1
|
Narreddy HR, Kondapalli RP, Venkateswarulu TC. Enhanced production of yellow fever virus through tailored culture media optimization. Prep Biochem Biotechnol 2025; 55:75-80. [PMID: 38921647 DOI: 10.1080/10826068.2024.2366990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
In the present study, an initial screening was conducted using 12 types of cell culture media, and four media with the best performance were selected for further study. The optimization of four media blend for YFV production was evaluated using an Augmented simplex centroid mixture design. Among all the different models that were investigated, the quadratic model was found to be the most appropriate model for exploring mixture design. It was found that M10 exhibited the greatest impact on YFV production, followed by M9, M4, and M1. The utilization of M1 and M4 media individually yielded higher compared to their blends with other media. The YFV titers were reduced when M1 media was combined with other media. The utilization of M9 and M10 media in combination resulted a higher viral yield compared to their respective concentrations. The optimal ratio for achieving a higher titer of YFV from primary CEFs was found to be approximately 38:62, with M9 and M10 being the most favorable media blend. The use of a media mixture led to a significant increase of virus titer up to 2.6 × 108 PFU/ml or 2 log titer yield, which is equivalent to 1.92 × 105 doses, without any changes to growth conditions or other process factors. This study concluded that the utilization of a mixture design could be efficiently employed to choose the optimal combination of media blends for enhanced viral production from cell culture.
Collapse
Affiliation(s)
- Hareesh Reddy Narreddy
- Department of Biotechnology, Vignan's Foundation for Science, Technology and Research, Guntur, Andhra Pradesh, India
| | | | - T C Venkateswarulu
- Department of Biotechnology, Vignan's Foundation for Science, Technology and Research, Guntur, Andhra Pradesh, India
| |
Collapse
|
2
|
Zinnecker T, Reichl U, Genzel Y. Innovations in cell culture-based influenza vaccine manufacturing - from static cultures to high cell density cultivations. Hum Vaccin Immunother 2024; 20:2373521. [PMID: 39007904 PMCID: PMC11253887 DOI: 10.1080/21645515.2024.2373521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/18/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Influenza remains a serious global health concern, causing significant morbidity and mortality each year. Vaccination is crucial to mitigate its impact, but requires rapid and efficient manufacturing strategies to handle timing and supply. Traditionally relying on egg-based production, the field has witnessed a paradigm shift toward cell culture-based methods offering enhanced flexibility, scalability, and process safety. This review provides a concise overview of available cell substrates and technological advancements. We summarize crucial steps toward process intensification - from roller bottle production to dynamic cultures on carriers and from suspension cultures in batch mode to high cell density perfusion using various cell retention devices. Moreover, we compare single-use and conventional systems and address challenges including defective interfering particles. Taken together, we describe the current state-of-the-art in cell culture-based influenza virus production to sustainably meet vaccine demands, guarantee a timely supply, and keep up with the challenges of seasonal epidemics and global pandemics.
Collapse
Affiliation(s)
- Tilia Zinnecker
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Udo Reichl
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
- Bioprocess Engineering, Otto-von-Guericke University, Magdeburg, Germany
| | - Yvonne Genzel
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| |
Collapse
|
3
|
Pelz L, Dogra T, Marichal-Gallardo P, Hein MD, Hemissi G, Kupke SY, Genzel Y, Reichl U. Production of antiviral "OP7 chimera" defective interfering particles free of infectious virus. Appl Microbiol Biotechnol 2024; 108:97. [PMID: 38229300 DOI: 10.1007/s00253-023-12959-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/26/2023] [Accepted: 11/05/2023] [Indexed: 01/18/2024]
Abstract
Defective interfering particles (DIPs) of influenza A virus (IAV) are suggested for use as broad-spectrum antivirals. We discovered a new type of IAV DIP named "OP7" that carries point mutations in its genome segment (Seg) 7 instead of a deletion as in conventional DIPs (cDIPs). Recently, using genetic engineering tools, we generated "OP7 chimera DIPs" that carry point mutations in Seg 7 plus a deletion in Seg 1. Together with cDIPs, OP7 chimera DIPs were produced in shake flasks in the absence of infectious standard virus (STV), rendering UV inactivation unnecessary. However, only part of the virions harvested were OP7 chimera DIPs (78.7%) and total virus titers were relatively low. Here, we describe the establishment of an OP7 chimera DIP production process applicable for large-scale production. To increase total virus titers, we reduced temperature from 37 to 32 °C during virus replication. Production of almost pure OP7 chimera DIP preparations (99.7%) was achieved with a high titer of 3.24 log10(HAU/100 µL). This corresponded to an 11-fold increase relative to the initial process. Next, this process was transferred to a stirred tank bioreactor resulting in comparable yields. Moreover, DIP harvests purified and concentrated by steric exclusion chromatography displayed an increased interfering efficacy in vitro. Finally, a perfusion process with perfusion rate control was established, resulting in a 79-fold increase in total virus yields compared to the original batch process in shake flasks. Again, a very high purity of OP7 chimera DIPs was obtained. This process could thus be an excellent starting point for good manufacturing practice production of DIPs for use as antivirals. KEY POINTS: • Scalable cell culture-based process for highly effective antiviral OP7 chimera DIPs • Production of almost pure OP7 chimera DIPs in the absence of infectious virus • Perfusion mode production and purification train results in very high titers.
Collapse
Affiliation(s)
- Lars Pelz
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Magdeburg, Germany
| | - Tanya Dogra
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Magdeburg, Germany
| | - Pavel Marichal-Gallardo
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Magdeburg, Germany
| | - Marc Dominique Hein
- Otto Von Guericke University Magdeburg, Bioprocess Engineering, Magdeburg, Germany
| | - Ghada Hemissi
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Magdeburg, Germany
| | - Sascha Young Kupke
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Magdeburg, Germany.
| | - Yvonne Genzel
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Magdeburg, Germany.
| | - Udo Reichl
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Magdeburg, Germany
- Otto Von Guericke University Magdeburg, Bioprocess Engineering, Magdeburg, Germany
| |
Collapse
|
4
|
Hengelbrock A, Probst F, Baukmann S, Uhl A, Tschorn N, Stitz J, Schmidt A, Strube J. Digital Twin for Continuous Production of Virus-like Particles toward Autonomous Operation. ACS OMEGA 2024; 9:34990-35013. [PMID: 39157157 PMCID: PMC11325504 DOI: 10.1021/acsomega.4c04985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/05/2024] [Accepted: 07/12/2024] [Indexed: 08/20/2024]
Abstract
Lentiviral vector and virus-like particle (VLP) manufacturing have been published in fed-batch upstream and batch downstream modes before. Batch downstream and continuous upstream in perfusion mode were reported as well. This study exemplifies development and validation steps for a digital twin combining a physical-chemical-based mechanistic model for all unit operations with a process analytical technology strategy in order to show the efforts and benefits of autonomous operation approaches for manufacturing scale. As the general models are available from various other biologic manufacturing studies, the main step is model calibration for the human embryo kidney cell-based VLPs with experimental quantitative validation within the Quality-by-Design (QbD) approach, including risk assessment to define design and control space. For continuous operation in perfusion mode, the main challenge is the efficient separation of large particle manifolds for VLPs and cells, including cell debris, which is of similar size. Here, innovative tangential flow filtration operations are needed to avoid fast blocking with low mechanical stress pumps. A twofold increase of productivity was achieved using simulation case studies. This increase is similar to improvements previously described for other entities like plasmid DNAs, monoclonal antibodies (mAbs), and single-chain fragments of variability (scFv) fragments. The advantages of applying a digital twin for an advanced process control strategy have proven additional productivity gains of 20% at 99.9% reliability.
Collapse
Affiliation(s)
- Alina Hengelbrock
- Institute
for Separation and Process Technology, Clausthal
University of Technology, Clausthal 38678, Zellerfeld, Germany
| | - Finja Probst
- Institute
for Separation and Process Technology, Clausthal
University of Technology, Clausthal 38678, Zellerfeld, Germany
| | - Simon Baukmann
- Institute
for Separation and Process Technology, Clausthal
University of Technology, Clausthal 38678, Zellerfeld, Germany
| | - Alexander Uhl
- Institute
for Separation and Process Technology, Clausthal
University of Technology, Clausthal 38678, Zellerfeld, Germany
| | - Natalie Tschorn
- Faculty
of Applied Natural Sciences, Technische
Hochschule Köln, Leverkusen 51379, Germany
| | - Jörn Stitz
- Faculty
of Applied Natural Sciences, Technische
Hochschule Köln, Leverkusen 51379, Germany
| | - Axel Schmidt
- Institute
for Separation and Process Technology, Clausthal
University of Technology, Clausthal 38678, Zellerfeld, Germany
| | - Jochen Strube
- Institute
for Separation and Process Technology, Clausthal
University of Technology, Clausthal 38678, Zellerfeld, Germany
| |
Collapse
|
5
|
Sanchez-Felipe L, Alpizar YA, Ma J, Coelmont L, Dallmeier K. YF17D-based vaccines - standing on the shoulders of a giant. Eur J Immunol 2024; 54:e2250133. [PMID: 38571392 DOI: 10.1002/eji.202250133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 02/11/2024] [Accepted: 02/16/2024] [Indexed: 04/05/2024]
Abstract
Live-attenuated yellow fever vaccine (YF17D) was developed in the 1930s as the first ever empirically derived human vaccine. Ninety years later, it is still a benchmark for vaccines made today. YF17D triggers a particularly broad and polyfunctional response engaging multiple arms of innate, humoral and cellular immunity. This unique immunogenicity translates into an extraordinary vaccine efficacy and outstanding longevity of protection, possibly by single-dose immunization. More recently, progress in molecular virology and synthetic biology allowed engineering of YF17D as a powerful vector and promising platform for the development of novel recombinant live vaccines, including two licensed vaccines against Japanese encephalitis and dengue, even in paediatric use. Likewise, numerous chimeric and transgenic preclinical candidates have been described. These include prophylactic vaccines against emerging viral infections (e.g. Lassa, Zika and SARS-CoV-2) and parasitic diseases (e.g. malaria), as well as therapeutic applications targeting persistent infections (e.g. HIV and chronic hepatitis), and cancer. Efforts to overcome historical safety concerns and manufacturing challenges are ongoing and pave the way for wider use of YF17D-based vaccines. In this review, we summarize recent insights regarding YF17D as vaccine platform, and how YF17D-based vaccines may complement as well as differentiate from other emerging modalities in response to unmet medical needs and for pandemic preparedness.
Collapse
Affiliation(s)
- Lorena Sanchez-Felipe
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Molecular Vaccinology and Vaccine Discovery, Leuven, Belgium
| | - Yeranddy A Alpizar
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Molecular Vaccinology and Vaccine Discovery, Leuven, Belgium
| | - Ji Ma
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Molecular Vaccinology and Vaccine Discovery, Leuven, Belgium
| | - Lotte Coelmont
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Molecular Vaccinology and Vaccine Discovery, Leuven, Belgium
| | - Kai Dallmeier
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Molecular Vaccinology and Vaccine Discovery, Leuven, Belgium
| |
Collapse
|
6
|
Göbel S, Pelz L, Silva CAT, Brühlmann B, Hill C, Altomonte J, Kamen A, Reichl U, Genzel Y. Production of recombinant vesicular stomatitis virus-based vectors by tangential flow depth filtration. Appl Microbiol Biotechnol 2024; 108:240. [PMID: 38413399 PMCID: PMC10899354 DOI: 10.1007/s00253-024-13078-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 02/29/2024]
Abstract
Cell culture-based production of vector-based vaccines and virotherapeutics is of increasing interest. The vectors used not only retain their ability to infect cells but also induce robust immune responses. Using two recombinant vesicular stomatitis virus (rVSV)-based constructs, we performed a proof-of-concept study regarding an integrated closed single-use perfusion system that allows continuous virus harvesting and clarification. Using suspension BHK-21 cells and a fusogenic oncolytic hybrid of vesicular stomatitis virus and Newcastle disease virus (rVSV-NDV), a modified alternating tangential flow device (mATF) or tangential flow depth filtration (TFDF) systems were used for cell retention. As the hollow fibers of the former are characterized by a large internal lumen (0.75 mm; pore size 0.65 μm), membrane blocking by the multi-nucleated syncytia formed during infection could be prevented. However, virus particles were completely retained. In contrast, the TFDF filter unit (lumen 3.15 mm, pore size 2-5 μm) allowed not only to achieve high viable cell concentrations (VCC, 16.4-20.6×106 cells/mL) but also continuous vector harvesting and clarification. Compared to an optimized batch process, 11-fold higher infectious virus titers were obtained in the clarified permeate (maximum 7.5×109 TCID50/mL). Using HEK293-SF cells and a rVSV vector expressing a green fluorescent protein, perfusion cultivations resulted in a maximum VCC of 11.3×106 cells/mL and infectious virus titers up to 7.1×1010 TCID50/mL in the permeate. Not only continuous harvesting but also clarification was possible. Although the cell-specific virus yield decreased relative to a batch process established as a control, an increased space-time yield was obtained. KEY POINTS: • Viral vector production using a TFDF perfusion system resulted in a 460% increase in space-time yield • Use of a TFDF system allowed continuous virus harvesting and clarification • TFDF perfusion system has great potential towards the establishment of an intensified vector production.
Collapse
Affiliation(s)
- Sven Göbel
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106, Magdeburg, Germany
| | - Lars Pelz
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106, Magdeburg, Germany
| | - Cristina A T Silva
- Department of Chemical Engineering, Polytechnique Montréal, Montréal, Québec, Canada
| | | | | | - Jennifer Altomonte
- Department of Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Amine Kamen
- Department of Bioengineering, McGill University, Montréal, Québec, Canada
| | - Udo Reichl
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106, Magdeburg, Germany
- Chair for Bioprocess Engineering, Otto von Guericke University Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany
| | - Yvonne Genzel
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106, Magdeburg, Germany.
| |
Collapse
|
7
|
Silva CAT, Kamen AA, Henry O. Intensified Influenza Virus Production in Suspension HEK293SF Cell Cultures Operated in Fed-Batch or Perfusion with Continuous Harvest. Vaccines (Basel) 2023; 11:1819. [PMID: 38140223 PMCID: PMC10747379 DOI: 10.3390/vaccines11121819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/24/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Major efforts in the intensification of cell culture-based viral vaccine manufacturing focus on the development of high-cell-density (HCD) processes, often operated in perfusion. While perfusion operations allow for higher viable cell densities and volumetric productivities, the high perfusion rates (PR) normally adopted-typically between 2 and 4 vessel volumes per day (VVD)-dramatically increase media consumption, resulting in a higher burden on the cell retention device and raising challenges for the handling and disposal of high volumes of media. In this study, we explore high inoculum fed-batch (HIFB) and low-PR perfusion operations to intensify a cell culture-based process for influenza virus production while minimizing media consumption. To reduce product retention time in the bioreactor, produced viral particles were continuously harvested using a tangential flow depth filtration (TFDF) system as a cell retention device and harvest unit. The feeding strategies developed-a hybrid fed-batch with continuous harvest and a low-PR perfusion-allowed for infections in the range of 8-10 × 106 cells/mL while maintaining cell-specific productivity comparable to the batch control, resulting in a global increase in the process productivity. Overall, our work demonstrates that feeding strategies that minimize media consumption are suitable for large-scale influenza vaccine production.
Collapse
Affiliation(s)
- Cristina A. T. Silva
- Department of Chemical Engineering, Polytechnique Montréal, Montreal, QC H3T 1J4, Canada
- Department of Bioengineering, McGill University, Montreal, QC H3A 0E9, Canada;
| | - Amine A. Kamen
- Department of Bioengineering, McGill University, Montreal, QC H3A 0E9, Canada;
| | - Olivier Henry
- Department of Chemical Engineering, Polytechnique Montréal, Montreal, QC H3T 1J4, Canada
| |
Collapse
|
8
|
Shi J, Shen A, Cheng Y, Zhang C, Yang X. 30-Year Development of Inactivated Virus Vaccine in China. Pharmaceutics 2023; 15:2721. [PMID: 38140062 PMCID: PMC10748258 DOI: 10.3390/pharmaceutics15122721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Inactivated vaccines are vaccines made from inactivated pathogens, typically achieved by using chemical or physical methods to destroy the virus's ability to replicate. This type of vaccine can induce the immune system to produce an immune response against specific pathogens, thus protecting the body from infection. In China, the manufacturing of inactivated vaccines has a long history and holds significant importance among all the vaccines available in the country. This type of vaccine is widely used in the prevention and control of infectious diseases. China is dedicated to conducting research on new inactivated vaccines, actively promoting the large-scale production of inactivated vaccines, and continuously improving production technology and quality management. These efforts enable China to meet the domestic demand for inactivated vaccines and gain a certain competitive advantage in the international market. In the future, China will continue to devote itself to the research and production of inactivated vaccines, further enhancing the population's health levels and contributing to social development. This study presents a comprehensive overview of the 30-year evolution of inactivated virus vaccines in China, serving as a reference for the development and production of such vaccines.
Collapse
Affiliation(s)
- Jinrong Shi
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China; (J.S.); (A.S.); (Y.C.)
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Ailin Shen
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China; (J.S.); (A.S.); (Y.C.)
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Yao Cheng
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China; (J.S.); (A.S.); (Y.C.)
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Chi Zhang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China; (J.S.); (A.S.); (Y.C.)
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Xiaoming Yang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China; (J.S.); (A.S.); (Y.C.)
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
- China National Biotech Group Company Limited, Beijing 100029, China
| |
Collapse
|
9
|
Göbel S, Jaén KE, Fernandes RP, Reiter M, Altomonte J, Reichl U, Genzel Y. Characterization of a quail suspension cell line for production of a fusogenic oncolytic virus. Biotechnol Bioeng 2023; 120:3335-3346. [PMID: 37584190 DOI: 10.1002/bit.28530] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/11/2023] [Accepted: 08/06/2023] [Indexed: 08/17/2023]
Abstract
The development of efficient processes for the production of oncolytic viruses (OV) plays a crucial role regarding the clinical success of virotherapy. Although many different OV platforms are currently under investigation, manufacturing of such viruses still mainly relies on static adherent cell cultures, which bear many challenges, particularly for fusogenic OVs. Availability of GMP-compliant continuous cell lines is limited, further complicating the development of commercially viable products. BHK21, AGE1. CR and HEK293 cells were previously identified as possible cell substrates for the recombinant vesicular stomatitis virus (rVSV)-based fusogenic OV, rVSV-NDV. Now, another promising cell substrate was identified, the CCX.E10 cell line, developed by Nuvonis Technologies. This suspension cell line is considered non-GMO as no foreign genes or viral sequences were used for its development. The CCX.E10 cells were thus thoroughly investigated as a potential candidate for OV production. Cell growth in the chemically defined medium in suspension resulted in concentrations up to 8.9 × 106 cells/mL with a doubling time of 26.6 h in batch mode. Cultivation and production of rVSV-NDV, was demonstrated successfully for various cultivation systems (ambr15, shake flask, stirred tank reactor, and orbitally shaken bioreactor) at vessel scales ranging from 15 mL to 10 L. High infectious virus titers of up to 4.2 × 108 TCID50 /mL were reached in orbitally shaken bioreactors and stirred tank reactors in batch mode, respectively. Our results suggest that CCX.E10 cells are a very promising option for industrial production of OVs, particularly for fusogenic VSV-based constructs.
Collapse
Affiliation(s)
- Sven Göbel
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Karim E Jaén
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
- Department of Internal Medicine II, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Rita P Fernandes
- Instituto de Biologia Experimental e Tecnológica (iBET), Oeiras, Portugal
| | | | - Jennifer Altomonte
- Department of Internal Medicine II, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Udo Reichl
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
- Chair for Bioprocess Engineering, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Yvonne Genzel
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| |
Collapse
|
10
|
Hein MD, Kazenmaier D, van Heuvel Y, Dogra T, Cattaneo M, Kupke SY, Stitz J, Genzel Y, Reichl U. Production of retroviral vectors in continuous high cell density culture. Appl Microbiol Biotechnol 2023; 107:5947-5961. [PMID: 37542575 PMCID: PMC10485120 DOI: 10.1007/s00253-023-12689-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 08/07/2023]
Abstract
Retroviral vectors derived from murine leukemia virus (MLV) are used in somatic gene therapy applications e.g. for genetic modification of hematopoietic stem cells. Recently, we reported on the establishment of a suspension viral packaging cell line (VPC) for the production of MLV vectors. Human embryonic kidney 293-F (HEK293-F) cells were genetically modified for this purpose using transposon vector technology. Here, we demonstrate the establishment of a continuous high cell density (HCD) process using this cell line. First, we compared different media regarding the maximum achievable viable cell concentration (VCC) in small scale. Next, we transferred this process to a stirred tank bioreactor before we applied intensification strategies. Specifically, we established a perfusion process using an alternating tangential flow filtration system. Here, VCCs up to 27.4E + 06 cells/mL and MLV vector titers up to 8.6E + 06 transducing units/mL were achieved. Finally, we established a continuous HCD process using a tubular membrane for cell retention and continuous viral vector harvesting. Here, the space-time yield was 18-fold higher compared to the respective batch cultivations. Overall, our results clearly demonstrate the feasibility of HCD cultivations for high yield production of viral vectors, especially when combined with continuous viral vector harvesting. KEY POINTS: • A continuous high cell density process for MLV vector production was established • The tubular cell retention membrane allowed for continuous vector harvesting • The established process had a 18-fold higher space time yield compared to a batch.
Collapse
Affiliation(s)
- Marc D Hein
- Chair of Bioprocess Engineering, Otto-Von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Daniel Kazenmaier
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
- Faculty of Biotechnology, University of Applied Sciences Mannheim, Mannheim, Germany
| | - Yasemin van Heuvel
- Faculty of Applied Natural Sciences, University of Applied Sciences Cologne, Leverkusen, Germany
- Institute of Technical Chemistry, Leibniz University Hannover, Hannover, Germany
| | - Tanya Dogra
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | | | - Sascha Y Kupke
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Jörn Stitz
- Faculty of Applied Natural Sciences, University of Applied Sciences Cologne, Leverkusen, Germany
| | - Yvonne Genzel
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany.
| | - Udo Reichl
- Chair of Bioprocess Engineering, Otto-Von-Guericke-University Magdeburg, Magdeburg, Germany
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| |
Collapse
|
11
|
da Costa HHM, Bielavsky M, Orts DJB, Araujo S, Adriani PP, Nogueira JS, Astray RM, Pandey RP, Lancellotti M, Cunha-Junior JP, Prudencio CR. Production of Recombinant Zika Virus Envelope Protein by Airlift Bioreactor as a New Subunit Vaccine Platform. Int J Mol Sci 2023; 24:13955. [PMID: 37762254 PMCID: PMC10531330 DOI: 10.3390/ijms241813955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/23/2023] [Accepted: 04/04/2023] [Indexed: 09/29/2023] Open
Abstract
The Zika Virus (ZIKV) is an emerging arbovirus of great public health concern, particularly in the Americas after its last outbreak in 2015. There are still major challenges regarding disease control, and there is no ZIKV vaccine currently approved for human use. Among many different vaccine platforms currently under study, the recombinant envelope protein from Zika Virus (rEZIKV) constitutes an alternative option for vaccine development and has great potential for monitoring ZIKV infection and antibody response. This study describes a method to obtain a bioactive and functional rEZIKV using an E. coli expression system, with the aid of a 5-L airlift bioreactor and following an automated fast protein liquid chromatography (FPLC) protocol, capable of obtaining high yields of approximately 20 mg of recombinant protein per liter of bacterium cultures. The purified rEZIKV presented preserved antigenicity and immunogenicity. Our results show that the use of an airlift bioreactor for the production of rEZIKV is ideal for establishing protocols and further research on ZIKV vaccines bioprocess, representing a promising system for the production of a ZIKV envelope recombinant protein-based vaccine candidate.
Collapse
Affiliation(s)
- Hernan H. M. da Costa
- Immunology Center, Adolfo Lutz Institute, São Paulo 01246-902, Brazil
- Interunits Graduate Program in Biotechnology, University of São Paulo, São Paulo 05508-000, Brazil
| | - Monica Bielavsky
- Immunology Center, Adolfo Lutz Institute, São Paulo 01246-902, Brazil
| | - Diego J. B. Orts
- Immunology Center, Adolfo Lutz Institute, São Paulo 01246-902, Brazil
- Laboratory of Cardiobiology, Department of Biophysics, Paulista School of Medicine, Federal University of Sao Paulo, São Paulo 04023-062, Brazil
| | - Sergio Araujo
- Immunology Center, Adolfo Lutz Institute, São Paulo 01246-902, Brazil
| | - Patrícia P. Adriani
- Skinzymes Biotechnology Ltd., São Paulo 05441-040, Brazil
- Laboratory of Nanopharmaceuticals and Delivery Systems, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | | | - Renato M. Astray
- Interunits Graduate Program in Biotechnology, University of São Paulo, São Paulo 05508-000, Brazil
- Multi-Purpose Laboratory Butantan Institute, São Paulo 05503-900, Brazil
| | - Ramendra P. Pandey
- School of Health Sciences and Technology, UPES University, Dehradun 248007, Uttarakhand, India
| | - Marcelo Lancellotti
- Faculty of Pharmaceutical Sciences—FCF, University of Campinas—UNICAMP, Campinas 13083-871, Brazil
| | - Jair P. Cunha-Junior
- Laboratory of Immunochemistry and Immunotechnology, Department of Immunology, Federal University of Uberlândia, Uberlândia 38405-317, Brazil
| | - Carlos R. Prudencio
- Immunology Center, Adolfo Lutz Institute, São Paulo 01246-902, Brazil
- Interunits Graduate Program in Biotechnology, University of São Paulo, São Paulo 05508-000, Brazil
| |
Collapse
|
12
|
Göbel S, Jaén KE, Dorn M, Neumeyer V, Jordan I, Sandig V, Reichl U, Altomonte J, Genzel Y. Process intensification strategies toward cell culture-based high-yield production of a fusogenic oncolytic virus. Biotechnol Bioeng 2023; 120:2639-2657. [PMID: 36779302 DOI: 10.1002/bit.28353] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/31/2023] [Accepted: 02/09/2023] [Indexed: 02/14/2023]
Abstract
We present a proof-of-concept study for production of a recombinant vesicular stomatitis virus (rVSV)-based fusogenic oncolytic virus (OV), rVSV-Newcastle disease virus (NDV), at high cell densities (HCD). Based on comprehensive experiments in 1 L stirred tank reactors (STRs) in batch mode, first optimization studies at HCD were carried out in semi-perfusion in small-scale cultivations using shake flasks. Further, a perfusion process was established using an acoustic settler for cell retention. Growth, production yields, and process-related impurities were evaluated for three candidate cell lines (AGE1.CR, BHK-21, HEK293SF)infected at densities ranging from 15 to 30 × 106 cells/mL. The acoustic settler allowed continuous harvesting of rVSV-NDV with high cell retention efficiencies (above 97%) and infectious virus titers (up to 2.4 × 109 TCID50 /mL), more than 4-100 times higher than for optimized batch processes. No decrease in cell-specific virus yield (CSVY) was observed at HCD, regardless of the cell substrate. Taking into account the accumulated number of virions both from the harvest and bioreactor, a 15-30 fold increased volumetric virus productivity for AGE1.CR and HEK293SF was obtained compared to batch processes performed at the same scale. In contrast to all previous findings, formation of syncytia was observed at HCD for the suspension cells BHK 21 and HEK293SF. Oncolytic potency was not affected compared to production in batch mode. Overall, our study describes promising options for the establishment of perfusion processes for efficient large-scale manufacturing of fusogenic rVSV-NDV at HCD for all three candidate cell lines.
Collapse
Affiliation(s)
- Sven Göbel
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Karim E Jaén
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
- Department of Internal Medicine II, Klinikum Rechts der Isar, Technische Universität München, Munchen, Germany
| | - Marie Dorn
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
- Faculty of Process and Systems Engineering, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Victoria Neumeyer
- Department of Internal Medicine II, Klinikum Rechts der Isar, Technische Universität München, Munchen, Germany
| | | | | | - Udo Reichl
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
- Chair for Bioprocess Engineering, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Jennifer Altomonte
- Department of Internal Medicine II, Klinikum Rechts der Isar, Technische Universität München, Munchen, Germany
| | - Yvonne Genzel
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| |
Collapse
|
13
|
Tingaud V, Bordes C, Al Mouazen E, Cogné C, Bolzinger MA, Lawton P. Experimental studies from shake flasks to 3 L stirred tank bioreactor of nutrients and oxygen supply conditions to improve the growth of the avian cell line DuckCelt®-T17. J Biol Eng 2023; 17:31. [PMID: 37095522 PMCID: PMC10127095 DOI: 10.1186/s13036-023-00349-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/04/2023] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND To produce viral vaccines, avian cell lines are interesting alternatives to replace the egg-derived processes for viruses that do not grow well on mammalian cells. The avian suspension cell line DuckCelt®-T17 was previously studied and investigated to produce a live attenuated metapneumovirus (hMPV)/respiratory syncytial virus (RSV) and influenza virus vaccines. However, a better understanding of its culture process is necessary for an efficient production of viral particles in bioreactors. RESULTS The growth and metabolic requirements of the avian cell line DuckCelt®-T17 were investigated to improve its cultivation parameters. Several nutrient supplementation strategies were studied in shake flasks highlighting the interest of (i) replacing L-glutamine by glutamax as main nutrient or (ii) adding these two nutrients in the serum-free growth medium in a fed-batch strategy. The scale-up in a 3 L bioreactor was successful for these types of strategies confirming their efficiencies in improving the cells' growth and viability. Moreover, a perfusion feasibility test allowed to achieve up to ~ 3 times the maximum number of viable cells obtained with the batch or fed-batch strategies. Finally, a strong oxygen supply - 50% dO2 - had a deleterious effect on DuckCelt®-T17 viability, certainly because of the greater hydrodynamic stress imposed. CONCLUSIONS The culture process using glutamax supplementation with a batch or a fed-batch strategy was successfully scaled-up to 3 L bioreactor. In addition, perfusion appeared as a very promising culture process for subsequent continuous virus harvesting.
Collapse
Affiliation(s)
- Valentine Tingaud
- LAGEPP, Laboratoire d'Automatique, de Génie des Procédés et de Génie Pharmaceutique, GePharm Team, Université Claude Bernard Lyon 1, CNRS UMR5007, 43 Boulevard du 11 Novembre 1918, Villeurbanne CEDEX, 69622, France
| | - Claire Bordes
- LAGEPP, Laboratoire d'Automatique, de Génie des Procédés et de Génie Pharmaceutique, GePharm Team, Université Claude Bernard Lyon 1, CNRS UMR5007, 43 Boulevard du 11 Novembre 1918, Villeurbanne CEDEX, 69622, France
| | - Eyad Al Mouazen
- LAGEPP, Laboratoire d'Automatique, de Génie des Procédés et de Génie Pharmaceutique, GePharm Team, Université Claude Bernard Lyon 1, CNRS UMR5007, 43 Boulevard du 11 Novembre 1918, Villeurbanne CEDEX, 69622, France
| | - Claudia Cogné
- LAGEPP, Laboratoire d'Automatique, de Génie des Procédés et de Génie Pharmaceutique, GePharm Team, Université Claude Bernard Lyon 1, CNRS UMR5007, 43 Boulevard du 11 Novembre 1918, Villeurbanne CEDEX, 69622, France
| | - Marie-Alexandrine Bolzinger
- LAGEPP, Laboratoire d'Automatique, de Génie des Procédés et de Génie Pharmaceutique, GePharm Team, Université Claude Bernard Lyon 1, CNRS UMR5007, 43 Boulevard du 11 Novembre 1918, Villeurbanne CEDEX, 69622, France
| | - Philippe Lawton
- LAGEPP, Laboratoire d'Automatique, de Génie des Procédés et de Génie Pharmaceutique, GePharm Team, Université Claude Bernard Lyon 1, CNRS UMR5007, 43 Boulevard du 11 Novembre 1918, Villeurbanne CEDEX, 69622, France.
- Laboratoire d'Automatique, de Génie des Procédés et de Génie Pharmaceutique, Université Claude Bernard Lyon 1, ISPB, 8 avenue Rockefeller, Lyon, 69373, CEDEX 08, France.
| |
Collapse
|
14
|
Montalvo Zurbia-Flores G, Rollier CS, Reyes-Sandoval A. Re-thinking yellow fever vaccines: fighting old foes with new generation vaccines. Hum Vaccin Immunother 2022; 18:1895644. [PMID: 33974507 PMCID: PMC8920179 DOI: 10.1080/21645515.2021.1895644] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 02/07/2021] [Accepted: 02/21/2021] [Indexed: 11/16/2022] Open
Abstract
Despite the existence of a highly efficient yellow fever vaccine, yellow fever reemergence throughout Africa and the Americas has put 900 million people in 47 countries at risk of contracting the disease. Although the vaccine has been key to controlling yellow fever epidemics, its live-attenuated nature comes with a range of contraindications that prompts advising against its administration to pregnant and lactating women, immunocompromised individuals, and those with hypersensitivity to chicken egg proteins. Additionally, large outbreaks have highlighted problems with insufficient vaccine supply, whereby manufacturers rely on slow traditional manufacturing processes that prevent them from ramping up production. These limitations have contributed to an inadequate control of yellow fever and have favored the pursuit of novel yellow fever vaccine candidates that aim to circumvent the licensed vaccine's restrictions. Here, we review the live-attenuated vaccine's limitations and explore the epitome of a yellow fever vaccine, whilst scrutinizing next-generation vaccine candidates.
Collapse
Affiliation(s)
- Gerardo Montalvo Zurbia-Flores
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford. The Henry Wellcome Building for Molecular Physiology, Oxford, UK
| | - Christine S Rollier
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Arturo Reyes-Sandoval
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford. The Henry Wellcome Building for Molecular Physiology, Oxford, UK
- Instituto Politécnico Nacional, IPN. Av. Luis Enrique Erro S/n. Unidad Adolfo López Mateos. CP, Mexico City, Mexico
| |
Collapse
|
15
|
Bergin A, Carvell J, Butler M. Applications of bio-capacitance to cell culture manufacturing. Biotechnol Adv 2022; 61:108048. [DOI: 10.1016/j.biotechadv.2022.108048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/05/2022] [Accepted: 09/30/2022] [Indexed: 11/16/2022]
|
16
|
Fang Z, Lyu J, Li J, Li C, Zhang Y, Guo Y, Wang Y, Zhang Y, Chen K. Application of bioreactor technology for cell culture-based viral vaccine production: Present status and future prospects. Front Bioeng Biotechnol 2022; 10:921755. [PMID: 36017347 PMCID: PMC9395942 DOI: 10.3389/fbioe.2022.921755] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 07/06/2022] [Indexed: 11/24/2022] Open
Abstract
Bioreactors are widely used in cell culture-based viral vaccine production, especially during the coronavirus disease 2019 (COVID-19) pandemic. In this context, the development and application of bioreactors can provide more efficient and cost-effective vaccine production to meet the global vaccine demand. The production of viral vaccines is inseparable from the development of upstream biological processes. In particular, exploration at the laboratory-scale is urgently required for further development. Therefore, it is necessary to evaluate the existing upstream biological processes, to enable the selection of pilot-scale conditions for academic and industrial scientists to maximize the yield and quality of vaccine development and production. Reviewing methods for optimizing the upstream process of virus vaccine production, this review discusses the bioreactor concepts, significant parameters and operational strategies related to large-scale amplification of virus. On this basis, a comprehensive analysis and evaluation of the various process optimization methods for the production of various viruses (SARS-CoV-2, Influenza virus, Tropical virus, Enterovirus, Rabies virus) in bioreactors is presented. Meanwhile, the types of viral vaccines are briefly introduced, and the established animal cell lines for vaccine production are described. In addition, it is emphasized that the co-development of bioreactor and computational biology is urgently needed to meet the challenges posed by the differences in upstream production scales between the laboratory and industry.
Collapse
Affiliation(s)
- Zhongbiao Fang
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Jingting Lyu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Jianhua Li
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Chaonan Li
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Yuxuan Zhang
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Yikai Guo
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Ying Wang
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
- *Correspondence: Ying Wang, ; Yanjun Zhang, ; Keda Chen,
| | - Yanjun Zhang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
- *Correspondence: Ying Wang, ; Yanjun Zhang, ; Keda Chen,
| | - Keda Chen
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
- *Correspondence: Ying Wang, ; Yanjun Zhang, ; Keda Chen,
| |
Collapse
|
17
|
Escandell JM, Pais DA, Carvalho SB, Vincent K, Gomes-Alves P, Alves PM. Leveraging rAAV bioprocess understanding and next generation bioanalytics development. Curr Opin Biotechnol 2022; 74:271-277. [PMID: 35007989 DOI: 10.1016/j.copbio.2021.12.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/10/2021] [Accepted: 12/19/2021] [Indexed: 12/18/2022]
Abstract
Recombinant adeno-associated (rAAV) vector-based gene therapy has been the focus of intense research driven by the safety profile and several recent clinical breakthroughs. As of April 2021, there are two rAAV-based gene therapies approved and more than two-hundred active clinical trials (approximately thirty in Phase III). However, the expected increase in demand for rAAV vectors still poses several challenges. Discussed herein are key aspects related to R&D needs and Chemistry, Manufacturing and Control (CMC) efforts required to attend this growing demand. Authors provide their perspective on strategic topics for rAAV-based therapies success: scalability and productivity; improved safety; increased process understanding combined with development of orthogonal bioanalytics that are able to identify, monitor and control Critical Quality Attributes (CQAs) during bioprocessing.
Collapse
Affiliation(s)
- Jose M Escandell
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras, 2780-901, Portugal; ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. Da República, Oeiras, 2780-157, Portugal
| | - Daniel Am Pais
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras, 2780-901, Portugal; ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. Da República, Oeiras, 2780-157, Portugal
| | - Sofia B Carvalho
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras, 2780-901, Portugal; ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. Da República, Oeiras, 2780-157, Portugal
| | - Karen Vincent
- SANOFI, 49 New York Avenue, Framingham, MA 01701, USA
| | - Patrícia Gomes-Alves
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras, 2780-901, Portugal; ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. Da República, Oeiras, 2780-157, Portugal
| | - Paula M Alves
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras, 2780-901, Portugal; ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. Da República, Oeiras, 2780-157, Portugal.
| |
Collapse
|
18
|
Influenza Vaccine: An Engineering Vision from Virological Importance to Production. BIOTECHNOL BIOPROC E 2022; 27:714-738. [PMID: 36313971 PMCID: PMC9589582 DOI: 10.1007/s12257-022-0115-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/06/2022] [Accepted: 06/12/2022] [Indexed: 01/26/2023]
Abstract
According to data from the World Health Organization (WHO) every year, millions of people are affected by flu. Flu is a disease caused by influenza viruses. For preventing this, seasonal influenza vaccinations are widely considered the most efficient way to protect against the negative effects of the flu. To date, there is no "one-size-fits-all" vaccine that can be effective all over the world to protect against all seasonal or pandemic influenza virus types. Because influenza virus transforms its genetic structure and it can emerges as immunogenically new (antigenic drift) which causes epidemics or new virus subtype (antigenic shift) which causes pandemics. As a result, annual revaccination or new subtype viral vaccine development is required. Currently, three types of vaccines (inactivated, live attenuated, and recombinant) are approved in different countries. These can be named "conventional influenza vaccines" and their production are based on eggs or cell culture. Although, there is good effort to develop new influenza vaccines for broader and longer period of time protection. In this sense these candidate vaccines are called "universal influenza vaccines". In this article, after we mentioned the short history of flu then virus morphology and infection, we explained the diseases caused by the influenza virus in humans. Afterward, we explained in detail the production methods of available influenza vaccines, types of bioreactors used in cell culture based production, conventional and new vaccine types, and development strategies for better vaccines.
Collapse
|
19
|
Cell culture-based production of defective interfering influenza A virus particles in perfusion mode using an alternating tangential flow filtration system. Appl Microbiol Biotechnol 2021; 105:7251-7264. [PMID: 34519855 PMCID: PMC8437742 DOI: 10.1007/s00253-021-11561-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 10/27/2022]
Abstract
Respiratory diseases including influenza A virus (IAV) infections represent a major threat to human health. While the development of a vaccine requires a lot of time, a fast countermeasure could be the use of defective interfering particles (DIPs) for antiviral therapy. IAV DIPs are usually characterized by a large internal deletion in one viral RNA segment. Consequentially, DIPs can only propagate in presence of infectious standard viruses (STVs), compensating the missing gene function. Here, they interfere with and suppress the STV replication and might act "universally" against many IAV subtypes. We recently reported a production system for purely clonal DIPs utilizing genetically modified cells. In the present study, we established an automated perfusion process for production of a DIP, called DI244, using an alternating tangential flow filtration (ATF) system for cell retention. Viable cell concentrations and DIP titers more than 10 times higher than for a previously reported batch cultivation were observed. Furthermore, we investigated a novel tubular cell retention device for its potential for continuous virus harvesting into the permeate. Very comparable performances to typically used hollow fiber membranes were found during the cell growth phase. During the virus replication phase, the tubular membrane, in contrast to the hollow fiber membrane, allowed 100% of the produced virus particles to pass through. To our knowledge, this is the first time a continuous virus harvest was shown for a membrane-based perfusion process. Overall, the process established offers interesting possibilities for advanced process integration strategies for next-generation virus particle and virus vector manufacturing.Key points• An automated perfusion process for production of IAV DIPs was established.• DIP titers of 7.40E + 9 plaque forming units per mL were reached.• A novel tubular cell retention device enabled continuous virus harvesting.
Collapse
|
20
|
Gränicher G, Babakhani M, Göbel S, Jordan I, Marichal-Gallardo P, Genzel Y, Reichl U. A high cell density perfusion process for Modified Vaccinia virus Ankara production: Process integration with inline DNA digestion and cost analysis. Biotechnol Bioeng 2021; 118:4720-4734. [PMID: 34506646 DOI: 10.1002/bit.27937] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/10/2021] [Accepted: 09/01/2021] [Indexed: 12/21/2022]
Abstract
By integrating continuous cell cultures with continuous purification methods, process yields and product quality attributes have been improved over the last 10 years for recombinant protein production. However, for the production of viral vectors such as Modified Vaccinia virus Ankara (MVA), no such studies have been reported although there is an increasing need to meet the requirements for a rising number of clinical trials against infectious or neoplastic diseases. Here, we present for the first time a scalable suspension cell (AGE1.CR.pIX cells) culture-based perfusion process in bioreactors integrating continuous virus harvesting through an acoustic settler with semi-continuous chromatographic purification. This allowed obtaining purified MVA particles with a space-time yield more than 600% higher for the integrated perfusion process (1.05 × 1011 TCID50 /Lbioreactor /day) compared to the integrated batch process. Without further optimization, purification by membrane-based steric exclusion chromatography resulted in an overall product recovery of 50.5%. To decrease the level of host cell DNA before chromatography, a novel inline continuous DNA digestion step was integrated into the process train. A detailed cost analysis comparing integrated production in batch versus production in perfusion mode showed that the cost per dose for MVA was reduced by nearly one-third using this intensified small-scale process.
Collapse
Affiliation(s)
- Gwendal Gränicher
- Bioprocess Engineering Group, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Masoud Babakhani
- Bioprocess Engineering Group, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany.,Chair for Bioprocess Engineering, Faculty of Process- and Systems Engineering, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Sven Göbel
- Bioprocess Engineering Group, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany.,Institute of Biochemical Engineering, Faculty 4 - Energy-, Process- and Bio-Engineering, University of Stuttgart, Stuttgart, Germany
| | | | - Pavel Marichal-Gallardo
- Bioprocess Engineering Group, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Yvonne Genzel
- Bioprocess Engineering Group, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Udo Reichl
- Bioprocess Engineering Group, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany.,Chair for Bioprocess Engineering, Faculty of Process- and Systems Engineering, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| |
Collapse
|
21
|
Silva CAT, Kamen AA, Henry O. Recent advances and current challenges in process intensification of cell culture‐based influenza virus vaccine manufacturing. CAN J CHEM ENG 2021. [DOI: 10.1002/cjce.24197] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Cristina A. T. Silva
- Department of Chemical Engineering Polytechnique Montréal Montréal Québec Canada
- Department of Bioengineering McGill University Montréal Québec Canada
| | - Amine A. Kamen
- Department of Bioengineering McGill University Montréal Québec Canada
| | - Olivier Henry
- Department of Chemical Engineering Polytechnique Montréal Montréal Québec Canada
| |
Collapse
|
22
|
Abstract
With seasonal influenza, Ebola, shingles, pneumonia, human papillomavirus, and other pathogens-combined now with the novel coronavirus (SARS-CoV-2)-the world's demand for vaccines is on a steep incline. New vaccine development is progressing rapidly, as seen with recent announcements of coronavirus options [1], [2], but what about their manufacture?
Collapse
|
23
|
Pralow A, Nikolay A, Leon A, Genzel Y, Rapp E, Reichl U. Site-specific N-glycosylation analysis of animal cell culture-derived Zika virus proteins. Sci Rep 2021; 11:5147. [PMID: 33664361 PMCID: PMC7933209 DOI: 10.1038/s41598-021-84682-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 02/18/2021] [Indexed: 01/09/2023] Open
Abstract
Here, we present for the first time, a site-specific N-glycosylation analysis of proteins from a Brazilian Zika virus (ZIKV) strain. The virus was propagated with high yield in an embryo-derived stem cell line (EB66, Valneva SE), and concentrated by g-force step-gradient centrifugation. Subsequently, the sample was proteolytically digested with different enzymes, measured via a LC–MS/MS-based workflow, and analyzed in a semi-automated way using the in-house developed glyXtoolMS software. The viral non-structural protein 1 (NS1) was glycosylated exclusively with high-mannose structures on both potential N-glycosylation sites. In case of the viral envelope (E) protein, no specific N-glycans could be identified with this method. Nevertheless, N-glycosylation could be proved by enzymatic de-N-glycosylation with PNGase F, resulting in a strong MS-signal of the former glycopeptide with deamidated asparagine at the potential N-glycosylation site N444. This confirmed that this site of the ZIKV E protein is highly N-glycosylated but with very high micro-heterogeneity. Our study clearly demonstrates the progress made towards site-specific N-glycosylation analysis of viral proteins, i.e. for Brazilian ZIKV. It allows to better characterize viral isolates, and to monitor glycosylation of major antigens. The method established can be applied for detailed studies regarding the impact of protein glycosylation on antigenicity and human pathogenicity of many viruses including influenza virus, HIV and corona virus.
Collapse
Affiliation(s)
- Alexander Pralow
- Bioprocess Engineering Group, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Alexander Nikolay
- Bioprocess Engineering Group, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | | | - Yvonne Genzel
- Bioprocess Engineering Group, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Erdmann Rapp
- Bioprocess Engineering Group, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany. .,glyXera GmbH, Magdeburg, Germany.
| | - Udo Reichl
- Bioprocess Engineering Group, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany.,Chair of Bioprocess Engineering, Otto von Guericke University, Magdeburg, Germany
| |
Collapse
|
24
|
Wu Y, Bissinger T, Genzel Y, Liu X, Reichl U, Tan WS. High cell density perfusion process for high yield of influenza A virus production using MDCK suspension cells. Appl Microbiol Biotechnol 2021; 105:1421-1434. [PMID: 33515287 PMCID: PMC7847233 DOI: 10.1007/s00253-020-11050-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 12/01/2020] [Accepted: 12/09/2020] [Indexed: 12/27/2022]
Abstract
Similar to the recent COVID-19 pandemic, influenza A virus poses a constant threat to the global community. For the treatment of flu disease, both antivirals and vaccines are available with vaccines the most effective and safest approach. In order to overcome limitations in egg-based vaccine manufacturing, cell culture-based processes have been established. While this production method avoids egg-associated risks in face of pandemics, process intensification using animal suspension cells in high cell density perfusion cultures should allow to further increase manufacturing capacities worldwide. In this work, we demonstrate the development of a perfusion process using Madin-Darby canine kidney (MDCK) suspension cells for influenza A (H1N1) virus production from scale-down shake flask cultivations to laboratory scale stirred tank bioreactors. Shake flask cultivations using semi-perfusion mode enabled high-yield virus harvests (4.25 log10(HAU/100 μL)) from MDCK cells grown up to 41 × 106 cells/mL. Scale-up to bioreactors with an alternating tangential flow (ATF) perfusion system required optimization of pH control and implementation of a temperature shift during the infection phase. Use of a capacitance probe for on-line perfusion control allowed to minimize medium consumption. This contributed to a better process control and a more economical performance while maintaining a maximum virus titer of 4.37 log10(HAU/100 μL) and an infectious virus titer of 1.83 × 1010 virions/mL. Overall, this study clearly demonstrates recent advances in cell culture-based perfusion processes for next-generation high-yield influenza vaccine manufacturing for pandemic preparedness. KEY POINTS: • First MDCK suspension cell-based perfusion process for IAV produciton was established. • "Cell density effect" was overcome and process was intensified by reduction of medium use and automated process control. • The process achieved cell density over 40 × 106 cells/mL and virus yield over 4.37 log10(HAU/100 μL).
Collapse
Affiliation(s)
- Yixiao Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.,Bioprocess Engineering Group, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106, Magdeburg, Germany
| | - Thomas Bissinger
- Bioprocess Engineering Group, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106, Magdeburg, Germany
| | - Yvonne Genzel
- Bioprocess Engineering Group, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106, Magdeburg, Germany
| | - Xuping Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China. .,Shanghai BioEngine Sci-Tech Co., Ltd, 781 Cailun Road, Shanghai, 201203, China.
| | - Udo Reichl
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.,Chair of Bioprocess Engineering, Otto-von-Guericke University Magdeburg, Universitaetsplatz 2, 39106, Magdeburg, Germany
| | - Wen-Song Tan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
25
|
Hein MD, Kollmus H, Marichal-Gallardo P, Püttker S, Benndorf D, Genzel Y, Schughart K, Kupke SY, Reichl U. OP7, a novel influenza A virus defective interfering particle: production, purification, and animal experiments demonstrating antiviral potential. Appl Microbiol Biotechnol 2020; 105:129-146. [PMID: 33275160 PMCID: PMC7778630 DOI: 10.1007/s00253-020-11029-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 11/14/2020] [Accepted: 11/22/2020] [Indexed: 11/24/2022]
Abstract
Abstract The novel influenza A virus (IAV) defective interfering particle “OP7” inhibits IAV replication in a co-infection and was previously suggested as a promising antiviral agent. Here, we report a batch-mode cell culture-based production process for OP7. In the present study, a seed virus containing standard virus (STV) and OP7 was used. The yield of OP7 strongly depended on the production multiplicity of infection. To inactivate infectious STV in the OP7 material, which may cause harm in a potential application, UV irradiation was used. The efficacy of OP7 in this material was preserved, as shown by an in vitro interference assay. Next, steric exclusion chromatography was used to purify and to concentrate (~ 13-fold) the UV-treated material. Finally, administration of produced OP7 material in mice did not show any toxic effects. Furthermore, all mice infected with a lethal dose of IAV survived the infection upon OP7 co-treatment. Thus, the feasibility of a production workflow for OP7 and its potential for antiviral treatment was demonstrated. Key points • OP7 efficacy strongly depended on the multiplicity of infection used for production • Purification by steric exclusion chromatography increased OP7 efficacy • OP7-treated mice were protected against a lethal infection with IAV Supplementary Information The online version contains supplementary material available at 10.1007/s00253-020-11029-5.
Collapse
Affiliation(s)
- Marc D Hein
- Bioprocess Engineering, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Heike Kollmus
- Department of Infection Genetics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Pavel Marichal-Gallardo
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Sebastian Püttker
- Bioprocess Engineering, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Dirk Benndorf
- Bioprocess Engineering, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Yvonne Genzel
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Klaus Schughart
- Department of Infection Genetics, Helmholtz Centre for Infection Research, Braunschweig, Germany.,University of Veterinary Medicine Hannover, Hannover, Germany.,Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Sascha Y Kupke
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany.
| | - Udo Reichl
- Bioprocess Engineering, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| |
Collapse
|
26
|
Dielectric Spectroscopy to Improve the Production of rAAV Used in Gene Therapy. Processes (Basel) 2020. [DOI: 10.3390/pr8111456] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The insect cell-baculovirus expression vector system is an established method for large scale recombinant adeno-associated virus (rAAV) production, largely due to its scalability and high volumetric productivities. During rAAV production it is critical to monitor process parameters such as Spodoptera frugiperda (Sf9) cell concentration, infection timing, and cell harvest viabilities since they can have a significant influence on rAAV productivity and product quality. Herein we developed the use of dielectric spectroscopy as a process analytical technology (PAT) tool used to continuously monitor the production of rAAV in 2 L stirred tank bioreactors, achieving enhanced control over the production process. This study resulted in improved manufacturing robustness through continuous monitoring of cell culture parameters, eliminating sampling needs, increasing the accuracy of infection timing, and reliably estimating the time of harvest. To increase the accuracy of baculovirus infection timing, the cell growth/permittivity model was coupled to a feedback loop with real-time monitoring. This system was able to predict baculovirus infection timing up to 24 h in advance for greatly improved accuracy of infection and ensuring consistent high rAAV productivities. Furthermore, predictive models were developed based on the dielectric measurements of the culture. These multiple linear regression-based models resulted in correlation coefficients (Q2) of 0.89 for viable cell concentration, 0.97 for viability, and 0.92 for cell diameter. Finally, models were developed to predict rAAV titer providing the capability to distinguish in real time between high and low titer production batches.
Collapse
|
27
|
Hobson-Peters J, Harrison JJ, Watterson D, Hazlewood JE, Vet LJ, Newton ND, Warrilow D, Colmant AMG, Taylor C, Huang B, Piyasena TBH, Chow WK, Setoh YX, Tang B, Nakayama E, Yan K, Amarilla AA, Wheatley S, Moore PR, Finger M, Kurucz N, Modhiran N, Young PR, Khromykh AA, Bielefeldt-Ohmann H, Suhrbier A, Hall RA. A recombinant platform for flavivirus vaccines and diagnostics using chimeras of a new insect-specific virus. Sci Transl Med 2020; 11:11/522/eaax7888. [PMID: 31826984 DOI: 10.1126/scitranslmed.aax7888] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 11/11/2019] [Indexed: 12/15/2022]
Abstract
Flaviviruses such as dengue, yellow fever, Zika, West Nile, and Japanese encephalitis virus present substantial global health burdens. New vaccines are being sought to address safety and manufacturing issues associated with current live attenuated vaccines. Here, we describe a new insect-specific flavivirus, Binjari virus, which was found to be remarkably tolerant for exchange of its structural protein genes (prME) with those of the aforementioned pathogenic vertebrate-infecting flaviviruses (VIFs). Chimeric BinJ/VIF-prME viruses remained replication defective in vertebrate cells but replicated with high efficiency in mosquito cells. Cryo-electron microscopy and monoclonal antibody binding studies illustrated that the chimeric BinJ/VIF-prME virus particles were structurally and immunologically similar to their parental VIFs. Pilot manufacturing in C6/36 cells suggests that high yields can be reached up to 109.5 cell culture infectious dose/ml or ≈7 mg/liter. BinJ/VIF-prME viruses showed utility in diagnostic (microsphere immunoassays and ELISAs using panels of human and equine sera) and vaccine applications (illustrating protection against Zika virus challenge in murine IFNAR-/- mouse models). BinJ/VIF-prME viruses thus represent a versatile, noninfectious (for vertebrate cells), high-yield technology for generating chimeric flavivirus particles with low biocontainment requirements.
Collapse
Affiliation(s)
- Jody Hobson-Peters
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia.
| | - Jessica J Harrison
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Daniel Watterson
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Jessamine E Hazlewood
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Laura J Vet
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Natalee D Newton
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - David Warrilow
- Public Health Virology Laboratory, Department of Health, Queensland Government, PO Box 594, Archerfield, Queensland, Australia
| | - Agathe M G Colmant
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Carmel Taylor
- Public Health Virology Laboratory, Department of Health, Queensland Government, PO Box 594, Archerfield, Queensland, Australia
| | - Bixing Huang
- Public Health Virology Laboratory, Department of Health, Queensland Government, PO Box 594, Archerfield, Queensland, Australia
| | - Thisun B H Piyasena
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Weng Kong Chow
- Australian Defence Force Malaria and Infectious Disease Institute, Gallipoli Barracks, Queensland, Australia
| | - Yin Xiang Setoh
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Bing Tang
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Eri Nakayama
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kexin Yan
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Alberto A Amarilla
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Sarah Wheatley
- Public Health Virology Laboratory, Department of Health, Queensland Government, PO Box 594, Archerfield, Queensland, Australia
| | - Peter R Moore
- Public Health Virology Laboratory, Department of Health, Queensland Government, PO Box 594, Archerfield, Queensland, Australia
| | - Mitchell Finger
- Public Health Virology Laboratory, Department of Health, Queensland Government, PO Box 594, Archerfield, Queensland, Australia
| | - Nina Kurucz
- Centre for Disease Control, Health Protection Division, Northern Territory Department of Health, Darwin, Northern Territory, Australia
| | - Naphak Modhiran
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Paul R Young
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Alexander A Khromykh
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Helle Bielefeldt-Ohmann
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia.,School of Veterinary Science, University of Queensland Gatton Campus, Queensland 4343, Australia
| | - Andreas Suhrbier
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia.,Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Roy A Hall
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia.
| |
Collapse
|
28
|
Coronel J, Gränicher G, Sandig V, Noll T, Genzel Y, Reichl U. Application of an Inclined Settler for Cell Culture-Based Influenza A Virus Production in Perfusion Mode. Front Bioeng Biotechnol 2020; 8:672. [PMID: 32714908 PMCID: PMC7343718 DOI: 10.3389/fbioe.2020.00672] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/29/2020] [Indexed: 12/13/2022] Open
Abstract
Influenza viruses have been successfully propagated using a variety of animal cell lines in batch, fed-batch, and perfusion culture. For suspension cells, most studies reported on membrane-based cell retention devices typically leading to an accumulation of viruses in the bioreactor in perfusion mode. Aiming at continuous virus harvesting for improved productivities, an inclined settler was evaluated for influenza A virus (IAV) production using the avian suspension cell line AGE1.CR.pIX. Inclined settlers present many advantages as they are scalable, robust, and comply with cGMP regulations, e.g., for recombinant protein manufacturing. Perfusion rates up to 3000 L/day have been reported. In our study, successful growth of AGE1.CR.pIX cells up to 50 × 106 cells/mL and a cell retention efficiency exceeding 96% were obtained with the settler cooled to room temperature. No virus retention was observed. A total of 5.4-6.5 × 1013 virions were produced while a control experiment with an ATF system equaled to 1.9 × 1013 virions. For infection at 25 × 106 cells/mL, cell-specific virus yields up to 3474 virions/cell were obtained, about 5-fold higher than for an ATF based cultivation performed as a control (723 virions/cell). Trypsin activity was shown to have a large impact on cell growth dynamics after infection following the cell retention device, especially at a cell concentration of 50 × 106 cells/mL. Further control experiments performed with an acoustic settler showed that virus production was improved with a heat exchanger of the inclined settler operated at 27°C. In summary, cell culture-based production of viruses in perfusion mode with an inclined settler and continuous harvesting can drastically increase IAV yields and possibly the yield of other viruses. To our knowledge, this is the first report to show the potential of this device for viral vaccine production.
Collapse
Affiliation(s)
- Juliana Coronel
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Gwendal Gränicher
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | | | - Thomas Noll
- Institute of Cell Culture Technology, Bielefeld University, Bielefeld, Germany
| | - Yvonne Genzel
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Udo Reichl
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany.,Bioprocess Engineering, Otto von Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
29
|
Yang Z, Wang J, Wang X, Duan H, He P, Yang G, Liu L, Cheng H, Wang X, Pan J, Zhao J, Yu H, Yang B, Liu Y, Lin J. Immunogenicity and protective efficacy of an EB66 ® cell culture-derived duck Tembusu virus vaccine. Avian Pathol 2020; 49:448-456. [PMID: 32374185 DOI: 10.1080/03079457.2020.1763914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The avian EB66® cell line, derived from duck embryonic stem cells, has been widely used for producing human and animal therapeutic proteins and vaccines. In current study we evaluated the potential use of EB66® cell line in a cell culture-derived duck Tembusu virus (DTMUV) vaccine development. After optimizing the growth conditions of DTMUV HB strain in EB66® cells, we successfully generated three batches of viruses with ELD50 titres of 105.9/0.1 ml, 105.3/0.1 ml and 105.5/0.1 ml, respectively, for using in the preparation of inactivated vaccines. The immunogenicity and protective efficacy of these EB66® cells-derived inactivated vaccines were examined in ducks. Results indicated that all three batches of vaccines induced haemagglutination-inhibition (HI) antibody response in immunized birds at 2 weeks after a single immunization. Immunized ducks and ducklings were protected against a virulent challenge at 4 weeks after a booster immunization. The duration of immunity was for 3-4 months after a booster immunization. These results demonstrated the feasibility of using EB66® cell line to grow up DTMUV for vaccine preparation. RESEARCH HIGHLIGHTS Duck Tembusu virus can be propagated in EB66® cells. EB66® cell-derived inactivated DTMUV vaccines are immunogenic and can provide protection against a virulent challenge. A long-lasting immunity is induced after a booster immunization.
Collapse
Affiliation(s)
- Zhiyuan Yang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, People's Republic of China
| | - Jiaqi Wang
- Gansu Jianshun Biosciences Co., Ltd, Lanzhou, People's Republic of China
| | - Xiuqing Wang
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, USA
| | - Huijuan Duan
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, People's Republic of China
| | - Pingyou He
- Ringpu (Baoding) Biological Pharmaceutical Co., Ltd, Baoding, People's Republic of China
| | - Guijun Yang
- Gansu Jianshun Biosciences Co., Ltd, Lanzhou, People's Republic of China
| | - Lixin Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, People's Republic of China
| | - Huimin Cheng
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, People's Republic of China
| | - Xiaolei Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, People's Republic of China
| | - Jie Pan
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, People's Republic of China
| | - Jicheng Zhao
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, People's Republic of China
| | - Hongwei Yu
- Ringpu (Baoding) Biological Pharmaceutical Co., Ltd, Baoding, People's Republic of China
| | - Baoshou Yang
- Ringpu (Baoding) Biological Pharmaceutical Co., Ltd, Baoding, People's Republic of China
| | - Yuehuan Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, People's Republic of China
| | - Jian Lin
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, People's Republic of China
| |
Collapse
|
30
|
Nikolay A, de Grooth J, Genzel Y, Wood JA, Reichl U. Virus harvesting in perfusion culture: Choosing the right type of hollow fiber membrane. Biotechnol Bioeng 2020; 117:3040-3052. [PMID: 32568408 DOI: 10.1002/bit.27470] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 05/28/2020] [Accepted: 06/20/2020] [Indexed: 02/04/2023]
Abstract
The use of bioreactors coupled to membrane-based perfusion systems enables very high cell and product concentrations in vaccine and viral vector manufacturing. Many virus particles, however, are not stable and either lose their infectivity or physically degrade resulting in significant product losses if not harvested continuously. Even hollow fiber membranes with a nominal pore size of 0.2 µm can retain much smaller virions within a bioreactor. Here, we report on a systematic study to characterize structural and physicochemical membrane properties with respect to filter fouling and harvesting of yellow fever virus (YFV; ~50 nm). In tangential flow filtration perfusion experiments, we observed that YFV retention was only marginally determined by nominal but by effective pore sizes depending on filter fouling. Evaluation of scanning electron microscope images indicated that filter fouling can be reduced significantly by choosing membranes with (i) a flat inner surface (low boundary layer thickness), (ii) a smooth material structure (reduced deposition), (iii) a high porosity (high transmembrane flux), (iv) a distinct pore size distribution (well-defined pore selectivity), and (v) an increased fiber wall thickness (larger effective surface area). Lowest filter fouling was observed with polysulfone (PS) membranes. While the use of a small-pore PS membrane (0.08 µm) allowed to fully retain YFV within the bioreactor, continuous product harvesting was achieved with the large-pore PS membrane (0.34 µm). Due to the low protein rejection of the latter, this membrane type could also be of interest for other applications, that is, recombinant protein production in perfusion cultures.
Collapse
Affiliation(s)
- Alexander Nikolay
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Joris de Grooth
- Films in Fluids, University of Twente, Enschede, The Netherlands
| | - Yvonne Genzel
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Jeffery A Wood
- Soft Matter, Fluidics and Interfaces, Faculty of Science and Technology, MESA+ Institute for Nanotechnology, University of Twente, Enschede, The Netherlands
| | - Udo Reichl
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany.,Chair for Bioprocess Engineering, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| |
Collapse
|
31
|
Lavado-García J, Cervera L, Gòdia F. An Alternative Perfusion Approach for the Intensification of Virus-Like Particle Production in HEK293 Cultures. Front Bioeng Biotechnol 2020; 8:617. [PMID: 32637402 PMCID: PMC7318772 DOI: 10.3389/fbioe.2020.00617] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/20/2020] [Indexed: 01/11/2023] Open
Abstract
Virus-like particles (VLPs) have gained interest over the last years as recombinant vaccine formats, as they generate a strong immune response and present storage and distribution advantages compared to conventional vaccines. Therefore, VLPs are being regarded as potential vaccine candidates for several diseases. One requirement for their further clinical testing is the development of scalable processes and production platforms for cell-based viral particles. In this work, the extended gene expression (EGE) method, which consists in consecutive media replacements combined with cell retransfections, was successfully optimized and transferred to a bioreactor operating in perfusion. A process optimization using design of experiments (DoE) was carried out to obtain optimal values for the time of retransfection, the cell specific perfusion rate (CSPR) and transfected DNA concentration, improving 86.7% the previously reported EGE protocol in HEK293. Moreover, it was successfully implemented at 1.5L bioreactor using an ATF as cell retention system achieving concentrations of 6.8·1010 VLP/mL. VLP interaction with the ATF hollow fibers was studied via confocal microscopy, field emission scanning electron microscopy, and nanoparticle tracking analysis to design a bioprocess capable of separating unassembled Gag monomers and concentrate VLPs in one step.
Collapse
Affiliation(s)
- Jesús Lavado-García
- Grup d'Enginyeria Cellular i Bioprocés, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Laura Cervera
- Grup d'Enginyeria Cellular i Bioprocés, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Francesc Gòdia
- Grup d'Enginyeria Cellular i Bioprocés, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
32
|
Gränicher G, Coronel J, Trampler F, Jordan I, Genzel Y, Reichl U. Performance of an acoustic settler versus a hollow fiber-based ATF technology for influenza virus production in perfusion. Appl Microbiol Biotechnol 2020; 104:4877-4888. [PMID: 32291490 PMCID: PMC7228903 DOI: 10.1007/s00253-020-10596-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/10/2020] [Accepted: 03/31/2020] [Indexed: 12/24/2022]
Abstract
Process intensification and integration is crucial regarding an ever increasing pressure on manufacturing costs and capacities in biologics manufacturing. For virus production in perfusion mode, membrane-based alternating tangential flow filtration (ATF) and acoustic settler are the commonly described cell retention technologies. While acoustic settlers allow for continuous influenza virus harvesting, the use of commercially available membranes for ATF systems typically results in the accumulation of virus particles in the bioreactor vessel. Accordingly, with one single harvest at the end of a cultivation, this increases the risk of lowering the product quality. To assess which cell retention device would be most suitable for influenza A virus production, we compared various key performance figures using AGE1.CR.pIX cells at concentrations between 25 and 50 × 106 cells/mL at similar infection conditions using either an ATF system or an acoustic settler. Production yields, process-related impurities, and aggregation of viruses and other large molecules were evaluated. Taking into account the total number of virions from both the bioreactor and the harvest vessel, a 1.5-3.0-fold higher volumetric virus yield was obtained for the acoustic settler. In addition, fewer large-sized aggregates (virus particles and other molecules) were observed in the harvest taken directly from the bioreactor. In contrast, similar levels of process-related impurities (host cell dsDNA, total protein) were obtained in the harvest for both retention systems. Overall, a clear advantage was observed for continuous virus harvesting after the acoustic settler operation mode was optimized. This development may also allow direct integration of subsequent downstream processing steps. KEY POINTS: • High suspension cell density, immortalized avian cell line, influenza vaccine.
Collapse
Affiliation(s)
- Gwendal Gränicher
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106, Magdeburg, Germany.
| | - Juliana Coronel
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106, Magdeburg, Germany
| | - Felix Trampler
- SonoSep Technologies, Waldgasse 7, 2371, Hinterbrühl, Austria
| | - Ingo Jordan
- ProBioGen AG, Goethestr 54, 13086, Berlin, Germany
| | - Yvonne Genzel
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106, Magdeburg, Germany.
| | - Udo Reichl
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106, Magdeburg, Germany
- Bioprocess Engineering, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany
| |
Collapse
|
33
|
Holographic Imaging of Insect Cell Cultures: Online Non-Invasive Monitoring of Adeno-Associated Virus Production and Cell Concentration. Processes (Basel) 2020. [DOI: 10.3390/pr8040487] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The insect cell-baculovirus vector system has become one of the favorite platforms for the expression of viral vectors for vaccination and gene therapy purposes. As it is a lytic system, it is essential to balance maximum recombinant product expression with harvest time, minimizing product exposure to detrimental proteases. With this purpose, new bioprocess monitoring solutions are needed to accurately estimate culture progression. Herein, we used online digital holographic microscopy (DHM) to monitor bioreactor cultures of Sf9 insect cells. Batches of baculovirus-infected Sf9 cells producing recombinant adeno-associated virus (AAV) and non-infected cells were used to evaluate DHM prediction capabilities for viable cell concentration, culture viability and AAV titer. Over 30 cell-related optical attributes were quantified using DHM, followed by a forward stepwise regression to select the most significant (p < 0.05) parameters for each variable. We then applied multiple linear regression to obtain models which were able to predict culture variables with root mean squared errors (RMSE) of 7 × 105 cells/mL, 3% for cell viability and 2 × 103 AAV/cell for 3-fold cross-validation. Overall, this work shows that DHM can be implemented for online monitoring of Sf9 concentration and viability, also permitting to monitor product titer, namely AAV, or culture progression in lytic systems, making it a valuable tool to support the time of harvest decision and for the establishment of controlled feeding strategies.
Collapse
|
34
|
Nikolay A, Bissinger T, Gränicher G, Wu Y, Genzel Y, Reichl U. Perfusion Control for High Cell Density Cultivation and Viral Vaccine Production. Methods Mol Biol 2020; 2095:141-168. [PMID: 31858467 DOI: 10.1007/978-1-0716-0191-4_9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The global demand for complex biopharmaceuticals like recombinant proteins, vaccines, or viral vectors is steadily rising. To further improve process productivity and to reduce production costs, process intensification can contribute significantly. The design and optimization of perfusion processes toward very high cell densities require careful selection of strategies for optimal perfusion rate control. In this chapter, various options are discussed to guarantee high cell-specific virus yields and to achieve virus concentrations up to 1010 virions/mL. This includes reactor volume exchange regimes and perfusion rate control based on process variables such as cell concentration and metabolite or by-product concentration. Strategies to achieve high cell densities by perfusion rate control and their experimental implementation are described in detail for pseudo-perfusion or small-scale perfusion bioreactor systems. Suspension cell lines such as MDCK, BHK-21, EB66®, and AGE1.CR.pIX® are used to exemplify production of influenza, yellow fever, Zika, and modified vaccinia Ankara virus.
Collapse
Affiliation(s)
- Alexander Nikolay
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany.
| | - Thomas Bissinger
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Gwendal Gränicher
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Yixiao Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yvonne Genzel
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Udo Reichl
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
- Bioprocess Engineering, Otto von Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
35
|
Bissinger T, Fritsch J, Mihut A, Wu Y, Liu X, Genzel Y, Tan WS, Reichl U. Semi-perfusion cultures of suspension MDCK cells enable high cell concentrations and efficient influenza A virus production. Vaccine 2019; 37:7003-7010. [DOI: 10.1016/j.vaccine.2019.04.054] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/10/2019] [Accepted: 04/18/2019] [Indexed: 12/13/2022]
|
36
|
Zika virus-like particles (VLPs): Stable cell lines and continuous perfusion processes as a new potential vaccine manufacturing platform. Vaccine 2019; 37:6970-6977. [DOI: 10.1016/j.vaccine.2019.05.064] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 04/11/2019] [Accepted: 05/22/2019] [Indexed: 12/16/2022]
|
37
|
Pais DAM, Portela RMC, Carrondo MJT, Isidro IA, Alves PM. Enabling PAT in insect cell bioprocesses:
In situ
monitoring of recombinant adeno‐associated virus production by fluorescence spectroscopy. Biotechnol Bioeng 2019; 116:2803-2814. [DOI: 10.1002/bit.27117] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 04/22/2019] [Accepted: 07/09/2019] [Indexed: 12/25/2022]
Affiliation(s)
- Daniel A. M. Pais
- iBET, Instituto de Biologia Experimental e Tecnológica Oeiras Portugal
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de Lisboa Oeiras Portugal
| | - Rui M. C. Portela
- iBET, Instituto de Biologia Experimental e Tecnológica Oeiras Portugal
| | | | - Inês A. Isidro
- iBET, Instituto de Biologia Experimental e Tecnológica Oeiras Portugal
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de Lisboa Oeiras Portugal
| | - Paula M. Alves
- iBET, Instituto de Biologia Experimental e Tecnológica Oeiras Portugal
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de Lisboa Oeiras Portugal
| |
Collapse
|
38
|
Gränicher G, Coronel J, Pralow A, Marichal-Gallardo P, Wolff M, Rapp E, Karlas A, Sandig V, Genzel Y, Reichl U. Efficient influenza A virus production in high cell density using the novel porcine suspension cell line PBG.PK2.1. Vaccine 2019; 37:7019-7028. [PMID: 31005427 DOI: 10.1016/j.vaccine.2019.04.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/29/2019] [Accepted: 04/08/2019] [Indexed: 12/22/2022]
Abstract
Seasonal and pandemic influenza respiratory infections are still a major public health issue. Vaccination is the most efficient way to prevent influenza infection. One option to produce influenza vaccines is cell-culture based virus propagation. Different host cell lines, such as MDCK, Vero, AGE1.CR or PER.C6 cells have been shown to be a good substrate for influenza virus production. With respect to the ease of scale-up, suspension cells should be preferred over adherent cells. Ideally, they should replicate different influenza virus strains with high cell-specific yields. Evaluation of new cell lines and further development of processes is of considerable interest, as this increases the number of options regarding the design of manufacturing processes, flexibility of vaccine production and efficiency. Here, PBG.PK2.1, a new mammalian cell line that was developed by ProBioGen AG (Germany) for virus production is presented. The cells derived from immortal porcine kidney cells were previously adapted to growth in suspension in a chemically-defined medium. Influenza virus production was improved after virus adaptation to PBG.PK2.1 cells and optimization of infection conditions, namely multiplicity of infection and trypsin concentration. Hemagglutinin titers up to 3.24 log10(HA units/100 µL) were obtained in fed-batch mode in bioreactors (700 mL working volume). Evaluation of virus propagation in high cell density culture using a hollow-fiber based system (ATF2) demonstrated promising performance: Cell concentrations of up to 50 × 106 cells/mL with viabilities exceeding 95%, and a maximum HA titer of 3.93 log10(HA units/100 µL). Analysis of glycosylation of the viral HA antigen expressed showed clear differences compared to HA produced in MDCK or Vero cell lines. With an average cell-specific productivity of 5000 virions/cell, we believe that PBG.PK2.1 cells are a very promising candidate to be considered for next-generation influenza virus vaccine production.
Collapse
Affiliation(s)
- Gwendal Gränicher
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Sandtorstr. 1, 39106 Magdeburg, Germany.
| | - Juliana Coronel
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Sandtorstr. 1, 39106 Magdeburg, Germany
| | - Alexander Pralow
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Sandtorstr. 1, 39106 Magdeburg, Germany
| | - Pavel Marichal-Gallardo
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Sandtorstr. 1, 39106 Magdeburg, Germany
| | - Michael Wolff
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Sandtorstr. 1, 39106 Magdeburg, Germany; Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Wiesenstrasse 14, 35390 Gießen, Germany
| | - Erdmann Rapp
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Sandtorstr. 1, 39106 Magdeburg, Germany
| | | | | | - Yvonne Genzel
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Sandtorstr. 1, 39106 Magdeburg, Germany
| | - Udo Reichl
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Sandtorstr. 1, 39106 Magdeburg, Germany; Chair for Bioprocess Engineering, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
| |
Collapse
|