1
|
Pessotti RDC, Guerville M, Agostinho LL, Bogsan CSB, Salgaço MK, Ligneul A, Freitas MND, Guimarães CRW, Sivieri K. Bugs got milk? Exploring the potential of lactose as a prebiotic ingredient for the human gut microbiota of lactose-tolerant individuals. Nutr Res 2025; 136:64-80. [PMID: 40154186 DOI: 10.1016/j.nutres.2025.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 02/26/2025] [Accepted: 02/26/2025] [Indexed: 04/01/2025]
Abstract
Milk consumption is important to help meet daily nutrient requirements. However, lactose-present in dairy products-has been associated with digestive discomfort in individuals who are lactose intolerant or have inadequate lactase activity. Yet, a new perspective on this dietary component has emerged: its potential as a prebiotic for the lactose-tolerant population. We hypothesized that ingestion of lactose may improve the microbial community structure and metabolism of the gut microbiota from healthy adults. First, we assessed the acute impact of lactose ingestion on the gut microbiota of adults using a short-duration in vitro batch colonic model. Subsequently, we employed a long-duration in vitro dynamic multivessel colonic model to evaluate the effects of lactose chronic ingestion. In both cases, a mixture of lactose/galactose/glucose was administered in a defined proportion to mimic lactose metabolism and galactose/glucose absorption in lactose-tolerant adults. The hypothesis was confirmed, as a modulatory prebiotic effect was revealed on the microbial community structure and metabolism of the microbiota upon treatments simulating the ingestion of three doses of lactose, equivalent to half a glass, one glass, and two glasses of cow's milk. The long-duration model confirmed this potential, increasing the relative abundance of the beneficial genera Lactobacillus, Akkermansia, and Faecalibacterium, while the usually detrimental genus Clostridium decreased. Additionally, the health-promoting microbial metabolites acetate, propionate, and lactate were increased. Therefore, lactose ingestion could positively modulate the gut microbiota in healthy lactose-tolerant adults, thereby promoting gut health and shedding light on the dietary benefits of consuming milk.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Katia Sivieri
- Nintx-Next Innovative Therapeutics, São Paulo, Brazil; Department of Food and Nutrition, School of Pharmaceutical Sciences, São Paulo State University, Araraquara, Brazil; Department of Biotechnology, University of Araraquara (UNIARA), Araraquara, Brazil
| |
Collapse
|
2
|
Sun W, Tao L, Qian C, Xue PP, Du SS, Tao YN. Human milk oligosaccharides: bridging the gap in intestinal microbiota between mothers and infants. Front Cell Infect Microbiol 2025; 14:1386421. [PMID: 39835278 PMCID: PMC11743518 DOI: 10.3389/fcimb.2024.1386421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 12/04/2024] [Indexed: 01/22/2025] Open
Abstract
Breast milk is an essential source of infant nutrition. It is also a vital determinant of the structure and function of the infant intestinal microbial community, and it connects the mother and infant intestinal microbiota. Human milk oligosaccharides (HMOs) are a critical component in breast milk. HMOs can reach the baby's colon entirely from milk and become a fermentable substrate for some intestinal microorganisms. HMOs can enhance intestinal mucosal barrier function and affect the intestinal function of the host through immune function, which has a therapeutic effect on specific infant intestinal diseases, such as necrotizing enterocolitis. In addition, changes in infant intestinal microbiota can reflect the maternal intestinal microbiota. HMOs are a link between the maternal intestinal microbiota and infant intestinal microbiota. HMOs affect the intestinal microbiota of infants and are related to the maternal milk microbiota. Through breastfeeding, maternal microbiota and HMOs jointly affect infant intestinal bacteria. Therefore, HMOs positively influence the establishment and balance of the infant microbial community, which is vital to ensure infant intestinal function. Therefore, HMOs can be used as a supplement and alternative therapy for infant intestinal diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Ying-na Tao
- Department of Traditional Chinese Medicine, Shanghai Fourth People’s Hospital
Affiliated to Tongji University, Shanghai, China
| |
Collapse
|
3
|
Tsirigotis-Maniecka M, Górska E, Mazurek-Hołys A, Pawlaczyk-Graja I. Unlocking the Potential of Food Waste: A Review of Multifunctional Pectins. Polymers (Basel) 2024; 16:2670. [PMID: 39339134 PMCID: PMC11436238 DOI: 10.3390/polym16182670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
This review comprehensively explores the multifunctional applications of pectins derived from food waste and by-products, emphasizing their role as versatile biomaterials in the medical-related sectors. Pectins, known for their polyelectrolytic nature and ability to form hydrogels, influence the chemical composition, sensory properties, and overall acceptability of food and pharmaceutical products. The study presents an in-depth analysis of molecular parameters and structural features of pectins, such as the degree of esterification (DE), monosaccharide composition, galacturonic acid (GalA) content, and relative amounts of homogalacturonan (HG) and rhamnogalacturonan I (RG-I), which are critical for their technofunctional properties and biological activity. Emphasis is placed on pectins obtained from various waste sources, including fruits, vegetables, herbs, and nuts. The review also highlights the importance of structure-function relationships, especially with respect to the interfacial properties and rheological behavior of pectin solutions and gels. Biological applications, including antioxidant, immunomodulatory, anticancer, and antimicrobial activities, are also discussed, positioning pectins as promising biomaterials for various functional and therapeutic applications. Recalled pectins can also support the growth of probiotic bacteria, thus increasing the health benefits of the final product. This detailed review highlights the potential of using pectins from food waste to develop advanced and sustainable biopolymer-based products.
Collapse
Affiliation(s)
- Marta Tsirigotis-Maniecka
- Laboratory of Bioproduct Technology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 29, 50-370 Wroclaw, Poland
| | - Ewa Górska
- Laboratory of Bioproduct Technology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 29, 50-370 Wroclaw, Poland
| | - Aleksandra Mazurek-Hołys
- Laboratory of Bioproduct Technology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 29, 50-370 Wroclaw, Poland
| | - Izabela Pawlaczyk-Graja
- Laboratory of Bioproduct Technology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 29, 50-370 Wroclaw, Poland
| |
Collapse
|
4
|
Yu C, Ahmadi S, Hu X, Wu J, Wu D, Hou Z, Pan H, Xiao H, Ye X, Chen S. Individual Difference in the Capacity of Gut Microbiota to Ferment Four Complex Carbohydrates from Normal to Overweight People: An In Vitro Study. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20513-20526. [PMID: 39241186 DOI: 10.1021/acs.jafc.4c05864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2024]
Abstract
Pectic polysaccharides can beneficially shape the human microbiota. However, individual variability in the microbial response, especially the response between normal-weight (NW) and overweight (OW) people, is rarely understood. Therefore, we performed batch fermentation using inulin (INU), commercial pectin (CP), and pectic polysaccharides extracted from goji berry (GPP) and raspberry (RPP) by microbiota from five normal-weight (NW) and five overweight (OW) donors. The degree of specificity of fiber was negatively correlated to its fermentable rate and microbial response. Meanwhile, we found that microbiota from OW donors had a stronger fiber-degrading capacity than NW donors. The result of correlation between individual basal microbiota and the fermentable rate indicated Dialister, Megamonas, Oscillospiraceae_NK4A214, Prevotella, Ruminococcus, and unidentified_Muribaculaceae may be the key bacteria. In summary, we highlighted a new perspective regarding the interactive relationship between different fibers and fecal microbiota from different donors that may be helpful to design fiber interventions for individuals with different microbiota.
Collapse
Affiliation(s)
- Chengxiao Yu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Shokouh Ahmadi
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xinxin Hu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jiaxiong Wu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Dongmei Wu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zhiqiang Hou
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Haibo Pan
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China
| | - Hang Xiao
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi 276000, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China
| | - Shiguo Chen
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi 276000, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China
| |
Collapse
|
5
|
Hu H, Zhang P, Liu F, Pan S. Regulations of Citrus Pectin Oligosaccharide on Cholesterol Metabolism: Insights from Integrative Analysis of Gut Microbiota and Metabolites. Nutrients 2024; 16:2002. [PMID: 38999750 PMCID: PMC11243408 DOI: 10.3390/nu16132002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/25/2024] [Accepted: 05/04/2024] [Indexed: 07/14/2024] Open
Abstract
(1) Background: Recently, academic studies are demonstrating that the cholesterol-lowering effects of pectin oligosaccharides (POSs) are correlated to intestinal flora. However, the mechanisms of POS on cholesterol metabolisms are limited, and the observations of intestinal flora are lacking integrative analyses. (2) Aim and methods: To reveal the regulatory mechanisms of POS on cholesterol metabolism via an integrative analysis of the gut microbiota, the changes in gut microbiota structure and metabolite composition after POS addition were investigated using Illumina MiSeq sequencing and non-targeted metabolomics through in vitro gut microbiota fermentation. (3) Results: The composition of fecal gut flora was adjusted positively by POS. POS increased the abundances of the cholesterol-related bacterial groups Bacteroidetes, Bifidobacterium and Lactobacillus, while it decreased conditional pathogenic Escherichia coli and Enterococcus, showing good prebiotic activities. POS changed the composition of gut microbiota fermentation metabolites (P24), causing significant changes in 221 species of fermentation metabolites in a non-targeted metabolomics analysis and promoting the production of short-chain fatty acids. The abundances of four types of cholesterol metabolism-related metabolites (adenosine monophosphate, cyclic adenosine monophosphate, guanosine and butyrate) were significantly higher in the P24 group than those in the control group without POS addition. (4) Conclusion: The abovementioned results may explain the hypocholesterolemic effects of POS and promotion effects on cholesterol efflux of P24. These findings indicated that the potential regulatory mechanisms of citrus POS on cholesterol metabolism are modulated by cholesterol-related gut microbiota and specific metabolites.
Collapse
Affiliation(s)
- Haijuan Hu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Peipei Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Fengxia Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Siyi Pan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
6
|
Nieto JA, Rosés C, García-Ibáñez P, Pérez B, Viadel B, Romo-Hualde A, Milagro FI, Barceló A, Carvajal M, Gallego E, Agudelo A. Fiber from elicited butternut pumpkin (Cucurbita moschata D. cv. Ariel) modulates the human intestinal microbiota dysbiosis. Int J Biol Macromol 2024; 269:132130. [PMID: 38723828 DOI: 10.1016/j.ijbiomac.2024.132130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 04/30/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
Elicited pumpkin was evaluated as a potential daily consumption product able to modulate the gut microbiota. An in vitro dynamic colonic fermentation performance with microbiota from obese volunteers was used. Prebiotic effects were observed after the pumpkin treatment. Bifidobacterium abundance was maintained during the treatment period whereas Lactobacillus increased in the transversal and descending colon. Conversely, Enterobacteriaceae and Clostridium groups were more stable, although scarce decreasing trends were observed for same species. Increments of Lactobacillus acidophilus and Limosilactobacillus fermentum (old Lactobacillus fermentum) were observed in the whole colonic tract after the treatment period. However, modulatory effects were mainly observed in the transversal and descending colon. Diverse bacteria species were increased, such as Akkermansia muciniphila, Bacteroides dorei, Cloacibacillus porcorum, Clostridium lactatifermentans, Ruminococcus albus, Ruminococcus lactaris, Coprococcus catus, Alistipes shahii or Bacteroides vulgatus. The prebiotic effect of the elicited pumpkin was provided by the fiber of the pumpkin, suggesting a release of pectin molecules in the transversal and distal colonic tract through low cellulosic fiber degradation, explaining the increases in the total propionic and butyric acid in these colonic sections. Also, a possible modulatory role of carotenoids from the sample was suggested since carotenes were found in the descending colon. Hence, the results of this research highlighted pumpkin as a natural product able to modulate the microbiota towards a healthier profile.
Collapse
Affiliation(s)
- Juan Antonio Nieto
- Centro Tecnológico Ainia, Parque Tecnológico de Valencia, E46980 Paterna, Spain; Bioactivity and Nutritional Immunology Group (BIOINUT), Faculty of Health Science, Universidad Internacional de Valencia (VIU), Calle Pintor Sorolla 21, E46002, Valencia, Spain.
| | - Carles Rosés
- Servei de Genòmica, Universitat Autònoma de Barcelona, 08193 Bellaterra, Cerdanyola del Vallés, Spain
| | - Paula García-Ibáñez
- Group of Aquaporins, Plant Nutrition Department, Centro de Edafologia y Biologia Aplicada del Segura, CEBAS-CSIC, Campus Universitario de Espinardo, E-30100 Murcia, Spain
| | - Beatriz Pérez
- Centro Tecnológico Ainia, Parque Tecnológico de Valencia, E46980 Paterna, Spain
| | - Blanca Viadel
- Centro Tecnológico Ainia, Parque Tecnológico de Valencia, E46980 Paterna, Spain
| | - Ana Romo-Hualde
- Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain; Centre for Nutrition Research, Department of Nutrition, Food Sciences and Physiology, University of Navarra, 31008 Pamplona, Spain
| | - Fermín I Milagro
- Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain; Centre for Nutrition Research, Department of Nutrition, Food Sciences and Physiology, University of Navarra, 31008 Pamplona, Spain; Navarra Institute for Health Research (IdISNA), 31008 Pamplona, Spain; Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Anna Barceló
- Servei de Genòmica, Universitat Autònoma de Barcelona, 08193 Bellaterra, Cerdanyola del Vallés, Spain
| | - Micaela Carvajal
- Group of Aquaporins, Plant Nutrition Department, Centro de Edafologia y Biologia Aplicada del Segura, CEBAS-CSIC, Campus Universitario de Espinardo, E-30100 Murcia, Spain
| | - Elisa Gallego
- Centro Tecnológico Ainia, Parque Tecnológico de Valencia, E46980 Paterna, Spain
| | - Agatha Agudelo
- Sakata Seed Ibérica S.L.U., Pl/ Poeta Vicente Gaos, 6 Bajo. 46021, Valencia, Spain
| |
Collapse
|
7
|
Zheng J, Li S, He J, Liu H, Huang Y, Jiang X, Zhao X, Li J, Feng B, Che L, Fang Z, Xu S, Lin Y, Hua L, Zhuo Y, Wu D. A Gestational Pectin Diet Could Improve the Health of Multiparous Sows by Modulating the Gut Microbiota and Cytokine Level during Late Pregnancy. Animals (Basel) 2024; 14:1559. [PMID: 38891606 PMCID: PMC11171106 DOI: 10.3390/ani14111559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
This study aimed to investigate the effects of the dietary fiber pectin on the gut microbiota and health of parturient sows. A total of 30 parity 5-7, multiparous gestation sows (Large White × Landrace) were randomly assigned to two treatment groups after mating: Con (control, basic diet) and Pec (pectin, 3%). The sows received the two diets during gestation, and all sows were fed the same standard basic diet during lactation. The results of β-diversity showed that the composition of the gut microbiota was different in the Con and Pec groups. Compared with the sows in the Con group, the Pec sows showed a higher abundance of the gut bacteria Clostridium and Romboutsia and a lower abundance of harmful bacteria (Micrococcaceae, Coriobacteriaceae, Dorea, Actinomyces). On the other hand, the SCFA plasma concentration was increased in the Pec group, while pro-inflammatory cytokine (IL-6, IL-1β, and TNF-α) concentrations were decreased. In conclusion, the soluble dietary fiber pectin could improve the reproductive performance and health of sows by increasing the abundance of some commensal bacteria enhancing the metabolite SCFA levels and reducing the pro-inflammatory cytokine plasma levels.
Collapse
Affiliation(s)
- Jie Zheng
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
| | - Shuang Li
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
- College of Bioengineering, Sichuan University of Science & Engineering, Yibin 644000, China
| | - Jiaqi He
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
| | - Hao Liu
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
| | - Yingyan Huang
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
| | - Xuemei Jiang
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
| | - Xilun Zhao
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
| | - Jian Li
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
| | - Bin Feng
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
| | - Lianqiang Che
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
| | - Zhengfeng Fang
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
| | - Shengyu Xu
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
| | - Yan Lin
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
| | - Lun Hua
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
| | - Yong Zhuo
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
| | - De Wu
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
| |
Collapse
|
8
|
Asensio-Grau A, Heredia A, García-Hernández J, Cabrera-Rubio R, Masip E, Ribes-Koninckx C, Collado MC, Andrés A, Calvo-Lerma J. Effect of beta-glucan supplementation on cystic fibrosis colonic microbiota: an in vitro study. Pediatr Res 2024; 95:1519-1527. [PMID: 38092964 DOI: 10.1038/s41390-023-02944-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 11/06/2023] [Accepted: 11/18/2023] [Indexed: 05/26/2024]
Abstract
BACKGROUND Children with cystic fibrosis (CF) present with gut dysbiosis, and current evidence impedes robust recommendations on the use of prebiotics. This study aimed at establishing the prebiotic potential of a commercial beta-glucan on the in vitro colonic microbiota of a child with CF compared to a healthy counterpart (H). METHODS A dynamic simulator of colonic fermentation (twin-SHIME® model) was set up including the simulation of the proximal (PC) and distal colon (DC) of the CF and the H subjects by colonizing the bioreactors with faecal microbiota. During two weeks the system was supplied with the beta-glucan. At baseline, during treatment and post-treatment, microbiota composition was profiled by 16 S rRNA and short-chain fatty acids (SCFA) production was determined by GS-MS. RESULTS At baseline, Faecalibacterium, was higher in CF' DC than in the H, along higher Acidaminococcus and less Megasphaera and Sutterella. Beta-glucan supplementation induced increased microbiota richness and diversity in both subjects during the treatment. At genus level, Pseudomonas and Veillonella decreased, while Akkermansia and Faecalibacterium increased significantly in CF. CONCLUSION The supplementation with beta-glucan suggests positive results on CF colonic microbiota in the in vitro context, encouraging further research in the in vivo setting. IMPACT Current evidence supports assessing the effect of prebiotics on modifying cystic fibrosis microbiota. The effect of beta-glucan supplementation was evaluated in a controlled dynamic in vitro colonic ecosystem. Beta-glucan supplement improved diversity in cystic fibrosis colonic microbiota. The treatment showed increased abundance of Faecalibacterium and Akkermansia in cystic fibrosis. New evidence supports the use of prebiotics in future clinical studies.
Collapse
Affiliation(s)
- Andrea Asensio-Grau
- Instituto de Ingeniería de Alimentos para el Desarrollo. Universitat Politècnica de València, València, Spain.
- Unidad Mixta de Investigación (NutriCuraPDig), Valencia, Spain.
| | - Ana Heredia
- Instituto de Ingeniería de Alimentos para el Desarrollo. Universitat Politècnica de València, València, Spain
- Unidad Mixta de Investigación (NutriCuraPDig), Valencia, Spain
| | - Jorge García-Hernández
- Unidad Mixta de Investigación (NutriCuraPDig), Valencia, Spain
- Centro Avanzado de Microbiología de Alimentos (CAMA), Universitat Politècnica de València, Valencia, Spain
| | - Raúl Cabrera-Rubio
- Institute of Agrochemistry and Food Technology-Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Etna Masip
- Unidad Mixta de Investigación (NutriCuraPDig), Valencia, Spain
- Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Carmen Ribes-Koninckx
- Unidad Mixta de Investigación (NutriCuraPDig), Valencia, Spain
- Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Maria Carmen Collado
- Institute of Agrochemistry and Food Technology-Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Ana Andrés
- Instituto de Ingeniería de Alimentos para el Desarrollo. Universitat Politècnica de València, València, Spain
- Unidad Mixta de Investigación (NutriCuraPDig), Valencia, Spain
| | - Joaquim Calvo-Lerma
- Unidad Mixta de Investigación (NutriCuraPDig), Valencia, Spain
- Institute of Agrochemistry and Food Technology-Spanish National Research Council (IATA-CSIC), Valencia, Spain
| |
Collapse
|
9
|
García-Pérez P, Tomas M, Rivera-Pérez A, Patrone V, Giuberti G, Cervini M, Capanoglu E, Lucini L. Pectin conformation influences the bioaccessibility of cherry laurel polyphenols and gut microbiota distribution following in vitro gastrointestinal digestion and fermentation. Food Chem 2024; 430:137054. [PMID: 37566983 DOI: 10.1016/j.foodchem.2023.137054] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/13/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023]
Abstract
Interactions between dietary fiber and phenolic compounds in foods can influence their gastrointestinal fate. This study aimed to examine the effect of four types of pectin on the polyphenols of cherry laurel puree and human gut microbiota during a simulated in vitro gastrointestinal digestion and large intestine fermentation. Results revealed that the combined addition of different pectins and pectinase to cherry laurel puree significantly affected the content and bioaccessibility of phenolics. The addition of pectins and pectinase distinctively impacted the phenolic subclasses in both raw and post-digested/fermented cherry laurel puree, suggesting differential interactions due to structural features. Both pectins and pectinase modulated the composition of fecal microbiota after in vitro fermentation, increasing bacterial diversity following pectinase treatment. The combined addition of pectins followed by pectinase had differential impacts on polyphenol bioaccessibility and gut microbiome diversity, hence having a potential outcome in terms of human health.
Collapse
Affiliation(s)
- Pascual García-Pérez
- Department for Sustainable Food Process - DiSTAS, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy; Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, Universidade de Vigo, 32004 Ourense, Spain
| | - Merve Tomas
- Faculty of Engineering and Natural Sciences, Food Engineering Department, Istanbul Sabahattin Zaim University, 34303 Istanbul, Turkey
| | - Araceli Rivera-Pérez
- Department for Sustainable Food Process - DiSTAS, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy; Research Group "Analytical Chemistry of Contaminants", Department of Chemistry and Physics, Research Centre for Mediterranean Intensive Agrosystems and Agrifood Biotechnology (CIAIMBITAL), Agrifood Campus of International Excellence (ceiA3), University of Almeria, 04120 Almeria, Spain
| | - Vania Patrone
- Department for Sustainable Food Process - DiSTAS, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Gianluca Giuberti
- Department for Sustainable Food Process - DiSTAS, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Mariasole Cervini
- Department for Sustainable Food Process - DiSTAS, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey.
| | - Luigi Lucini
- Department for Sustainable Food Process - DiSTAS, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| |
Collapse
|
10
|
Tang X, de Vos P. Structure-function effects of different pectin chemistries and its impact on the gastrointestinal immune barrier system. Crit Rev Food Sci Nutr 2023; 65:1201-1215. [PMID: 38095591 DOI: 10.1080/10408398.2023.2290230] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
The gastrointestinal immune system is crucial for overall health, safeguarding the human body against harmful substances and pathogens. One key player in this defense is dietary fiber pectin, which supports the gut's immune barrier and fosters beneficial gut bacteria. Pectin's composition, including degree of methylation (DM), RG-I, and neutral sugar content, influences its health benefits. This review assesses how pectin composition impacts the gastrointestinal immune barrier and what advantages specific chemistries of pectin has for metabolic, cardiovascular, and immune health. We delve into recent findings regarding pectin's interactions with the immune system, including receptors like TLRs and galectin 3. Pectin is shown to fortify mucosal and epithelial layers, but the specific effects are structure dependent. Additionally, we explore potential strategies for enhancing the gut immune barrier function. Understanding how distinct pectin chemistries affect the gastrointestinal immune system is vital for developing preventive and therapeutic solutions for conditions related to microbiota imbalances and immune issues. Ultimately, this review offers insights into strategies to boost the gut immune barrier's effectiveness, fostering better overall health by using specific pectins in the diet.
Collapse
Affiliation(s)
- X Tang
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - P de Vos
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
11
|
Forner E, Ezenarro JJ, Pérez-Montero M, Vigués N, Asensio-Grau A, Andrés A, Mas J, Baeza M, Muñoz-Berbel X, Villa R, Gabriel G. Electrochemical biosensor for aerobic acetate detection. Talanta 2023; 265:124882. [PMID: 37453394 DOI: 10.1016/j.talanta.2023.124882] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 06/17/2023] [Accepted: 06/24/2023] [Indexed: 07/18/2023]
Abstract
There is an increasing demand on alternatives methods to animal testing. Numerous health parameters have been already studied using in vitro devices able to mimic the essential functions of the organs, being the real-time monitoring and response to stimuli their main limitations. Regarding the health of the gut, the short chain fatty acids, and particularly acetate, have emerged as key biomarkers to evaluate gut healthiness and disease development, although the number of acetate biosensors is still very low. This article presents a microbial biosensor based on fully biocompatible materials which is able to detect acetate in aerobic conditions in the range between 11 and 50 mM, and without compromising the viability and function of either bacteria (>90% viability) or mammalian cells (>80% viability). The detection mechanism is based on the metabolism of acetate by Escherichia coli bacteria immobilized on the transducer surface. Ferricyanide is used as a redox mediator to transfer electrons from the acetate metabolism in the bacterial cells to the transducer. High bacterial concentrations are immobilized in the transducer surface (109 cfu mL-1) by electrodeposition of conductive alginate hydrogels doped with reduced graphene oxide. The results show successful outcomes to exploit bacteria as a biosensing tool, based on the use of inkjet printed transducers, biocompatible materials and cell entrapment technologies.
Collapse
Affiliation(s)
- E Forner
- Institut de Microelectrònica de Barcelona, IMB-CNM (CSIC), Universitat Autònoma de Barcelona, Cerdanyola Del Vallès, 08193, Barcelona, Spain
| | - J J Ezenarro
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Cerdanyola Del Vallès, 08193, Barcelona, Spain
| | - M Pérez-Montero
- Basic Sciences Department. Faculty of Medicine and Health Sciences. Universitat Internacional de Catalunya, 08195, Sant Cugat Del Vallès, Barcelona, Spain
| | - N Vigués
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Cerdanyola Del Vallès, 08193, Barcelona, Spain
| | - A Asensio-Grau
- Instituto de Ingenieria de Alimentos para El Desarrollo, Universitat Politècnica de València, Camino de Vera S/n, 46022, València, Spain
| | - A Andrés
- Instituto de Ingenieria de Alimentos para El Desarrollo, Universitat Politècnica de València, Camino de Vera S/n, 46022, València, Spain
| | - J Mas
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Cerdanyola Del Vallès, 08193, Barcelona, Spain
| | - M Baeza
- GENOCOV Research Group, Department of Chemistry, Faculty of Science, Edifici C-Nord, Universitat Autònoma de Barcelona, Cerdanyola Del Vallès, 08193, Barcelona, Spain
| | - X Muñoz-Berbel
- Institut de Microelectrònica de Barcelona, IMB-CNM (CSIC), Universitat Autònoma de Barcelona, Cerdanyola Del Vallès, 08193, Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Spain
| | - R Villa
- Institut de Microelectrònica de Barcelona, IMB-CNM (CSIC), Universitat Autònoma de Barcelona, Cerdanyola Del Vallès, 08193, Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Spain
| | - G Gabriel
- Institut de Microelectrònica de Barcelona, IMB-CNM (CSIC), Universitat Autònoma de Barcelona, Cerdanyola Del Vallès, 08193, Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Spain.
| |
Collapse
|
12
|
Wang X, Li X, Zhang L, An L, Guo L, Huang L, Gao W. Recent progress in plant-derived polysaccharides with prebiotic potential for intestinal health by targeting gut microbiota: a review. Crit Rev Food Sci Nutr 2023; 64:12242-12271. [PMID: 37651130 DOI: 10.1080/10408398.2023.2248631] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Natural products of plant origin are of high interest and widely used, especially in the food industry, due to their low toxicity and wide range of bioactive properties. Compared to other plant components, the safety of polysaccharides has been generally recognized. As dietary fibers, plant-derived polysaccharides are mostly degraded in the intestine by polysaccharide-degrading enzymes secreted by gut microbiota, and have potential prebiotic activity in both non-disease and disease states, which should not be overlooked, especially in terms of their involvement in the treatment of intestinal diseases and the promotion of intestinal health. This review elucidates the regulatory effects of plant-derived polysaccharides on gut microbiota and summarizes the mechanisms involved in targeting gut microbiota for the treatment of intestinal diseases. Further, the structure-activity relationships between different structural types of plant-derived polysaccharides and the occurrence of their prebiotic activity are further explored. Finally, the practical applications of plant-derived polysaccharides in food production and food packaging are summarized and discussed, providing important references for expanding the application of plant-derived polysaccharides in the food industry or developing functional dietary supplements.
Collapse
Affiliation(s)
- Xiaozhen Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Xia Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Luyao Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Lingzhuo An
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, Academy of Chinese Medical Sciences, Beijing, China
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, Academy of Chinese Medical Sciences, Beijing, China
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
13
|
Cesar T, Salgaço MK, Mesa V, Sartoratto A, Sivieri K. Exploring the Association between Citrus Nutraceutical Eriocitrin and Metformin for Improving Pre-Diabetes in a Dynamic Microbiome Model. Pharmaceuticals (Basel) 2023; 16:650. [PMID: 37242433 PMCID: PMC10221435 DOI: 10.3390/ph16050650] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Pre-diabetes is recognized as an altered metabolic state, which precedes type 2 diabetes, and it is associated with great dysfunction of the intestinal microbiota, known as dysbiosis. Natural compounds, capable of reducing blood glucose without side effects and with a beneficial effect on the microbiota, have been studied as substitutes or adjuvants to conventional hypoglycemic agents, such as metformin. In this work, the effect of the nutraceutical Eriomin®, a mixture of citrus flavonoids (eriocitrin, hesperidin, naringin, and didymin), which reduces glycemia and increases glucagon-like peptide-1 (GLP-1) in pre-diabetic patients, was tested in the Simulator of Human Intestinal Microbial Ecosystem (SHIME®), inoculated with pre-diabetic microbiota. After treatment with Eriomin® plus metformin, a significant increase in acetate and butyrate production was observed. Furthermore, sequencing of the 16S rRNA gene of the microorganisms showed that Eriomin® plus metformin stimulated the growth of Bacteroides and Subdoligranulum genera. Bacteroides are the largest fraction of the intestinal microbiota and are potential colonizers of the colon, with some species producing acetic and propionic fatty acids. In addition, Subdoligranulum species are associated with better host glycemic metabolism. In conclusion, Eriomin® associated with metformin improved the composition and metabolism of the intestinal microbiota, suggesting a potential use in pre-diabetes therapy.
Collapse
Affiliation(s)
- Thais Cesar
- Graduate Program in Food, Nutrition and Food Engineering, Campus Araraquara, São Paulo State University (UNESP), Araraquara 14800-060, SP, Brazil; (T.C.)
| | - Mateus Kawata Salgaço
- Graduate Program in Food, Nutrition and Food Engineering, Campus Araraquara, São Paulo State University (UNESP), Araraquara 14800-060, SP, Brazil; (T.C.)
| | - Victoria Mesa
- INSERM, UMR-S 1139 (3PHM), Faculty of Pharmacy, Université Paris Cité, F-75006 Paris, France
- Food and Human Nutrition Research Group, School of Nutrition and Dietetics, Universidad de Antioquia (UdeA), Medellín 050010, Antioquia, Colombia
| | | | - Katia Sivieri
- Graduate Program in Food, Nutrition and Food Engineering, Campus Araraquara, São Paulo State University (UNESP), Araraquara 14800-060, SP, Brazil; (T.C.)
| |
Collapse
|
14
|
De Oliveira FL, Salgaço MK, de Oliveira MT, Mesa V, Sartoratto A, Peregrino AM, Ramos WS, Sivieri K. Exploring the Potential of Lactobacillus helveticus R0052 and Bifidobacterium longum R0175 as Promising Psychobiotics Using SHIME. Nutrients 2023; 15:nu15061521. [PMID: 36986251 PMCID: PMC10056475 DOI: 10.3390/nu15061521] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/12/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Psychobiotics are probiotics that have the characteristics of modulating central nervous system (CNS) functions or reconciled actions by the gut-brain axis (GBA) through neural, humoral and metabolic pathways to improve gastrointestinal activity as well as anxiolytic and even antidepressant abilities. The aim of this work was to evaluate the effect of Lactobacillus helveticus R0052 and Bifidobacterium longum R0175 on the gut microbiota of mildly anxious adults using SHIME®. The protocol included a one-week control period and two weeks of treatment with L. helveticus R0052 and B. longum R0175. Ammonia (NH4+), short chain fatty acids (SCFAs), gamma-aminobutyric acid (GABA), cytokines and microbiota composition were determined. Probiotic strains decreased significantly throughout the gastric phase. The highest survival rates were exhibited by L. helveticus R0052 (81.58%; 77.22%) after the gastric and intestinal phase when compared to B. longum (68.80%; 64.64%). At the genus level, a taxonomic assignment performed in the ascending colon in the SHIME® model showed that probiotics (7 and 14 days) significantly (p < 0.005) increased the abundance of Lactobacillus and Olsenella and significantly decreased Lachnospira and Escheria-Shigella. The probiotic treatment (7 and 14 days) decreased (p < 0.001) NH4+ production when compared to the control period. For SCFAs, we observed after probiotic treatment (14 days) an increase (p < 0.001) in acetic acid production and total SCFAs when compared to the control period. Probiotic treatment increased (p < 0.001) the secretion of anti-inflammatory (IL-6 and IL-10) and decreased (p < 0.001) pro-inflammatory cytokines (TNF-alpha) when compared to the control period. The gut-brain axis plays an important role in the gut microbiota, producing SCFAs and GABA, stimulating the production of anti-anxiety homeostasis. The signature of the microbiota in anxiety disorders provides a promising direction for the prevention of mental illness and opens a new perspective for using the psychobiotic as a main actor of therapeutic targets.
Collapse
Affiliation(s)
- Fellipe Lopes De Oliveira
- Graduate Program in Food, Nutrition, and Food Engineering, Campus Araraquara, São Paulo State University (UNESP), Araraquara 14800-060, SP, Brazil
| | - Mateus Kawata Salgaço
- Graduate Program in Food, Nutrition, and Food Engineering, Campus Araraquara, São Paulo State University (UNESP), Araraquara 14800-060, SP, Brazil
| | | | - Victoria Mesa
- Université Paris Cité, INSERM, UMR-S 1139 (3PHM), Faculty of Pharmacy, F-75006 Paris, France
- Food and Human Nutrition Research Group, School of Nutrition and Dietetics, Universidad de Antioquia (UdeA), Medellín 050010, Antioquia, Colombia
| | | | | | - Williams Santos Ramos
- APSEN Farmacêutica, Department of Medical Affairs, Santo Amaro 04753-001, SP, Brazil
| | - Katia Sivieri
- Graduate Program in Food, Nutrition, and Food Engineering, Campus Araraquara, São Paulo State University (UNESP), Araraquara 14800-060, SP, Brazil
- University of Araraquara-UNIARA, Araraquara 14801-320, SP, Brazil
| |
Collapse
|
15
|
Fan S, Chen S, Lin L. Research progress of gut microbiota and obesity caused by high-fat diet. Front Cell Infect Microbiol 2023; 13:1139800. [PMID: 36992691 PMCID: PMC10040832 DOI: 10.3389/fcimb.2023.1139800] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/28/2023] [Indexed: 03/15/2023] Open
Abstract
Obesity, a chronic metabolic disorder caused by an energy imbalance, has been increasingly prevalent and poses a global health concern. The multifactorial etiology of obesity includes genetics factors, high-fat diet, gut microbiota, and other factors. Among these factors, the implication of gut microbiota in the pathogenesis of obesity has been prominently acknowledged. This study endeavors to investigate the potential contribution of gut microbiota to the development of high-fat diet induced obesity, as well as the current state of probiotic intervention therapy research, in order to provide novel insights for the prevention and management of obesity.
Collapse
Affiliation(s)
- Shuyi Fan
- Scientific Research Department, Brain Hospital of Hunan Province, Second People’s Hospital of Hunan Province, Changsha, Hunan, China
- Department of Clinical Medicine, Xiamen Medical College, Xiamen, Fujian, China
| | - Suyun Chen
- Department of Clinical Medicine, Xiamen Medical College, Xiamen, Fujian, China
| | - Lin Lin
- Scientific Research Department, Brain Hospital of Hunan Province, Second People’s Hospital of Hunan Province, Changsha, Hunan, China
| |
Collapse
|
16
|
Li X, Shi C, Wang S, Wang S, Wang X, Lü X. Uncovering the effect of Moringa oleifera Lam. leaf addition to Fuzhuan Brick Tea on sensory properties, volatile profiles and anti-obesity activity. Food Funct 2023; 14:2404-2415. [PMID: 36786051 DOI: 10.1039/d2fo03531f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
As a nutritious plant with valuable potential, the Moringa oleifera Lam. leaf addition to Fuzhuan Brick Tea (FBT) for co-fermentation is an industrial innovation and a new route to make full use of Moringa oleifera Lam. leaves. However, the sensory properties, volatile profiles and anti-obesity activity of Fuzhuan Brick (Moringa oleifera Lam.) tea (MFBT) are still unknown. The results demonstrated that MFBT has richer and more complex smell and taste, better color and higher overall acceptance scores. In total, 57 volatile flavor compounds, consisting of 3 acids, 16 hydrocarbons, 5 esters, 8 ketones, 13 aldehydes, 6 alcohols and others, were identified using HS-SPME-GC-MS. The characteristic odor components in MFBT were 3-buten-2-one, 4-(2,6,6-trimethyl-1-cyclohexen-1-yl)- and 1-cyclohexene-1-carboxaldehyde, 2,6,6-trimethyl-, which gave it a floral, woody, sweet, herbal and fruity aroma. 2-Octenal, (E) contributed significantly to the aroma of FBT, which could impart fresh, fatty and green aromas. In addition, MFBT could better regulate lipid accumulation, glucose tolerance, insulin tolerance and inflammation response more effectively than FBT. The mechanism is that MFBT could better regulate the dysbiosis of gut microbiota induced by HFFD, mainly increasing the abundance of beneficial bacteria such as SCFA-producing bacteria (Bacteroidetes, Lactobacillaceae, Bacteroidales_S24-7_group and Clostridiaceae_1) and decreasing the abundance of harmful bacteria such as pro-inflammatory/obesity and metabolic syndrome-related bacteria (Proteobacteria, Deferribacteres, Desulfovibrio, Catenibacterium and Helicobacter), which in turn increased feces short-chain fatty acids and lowered circulating lipopolysaccharides. These results suggested that co-fermentation with Moringa oleifera Lam. leaf could significantly improve the quality and enhance the anti-obesity effect of FBT.
Collapse
Affiliation(s)
- Xin Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Caihong Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Shuxuan Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Shuang Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Xin Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
17
|
Melchior K, Salgaço MK, Sivieri K, Moreira CG. QseC sensor kinase modulates the human microbiota during enterohemorrhagic Escherichia coli O157:H7 infection in the Simulator of the Human Intestinal Microbial Ecosystem (SHIME®). Braz J Microbiol 2023; 54:1-14. [PMID: 36469301 PMCID: PMC9943815 DOI: 10.1007/s42770-022-00877-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 11/08/2022] [Indexed: 12/11/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) is an important gastrointestinal pathogen known for its ability to cause hemorrhagic colitis and induce hemolytic-uremic syndrome. The inner membrane QseC histidine kinase sensor has shown to be an important regulator of the locus of enterocyte effacement (LEE) island, where important EHEC key virulence genes are located. However, the QseC role during EHEC infection in human microbiota remains unknown. Herein, using the Simulator of the Human Intestinal Microbial Ecosystem (SHIME®), we investigated whether the QseC sensor has a role in human microbiota modulation by EHEC in a dynamic model. Our data demonstrated that the QseC sensor modulates human microbiota during EHEC infection, and its absence leads to an increase in Lactobacillaceae and Bifidobacterium genus predominance, although non-effect on Bacteroides genus by EHEC strains was observed. In co-culture, the Lactobacillus acidophilus has affected EHEC growth and impaired the EHEC growth under space-niche competition, although no growth difference was observed in the QseC sensor presence. Also, differences in EHEC growth were not detected in competition with Bacteroides thetaiotaomicron and EHEC strains did not affect B. thetaiotaomicron growth either. When investigating the mechanisms behind the SHIME results, we found that hcp-2 expression for the type 6 secretion system, known to be involved in bacterial competition, is under QseC sensor regulation beneath different environmental signals, such as glucose and butyrate. Our findings broaden the knowledge about the QseC sensor in modulating the human microbiota and its importance for EHEC pathogenesis.
Collapse
Affiliation(s)
- Karine Melchior
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Mateus Kawata Salgaço
- Department of Food and Nutrition, School of Pharmaceutical Sciences, State University of São Paulo (UNESP), Araraquara, SP, Brazil
| | - Katia Sivieri
- Department of Food and Nutrition, School of Pharmaceutical Sciences, State University of São Paulo (UNESP), Araraquara, SP, Brazil
| | - Cristiano Gallina Moreira
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil.
| |
Collapse
|
18
|
Extraction and Characterization of Cocoa Bean Shell Cell Wall Polysaccharides. Polymers (Basel) 2023; 15:polym15030745. [PMID: 36772046 PMCID: PMC9921167 DOI: 10.3390/polym15030745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 01/30/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Cocoa bean shells (CBS), a by-product of the cocoa industry, from two cacao varieties and obtained after selected processing conditions (fermentation, drying, roasting) were characterized in terms of their chemical composition, where they were found to be a great source of carbohydrates, specifically dietary fiber, protein, ash, and polyphenols, namely quercetin, epicatechin, and catechin. Cell wall polysaccharides were isolated by alkaline extraction (0.5 M or 4 M KOH) and were found to be enriched primarily in pectic polysaccharides (80.6-86%) namely rhamnogalacturonan and arabinogalactan as well as hemi- cellulosic polysaccharides (13.9-19.4%). Overall, 0.5 M KOH polysaccharides were favored having provided a diverse profile of neutral sugars and uronic acids. When tested for the promotion of the growth of selected probiotic strains, CBS cell wall polysaccharides performed similarly or more than inulin and rhamnogalacturonan based on the prebiotic activity scores. The short-chain fatty acid profiles were characterized by high amounts of lactic acid, followed by acetic and propionic acid.
Collapse
|
19
|
Zhang M, Wang X, Wang Z, Mao S, Zhang J, Li M, Pan H. Metatranscriptomic Analyses Reveal Important Roles of the Gut Microbiome in Primate Dietary Adaptation. Genes (Basel) 2023; 14:228. [PMID: 36672969 PMCID: PMC9858838 DOI: 10.3390/genes14010228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
The gut microbiome plays a vital role in host ecological adaptation, especially dietary adaptations. Primates have evolved a variety of dietary and gut physiological structures that are useful to explore the role of the gut microbiome in host dietary adaptations. Here, we characterize gut microbiome transcriptional activity in ten fecal samples from primates with three different diets and compare the results to their previously reported metagenomic profile. Bacteria related to cellulose degradation, like Bacteroidaceae and Alcaligenaceae, were enriched and actively expressed in the gut microbiome of folivorous primates, and functional analysis revealed that the glycan biosynthesis and metabolic pathways were significantly active. In omnivorous primates, Helicobacteraceae, which promote lipid metabolism, were significantly enriched in expression, and activity and xenobiotic biodegradation and metabolism as well as lipid metabolism pathways were significantly active. In frugivorous primates, the abundance and activity of Elusimicrobiaceae, Neisseriaceae, and Succinivibrionaceae, which are associated with digestion of pectin and fructose, were significantly elevated, and the functional pathways involved in the endocrine system were significantly enriched. In conclusion, the gut microbiome contributes to host dietary adaptation by helping hosts digest the inaccessible nutrients in their specific diets.
Collapse
Affiliation(s)
- Mingyi Zhang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing 100101, China
| | - Xiaochen Wang
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing 100101, China
| | - Ziming Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Shuxin Mao
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiali Zhang
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming Li
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing 100101, China
| | - Huijuan Pan
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
20
|
Zhang MY, Cai J. Preparation of branched RG-I-rich pectin from red dragon fruit peel and the characterization of its probiotic properties. Carbohydr Polym 2023; 299:120144. [PMID: 36876774 DOI: 10.1016/j.carbpol.2022.120144] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 11/24/2022]
Abstract
Red dragon fruit peel is a pectin-rich fruit waste that is a potential source of prebiotics and whose different sources and structures will influence its prebiotic function. Thus, we compared the effects of three extraction methods on the structure and prebiotic function of red dragon fruit pectin, the results showed that the citric acid extracted pectin produced a high Rhamnogalacturonan-I (RG-I) region (66.59 mol%) and more side-chains of Rhamnogalacturonan-I ((Ara + Gal)/Rha = 1.25), which can promote bacterial proliferation significantly. The side-chains of Rhamnogalacturonan-I may be an important factor in that pectin can promote the proliferation of B. animalis. Our results provide a theoretical basis for the prebiotic application of red dragon fruit peel.
Collapse
Affiliation(s)
- Meng-Yuan Zhang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, China
| | - Jun Cai
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, China.
| |
Collapse
|
21
|
Functional Fermented Milk with Fruit Pulp Modulates the In Vitro Intestinal Microbiota. Foods 2022; 11:foods11244113. [PMID: 36553855 PMCID: PMC9778618 DOI: 10.3390/foods11244113] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
The effect of putative probiotic fermented milk (FM) with buriti pulp (FMB) or passion fruit pulp (FMPF) or without fruit pulp (FMC) on the microbiota of healthy humans was evaluated. FM formulations were administered into a simulator of the human intestinal microbial ecosystem (SHIME®) to evaluate the viability of lactic acid bacteria (LAB), microbiota composition, presence of short-chain fatty acids (SCFA), and ammonium ions. The probiotic LAB viability in FM was affected by the addition of the fruit pulp. Phocaeicola was dominant in the FMPF and FMB samples; Bifidobacterium was related to FM formulations, while Alistipes was associated with FMPF and FMB, and Lactobacillus and Lacticaseibacillus were predominant in FMC. Trabulsiella was the central element in the FMC, while Mediterraneibacter was the central one in the FMPF and FMB networks. The FM formulations increased the acetic acid, and a remarkably high amount of propionic and butyric acids were detected in the FMB treatment. All FM formulations decreased the ammonium ions compared to the control; FMPF samples stood out for having lower amounts of ammonia. The probiotic FM with fruit pulp boosted the beneficial effects on the intestinal microbiota of healthy humans in addition to increasing SCFA in SHIME® and decreasing ammonium ions, which could be related to the presence of bioactive compounds.
Collapse
|
22
|
Modulation of the Gut Microbiota Structure and Function by Two Structurally Different Lemon Pectins. Foods 2022; 11:foods11233877. [PMID: 36496685 PMCID: PMC9739951 DOI: 10.3390/foods11233877] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 12/04/2022] Open
Abstract
Pectins are plant polysaccharides consumed as part of a diet containing fruits and vegetables. Inside the gastrointestinal tract, pectin cannot be metabolized by the mammalian cells but is fermented by the gut microbiota in the colon with the subsequent release of end products including short-chain fatty acids (SCFA). The prebiotic effects of pectin have been previously evaluated but reports are inconsistent, most likely due to differences in the pectin chemical structure which can vary by molecular weight (MW) and degree of esterification (DE). Here, the effects of two different MW lemon pectins with varying DEs on the gut microbiota of two donors were evaluated in vitro. The results demonstrated that low MW, high DE lemon pectin (LMW-HDE) altered community structure in a donor-dependent manner, whereas high MW, low DE lemon pectin (HMW-LDE) increased taxa within Lachnospiraceae in both donors. LMW-HDE and HMW-LDE lemon pectins both increased total SCFAs (1.49- and 1.46-fold, respectively) and increased acetic acid by 1.64-fold. Additionally, LMW-HDE lemon pectin led to an average 1.41-fold increase in butanoic acid. Together, these data provide valuable information linking chemical structure of pectin to its effect on the gut microbiota structure and function, which is important to understanding its prebiotic potential.
Collapse
|
23
|
Prebiotic potential of apple pomace and pectins from different apple varieties: Modulatory effects on key target commensal microbial populations. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
24
|
Liu Y, Weng P, Liu Y, Wu Z, Wang L, Liu L. Citrus pectin research advances: Derived as a biomaterial in the construction and applications of micro/nano-delivery systems. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
25
|
Deng M, Zhang S, Dong L, Huang F, Jia X, Su D, Chi J, Muhammad Z, Ma Q, Zhao D, Zhang M, Zhang R. Shatianyu ( Citrus grandis L. Osbeck) Flavonoids and Dietary Fiber in Combination Are More Effective Than Individually in Alleviating High-Fat-Diet-Induced Hyperlipidemia in Mice by Altering Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14654-14664. [PMID: 36322531 DOI: 10.1021/acs.jafc.2c03797] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
This study was aimed at exploring the separate and combined anti-hyperlipidemic effect of Shatianyu (Citrus grandis L. Osbeck) flavonoids (SPFEs) and DF (SPDF) on HFD-fed mice after 14-week administration in diet, together with the possible microbiota-mediated mechanisms. SPFEs and SPDF were more effective together than separately in improving serum lipid profiles, decreasing hepatic lipid accumulation, and upregulating the expression of hepatic CPT1a, CYP7A1, ABCG5, and ABCG8. Butyrate has been previously proved to have an anti-hyperlipidemic effect. The fecal butyrate contents were negatively correlative with serum/liver lipid but positively correlated with fecal total bile acids levels, and SPDF + SPFEs had the most fecal butyrate in this study. SPDF or SPFEs enriched microbiota related to acetic and propionic acids production, while SPDF + SPFEs also bloomed norank_f_Muribaculaceae, Dubosiella, Lachnoclostridium, and norank_f_Eubacterium_coprostanoligenes_group, which were positively correlated to fecal butyrate contents. Thus, SPFEs and SPDF might alleviate hyperlipidemia synergistically by regulating microbiota to produce butyrate, thereby regulating lipid metabolism.
Collapse
Affiliation(s)
- Mei Deng
- Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture/Guangdong, Key Laboratory of Agricultural Products Processing, Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural, Guangzhou510610, P. R. China
| | - Shuai Zhang
- Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture/Guangdong, Key Laboratory of Agricultural Products Processing, Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural, Guangzhou510610, P. R. China
- Department of Food Science and Technology, Huazhong Agricultural University, Wuhan430070, P. R. China
| | - Lihong Dong
- Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture/Guangdong, Key Laboratory of Agricultural Products Processing, Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural, Guangzhou510610, P. R. China
| | - Fei Huang
- Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture/Guangdong, Key Laboratory of Agricultural Products Processing, Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural, Guangzhou510610, P. R. China
| | - Xuchao Jia
- Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture/Guangdong, Key Laboratory of Agricultural Products Processing, Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural, Guangzhou510610, P. R. China
| | - Dongxiao Su
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou510006, P. R. China
| | - Jianwei Chi
- Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture/Guangdong, Key Laboratory of Agricultural Products Processing, Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural, Guangzhou510610, P. R. China
| | - Zafarullah Muhammad
- Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture/Guangdong, Key Laboratory of Agricultural Products Processing, Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural, Guangzhou510610, P. R. China
| | - Qin Ma
- Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture/Guangdong, Key Laboratory of Agricultural Products Processing, Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural, Guangzhou510610, P. R. China
| | - Dong Zhao
- Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture/Guangdong, Key Laboratory of Agricultural Products Processing, Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural, Guangzhou510610, P. R. China
| | - Mingwei Zhang
- Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture/Guangdong, Key Laboratory of Agricultural Products Processing, Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural, Guangzhou510610, P. R. China
| | - Ruifen Zhang
- Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture/Guangdong, Key Laboratory of Agricultural Products Processing, Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural, Guangzhou510610, P. R. China
| |
Collapse
|
26
|
Ilyés T, Silaghi CN, Crăciun AM. Diet-Related Changes of Short-Chain Fatty Acids in Blood and Feces in Obesity and Metabolic Syndrome. BIOLOGY 2022; 11:1556. [PMID: 36358258 PMCID: PMC9687917 DOI: 10.3390/biology11111556] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 09/13/2023]
Abstract
Obesity-related illnesses are one of the leading causes of death worldwide. Metabolic syndrome has been associated with numerous health issues. Short-chain fatty acids (SCFAs) have been shown to have multiple effects throughout the body, both directly as well as through specific G protein-coupled receptors. The main SCFAs produced by the gut microbiota are acetate, propionate, and butyrate, which are absorbed in varying degrees from the large intestine, with some acting mainly locally and others systemically. Diet has the potential to influence the gut microbial composition, as well as the type and amount of SCFAs produced. High fiber-containing foods and supplements increase the production of SCFAs and SCFA-producing bacteria in the gut and have been shown to have bodyweight-lowering effects. Dietary supplements, which increase SCFA production, could open the way for novel approaches to weight loss interventions. The aim of this review is to analyze the variations of fecal and blood SCFAs in obesity and metabolic syndrome through a systematic search and analysis of existing literature.
Collapse
Affiliation(s)
| | - Ciprian N. Silaghi
- Department of Molecular Sciences, University of Medicine and Pharmacy “Iuliu Hațieganu”, 400012 Cluj-Napoca, Romania
| | | |
Collapse
|
27
|
Pascale N, Gu F, Larsen N, Jespersen L, Respondek F. The Potential of Pectins to Modulate the Human Gut Microbiota Evaluated by In Vitro Fermentation: A Systematic Review. Nutrients 2022; 14:nu14173629. [PMID: 36079886 PMCID: PMC9460662 DOI: 10.3390/nu14173629] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/25/2022] [Indexed: 12/02/2022] Open
Abstract
Pectin is a dietary fiber, and its health effects have been described extensively. Although there are limited clinical studies, there is a growing body of evidence from in vitro studies investigating the effect of pectin on human gut microbiota. This comprehensive review summarizes the findings of gut microbiota modulation in vitro as assessed by 16S rRNA gene-based technologies and elucidates the potential structure-activity relationships. Generally, pectic substrates are slowly but completely fermented, with a greater production of acetate compared with other fibers. Their fermentation, either directly or by cross-feeding interactions, results in the increased abundances of gut bacterial communities such as the family of Ruminococcaceae, the Bacteroides and Lachnospira genera, and species such as Lachnospira eligens and Faecalibacterium prausnitzii, where the specific stimulation of Lachnospira and L. eligens is unique to pectic substrates. Furthermore, the degree of methyl esterification, the homogalacturonan-to-rhamnogalacturonan ratio, and the molecular weight are the most influential structural factors on the gut microbiota. The latter particularly influences the growth of Bifidobacterium spp. The prebiotic potential of pectin targeting specific gut bacteria beneficial for human health and well-being still needs to be confirmed in humans, including the relationship between its structural features and activity.
Collapse
Affiliation(s)
- Nélida Pascale
- CP Kelco, Cumberland Center II, 3100 Cumberland Boulevard, Suite 600, Atlanta, GA 30339, USA
| | - Fangjie Gu
- CP Kelco, Cumberland Center II, 3100 Cumberland Boulevard, Suite 600, Atlanta, GA 30339, USA
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg, Denmark
| | - Nadja Larsen
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg, Denmark
| | - Lene Jespersen
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg, Denmark
| | | |
Collapse
|
28
|
Barros de Medeiros VP, Salgaço MK, Pimentel TC, Rodrigues da Silva TC, Sartoratto A, Lima MDS, Sassi CFDC, Mesa V, Magnani M, Sivieri K. Spirulina platensis biomass enhances the proliferation rate of Lactobacillus acidophilus 5 (La-5) and combined with La-5 impact the gut microbiota of medium-age healthy individuals through an in vitro gut microbiome model. Food Res Int 2022; 154:110880. [PMID: 35337549 DOI: 10.1016/j.foodres.2021.110880] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/03/2021] [Accepted: 12/04/2021] [Indexed: 11/16/2022]
Abstract
This study first evaluated the stimulatory effect of S. platensis biomass on the growth of L. acidophilus and the metabolic activity during fermentation (37 °C, 72 h) in a culture medium. The results demonstrated a higher impact of S. platensis biomass than fructooligosaccharide (FOS), an established prebiotic. Higher L. acidophilus proliferation rates and metabolic activity were observed (lower pH values and higher concentrations of acetic, lactic, and propionic acids) in the presence of S. platensis. Then, we evaluated the effects of the S. platensis biomass (1.5 g, twice a day, 5 days) in association with L. acidophilus (106 CFU/g) on the gut microbiota composition of medium-age healthy individuals through the Simulator of Human Intestinal Microbial Ecosystem (SHIME®) and measurement of metabolites. L. acidophilus (La5) and L. acidophilus + S. platensis (Spi-La5) could positively modulate the intestinal microbiota. The administration of La5 resulted in increases in Bacteroides, Megasphaera, Lactobacillus, and Parabacteroides genus abundance, with a consequent decrease in ammonium ions. The administration of Spi-La5 increased the abundance of the genus Erysipelatoclostridium, Roseburia, Enterococcus, Bifidobacterium, Coriobacteriaceae UCG-003, Enterobacter, and Paraclostridium. The results demonstrate that the intestinal microbiota was differently modified by administrating La5 and Spi-La5 and indicate the latter as an alternative for microbiota positive modulation in healthy individuals.
Collapse
Affiliation(s)
| | - Mateus Kawata Salgaço
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | | | | | - Adilson Sartoratto
- Pluridisciplinary Center for Chemical, Biological and Agricultural Research (CPQBA), UNICAMP, Brazil
| | - Marcos Dos Santos Lima
- Departament of Food Technology, Federal Institute of Sertão Pernambucano, Pernambuco, Brazil
| | | | - Victoria Mesa
- Food and Human Nutrition Research Group, University of Antioquia, Medellín, Colombia
| | - Marciane Magnani
- Department of Food Engineering, Center of Technology, Federal University of Paraíba, PB, Brazil.
| | - Katia Sivieri
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| |
Collapse
|
29
|
Reguengo LM, Salgaço MK, Sivieri K, Maróstica Júnior MR. Agro-industrial by-products: Valuable sources of bioactive compounds. Food Res Int 2022; 152:110871. [DOI: 10.1016/j.foodres.2021.110871] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 11/22/2021] [Accepted: 12/02/2021] [Indexed: 11/04/2022]
|
30
|
Kong C, de Jong A, de Haan BJ, Kok J, de Vos P. Human milk oligosaccharides and non-digestible carbohydrates reduce pathogen adhesion to intestinal epithelial cells by decoy effects or by attenuating bacterial virulence. Food Res Int 2022; 151:110867. [PMID: 34980402 DOI: 10.1016/j.foodres.2021.110867] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/14/2021] [Accepted: 12/02/2021] [Indexed: 12/18/2022]
Abstract
This work investigated the effects of different chemical structures of human milk oligosaccharides (hMOs) and non-digestible carbohydrates (NDCs) on pathogen adhesion by serving as decoy receptors. Pre-exposure of pathogens to inulins and low degree of methylation (DM) pectin prevented binding to gut epithelial Caco2-cells, but effects were dependent on the molecules' chemistry, pathogen strain and growth phase. Pre-exposure to 3-fucosyllactose increased E. coli WA321 adhesion (28%, p < 0.05), and DM69 pectin increased E. coli ET8 (15 fold, p < 0.05) and E. coli WA321 (50%, p < 0.05) adhesion. Transcriptomics analysis revealed that DM69 pectin upregulated flagella and cell membrane associated genes. However, the top 10 downregulated genes were associated with lowering of bacteria virulence. DM69 pectin increased pathogen adhesion but bacterial virulence was attenuated illustrating different mechanisms may lower pathogen adhesion. Our study illustrates that both hMOs and NDCs can reduce adhesion or attenuate virulence of pathogens but that these effects are chemistry dependent.
Collapse
Affiliation(s)
- Chunli Kong
- School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, 100048 Beijing, China; Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Hanzeplein 1, 9700 RB Groningen, the Netherlands.
| | - Anne de Jong
- Groningen Biomolecular Sciences and Biotechnology Institute, Department of Molecular Genetics, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands
| | - Bart J de Haan
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Hanzeplein 1, 9700 RB Groningen, the Netherlands
| | - Jan Kok
- Groningen Biomolecular Sciences and Biotechnology Institute, Department of Molecular Genetics, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands
| | - Paul de Vos
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Hanzeplein 1, 9700 RB Groningen, the Netherlands
| |
Collapse
|
31
|
Kong C, Akkerman R, Klostermann CE, Beukema M, Oerlemans MMP, Schols HA, de Vos P. Distinct fermentation of human milk oligosaccharides 3-FL and LNT2 and GOS/inulin by infant gut microbiota and impact on adhesion of Lactobacillus plantarum WCFS1 to gut epithelial cells. Food Funct 2021; 12:12513-12525. [PMID: 34811557 DOI: 10.1039/d1fo02563e] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Human milk oligosaccharides (hMOs) are unique bioactive components in human milk. 3-Fucosyllactose (3-FL) is an abundantly present hMO that can be produced in sufficient amounts to allow application in infant formula. Lacto-N-triaose II (LNT2) can be obtained by acid hydrolysis of lacto-N-neotetraose (LNnT). Both 3-FL and LNT2 have been shown to have health benefits, but their impact on infant microbiota composition and microbial metabolic products such as short-chain fatty acids (SCFAs) is unknown. To gain more insight in fermentability, we performed in vitro fermentation studies of 3-FL and LNT2 using pooled fecal microbiota from 12-week-old infants. The commonly investigated galacto-oligosaccharides (GOS)/inulin (9 : 1) served as control. Compared to GOS/inulin, we observed a delayed utilization of 3-FL, which was utilized at 60.3% after 36 h of fermentation, and induced the gradual production of acetic acid and lactic acid. 3-FL specifically enriched bacteria of Bacteroides and Enterococcus genus. LNT2 was fermented much faster. After 14 h of fermentation, 90.1% was already utilized, and production of acetic acid, succinic acid, lactic acid and butyric acid was observed. LNT2 specifically increased the abundance of Collinsella, as well as Bifidobacterium. The GOS present in the GOS/inulin mixture was completely fermented after 14 h, while for inulin, only low DP was rapidly utilized after 14 h. To determine whether the fermentation might lead to enhanced colonization of commensal bacteria to gut epithelial cells, we investigated adhesion of the commensal Lactobacillus plantarum WCFS1 to Caco-2 cells. The fermentation digesta of LNT2 collected after 14 h, 24 h, and 36 h, and GOS/inulin after 24 h of fermentation significantly increased the adhesion of L. plantarum WCFS1 to Caco-2 cells, while 3-FL had no such effect. Our findings illustrate that fermentation of hMOs is very structure-dependent and different from the commonly applied GOS/inulin, which might lead to differential potencies to stimulate adhesion of commensal cells to gut epithelium and consequent microbial colonization. This knowledge might contribute to the design of tailored infant formulas containing specific hMO molecules to meet the need of infants during the transition from breastfeeding to formula.
Collapse
Affiliation(s)
- Chunli Kong
- School of Food and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China. .,Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands
| | - Renate Akkerman
- Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands
| | - Cynthia E Klostermann
- Biobased Chemistry and Technology, Wageningen University & Research, Wageningen, The Netherlands
| | - Martin Beukema
- Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands
| | - Marjolein M P Oerlemans
- Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands
| | - Henk A Schols
- Laboratory of Food Chemistry, Wageningen University & Research, Wageningen, The Netherlands
| | - Paul de Vos
- Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands
| |
Collapse
|
32
|
Duque ALRF, Demarqui FM, Santoni MM, Zanelli CF, Adorno MAT, Milenkovic D, Mesa V, Sivieri K. Effect of probiotic, prebiotic, and synbiotic on the gut microbiota of autistic children using an in vitro gut microbiome model. Food Res Int 2021; 149:110657. [PMID: 34600659 DOI: 10.1016/j.foodres.2021.110657] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/11/2021] [Accepted: 08/17/2021] [Indexed: 12/29/2022]
Abstract
Imbalances in gut microbiota composition occur in individuals with autism spectrum disorder (ASD). The administration of probiotics, prebiotics, and synbiotics is emerging as a potential and promising strategy for regulating the gut microbiota and improving ASD-related symptoms. We first investigated the survival of the probiotics Limosilactobacillus (L.) reuteri and Bifidobacterium (B.) longum alone, mixed and combined with a galacto-oligosaccharide (GOS) under simulated gastrointestinal conditions. Next, we evaluated the impact of probiotics (L. reuteri + B. longum), prebiotic (GOS), and synbiotic (L. reuteri + B. longum + GOS) on gut microbiota composition and metabolism of children with ASD using an in vitro fermentation model (SHIME®). The combination of L. reuteri, B. longum, and GOS showed elevated gastrointestinal resistance. The probiotic, prebiotic, and synbiotic treatments resulted in a positive modulation of the gut microbiota and metabolic activity of children with ASD. More specifically, the probiotic treatment increased the relative abundance of Lactobacillus, while the prebiotic treatment increased the relative abundance of Bifidobacterium and decreased the relative abundance of Lachnoclostridium. Changes in microbial metabolism were associated with increased short-chain fatty acid concentrations and reduced ammonium levels, particularly in the prebiotic and synbiotic treatments.
Collapse
Affiliation(s)
- Ana Luiza Rocha Faria Duque
- Department of Food and Nutrition, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Fernanda Manaia Demarqui
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Mariana Marchi Santoni
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Cleslei Fernando Zanelli
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Maria Angela Tallarico Adorno
- Department of Hydraulics and Sanitation, School of Engineering of São Carlos, University of São Paulo (USP), São Carlos, Brazil
| | - Dragan Milenkovic
- Department of Internal Medicine, UC Davis School of Medicine, University of California, Davis, United States; INRAE, UNH, Université Clermont Auvergne, St Genes Champanelle, France
| | - Victoria Mesa
- Faculty of Pharmacy, Paris University, Paris, France; Food and Human Nutrition Research Group, University of Antioquia, Medellín, Colombia
| | - Katia Sivieri
- Department of Food and Nutrition, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil.
| |
Collapse
|
33
|
Therapeutic Potential of Various Plant-Based Fibers to Improve Energy Homeostasis via the Gut Microbiota. Nutrients 2021; 13:nu13103470. [PMID: 34684471 PMCID: PMC8537956 DOI: 10.3390/nu13103470] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 12/19/2022] Open
Abstract
Obesity is due in part to increased consumption of a Western diet that is low in dietary fiber. Conversely, an increase in fiber supplementation to a diet can have various beneficial effects on metabolic homeostasis including weight loss and reduced adiposity. Fibers are extremely diverse in source and composition, such as high-amylose maize, β-glucan, wheat fiber, pectin, inulin-type fructans, and soluble corn fiber. Despite the heterogeneity of dietary fiber, most have been shown to play a role in alleviating obesity-related health issues, mainly by targeting and utilizing the properties of the gut microbiome. Reductions in body weight, adiposity, food intake, and markers of inflammation have all been reported with the consumption of various fibers, making them a promising treatment option for the obesity epidemic. This review will highlight the current findings on different plant-based fibers as a therapeutic dietary supplement to improve energy homeostasis via mechanisms of gut microbiota.
Collapse
|
34
|
de Souza CB, Saad SMI, Venema K. Lean and obese microbiota: differences in in vitro fermentation of food-by-products. Benef Microbes 2021; 12:91-105. [PMID: 34323161 DOI: 10.3920/bm2020.0151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The aim of the study was to investigate the potential prebiotic effects of food-by-products (cassava bagasse (n=3), orange bagasse (n=2) and passion fruit peel (n=3)) using an in vitro model simulating the proximal colon, and to assess possible differences in fermentation when using faecal microbiota from lean or obese people. Fermentation of the by-products was compared to a control medium and the prebiotic inulin. The effects of the by-products on the dynamics of the gut microbiota differed according to the type of microbiota, as well as the type of by-product used. Principal Coordinate Analysis of the microbiota showed evidence of a clear separate clustering of lean and obese microbiota before the addition of substrates, which disappeared after fermentation, and instead, distinct clusters due to primary carbohydrate composition of the by-products (starch, fructan and pectin) were present. This is evidence that the substrates drove the obese microbiota to a healthier profile, more similar to that of the lean microbiota. Cassava bagasses enriched the beneficial genus Bifidobacterium in the obese microbiota. The production of total SCFA by cassava bagasses by the obese microbiota was higher than for control medium and inulin. Orange bagasses stimulated the growth of the butyrate-producing genus Coprococcus. Passion fruit peels were poorly fermented and generated negligible amounts of intermediate metabolites, indicating slow fermentation. Nevertheless, passion fruit peel fermentation resulted in a microbiota with the highest diversity and evenness, a positive trait regarding host health. In conclusion, the use of food-by-products could be an important step to tackle obesity and decrease the waste of valuable food material and consequently environmental pollution. They are an inexpensive and non-invasive way to be used as a dietary intervention to improve health, as they were shown here to drive the composition of the obese microbiota to a healthier profile.
Collapse
Affiliation(s)
- C Bussolo de Souza
- Maastricht University - campus Venlo, Centre for Healthy Eating & Food Innovation, Villafloraweg 1, 5928 SZ Venlo, the Netherlands
| | - S M I Saad
- University of São Paulo, School of Pharmaceutical Sciences, Dept. Biochemical and Pharmaceutical Technology, Av. Professor Lineu Prestes 580, 05508-000 São Paulo, Brazil
| | - K Venema
- Maastricht University - campus Venlo, Centre for Healthy Eating & Food Innovation, Villafloraweg 1, 5928 SZ Venlo, the Netherlands.,Beneficial Microbes Consultancy, Johan Karschstraat 3, 6709 TN Wageningen, the Netherlands
| |
Collapse
|
35
|
Nemchenko UM, Belkova NL, Pogodina AV, Romanitsa AI, Novikova EA, Klimenko ES, Grigorova EV, Kungurtseva EA, Butakova KO, Rychkova LV. Features of the Composition of Bifidoflora in the Intestinal Microbiome of Obese Adolescents. MOLECULAR GENETICS, MICROBIOLOGY AND VIROLOGY 2021; 36:144-151. [DOI: 10.3103/s0891416821030046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/19/2020] [Accepted: 05/29/2020] [Indexed: 07/26/2024]
|
36
|
In Vitro Fecal Fermentation Patterns of Arabinoxylan from Rice Bran on Fecal Microbiota from Normal-Weight and Overweight/Obese Subjects. Nutrients 2021; 13:nu13062052. [PMID: 34203983 PMCID: PMC8232586 DOI: 10.3390/nu13062052] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/01/2021] [Accepted: 06/10/2021] [Indexed: 01/01/2023] Open
Abstract
Arabinoxylan (AX) is a structural polysaccharide found in wheat, rice and other cereal grains. Diets high in AX-containing fiber may promote gut health in obesity through prebiotic function. Thus, the impact of soluble AX isolated from rice bran fiber on human gut microbiota phylogenetic composition and short-chain fatty acid (SCFA) production patterns from normal-weight and overweight/obese subjects was investigated through in vitro fecal fermentation. Results showed that rice bran arabinoxylan modified the microbiota in fecal samples from both weight classes compared to control, significantly increasing Collinsella, Blautia and Bifidobacterium, and decreasing Sutterella, Bilophila and Parabacteroides. Rice bran AX also significantly increased total and individual SCFA contents (p < 0.05). This study suggests that rice bran AX may beneficially impact gut health in obesity through prebiotic activities.
Collapse
|
37
|
Kong C, Faas MM, de Vos P, Akkerman R. Impact of dietary fibers in infant formulas on gut microbiota and the intestinal immune barrier. Food Funct 2021; 11:9445-9467. [PMID: 33150902 DOI: 10.1039/d0fo01700k] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Human milk (HM) is the gold standard for the nutrition of infants. An important component of HM is human milk oligosaccharides (hMOs), which play an important role in gut microbiota colonization and gut immune barrier establishment, and thereby contribute to the maturation of the immune system in early life. Guiding these processes is important as disturbances have life-long health effects and can lead to the development of allergic diseases. Unfortunately, not all infants can be exclusively fed with HM. These infants are routinely fed with infant formulas that contain hMO analogs and other non-digestible carbohydrates (NDCs) to mimic the effects of hMOs. Currently, the hMO analogs 2'-fucosyllactose (2'-FL), galacto-oligosaccharides (GOS), fructo-oligosaccharides (FOS), and pectins are added to infant formulas; however, these NDCs cannot mimic all hMO functions and therefore new NDCs and NDC mixtures need to become available for specific groups of neonates like preterm and disease-prone neonates. In this review, we discuss human data on the beneficial effects of infant formula supplements such as the specific hMO analog 2'-FL and NDCs as well as their mechanism of effects like stimulation of microbiota development, maturation of different parts of the gut immune barrier and anti-pathogenic effects. Insights into the structure-specific mechanisms by which hMOs and NDCs exert their beneficial functions might contribute to the development of new tailored NDCs and NDC mixtures. We also describe the needs for new in vitro systems that can be used for research on hMOs and NDCs. The current data suggest that "tailored infant formulas" for infants of different ages and healthy statuses are needed to ensure a healthy development of the microbiota and the gut immune system of infants.
Collapse
Affiliation(s)
- Chunli Kong
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands.
| | | | | | | |
Collapse
|
38
|
Salgaço MK, Perina NP, Tomé TM, Mosquera EMB, Lazarini T, Sartoratto A, Sivieri K. Probiotic infant cereal improves children's gut microbiota: Insights using the Simulator of Human Intestinal Microbial Ecosystem (SHIME®). Food Res Int 2021; 143:110292. [PMID: 33992391 DOI: 10.1016/j.foodres.2021.110292] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 02/27/2021] [Accepted: 02/27/2021] [Indexed: 02/08/2023]
Abstract
Infant́s gut microbiota can be modulated by many factors, including mode of delivery, feeding regime, maternal diet/weight and probiotic and prebiotic consumption. The gut microbiota in dysbiosis has been associated with innumerous diseases. In this sense, early childhood intestinal microbiome modulation can be a strategy for disease prevention. This study had the purpose to evaluate the effect of an infant cereal with probiotic (Bifidobacterium animalis ssp. lactis BB-12®) on infant́s intestinal microbiota using SHIME®, which simulates human gastrointestinal conditions. The ascending colon was inoculated with fecal microbiota from three children (2-3 years old). NH4+, short chain fatty acids (SCFASs) and microbiota composition were determined by selective ion electrode, GC/MS and 16S sequencing, respectively. After treatment, butyric acid production increased (p < 0.05) 52% and a decrease in NH4+ production was observed (p < 0.01). The treatment stimulated an increase (p < 0.01) of Lactobacillaceae families, more precisely L. gasseri and L. kefiri. L. gasseri has been associated with the prevention of allergic rhinitis in children and L. kefiri in the prevention of obesity. Thus, infant cereal with BB-12® is able to stimulate the growth of L. gasseri and L. kefiri in a beneficial way, reducing NH4+ and increasing the production of SCFAs, especially butyric acid, in SHIME®.
Collapse
Affiliation(s)
- Mateus Kawata Salgaço
- Department of Food and Nutrition, School of Pharmaceutical Science, São Paulo State University-UNESP, Araraquara, São Paulo, Brazil
| | - Natália Partis Perina
- Medical, Scientific and Regulatory Affairs - Nestlé Nutrition/Nestlé Brazil Ltda, São Paulo, Brazil
| | - Thaís Moreno Tomé
- Medical, Scientific and Regulatory Affairs - Nestlé Nutrition/Nestlé Brazil Ltda, São Paulo, Brazil
| | | | - Tamara Lazarini
- Medical, Scientific and Regulatory Affairs - Nestlé Nutrition/Nestlé Brazil Ltda, São Paulo, Brazil
| | | | - Katia Sivieri
- Department of Food and Nutrition, School of Pharmaceutical Science, São Paulo State University-UNESP, Araraquara, São Paulo, Brazil.
| |
Collapse
|
39
|
In-vitro study of Limosilactobacillus fermentum PCC adhesion to and integrity of the Caco-2 cell monolayers as affected by pectins. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
40
|
Pectin in diet: Interactions with the human microbiome, role in gut homeostasis, and nutrient-drug interactions. Carbohydr Polym 2021; 255:117388. [DOI: 10.1016/j.carbpol.2020.117388] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/05/2020] [Accepted: 11/05/2020] [Indexed: 12/18/2022]
|
41
|
Sánchez Macarro M, Ávila-Gandía V, Pérez-Piñero S, Cánovas F, García-Muñoz AM, Abellán-Ruiz MS, Victoria-Montesinos D, Luque-Rubia AJ, Climent E, Genovés S, Ramon D, Chenoll E, López-Román FJ. Antioxidant Effect of a Probiotic Product on a Model of Oxidative Stress Induced by High-Intensity and Duration Physical Exercise. Antioxidants (Basel) 2021; 10:323. [PMID: 33671691 PMCID: PMC7926771 DOI: 10.3390/antiox10020323] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 01/02/2023] Open
Abstract
This randomized double-blind and controlled single-center clinical trial was designed to evaluate the effect of a 6-week intake of a probiotic product (1 capsule/day) vs. a placebo on an oxidative stress model of physical exercise (high intensity and duration) in male cyclists (probiotic group, n = 22; placebo, n = 21). This probiotic included three lyophilized strains (Bifidobacterium longum CECT 7347, Lactobacillus casei CECT 9104, and Lactobacillus rhamnosus CECT 8361). Study variables were urinary isoprostane, serum malondialdehyde (MDA), serum oxidized low-density lipoprotein (Ox-LDL), urinary 8-hydroxy-2'-deoxiguanosine (8-OHdG), serum protein carbonyl, serum glutathione peroxidase (GPx), and serum superoxide dismutase (SOD). At 6 weeks, as compared with baseline, significant differences in 8-OHdG (Δ mean difference -10.9 (95% CI -14.5 to -7.3); p < 0.001), MDA (Δ mean difference -207.6 (95% CI -349.1 to -66.1; p < 0.05), and Ox-LDL (Δ mean difference -122.5 (95% CI -240 to -4.5); p < 0.05) were found in the probiotic group only. Serum GPx did not increase in the probiotic group, whereas the mean difference was significant in the placebo group (477.8 (95% CI 112.5 to 843.2); p < 0.05). These findings suggest an antioxidant effect of this probiotic on underlying interacting oxidative stress mechanisms and their modulation in healthy subjects. The study was registered in ClinicalTrials.gov (NCT03798821).
Collapse
Affiliation(s)
- Maravillas Sánchez Macarro
- Department of Exercise Physiology, San Antonio Catholic University of Murcia (UCAM), 30107 Murcia, Spain
| | - Vicente Ávila-Gandía
- Department of Exercise Physiology, San Antonio Catholic University of Murcia (UCAM), 30107 Murcia, Spain
| | - Silvia Pérez-Piñero
- Department of Exercise Physiology, San Antonio Catholic University of Murcia (UCAM), 30107 Murcia, Spain
| | - Fernando Cánovas
- Department of Exercise Physiology, San Antonio Catholic University of Murcia (UCAM), 30107 Murcia, Spain
| | - Ana María García-Muñoz
- Department of Exercise Physiology, San Antonio Catholic University of Murcia (UCAM), 30107 Murcia, Spain
| | - María Salud Abellán-Ruiz
- Department of Exercise Physiology, San Antonio Catholic University of Murcia (UCAM), 30107 Murcia, Spain
| | | | - Antonio J Luque-Rubia
- Department of Exercise Physiology, San Antonio Catholic University of Murcia (UCAM), 30107 Murcia, Spain
| | - Eric Climent
- Research and Development Department, ADM-Biopolis, ADM, Parc Cientific Universitat de Valencia, Paterna, 46980 Valencia, Spain
| | - Salvador Genovés
- Research and Development Department, ADM-Biopolis, ADM, Parc Cientific Universitat de Valencia, Paterna, 46980 Valencia, Spain
| | - Daniel Ramon
- Research and Development Department, ADM-Biopolis, ADM, Parc Cientific Universitat de Valencia, Paterna, 46980 Valencia, Spain
| | - Empar Chenoll
- Research and Development Department, ADM-Biopolis, ADM, Parc Cientific Universitat de Valencia, Paterna, 46980 Valencia, Spain
| | - Francisco Javier López-Román
- Department of Exercise Physiology, San Antonio Catholic University of Murcia (UCAM), 30107 Murcia, Spain
- Primary Care Research Group, Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain
| |
Collapse
|
42
|
Oddi S, Huber P, Rocha Faria Duque AL, Vinderola G, Sivieri K. Breast-milk derived potential probiotics as strategy for the management of childhood obesity. Food Res Int 2020; 137:109673. [PMID: 33233250 DOI: 10.1016/j.foodres.2020.109673] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/10/2020] [Accepted: 09/06/2020] [Indexed: 12/18/2022]
Abstract
Obesity and overweight, and their concomitant metabolic diseases, emerge as one of the most severe health problems in the world. Prevention and management of obesity are proposed to begin early in childhood, when probiotics may have a role. The Simulator of the Human Intestinal Microbial Ecosystem (SHIME®), in a dynamic validated in vitro system able to simulate the different parts of the gastrointestinal tract, has proven to be useful in analyzing the human intestinal microbial community. L. plantarum 73a and B. animalis subsp. lactis INL1, two strains isolated from breast milk, were assayed in the SHIME® using the fecal microbiota of an obese child. L. plantarum 73a alone or in combination with B. animalis subsp. lactis INL1 demonstrated survival capacity in the SHIME® system. The administration of both strains increased the alpha diversity of the microbiota and reduced the levels of the phylum Proteobacteria. In particular, the genera Escherichia, Shigella, and Clostridium_sensu_stricto_1 were significantly reduced when both strains were administered. The increase of Proteobacteria phylum is generally associated with the microbiota of obese people. Escherichia and Shigellacan be involved in inflammation-dependent adiposity and insulin resistance. L. plantarum73a supplementation reduced ammonia production. L. plantarum 73a alone or in combination with B. animalis subsp. lactis INL1 are potential probiotic candidates for the management of infant obesity.
Collapse
Affiliation(s)
- S Oddi
- Instituto de Lactología Industrial (INLAIN, UNL-CONICET), Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - P Huber
- Laboratorio de Plancton, Instituto Nacional de Limnología (INALI, UNL-CONICET), Universidad Nacional del Litoral, Santa Fe, Argentina
| | - A L Rocha Faria Duque
- Department of Food and Nutrition, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 9 SP 14800-903, Brazil
| | - G Vinderola
- Instituto de Lactología Industrial (INLAIN, UNL-CONICET), Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe, Argentina.
| | - K Sivieri
- Department of Food and Nutrition, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 9 SP 14800-903, Brazil
| |
Collapse
|
43
|
Probiotic low-fat fermented goat milk with passion fruit by-product: In vitro effect on obese individuals' microbiota and on metabolites production. Food Res Int 2020; 136:109453. [PMID: 32846548 DOI: 10.1016/j.foodres.2020.109453] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 06/12/2020] [Accepted: 06/14/2020] [Indexed: 12/19/2022]
Abstract
This study aimed to evaluate the impact of a two-week treatment period with probiotic low-fat fermented goat milk by Lactobacillus casei Lc-1, supplemented with passion fruit by-product (1%), on the modulation of gut microbiota from obese individuals using the Simulator of Human Intestinal Microbial Ecosystem (SHIME) system. The effects were carried out through the study of gut microbiota composition, using 16S rRNA next generation sequencing, quantification of short-chain fatty acids (SCFA) and ammonium ions. The microbiota composition changed across three vessels representing the colon regions, because of fermented milk treatment. Fermented goat milk administration caused a reduction of bacteria belonging to genera Prevotella, Megamonas and Succinivibrio, which can produce SCFA, and an increase of Lactobacillus and Bifidobacterium genera in all simulated colon regions. There was no effect on SCFA and on ammonium ions concentration during treatment period. Fermented milk shifted the obese donors' microbiota without changing metabolites production. It happens, possibly, due to a balance in abundances among bacterial genera that can produce or not SCFA, and among bacterial genera with high or low proteolytic activity. Our outcomes help to clarify the effects of the ingestion of a probiotic low-fat fermented goat milk product on colon microbiota composition.
Collapse
|
44
|
Oral administration of Flavonifractor plautii attenuates inflammatory responses in obese adipose tissue. Mol Biol Rep 2020; 47:6717-6725. [PMID: 32808115 DOI: 10.1007/s11033-020-05727-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 07/13/2020] [Indexed: 12/16/2022]
Abstract
Adipose tissue inflammation enhances the symptoms of metabolic syndrome. Flavonifractor plautii, a bacterium present in human feces, has been reported to participate in the metabolism of catechin in the gut. The precise function of F. plautii remains unclear. We assessed the immunoregulatory function of F. plautii both in vitro and in vivo. In vitro, we showed that both viable and heat-killed F. plautii attenuated TNF-α transcript accumulation in lipopolysaccharide-stimulated RAW 264.7 cells. For the in vivo experiment, male C57BL/6 were placed on a high-fat diet (HFD) for 11 weeks. During the final two weeks on the HFD, the animals were administered with F. plautii by once-daily oral gavage. The oral administration of F. plautii attenuated the increase in TNF-α transcription otherwise seen in the epididymal adipose tissue of HFD-fed obese mice (HFD + F. plautii). The composition of the microbial population (at the genus level) in the cecal contents of the HFD + F. plautii mice was altered considerably. In particular, the level of Sphingobium was decreased significantly, and that of Lachnospiraceae was increased significantly, in the HFD + F. plautii group. Obesity is closely associated with the development of inflammation in adipose tissue. F. plautii may be involved in inhibition of TNF-α expression in inflammatory environments. Our results demonstrated that F. plautii may be useful for alleviating the inflammatory responses of adipose tissue.
Collapse
|
45
|
Zhu K, Mao G, Wu D, Yu C, Cheng H, Xiao H, Ye X, Linhardt RJ, Orfila C, Chen S. Highly Branched RG-I Domain Enrichment Is Indispensable for Pectin Mitigating against High-Fat Diet-Induced Obesity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:8688-8701. [PMID: 32633953 DOI: 10.1021/acs.jafc.0c02654] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Obesity is associated with gut microbiome dysbiosis. Our previous research has shown that highly branched rhamnogalacturonan type I (RG-I)-enriched pectin (WRP, 531.5 kDa, 70.44% RG-I, Rha/(Gal + Ara) = 20) and its oligosaccharide with less branched RG-I [DWRP, 12.1 kDa, 50.29% RG-I, Rha/(Gal + Ara) = 6] are potential prebiotics. The present study is conducted to uncover the impact of the content, molecular size, and branch degrees of RG-I on the inhibiting effect of high-fat diet (HFD)-induced obesity. The commercial pectin (CP, 496.2 kDa, 35.77% RG-I, Rha/(Gal + Ara) = 6), WRP, and DWRP were orally administered to HFD-fed C57BL/6J mice (100 mg kg-1 d-1) to determine their individual effects on obesity. WRP significantly prevented bodyweight gain, insulin resistance, and inflammatory responses in HFD-fed mice. No obvious anti-obesity effect was observed in either CP or DWRP supplementation. A mechanistic study revealed that CP and DWRP could not enhance the diversity of gut microbiota, while WRP treatment positively modulated the gut microbiota of obese mice by increasing the abundance of Butyrivibrio, Roseburia, Barnesiella, Flavonifractor, Acetivibrio, and Clostridium cluster IV. Furthermore, WRP significantly promoted browning of white adipose tissues in HFD-fed mice, while CP and DWRP did not. WRP can attenuate the HFD-induced obesity by modulation of gut microbiota and lipid metabolism. Highly branched RG-I domain enrichment is essential for pectin mitigating against the HFD-induced obesity.
Collapse
Affiliation(s)
- Kai Zhu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
| | - Guizhu Mao
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
| | - Dongmei Wu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
| | - Chengxiao Yu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
| | - Huan Cheng
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
- Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Hang Xiao
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
- Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Robert J Linhardt
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Caroline Orfila
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, U.K
| | - Shiguo Chen
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
- Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| |
Collapse
|
46
|
Gutiérrez-Sarmiento W, Sáyago-Ayerdi SG, Goñi I, Gutiérrez-Miceli FA, Abud-Archila M, Rejón-Orantes JDC, Rincón-Rosales R, Peña-Ocaña BA, Ruíz-Valdiviezo VM. Changes in Intestinal Microbiota and Predicted Metabolic Pathways During Colonic Fermentation of Mango ( Mangifera indica L.)-Based Bar Indigestible Fraction. Nutrients 2020; 12:E683. [PMID: 32138281 PMCID: PMC7146491 DOI: 10.3390/nu12030683] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/25/2020] [Accepted: 02/28/2020] [Indexed: 12/12/2022] Open
Abstract
Mango (Mangifera indica L.) peel and pulp are a source of dietary fiber (DF) and phenolic compounds (PCs) that constituent part of the indigestible fraction (IF). This fraction reaches the colon and acts as a carbon and energy source for intestinal microbiota. The effect of mango IF on intestinal microbiota during colonic fermentation is unknown. In this study, the isolated IF of a novel 'Ataulfo' mango-based bar (snack) UV-C irradiated and non-irradiated (UVMangoB and MangoB) were fermented. Colonic fermentation occurred in vitro under chemical-enzymatic, semi-anaerobic, batch culture and controlled pH colonic conditions. Changes in the structure of fecal microbiota were analyzed by 16s rRNA gene Illumina MiSeq sequencing. The community´s functional capabilities were determined in silico. The MangoB and UVMangoB increased the presence of Faecalibacterium, Roseburia, Eubacterium, Fusicatenibacter, Holdemanella, Catenibacterium, Phascolarctobacterium, Buttiauxella, Bifidobacterium, Collinsella, Prevotella and Bacteroides genera. The alpha indexes showed a decrease in microbial diversity after 6 h of colonic fermentation. The coordinates analysis indicated any differences between irradiated and non-irradiated bar. The metabolic prediction demonstrated that MangoB and UVMangoB increase the microbiota carbohydrate metabolism pathway. This study suggests that IF of mango-based bar induced beneficial changes on microbial ecology and metabolic pathway that could be promissory to prevention or treatment of metabolic dysbiosis. However, in vivo interventions are necessary to confirm the interactions between microbiota modulating and intestinal beneficial effects.
Collapse
Affiliation(s)
- Wilbert Gutiérrez-Sarmiento
- Tecnológico Nacional de México/IT de Tuxtla Gutiérrez, Carretera Panamericana km. 1080, Tuxtla Gutiérrez CP 29050, Chiapas, Mexico
| | | | - Isabel Goñi
- Department Nutrition and Food Science, Faculty of Pharmacy, University Complutense of Madrid, 28040 Madrid, Spain
| | | | - Miguel Abud-Archila
- Tecnológico Nacional de México/IT de Tuxtla Gutiérrez, Carretera Panamericana km. 1080, Tuxtla Gutiérrez CP 29050, Chiapas, Mexico
| | - José del Carmen Rejón-Orantes
- Pharmacobiology Experimental Laboratory, Faculty of Human Medicine, Universidad Autónoma de Chiapas, Calle Central-Sur S/N, San Francisco, Tuxtla Gutiérrez 29090, Chiapas, Mexico
| | - Reiner Rincón-Rosales
- Tecnológico Nacional de México/IT de Tuxtla Gutiérrez, Carretera Panamericana km. 1080, Tuxtla Gutiérrez CP 29050, Chiapas, Mexico
| | - Betsy Anaid Peña-Ocaña
- Tecnológico Nacional de México/IT de Tuxtla Gutiérrez, Carretera Panamericana km. 1080, Tuxtla Gutiérrez CP 29050, Chiapas, Mexico
| | - Víctor Manuel Ruíz-Valdiviezo
- Tecnológico Nacional de México/IT de Tuxtla Gutiérrez, Carretera Panamericana km. 1080, Tuxtla Gutiérrez CP 29050, Chiapas, Mexico
| |
Collapse
|
47
|
Liu D, Huang J, Luo Y, Wen B, Wu W, Zeng H, Zhonghua L. Fuzhuan Brick Tea Attenuates High-Fat Diet-Induced Obesity and Associated Metabolic Disorders by Shaping Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:13589-13604. [PMID: 31735025 DOI: 10.1021/acs.jafc.9b05833] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
An increasing amount of evidence suggests that the metabolic improvement of high-fat diet (HFD)-induced obese mice by Fuzhuan brick tea (FBT) is associated with gut microbiota. However, the causalities between FBT and gut microbiota have not yet been elucidated and the underlying mechanisms of action remain unclear. To impart direct evidence for the essential role of gut microbiota in the attenuation of obesity by FBT, the effects of FBT on healthy mice and microbiota-depleted mice that were treated with antibiotics were compared in an HFD-induced obesity mouse model. The results showed that FBT dramatically ameliorated obesity, serum lipid parameters, blood glucose homeostasis, hepatic steatosis, adipocyte hypertrophy, and tissue inflammation. However, the microbiota-depleted mice with single bacterium (Escherichia-Shigella) after antibiotic treatment were resistant to FBT-induced antiobesity and metabolic improvement. The beneficial effects of FBT resulted from its shift on gut microbiota composition and structure in mice. HFD-induced increase in the phyla Firmicutes/Bacteroidetes (F/B) ratio was remarkably restored by FBT. Furthermore, FBT-induced increase in abundances of beneficial bacteria Clostridiaceae, Bacteroidales, and Lachnospiraceae and decreases in harmful Ruminococcaceae, Peptococcaceae, Peptostreptococcaceae, and Erysipelotrichaceae were causal antecedents for FBT to reduce obesity and improve metabolic disorders.
Collapse
Affiliation(s)
- Dongmin Liu
- Key Laboratory of Ministry of Education for Tea Science , Hunan Agricultural University , Changsha 410128 , China
- Changsha University of Science & Technology , Changsha 410114 , China
| | - Jianan Huang
- Key Laboratory of Ministry of Education for Tea Science , Hunan Agricultural University , Changsha 410128 , China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients , Changsha 410128 , China
| | - Yong Luo
- Key Laboratory of Ministry of Education for Tea Science , Hunan Agricultural University , Changsha 410128 , China
| | - Beibei Wen
- Key Laboratory of Ministry of Education for Tea Science , Hunan Agricultural University , Changsha 410128 , China
| | - Wenliang Wu
- Key Laboratory of Ministry of Education for Tea Science , Hunan Agricultural University , Changsha 410128 , China
- Tea Research Institute , Hunan Academy of Agricultural Sciences , Changsha 410125 , China
| | - Hongliang Zeng
- Research Institute of Chinese Medicine , Hunan Academy of Chinese Medicine , Changsha , Hunan 410013 , China
| | - Liu Zhonghua
- Key Laboratory of Ministry of Education for Tea Science , Hunan Agricultural University , Changsha 410128 , China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients , Changsha 410128 , China
| |
Collapse
|
48
|
Wu D, Zheng J, Mao G, Hu W, Ye X, Linhardt RJ, Chen S. Rethinking the impact of RG-I mainly from fruits and vegetables on dietary health. Crit Rev Food Sci Nutr 2019; 60:2938-2960. [PMID: 31607142 DOI: 10.1080/10408398.2019.1672037] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Rhamnogalacturonan I (RG-I) pectin is composed of backbone of repeating disaccharide units →2)-α-L-Rhap-(1→4)-α-D-GalpA-(1→ and neutral sugar side-chains mainly consisting of arabinose and galactose having variable types of linkages. However, since traditional pectin extraction methods damages the RG-I structure, the characteristics and health effects of RG-I remains unclear. Recently, many studies have focused on RG-I, which is often more active than the homogalacturonan (HG) portion of pectic polysaccharides. In food products, RG-I is common to fruits and vegetables and possesses many health benefits. This timely and comprehensive review describes the many different facets of RG-I, including its dietary sources, history, metabolism and potential functionalities, all of which have been compiled to establish a platform for taking full advantage of the functional value of RG-I pectin.
Collapse
Affiliation(s)
- Dongmei Wu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Jiaqi Zheng
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Guizhu Mao
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Weiwei Hu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Robert J Linhardt
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Shiguo Chen
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| |
Collapse
|
49
|
Lützhøft DO, Sánchez-Alcoholado L, Tougaard P, Junker Mentzel CM, Kot W, Nielsen DS, Hansen AK. Short communication: Gut microbial colonization of the mouse colon using faecal transfer was equally effective when comparing rectal inoculation and oral inoculation based on 16S rRNA sequencing. Res Vet Sci 2019; 126:227-232. [PMID: 31627163 DOI: 10.1016/j.rvsc.2019.09.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 09/05/2019] [Accepted: 09/16/2019] [Indexed: 02/07/2023]
Abstract
In the present study we hypothesized that a higher degree of gut microbiota (GM) transfer and colonization could be reached by rectal inoculation compared to oral inoculation, which is commonly used in mouse studies for GM transfer. We treated C57BL/6NTac Specific Pathogen Free (SPF) mice with antibiotics and subsequently we inoculated these with GM from donor mice of the same strain by either the oral or the rectal inoculation method. 16S rRNA gene sequencing of the colon microbiota showed no difference in microbial community on account of inoculation method as determined by unweighted UniFrac distance metrics in C57BL/6NTac SPF mice. In addition, qPCR analysis on colon tissue revealed no difference in mRNA expression between the inoculation methods. Next, the SPF mice were compared to germ-free (GF)-mice to identify differences in inoculation efficacy. Whether the mice were antibiotic treated SPF or GF clearly influenced GM determined by 16S rRNA gene sequencing where the SPF mice experienced up-regulation of S24-7 (p = .0001) and a decrease in Rikenellaceae (p = .016) compared to GF mice. qPCR analysis on colon tissue revealed up-regulation in mRNA gene expression of Il6, Il10, Reg3g and transcription factor RORγt (Rorc) in GF mice compared to SPF mice on a significant level (p < .05). This gene expression profile is consistent with post colonization development of the intestinal barrier in GF mice.
Collapse
Affiliation(s)
- Ditte Olsen Lützhøft
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark.
| | - Lidia Sánchez-Alcoholado
- Biomedical Research Institute of Malaga (IBIMA), Hospital Virgen de la Victoria, University of Malaga, Malaga, Spain; Center for biomedical research in the network of physiopathology of obesity and nutrition (CIBERobn), Madrid, Spain
| | - Peter Tougaard
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Caroline M Junker Mentzel
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Witold Kot
- Department of Environmental Sciences, University of Aarhus, 4000 Roskilde, Denmark
| | - Dennis S Nielsen
- Department of Food Science, Faculty of Science, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Axel Kornerup Hansen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark
| |
Collapse
|
50
|
Sugar Beet Pectin Supplementation Did Not Alter Profiles of Fecal Microbiota and Exhaled Breath in Healthy Young Adults and Healthy Elderly. Nutrients 2019; 11:nu11092193. [PMID: 31547291 PMCID: PMC6770243 DOI: 10.3390/nu11092193] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/03/2019] [Accepted: 09/07/2019] [Indexed: 12/22/2022] Open
Abstract
Aging is accompanied with increased frailty and comorbidities, which is potentially associated with microbiome perturbations. Dietary fibers could contribute to healthy aging by beneficially impacting gut microbiota and metabolite profiles. We aimed to compare young adults with elderly and investigate the effect of pectin supplementation on fecal microbiota composition, short chain fatty acids (SCFAs), and exhaled volatile organic compounds (VOCs) while using a randomized, double-blind, placebo-controlled parallel design. Fifty-two young adults and 48 elderly consumed 15 g/day sugar beet pectin or maltodextrin for four weeks. Fecal and exhaled breath samples were collected before and after the intervention period. Fecal samples were used for microbiota profiling by 16S rRNA gene amplicon sequencing, and for analysis of SCFAs by gas chromatography (GC). Breath was used for VOC analysis by GC-tof-MS. Young adults and elderly showed similar fecal SCFA and exhaled VOC profiles. Additionally, fecal microbiota profiles were similar, with five genera significantly different in relative abundance. Pectin supplementation did not significantly alter fecal microbiota, SCFA or exhaled VOC profiles in elderly or young adults. In conclusion, aside from some minor differences in microbial composition, healthy elderly and young adults showed comparable fecal microbiota composition and activity, which were not altered by pectin supplementation.
Collapse
|