenau-Str. 49, 17489, Greifswald, Germany
| | - Alexandra Dürwald
- Pharmaceutical Biotechnology, Institute of Pharmacy, University of Greifswald, Felix-Hausdorff-Str. 3, 17487, Greifswald, Germany
| | - Henrike Brundiek
- Enzymicals AG, Walther-Rathenau-Straße 49a, 17489, Greifswald, Germany
| | - Rainer Wardenga
- Enzymicals AG, Walther-Rathenau-Straße 49a, 17489, Greifswald, Germany
| | - Henning Piascheck
- Institute of Technical Microbiology, Hamburg University of Technology, Kasernenstr. 12, 21073, Hamburg, Germany
| | - Hendrik G Mengers
- Institute of Applied Microbiology - iAMB, Aachen Biology and Biotechnology - ABBt, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | - Jana Krabbe
- Pharmaceutical Biotechnology, Institute of Pharmacy, University of Greifswald, Felix-Hausdorff-Str. 3, 17487, Greifswald, Germany.,Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, HKI, Beutenbergstr. 11a, 07745, Jena, Germany
| | - Sandra Beyer
- Pharmaceutical Biotechnology, Institute of Pharmacy, University of Greifswald, Felix-Hausdorff-Str. 3, 17487, Greifswald, Germany.,Bioprocess Center, Eppendorf AG, Rudolf-Schulten-Str. 5, 52428, Jülich, Germany
| | - Johannes F Kabisch
- Pharmaceutical Biotechnology, Institute of Pharmacy, University of Greifswald, Felix-Hausdorff-Str. 3, 17487, Greifswald, Germany.,Department of Biotechnology and Food Science, NTNU, Sem Sælands vei 6, 7034, Trondheim, Norway
| | - Lutz Popper
- Stern Enzym GmbH & Co. KG, Kurt-Fischer-Str. 55, 22926, Ahrensburg, Germany
| | - Tanno Hübel
- Miltenyi Biotec GmbH, Robert-Koch-Str. 1, 17166, Teterow, Germany
| | - Garabed Antranikian
- Institute of Technical Microbiology, Hamburg University of Technology, Kasernenstr. 12, 21073, Hamburg, Germany
| | - Thomas Schweder
- Pharmaceutical Biotechnology, Institute of Pharmacy, University of Greifswald, Felix-Hausdorff-Str. 3, 17487, Greifswald, Germany. .,Institute of Marine Biotechnology, Walther-Rathenau-Str. 49, 17489, Greifswald, Germany.
| |
Collapse
|
21
|
Zhang J, Zhu B, Li X, Xu X, Li D, Zeng F, Zhou C, Liu Y, Li Y, Lu F. Multiple Modular Engineering of Bacillus Amyloliquefaciens Cell Factories for Enhanced Production of Alkaline Proteases From B. Clausii. Front Bioeng Biotechnol 2022; 10:866066. [PMID: 35497355 PMCID: PMC9046661 DOI: 10.3389/fbioe.2022.866066] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/29/2022] [Indexed: 11/13/2022] Open
Abstract
Bacillus amyloliquefaciens is a generally recognized as safe (GRAS) microorganism that presents great potential for the production of heterologous proteins. In this study, we performed genomic and comparative transcriptome to investigate the critical modular in B. amyloliquefaciens on the production of heterologous alkaline proteases (AprE). After investigation, it was concluded that the key modules affecting the production of alkaline protease were the sporulation germination module (Module I), extracellular protease synthesis module (Module II), and extracellular polysaccharide synthesis module (Module III) in B. amyloliquefaciens. In Module I, AprE yield for mutant BA ΔsigF was 25.3% greater than that of BA Δupp. Combining Module I synergistically with mutation of extracellular proteases in Module II significantly increased AprE production by 36.1% compared with production by BA Δupp. In Module III, the mutation of genes controlling extracellular polysaccharides reduced the viscosity and the accumulation of sediment, and increased the rate of dissolved oxygen in fermentation. Moreover, AprE production was 39.6% higher than in BA Δupp when Modules I, II and III were engineered in combination. This study provides modular engineering strategies for the modification of B. amyloliquefaciens for the production of alkaline proteases.
Collapse
Affiliation(s)
- Jinfang Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, the College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Baoyue Zhu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, the College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Xinyue Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, the College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Xiaojian Xu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, the College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Dengke Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, the College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Fang Zeng
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, the College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Cuixia Zhou
- School of Biology and Brewing Engineering, Taishan University, Taian, China
| | - Yihan Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, the College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Yu Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, the College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, the College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
22
|
Zhang K, Su L, Wu J. Enhancing Extracellular Pullulanase Production in Bacillus subtilis Through dltB Disruption and Signal Peptide Optimization. Appl Biochem Biotechnol 2022; 194:1206-1220. [PMID: 34652585 DOI: 10.1007/s12010-021-03617-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 07/12/2021] [Indexed: 10/20/2022]
Abstract
Bacillus subtilis has many attributes that make it a popular host for recombinant protein production. Although its protein production ability has been enhanced through protease gene disruption, residual proteases like quality control HtrA and HtrB can limit protein yield by degrading inadequately folded proteins present during overexpression. In this study, two strategies were employed to increase production of industrial enzyme pullulanase: enhancing extracellular pullulanase folding and optimizing its signal peptide. The hypothesis was that disruption of dltB gene of expression host B. subtilis WS9 would enhance recombinant extracellular folding by increasing cation binding to the cell's outer envelope. Consistent with this hypothesis, disrupting dltB enhanced pullulanase production by 49% in shake-flask cultures. The disruption also enhanced extracellular α-CGTase and β-CGTase production by 25% and 35%, respectively. Then, more effective signal peptide for pullulanase production was identified through high-throughput screening of 173 unique B. subtilis signal peptides. Replacing the native signal peptide of pullulanase with that encoded by ywtF increased extracellular pullulanase activity by an additional 12%. Three-liter fermenter scale-up production yielded the highest extracellular pullulanase activity reported to date: 8037.91 U·mL-1. This study highlights the usefulness of dltB deletion and signal peptide optimization in enhancing extracellular protein production.
Collapse
Affiliation(s)
- Kang Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
- International Joint Laboratory On Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Lingqia Su
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
- International Joint Laboratory On Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Jing Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.
- International Joint Laboratory On Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.
| |
Collapse
|
23
|
Zhen J, Zheng H, Zhao X, Fu X, Yang S, Xu J, Song H, Ma Y. Regulate the hydrophobic motif to enhance the non-classical secretory expression of Pullulanase PulA in Bacillus subtilis. Int J Biol Macromol 2021; 193:238-246. [PMID: 34710472 DOI: 10.1016/j.ijbiomac.2021.10.164] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/04/2021] [Accepted: 10/20/2021] [Indexed: 11/30/2022]
Abstract
Bacillus subtilis has been widely used as a prokaryotic host for the secretory expression of heterologous proteins. In this study, a pullulanase (PulA) from Anoxybacillus sp. LM18-11 was firstly identified to be expressed in Bacillus subtilis 1A751 through non-classical secretion pathway. Results showed that both the N- and C-terminal regions of PulA were essential for its soluble expression. To explore its specific structural basis of secretion in B. subtilis, we revealed a hydrophobic motif A501-H507 which is vital for the secretion of the whole protein of PulA. Through a series of site-specific mutagenesis, the triple-sites mutants R503E/I506E/H507E and R503E/I506Y/H507E showed the highest extracellular activity (160.07 U/mL) and total activity (243.37 U/mL) which was 1.71 times and 1.55 times higher than those of PulA. The highest secretion rate of mutant I506E/H507E was more than 50% which was 34.72% higher comparing with that of PulA. The glutamic acid substitution on these three key surface sites which decreased the surface hydrophobicity of that region was confirmed to be beneficial to improve the secretory expression of PulA. This novel discovery for the secretory expression of PulA in B. subtilis would make a new perspective on regulating a kind of non-classical secretion in B. subtilis.
Collapse
Affiliation(s)
- Jie Zhen
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Hongchen Zheng
- National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| | - Xingya Zhao
- National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Xiaoping Fu
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Shibin Yang
- National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Jianyong Xu
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| | - Hui Song
- National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| | - Yanhe Ma
- National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| |
Collapse
|
24
|
Production of aminopeptidase from soybean meal with nutrients supplementation by Bacillus licheniformis SWJS33: Feasibility and metabolic process. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
25
|
Wang ZK, Gong JS, Qin J, Li H, Lu ZM, Shi JS, Xu ZH. Improving the Intensity of Integrated Expression for Microbial Production. ACS Synth Biol 2021; 10:2796-2807. [PMID: 34738786 DOI: 10.1021/acssynbio.1c00334] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Chromosomal integration of exogenous genes is preferred for industrially related fermentation, as plasmid-mediated fermentation leads to extra metabolic burden and genetic instability. Moreover, with the development and advancement of genome engineering and gene editing technologies, inserting genes into chromosomes has become more convenient; integration expression is extensively utilized in microorganisms for industrial bioproduction and expected to become the trend of recombinant protein expression. However, in actual research and application, it is important to enhance the expression of heterologous genes at the host genome level. Herein, we summarized the basic principles and characteristics of genomic integration; furthermore, we highlighted strategies to improve the expression of chromosomal integration of genes and pathways in host strains from three aspects, including chassis cell optimization, regulation of expression elements in gene expression cassettes, optimization of gene dose level and integration sites on chromosomes. Moreover, we reviewed and summarized the relevant studies on the application of integrated expression in the exploration of gene function and the various types of industrial microorganism production. Consequently, this review would serve as a reference for the better application of integrated expression.
Collapse
Affiliation(s)
- Zi-Kai Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China
- National Engineering Laboratory for Cereal Fermentation Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, PR China
| | - Jin-Song Gong
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China
| | - Jiufu Qin
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, PR China
| | - Hui Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China
| | - Zhen-Ming Lu
- National Engineering Laboratory for Cereal Fermentation Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Jin-Song Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China
| | - Zheng-Hong Xu
- National Engineering Laboratory for Cereal Fermentation Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, PR China
| |
Collapse
|
26
|
Zocca VFB, Corrêa GG, Lins MRDCR, de Jesus VN, Tavares LF, Amorim LADS, Kundlatsch GE, Pedrolli DB. The CRISPR toolbox for the gram-positive model bacterium Bacillus subtilis. Crit Rev Biotechnol 2021; 42:813-826. [PMID: 34719304 DOI: 10.1080/07388551.2021.1983516] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
CRISPR has revolutionized the way we engineer genomes. Its simplicity and modularity have enabled the development of a great number of tools to edit genomes and to control gene expression. This powerful technology was first adapted to Bacillus subtilis in 2016 and has been intensely upgraded since then. Many tools have been successfully developed to build a CRISPR toolbox for this Gram-positive model and important industrial chassis. The toolbox includes tools, such as double-strand and single-strand cutting CRISPR for point mutation, gene insertion, and gene deletion up to 38 kb. Moreover, catalytic dead Cas proteins have been used for base editing, as well as for the control of gene expression (CRISPRi and CRISPRa). Many of these tools have been used for multiplex CRISPR with the most successful one targeting up to six loci simultaneously for point mutation. However, tools for efficient multiplex CRISPR for other functionalities are still missing in the toolbox. CRISPR engineering has already resulted in efficient protein and metabolite-producing strains, demonstrating its great potential. In this review, we cover all the important additions made to the B. subtilis CRISPR toolbox since 2016, and strain developments fomented by the technology.
Collapse
Affiliation(s)
- Vitoria Fernanda Bertolazzi Zocca
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, Universidade Estadual Paulista (UNESP), Araraquara, Brazil
| | - Graciely Gomes Corrêa
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, Universidade Estadual Paulista (UNESP), Araraquara, Brazil
| | - Milca Rachel da Costa Ribeiro Lins
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, Universidade Estadual Paulista (UNESP), Araraquara, Brazil
| | - Victor Nunes de Jesus
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, Universidade Estadual Paulista (UNESP), Araraquara, Brazil
| | - Leonardo Ferro Tavares
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, Universidade Estadual Paulista (UNESP), Araraquara, Brazil
| | - Laura Araujo da Silva Amorim
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, Universidade Estadual Paulista (UNESP), Araraquara, Brazil
| | - Guilherme Engelberto Kundlatsch
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, Universidade Estadual Paulista (UNESP), Araraquara, Brazil
| | - Danielle Biscaro Pedrolli
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, Universidade Estadual Paulista (UNESP), Araraquara, Brazil
| |
Collapse
|
27
|
Liu X, Wu Y, Guan R, Jia G, Ma Y, Zhang Y. Advances in research on calf rennet substitutes and their effects on cheese quality. Food Res Int 2021; 149:110704. [PMID: 34600696 DOI: 10.1016/j.foodres.2021.110704] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/03/2021] [Accepted: 09/03/2021] [Indexed: 11/16/2022]
Abstract
Milk coagulation is an important step in cheese production, and milk-clotting enzymes (MCEs) play a major role in this process. Calf rennet is the most widely used MCE in the cheese industry. The use of calf rennet substitutes is becoming necessary due to the limited availability of calf rennet and the increase in cheese consumption. The objective of this review is to summarize the latest findings on calf rennet substitutes (animal MCEs, plant-derived MCEs, recombinant MCEs and microbial MCEs) and their application in cheese production. Special emphasis has been placed on aspects of the effects of these substitutes on hydrolysis, functional peptides, cheese variety and cheese yield. The advantages and disadvantages of different calf rennet substitutes are discussed, in which microbial MCEs have the advantages of less expensive production, greater biochemical diversity, easier genetic modification, etc. In particular, some of these MCEs have suitable characteristics for cheese production and are considered to be the most potential calf rennet substitutes. Moreover, challenges and future perspectives are presented to provide inspiration for the development of excellent calf rennet substitutes.
Collapse
Affiliation(s)
- Xiaofeng Liu
- College of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou 310014, China; Zhejiang Provincial Key Lab for Chem and Bio Processing Technology of Farm Produces, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Zhejiang, Hangzhou 310023, China
| | - Yuanfeng Wu
- Zhejiang Provincial Key Lab for Chem and Bio Processing Technology of Farm Produces, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Zhejiang, Hangzhou 310023, China
| | - Rongfa Guan
- College of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou 310014, China
| | - Guochao Jia
- School of Chemical Engineering and Food Science, Zhengzhou University of Technology, Henan, Zhengzhou 450044, China
| | - YuChen Ma
- Zhejiang Provincial Key Lab for Chem and Bio Processing Technology of Farm Produces, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Zhejiang, Hangzhou 310023, China
| | - Yao Zhang
- Zhejiang Provincial Key Lab for Chem and Bio Processing Technology of Farm Produces, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Zhejiang, Hangzhou 310023, China.
| |
Collapse
|
28
|
Microbial starch debranching enzymes: Developments and applications. Biotechnol Adv 2021; 50:107786. [PMID: 34147588 DOI: 10.1016/j.biotechadv.2021.107786] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 06/04/2021] [Accepted: 06/15/2021] [Indexed: 12/28/2022]
Abstract
Starch debranching enzymes (SDBEs) hydrolyze the α-1,6 glycosidic bonds in polysaccharides such as starch, amylopectin, pullulan and glycogen. SDBEs are also important enzymes for the preparation of sugar syrup, resistant starch and cyclodextrin. As the synergistic catalysis of SDBEs and other starch-acting hydrolases can effectively improve the raw material utilization and production efficiency during starch processing steps such as saccharification and modification, they have attracted substantial research interest in the past decades. The substrate specificities of the two major members of SDBEs, pullulanases and isoamylases, are quite different. Pullulanases generally require at least two α-1,4 linked glucose units existing on both sugar chains linked by the α-1,6 bond, while isoamylases require at least three units of α-1,4 linked glucose. SDBEs mainly belong to glycoside hydrolase (GH) family 13 and 57. Except for GH57 type II pullulanse, GH13 pullulanases and isoamylases share plenty of similarities in sequence and structure of the core catalytic domains. However, the N-terminal domains, which might be one of the determinants contributing to the substrate binding of SDBEs, are distinct in different enzymes. In order to overcome the current defects of SDBEs in catalytic efficiency, thermostability and expression level, great efforts have been made to develop effective enzyme engineering and fermentation strategies. Herein, the diverse biochemical properties and distinct features in the sequence and structure of pullulanase and isoamylase from different sources are summarized. Up-to-date developments in the enzyme engineering, heterologous production and industrial applications of SDBEs is also reviewed. Finally, research perspective which could help understanding and broadening the applications of SDBEs are provided.
Collapse
|
29
|
Zhang K, Tan R, Yao D, Su L, Xia Y, Wu J. Enhanced Production of Soluble Pyrococcus furiosus α-Amylase in Bacillus subtilis through Chaperone Co-Expression, Heat Treatment and Fermentation Optimization. J Microbiol Biotechnol 2021; 31:570-583. [PMID: 33753701 PMCID: PMC9723276 DOI: 10.4014/jmb.2101.01039] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 12/15/2022]
Abstract
Pyrococcus furiosus α-amylase can hydrolyze α-1,4 linkages in starch and related carbohydrates under hyperthermophilic condition (~ 100°C), showing great potential in a wide range of industrial applications, while its relatively low productivity from heterologous hosts has limited the industrial applications. Bacillus subtilis, a gram-positive bacterium, has been widely used in industrial production for its non-pathogenic and powerful secretory characteristics. This study was conducted to increase production of P. furiosus α-amylase in B. subtilis through three strategies. Initial experiments showed that co-expression of P. furiosus molecular chaperone peptidyl-prolyl cis-trans isomerase through genomic integration mode, using a CRISPR/Cas9 system, increased soluble amylase production. Therefore, considering that native P. furiosus α-amylase is produced within a hyperthermophilic environment and is highly thermostable, heat treatment of intact culture at 90°C for 15 min was performed, thereby greatly increasing soluble amylase production. After optimization of the culture conditions (nitrogen source, carbon source, metal ion, temperature and pH), experiments in a 3-L fermenter yielded a soluble activity of 3,806.7 U/ml, which was 3.3- and 28.2-fold those of a control without heat treatment (1,155.1 U/ml) and an empty expression vector control (135.1 U/ml), respectively. This represents the highest P. furiosus α-amylase production reported to date and should promote innovation in the starch liquefaction process and related industrial productions. Meanwhile, heat treatment, which may promote folding of aggregated P. furiosus α-amylase into a soluble, active form through the transfer of kinetic energy, may be of general benefit when producing proteins from thermophilic archaea.
Collapse
Affiliation(s)
- Kang Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, P.R. China,School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, P.R. China,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, P.R. China
| | - Ruiting Tan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, P.R. China,School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, P.R. China,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, P.R. China
| | - Dongbang Yao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, P.R. China,School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, P.R. China,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, P.R. China
| | - Lingqia Su
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, P.R. China,School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, P.R. China,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, P.R. China
| | - Yongmei Xia
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, P.R. China
| | - Jing Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, P.R. China,School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, P.R. China,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, P.R. China,Corresponding author Phone: 86-510-85327802 Fax: 86-510-85326653 E-mail:
| |
Collapse
|
30
|
Enhanced extracellular Bacillus stearothermophilus α-amylase production in Bacillus subtilis by balancing the entire secretion process in an optimal strain. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.107948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
31
|
Su L, Li Y, Wu J. Efficient secretory expression of Bacillus stearothermophilus α/β-cyclodextrin glycosyltransferase in Bacillus subtilis. J Biotechnol 2021; 331:74-82. [PMID: 33741407 DOI: 10.1016/j.jbiotec.2021.03.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 03/11/2021] [Accepted: 03/11/2021] [Indexed: 11/16/2022]
Abstract
Bacillus stearothermophilus α/β-cyclodextrin glycosyltransferase (α/β-CGTase) is an excellent transglycosylase with broad potential for food application, but its expression level is low in Bacillus subtilis. In this study, the optimal signal peptide for α/β-CGTase expression was screened from 173 signal peptides in B. subtilis WS11. The α/β-CGTase activity in a 3-L fermentor reached 151.93 U⋅ mL-1, but substantial amounts of inclusion bodies were produced. The N-terminal 12 amino acids of α/β-CGTase were then replaced with the N-terminal 15 amino acids of a β-CGTase from the same family that has a high percentage of disorder-promoting amino acids. As a result, the inclusion bodies were significantly reduced, and the enzyme activity increased to 249.35 U mL-1, 2.3 times that of the strain constructed previously. Finally, the ppsE and sfp genes of B. subtilis WS11, which are related to lipopeptide biosurfactant synthesis, were knocked out to produce B. subtilis WS13. When B. subtilis WS13 was used to produce α/β-CGTase in a 3-L fermentor, 70 % less defoaming agent was required than with B. subtilis WS11. Furthermore, enzyme production and growth of WS13 were equivalent to those of WS11. This study is of great significance for future research to efficiently scale-up production of α/β-CGTase.
Collapse
Affiliation(s)
- Lingqia Su
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Yunfei Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Jing Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.
| |
Collapse
|
32
|
Gene cloning, expression and biochemical characterization of a new multi-domain, halotolerant and SDS-resistant alkaline pullulanase from Alkalibacterium sp. SL3. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.05.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
33
|
Xia R, Yang Y, Pan X, Gao C, Yao Y, Liu X, Teame T, Zhang F, Hu J, Ran C, Zhang Z, Liu-Clarke J, Zhou Z. Improving the production of AHL lactonase AiiO-AIO6 from Ochrobactrum sp. M231 in intracellular protease-deficient Bacillus subtilis. AMB Express 2020; 10:138. [PMID: 32757095 PMCID: PMC7406587 DOI: 10.1186/s13568-020-01075-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 07/28/2020] [Indexed: 12/25/2022] Open
Abstract
Quorum quenching (QQ) blocks bacterial cell-to-cell communication (i.e., quorum sensing), and is a promising antipathogenic strategy to control bacterial infection via inhibition of virulence factor expression and biofilm formation. QQ enzyme AiiO-AIO6 from Ochrobactrum sp. M231 has several excellent properties and shows biotherapeutic potential against important bacterial pathogens of aquatic species. AiiO-AIO6 can be secretory expressed in Bacillus subtilis via a non-classical secretion pathway. To improve AiiO-AIO6 production, four intracellular protease-deletion mutants of B. subtilis 1A751 were constructed by individually knocking out the intracellular protease-encoding genes (tepA, ymfH, yrrN and ywpE). The AiiO-AIO6 expression plasmid pWB-AIO6BS was transformed into the B. subtilis 1A751 and its four intracellular protease-deletion derivatives. Results showed that all recombinant intracellular protease-deletion derivatives (BSΔtepA, BSΔymfH, BSΔyrrN and BSΔywpE) had a positive impact on AiiO-AIO6 production. The highest amount of AiiO-AIO6 extracellular production of BSΔywpE in shake flask reached 1416.47 U/mL/OD600, which was about 121% higher than that of the wild-type strain. Furthermore, LC-MS/MS analysis of the degrading products of 3-oxo-C8-HSL by purification of AiiO-AIO6 indicated that AiiO-AIO6 was an AHL-lactonase which hydrolyzes the lactone ring of AHLs. Phylogenetic analysis showed that AiiO-AIO6 was classified as a member of the α/β hydrolase family with a conserved "nucleophile-acid-histidine" catalytic triad. In summary, this study showed that intracellular proteases were responsible for the reduced yields of heterologous proteins and provided an efficient strategy to enhance the extracellular production of AHL lactonase AiiO-AIO6.
Collapse
|
34
|
Li L, Su L, Hu F, Chen S, Wu J. Recombinant expression and characterization of the glycogen branching enzyme from Vibrio vulnificus and its application in starch modification. Int J Biol Macromol 2020; 155:987-994. [PMID: 31712143 DOI: 10.1016/j.ijbiomac.2019.11.062] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 10/31/2019] [Accepted: 11/07/2019] [Indexed: 01/14/2023]
Abstract
Resistant starch (RS) is helpful in controlling and preventing metabolic syndrome relevant diseases. However, the RS content of natural starch and modified starch produced by enzymatic method is generally low. To solve this problem, we selected the glycogen branching enzyme from Vibrio vulnificus (VvGBE) and investigated its application. Firstly, it was expressed in E. coli with the enzyme activity was 53.33 U/mL, and its optimum temperature and pH was 35 °C and 7.5, respectively. The half-life of VvGBE at 35 °C was 10 h, and the enzyme was most stable at pH 9.5. When we used the recombinant enzyme to treat corn starch, the content of RS increased by 19.41%, which was higher than that achieved with other enzymes. More specially, the conversion of slowly digestible starch to RS, which was only demonstrated in chemical modification, was accomplished. The fine structure of the modified starch was further investigated. Results showed that the number of short chains (DP < 13) increased to 90.58%, and the α-1,6 linkages ratio increased from 7.19% to 15.64%. The increase of short chains and α-1,6 linkages may contribute to high RS content. This study can provide a reference for the development of modified starch with lower digestibility.
Collapse
Affiliation(s)
- Lingling Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Biotechnology, Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Lingqia Su
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Biotechnology, Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Fan Hu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Biotechnology, Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Sheng Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Biotechnology, Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Jing Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Biotechnology, Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
| |
Collapse
|
35
|
Liu S, Wang J, Zhu Z, Shi T, Zhang YHPJ. Efficient secretory production of large-size heterologous enzymes in Bacillus subtilis: A secretory partner and directed evolution. Biotechnol Bioeng 2020; 117:2957-2968. [PMID: 32589796 DOI: 10.1002/bit.27478] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 06/25/2020] [Indexed: 12/20/2022]
Abstract
Secretory production of recombinant proteins provides a simple approach to the production and purification of target proteins in the enzyme industry. We developed a combined strategy for the secretory production of three large-size heterologous enzymes with a special focus on 83-kDa isoamylase (IA) from an archaeon Sulfolobus tokodaii in a bacterium Bacillus subtilis. First, a secretory protein of the B. subtilis family 5 glycoside hydrolase endoglucanase (Cel5) was used as a fusion partner, along with the NprB signal peptide, to facilitate secretory production of IA. This secretory partner strategy was effective for the secretion of two other large enzymes: family 9 glycoside hydrolase from Clostridium phytofermentas and cellodextrin phosphorylase from Clostridium thermocellum. Second, the secretion of Cel5-IA was improved by directed evolution with two novel double-layer Petri-dish-based high-throughput screening (HTS) methods. The high-sensitivity HTS relied on the detection of high-activity Cel5 on the carboxymethylcellulose/Congo-red assay. The second modest-sensitivity HTS focused on the detection of low-activity IA on the amylodextrin-I2 assay. After six rounds of HTS, a secretory Cel5-IA level was increased to 234 mg/L, 155 times the wild-type IA with the NprB signal peptide only. This combinatory strategy could be useful to enhance the secretory production of large-size heterologous proteins in B. subtilis.
Collapse
Affiliation(s)
- Shan Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Juan Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Zhiguang Zhu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Ting Shi
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Yi-Heng P Job Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| |
Collapse
|
36
|
Wang N, Guan F, Lv X, Han D, Zhang Y, Wu N, Xia X, Tian J. Enhancing secretion of polyethylene terephthalate hydrolase PETase in
Bacillus subtilis
WB600 mediated by the SP
amy
signal peptide. Lett Appl Microbiol 2020; 71:235-241. [DOI: 10.1111/lam.13312] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 04/28/2020] [Accepted: 05/04/2020] [Indexed: 11/29/2022]
Affiliation(s)
- N. Wang
- School of Biotechnology Jiangnan University Jiangsu Wuxi China
- Biotechnology Research Institute Chinese Academy of Agricultural Sciences Beijing China
| | - F. Guan
- Biotechnology Research Institute Chinese Academy of Agricultural Sciences Beijing China
| | - X. Lv
- School of Biotechnology Jiangnan University Jiangsu Wuxi China
| | - D. Han
- Institute of Environment and Sustainable Development in Agriculture Chinese Academy of Agricultural Sciences Beijing China
| | - Y. Zhang
- Biotechnology Research Institute Chinese Academy of Agricultural Sciences Beijing China
| | - N. Wu
- Biotechnology Research Institute Chinese Academy of Agricultural Sciences Beijing China
| | - X. Xia
- School of Biotechnology Jiangnan University Jiangsu Wuxi China
| | - J. Tian
- Biotechnology Research Institute Chinese Academy of Agricultural Sciences Beijing China
| |
Collapse
|
37
|
Su L, Zhao Y, Wu D, Wu J. Heterogeneous expression, molecular modification of amylosucrase from Neisseria polysaccharea, and its application in the preparation of turanose. Food Chem 2020; 314:126212. [DOI: 10.1016/j.foodchem.2020.126212] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 01/10/2020] [Accepted: 01/12/2020] [Indexed: 12/17/2022]
|
38
|
Su L, Yang Y, Wu J. Recombinant expression, characterization and application of maltotetraohydrolase from Pseudomonas saccharophila. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:3456-3464. [PMID: 32167164 DOI: 10.1002/jsfa.10381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 12/03/2019] [Accepted: 03/13/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Maltotetraohydrolase, widely used in food and medical fields, possesses the ability to hydrolyze starch to produce maltooligosaccharides with maltotetraose as the main product. It also has the potential usage in delaying bread aging. RESULTS Pseudomonas saccharophila maltotetraohydrolase was expressed in Bacillus subtilis WS11. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis revealed obvious bands at 57 kDa (maltotetraohydrolase I) and 47 kDa (maltotetraohydrolase II). Both showed similar enzymatic properties, although the catalytic efficiency of maltotetraohydrolase I was 4.93 fold higher than that of maltotetraohydrolase II using soluble starch as substrate. In addition, the maltotetraohydrolase production was further scaled up in a 3-L fermentor, and the highest activity reached 1907 U mL-1 . Then, the recombinant maltotetraohydrolase was used to produce maltotetraose. The maltotetraose yields catalyzed by maltotetraohydrolase I and II reached 73.2% and 69.7%, respectively. Finally, when recombinant maltotetraohydrolase was used in bread-making, texture profile analysis of the bread indicated recombinant maltotetraohydrolase I exhibited a significant anti-aging effect. CONCLUSION This is the first describing high-efficient expression of P. saccharophila maltotetraohydrolase in the food safety strain B. subtilis, and the yield represented the highest level ever reported. Excellent results were also obtained with respect to the preparation of maltotetraose and delaying bread aging using the recombinant maltotetraohydrolase. The present study will help lay the foundation for the industrial production and application of maltotetraohydrolase. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lingqia Su
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Yanan Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Jing Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| |
Collapse
|
39
|
Pang B, Zhou L, Cui W, Liu Z, Zhou Z. Production of a Thermostable Pullulanase in
Bacillus subtilis
by Optimization of the Expression Elements. STARCH-STARKE 2020. [DOI: 10.1002/star.202000018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Bo Pang
- The Key Laboratory of Industrial Biotechnology of Ministry of Education School of Biotechnology, Jiangnan University 1800 Lihu Avenue Wuxi 214122 China
| | - Li Zhou
- The Key Laboratory of Industrial Biotechnology of Ministry of Education School of Biotechnology, Jiangnan University 1800 Lihu Avenue Wuxi 214122 China
| | - Wenjing Cui
- The Key Laboratory of Industrial Biotechnology of Ministry of Education School of Biotechnology, Jiangnan University 1800 Lihu Avenue Wuxi 214122 China
| | - Zhongmei Liu
- The Key Laboratory of Industrial Biotechnology of Ministry of Education School of Biotechnology, Jiangnan University 1800 Lihu Avenue Wuxi 214122 China
| | - Zhemin Zhou
- The Key Laboratory of Industrial Biotechnology of Ministry of Education School of Biotechnology, Jiangnan University 1800 Lihu Avenue Wuxi 214122 China
| |
Collapse
|
40
|
Su L, Yao K, Wu J. Improved Activity of Sulfolobus acidocaldarius Maltooligosyltrehalose Synthase through Directed Evolution. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:4456-4463. [PMID: 32227942 DOI: 10.1021/acs.jafc.0c00948] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Maltooligosyltrehalose synthase (MTSase) is a key enzyme for the production of trehalose from starch. Thermophilic MTSases offer advantages for trehalose production but suffer from low yield. In this study, directed evolution was used to increase the production of Sulfolobus acidocaldarius MTSase (SaMTSase) in Escherichia coli. Mutant libraries constructed using error-prone polymerase chain reaction were assessed using high-throughput activity assays. Three mutants with enhanced activities were obtained, the best of which (mutant D-4) exhibited 2.4 times greater activity than wild-type SaMTSase. The specific activity and catalytic efficiency of D-4 were also greater than those of wild-type SaMTSase. The D-4 activity (624.7 U·mL-1) produced in a 3 L fermenter was 2.0 times greater than that of wild-type SaMTSase. Because the same trehalose yield was obtained using an equal amount of either D-4 or wild-type SaMTSase activity, using D-4 will significantly lower the cost of trehalose production. The activities of the individual mutations present in the three SaMTSase mutants obtained using directed evolution were analyzed. Mutants F284V and T439A exhibited the greatest increases in enzyme activity. Homology models suggested that the decreased side-chain size, weakened hydrophobicity, and decreased interaction might enhance the flexibility of the loop containing catalytic residue Asp443, which was conducive to catalysis.
Collapse
Affiliation(s)
- Lingqia Su
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Kailin Yao
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Jing Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| |
Collapse
|
41
|
Zhang K, Su L, Wu J. Recent Advances in Recombinant Protein Production byBacillus subtilis. Annu Rev Food Sci Technol 2020; 11:295-318. [DOI: 10.1146/annurev-food-032519-051750] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bacillus subtilis has become a widely used microbial cell factory for the production of recombinant proteins, especially those associated with foods and food processing. Recent advances in genetic manipulation and proteomic analysis have been used to greatly improve protein production in B. subtilis. This review begins with a discussion of genome-editing technologies and application of the CRISPR–Cas9 system to B. subtilis. A summary of the characteristics of crucial legacy strains is followed by suggestions regarding the choice of origin strain for genetic manipulation. Finally, the review analyzes the genes and operons of B. subtilis that are important for the production of secretory proteins and provides suggestions and examples of how they can be altered to improve protein production. This review is intended to promote the engineering of this valuable microbial cell factory for better recombinant protein production.
Collapse
Affiliation(s)
- Kang Zhang
- State Key Laboratory of Food Science and Technology, School of Biotechnology, Key Laboratory of Industrial Biotechnology, Ministry of Education, and International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Lingqia Su
- State Key Laboratory of Food Science and Technology, School of Biotechnology, Key Laboratory of Industrial Biotechnology, Ministry of Education, and International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Jing Wu
- State Key Laboratory of Food Science and Technology, School of Biotechnology, Key Laboratory of Industrial Biotechnology, Ministry of Education, and International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
42
|
Deckers M, Deforce D, Fraiture MA, Roosens NHC. Genetically Modified Micro-Organisms for Industrial Food Enzyme Production: An Overview. Foods 2020; 9:E326. [PMID: 32168815 PMCID: PMC7143438 DOI: 10.3390/foods9030326] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 12/18/2022] Open
Abstract
The use of food enzymes (FE) by the industrial food industry is continuously increasing. These FE are mainly obtained by microbial fermentation, for which both wild-type (WT) and genetically modified (GM) strains are used. The FE production yield can be increased by optimizing the fermentation process, either by using genetically modified micro-organism (GMM) strains or by producing recombinant enzymes. This review provides a general overview of the different methods used to produce FE preparations and how the use of GMM can increase the production yield. Additionally, information regarding the construction of these GMM strains is provided. Thereafter, an overview of the different European regulations concerning the authorization of FE preparations on the European market and the use of GMM strains is given. Potential issues related to the authorization and control of FE preparations sold on the European market are then identified and illustrated by a case study. This process highlighted the importance for control of FE preparations and the consequent need for appropriate detection methods targeting the presence of GMM, which is used in fermentation products.
Collapse
Affiliation(s)
- Marie Deckers
- Transversal Activities in Applied Genomics (TAG), Sciensano, Rue Juliette Wytsmanstraat 14, 1050 Brussels, Belgium
- Laboratory of Pharmaceutical Biotechnology, Ghent University, Campus Heymans, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Dieter Deforce
- Laboratory of Pharmaceutical Biotechnology, Ghent University, Campus Heymans, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Marie-Alice Fraiture
- Transversal Activities in Applied Genomics (TAG), Sciensano, Rue Juliette Wytsmanstraat 14, 1050 Brussels, Belgium
| | - Nancy H C Roosens
- Transversal Activities in Applied Genomics (TAG), Sciensano, Rue Juliette Wytsmanstraat 14, 1050 Brussels, Belgium
| |
Collapse
|
43
|
Zhao L, Ye B, Zhang Q, Cheng D, Zhou C, Cheng S, Yan X. Construction of second generation protease-deficient hosts of Bacillus subtilis for secretion of foreign proteins. Biotechnol Bioeng 2019; 116:2052-2060. [PMID: 30989640 DOI: 10.1002/bit.26992] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/18/2019] [Accepted: 04/11/2019] [Indexed: 12/23/2022]
Abstract
Although one of the major factors limiting the application of Bacillus subtilis as an expression host has been its production of at least eight extracellular proteases, researchers have also noticed that some proteases benefited the secretion of foreign proteins at times. Therefore, to maximize the yield of a foreign protein, the proteases should be selectively inactivated. This raises a new question that how to identify the favorable and unfavorable proteases for a target protein. Here, an evaluation system containing nine mutant strains of B. subtilis 168 was developed to address this question. The mutant strain PD8 has all the eight proteases inactivated whereas each of the other eight mutant strains expresses only one kind of these eight proteases. The target protein is secreted in these nine mutant strains; if the production of target protein in a mutant strain is higher than that in strain PD8, the corresponding protease is regarded as favorable. Accordingly, the optimal protease-deficient host is constructed through inactivating the unfavorable proteases. The effectiveness of this system was confirmed by expressing three foreign proteins. This study provides a strategy for improving the secretion of a foreign protein in B. subtilis through tailoring a personalized protease-deficient host.
Collapse
Affiliation(s)
- Leizhen Zhao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Bin Ye
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Qi Zhang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Dan Cheng
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Chaoyang Zhou
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Shan Cheng
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Xin Yan
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China.,Provincial Key Laboratory of Agrobiology, Institute of Agro-biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, People's Republic of China
| |
Collapse
|
44
|
Yao D, Su L, Li N, Wu J. Enhanced extracellular expression of Bacillus stearothermophilus α-amylase in Bacillus subtilis through signal peptide optimization, chaperone overexpression and α-amylase mutant selection. Microb Cell Fact 2019; 18:69. [PMID: 30971250 PMCID: PMC6458788 DOI: 10.1186/s12934-019-1119-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 04/03/2019] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Our laboratory has constructed a Bacillus stearothermophilus α-amylase (AmyS) derivative with excellent enzymatic properties. Bacillus subtilis is generally regarded as safe and has excellent protein secretory capability, but heterologous extracellular production level of B. stearothermophilus α-amylase in B. subtilis is very low. RESULTS In this study, the extracellular production level of B. stearothermophilus α-amylase in B. subtilis was enhanced by signal peptide optimization, chaperone overexpression and α-amylase mutant selection. The α-amylase optimal signal peptide (SPYojL) was obtained by screening 173 B. subtilis signal peptides. Although the extracellular α-amylase activity that was produced by the resulting recombinant strain was 3.5-fold greater than that of the control, significant quantities of inclusion bodies were detected. Overexpressing intracellular molecular chaperones significantly reduced inclusion body formation and further increased α-amylase activity. Error-prone PCR produced an amylase mutant K82E/S405R (AmySA) with enzymatic activity superior to that of AmyS. Expression of the amySA gene with the SPYojL while overexpressing molecular chaperones resulted in a 7.1-fold improvement in α-amylase activity. When the final expression strain (WHS11YSA) was cultivated in a 3-L fermenter for 92 h, the α-amylase activity of the culture supernatant was 9201.1 U mL-1, which is the highest level that has been reported to date. CONCLUSIONS This is the first report that describes an improvement of B. stearothermophilus α-amylase extracellular production levels in B. subtilis using these strategies, and this represents the highest extracellular production level ever reported for α-amylase from B. stearothermophilus in B. subtilis. This high-level production provides a basis for enhanced industrial production of α-amylase. These extracellular production level improvement approaches are also expected to be valuable in the expression of other enzymes in B. subtilis.
Collapse
Affiliation(s)
- Dongbang Yao
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122 Jiangsu China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122 China
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122 China
| | - Lingqia Su
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122 Jiangsu China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122 China
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122 China
| | - Na Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122 Jiangsu China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122 China
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122 China
| | - Jing Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122 Jiangsu China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122 China
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122 China
| |
Collapse
|
45
|
Wang X, Nie Y, Xu Y. Industrially produced pullulanases with thermostability: Discovery, engineering, and heterologous expression. BIORESOURCE TECHNOLOGY 2019; 278:360-371. [PMID: 30709762 DOI: 10.1016/j.biortech.2019.01.098] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 06/09/2023]
Abstract
Pullulanases (EC 3.2.1.41) are well-known starch-debranching enzymes widely used to hydrolyze α-1,6-glucosidic linkages in starch, pullulan, amylopectin, and other oligosaccharides, with application potentials in food, brewing, and pharmaceutical industries. Although extensive studies are done to discover and express pullulanases, only few are available with desirable characteristics for industrial applications. This raises the challenge to mine new enzyme sources, engineer proteins based on sequence/structure, and regulate expressions. We review here the identification of extremophilic and mesophilic microbes as sources of industrial pullulanases with desirable characteristics, including acid-resistance, thermostability, and psychrotrophism. We present current advances in site-directed mutagenesis and sequence/structure-guided protein engineering of pullulanases. In addition, we discuss heterologous expression of pullulanases in prokaryotic and eukaryotic microbial systems, and address the effectiveness of the expression elements and their regulation of enzyme production. Finally, we indicate future research needs to develop desired industrial pullulanases.
Collapse
Affiliation(s)
- Xinye Wang
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yao Nie
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China.
| | - Yan Xu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; The 2011 Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
46
|
Li D, Fu G, Tu R, Jin Z, Zhang D. High-efficiency expression and secretion of human FGF21 in Bacillus subtilis by intercalation of a mini-cistron cassette and combinatorial optimization of cell regulatory components. Microb Cell Fact 2019; 18:17. [PMID: 30691455 PMCID: PMC6348689 DOI: 10.1186/s12934-019-1066-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 01/20/2019] [Indexed: 11/10/2022] Open
Abstract
Background Recombinant human Fibroblast growth factor 21 (rhFGF21) is an endocrine hormone that has profound effects on treatment of metabolic diseases. However, rhFGF21 is prone to form inclusion body when expressed in bacteria, which results in, the downstream process of purification of bioactive rhFGF21 is time-consuming and labor intensive. The aim of this work is to explore a new method for improving the soluble expression and secretion level of rhFGF21 in B. subtilis. Results A codon optimized rhFGF21 gene was expressed under the control of a strong inducible promoter PmalA in B. subtilis. A mini-cistron cassette (from gsiB) was located upstream of rhFGF21 in expression vector (pMATEFc5), which could reduce the locally stabilized mRNA secondary structure of transcripts and enhance the efficiency of translation initiation. Then various chaperones were further overexpressed to improve the expression efficiency of rhFGF21. Results showed that overexpression of the chaperone DnaK contributed to the increase of solubility of rhFGF21. Moreover, an extracellular proteases deficient strain B. subtilis Kno6cf was used to accumulate the secreted rhFGF21 solidly. In addition, eleven signal peptides from B. subtilis were evaluated and the SPdacB appeared the highest secretion yield of rhFGF21 in B. subtilis. Finally, the combinatorial optimized strain achieved an about ninefold increase of the soluble rhFGF21 production after 24 h of flask fermentation in comparison with the initial production strain. Conclusion This work provided a comprehensive strategy for secretory expressing the heterologous protein rhFGF21 in B. subtilis. To our knowledge, this is the first report of the highly efficient production of rhFGF21 in B. subtilis and this approach may provide some suggestions for heterologous proteins production in B. subtilis. Electronic supplementary material The online version of this article (10.1186/s12934-019-1066-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dandan Li
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, People's Republic of China.,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
| | - Gang Fu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
| | - Ran Tu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
| | - Zhaoxia Jin
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, People's Republic of China.
| | - Dawei Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China. .,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China.
| |
Collapse
|
47
|
Cai D, Rao Y, Zhan Y, Wang Q, Chen S. EngineeringBacillusfor efficient production of heterologous protein: current progress, challenge and prospect. J Appl Microbiol 2019; 126:1632-1642. [DOI: 10.1111/jam.14192] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/13/2018] [Accepted: 12/28/2018] [Indexed: 12/18/2022]
Affiliation(s)
- D. Cai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province Hubei Collaborative Innovation Center for Green Transformation of Bio‐Resources, College of Life Sciences, Hubei University Wuhan PR China
| | - Y. Rao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province Hubei Collaborative Innovation Center for Green Transformation of Bio‐Resources, College of Life Sciences, Hubei University Wuhan PR China
| | - Y. Zhan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province Hubei Collaborative Innovation Center for Green Transformation of Bio‐Resources, College of Life Sciences, Hubei University Wuhan PR China
| | - Q. Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province Hubei Collaborative Innovation Center for Green Transformation of Bio‐Resources, College of Life Sciences, Hubei University Wuhan PR China
| | - S. Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province Hubei Collaborative Innovation Center for Green Transformation of Bio‐Resources, College of Life Sciences, Hubei University Wuhan PR China
| |
Collapse
|
48
|
Yao R, Liu D, Jia X, Zheng Y, Liu W, Xiao Y. CRISPR-Cas9/Cas12a biotechnology and application in bacteria. Synth Syst Biotechnol 2018; 3:135-149. [PMID: 30345399 PMCID: PMC6190536 DOI: 10.1016/j.synbio.2018.09.004] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/24/2018] [Accepted: 09/25/2018] [Indexed: 12/26/2022] Open
Abstract
CRISPR-Cas technologies have greatly reshaped the biology field. In this review, we discuss the CRISPR-Cas with a particular focus on the associated technologies and applications of CRISPR-Cas9 and CRISPR-Cas12a, which have been most widely studied and used. We discuss the biological mechanisms of CRISPR-Cas as immune defense systems, recently-discovered anti-CRISPR-Cas systems, and the emerging Cas variants (such as xCas9 and Cas13) with unique characteristics. Then, we highlight various CRISPR-Cas biotechnologies, including nuclease-dependent genome editing, CRISPR gene regulation (including CRISPR interference/activation), DNA/RNA base editing, and nucleic acid detection. Last, we summarize up-to-date applications of the biotechnologies for synthetic biology and metabolic engineering in various bacterial species.
Collapse
Affiliation(s)
- Ruilian Yao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Di Liu
- Department of Biomass Science and Conversion Technology, Sandia National Laboratories, Livermore, CA 94551, USA
| | - Xiao Jia
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yuan Zheng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wei Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yi Xiao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|