1
|
Ge SX, Niu YM, Ren LL, Zong SX. Inheritance or Recruitment? The Assembly Mechanisms and Functional Dynamics of Microbial Communities in the Life Cycle of a Wood-Feeding Beetle. Mol Ecol 2025; 34:e17751. [PMID: 40211688 DOI: 10.1111/mec.17751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/16/2025] [Accepted: 03/12/2025] [Indexed: 04/22/2025]
Abstract
Microbial partners enhance the metabolic capabilities of insects, enabling their adaptation to diverse ecological niches. Xylophagous insects have larvae that can digest lignocellulose and cope with plant secondary metabolites (PSMs). However, there is little information in terms of microbiome sources, dynamics and species contributions. This limits our understanding of the interaction between xylophagous insects and the microbiome. Monochamus saltuarius (Cerambycidae) is a significant borer of conifers. We used combined qPCR, host genomic and microbiome metagenomic datasets, as well as in vitro validation experiments to study the dynamics of the associated microbiome and its interactions with M. saltuarius. We evaluated microbial metabolic/biosynthetic contributions and validated their related functions. Our findings revealed that insect growth and development altered the quantity and community composition of associated bacteria and fungi. The egg microbiome was particularly susceptible to alteration due to oviposition pits. Bacterial transmission largely persisted between developmental stages, while fungal re-acquisition primarily originated from the external environment. By reconstructing community pathway maps, we identified the cooperative interactions between the insect and its gut microbiome. As larvae transitioned from phloem to xylem feeding, the functional role of the gut microbiome in various pathways was weakened. Remarkably, high-contribution bacterial species largely overlapped across different functional roles, and these species also showed considerable overlap between phloem and xylem feeding periods. Overall, our study highlights the unique interaction between xylophagous insects and their microbiome, which enhances their ability in lignocellulose digestion, PSMs degradation and the acquisition of essential amino acids, as well as vitamins.
Collapse
Affiliation(s)
- Si-Xun Ge
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, P.R. China
| | - Yi-Ming Niu
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, P.R. China
| | - Li-Li Ren
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, P.R. China
- Sino-French Joint Laboratory for Invasive Forest Pests in Eurasia, Beijing Forestry University-French National Research Institute for Agriculture, Food and Environment (INRAE), Beijing, P.R. China
| | - Shi-Xiang Zong
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, P.R. China
- Sino-French Joint Laboratory for Invasive Forest Pests in Eurasia, Beijing Forestry University-French National Research Institute for Agriculture, Food and Environment (INRAE), Beijing, P.R. China
| |
Collapse
|
2
|
Li B, Liang C, Xu B, Song P, Liu D, Zhang J, Gu H, Jiang F, Gao H, Cai Z, Zhang T. Extreme winter environment dominates gut microbiota and metabolome of white-lipped deer. Microbiol Res 2025; 297:128182. [PMID: 40252261 DOI: 10.1016/j.micres.2025.128182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 03/23/2025] [Accepted: 04/10/2025] [Indexed: 04/21/2025]
Abstract
Qinghai-Tibet Plateau (QTP) is marked by harsh environments that drive the evolution of unique nutrient metabolism mechanism in indigenous animal gut microbiotas. Yet, responses of these microbiotas to different extreme environments remain poorly understood. White-lipped deer (Przewalskium albirostris), a native endangered species in the QTP, serves as an ideal model to study how gut microbiotas adapt to season and human disturbances. Here, a multi-omics integrated analysis of 16S rRNA, metagenomics, and untargeted metabolomics was performed to investigate the composition, function, and metabolic characteristics of gut microbiota in White-lipped deer across different seasons and living environments. Our results revealed that extreme winter environment dominated the composition, function, and metabolism of gut microbiota in white-lipped deer. The white-lipped deer exhibited an enriched gut microbiota associated with producing short-chain fatty acids in winter, with core feature genera including norank_o_Rhodospirillales, Rikenellaceae_RC9_gut_group, and unclassified_c_Clostridia. However, potential pathogenic bacteria and few short-chain fatty acid producers, with core feature genera including norank_f_p-2534-18B5_gut_group, Cellulosilyticum, and Paeniclostridium, showed enrichment in captivity. Pathways associated with carbohydrate metabolism, amino acid metabolism, and immune regulation showed enrichment in winter group as an adaptation to the cold and food scarcity. Among these, Rikenellaceae_RC9_gut_group and unclassified_c_Clostridia contributed significantly to these metabolic pathways. The gut microbiota of white-lipped deer exhibited enrichment in pathways related to intestinal inflammation and enhanced immune regulation to alleviate the stress of captivity. Among these, norank_f_p-2534-18B5_gut_group contributed the most to these pathways. Butyric, valeric, and valproic acids were significantly more abundant in the winter group, while 3-hydroxybutyric and (S)-beta-aminoisobutyric acids were higher in the captive group. Furthermore, enriched metabolites and associated pathways in both groups further supported the inferences on metagenomic functions. This study confirms the key role of specific gut microbiota in adapting to high-altitude winters and anthropogenic disturbances, emphasizing its importance for environmental resilience in wild, high-altitude mammals.
Collapse
Affiliation(s)
- Bin Li
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China; Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, China
| | - Chengbo Liang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China; Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, China
| | - Bo Xu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China; Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, China
| | - Pengfei Song
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China; Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, China
| | | | | | - Haifeng Gu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China; Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, China
| | - Feng Jiang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China; Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, China
| | - Hongmei Gao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China; Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, China
| | - Zhenyuan Cai
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China; Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, China.
| | - Tongzuo Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China; Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, China.
| |
Collapse
|
3
|
Yang Z, Xie Y, Zhu Y, Lei M, Chen X, Jin W, Fu C, Yu L. Unraveling the flavor formation process of mellow and thick-type ripened Pu-erh tea through non-targeted metabolomics and metagenomics. Food Chem X 2025; 27:102424. [PMID: 40241696 PMCID: PMC12002954 DOI: 10.1016/j.fochx.2025.102424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/21/2025] [Accepted: 03/27/2025] [Indexed: 04/18/2025] Open
Abstract
Ripened Pu-erh tea (RPT) is renowned for its distinctive flavor and health benefits. However, its complex fermentation process poses challenges in ensuring consistency in production. This study investigated RPT flavor formation through sensory evaluation, multi-omics analysis, and multivariate statistical approaches. By day 24, the tea exhibited a reddish-brown infusion and a mellow, thick taste (MT_RPT), achieving the highest sensory score (94.0, P < 0.05). Sixteen flavor-related chemical components exhibited significant changes (P < 0.05). The contents of free amino acids, L-theanine, tea polyphenols, flavonoids, catechins, and thearubigins decreased. In contrast, the contents of total soluble sugars, caffeine, theobromine, epicatechin, and theabrownins (TBs) increased, reaching 74.1 mg/g, 65.38 mg/g, 3.13 mg/g, 3.33 mg/g, and 134.84 mg/g, respectively. Additionally, 33 nonvolatile metabolites (e.g., pelargonidin 3-O-glucoside, dihydroisorhamnetin, and puerarin) were significantly correlated with MT_RPT flavor (VIP > 1, |r| ≥ 0.8, P < 0.05) and influenced by key functional microbes, including Pantoea, Aspergillus, Brachybacterium, and Staphylococcus. By day 30, the infusion darkened, and sensory scores declined (81.4, P < 0.05), attributed to the dominance of Brevibacterium. This microbial shift reduced water-soluble pectin, free amino acids, and 11 metabolites while increasing TBs and theophylline (219.33 mg/g and 0.09 mg/g, respectively). Therefore, TBs were identified as a crucial indicator of optimal fermentation. Moreover, redundancy analysis indicated that the tea pile's central temperature, moisture content, and pH were essential fermentation parameters (P < 0.05). These findings deepen our understanding of MT_RPT flavor development mechanisms and provide valuable insights into precise fermentation control.
Collapse
Affiliation(s)
- Zixi Yang
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan 430074, China
- Hubei Engineering Research Center for both Edible and Medicinal Resources, Wuhan 430074, China
| | - Yanxia Xie
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan 430074, China
- Hubei Engineering Research Center for both Edible and Medicinal Resources, Wuhan 430074, China
| | - Yuanmin Zhu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan 430074, China
- Hubei Engineering Research Center for both Edible and Medicinal Resources, Wuhan 430074, China
| | - Mengjie Lei
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan 430074, China
- Hubei Engineering Research Center for both Edible and Medicinal Resources, Wuhan 430074, China
| | - Xuemin Chen
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan 430074, China
- Hubei Engineering Research Center for both Edible and Medicinal Resources, Wuhan 430074, China
| | - Wenwen Jin
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan 430074, China
- Hubei Engineering Research Center for both Edible and Medicinal Resources, Wuhan 430074, China
| | - Chunhua Fu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan 430074, China
- Hubei Engineering Research Center for both Edible and Medicinal Resources, Wuhan 430074, China
| | - Longjiang Yu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan 430074, China
- Hubei Engineering Research Center for both Edible and Medicinal Resources, Wuhan 430074, China
| |
Collapse
|
4
|
Nnadozie CF, Odume ON. Trends and geographic distribution of bacterial zoonoses in veterinary cases in the Eastern Cape: A ten-year retrospective analysis. J Infect Public Health 2025; 18:102738. [PMID: 40153980 DOI: 10.1016/j.jiph.2025.102738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 02/20/2025] [Accepted: 03/04/2025] [Indexed: 04/01/2025] Open
Abstract
Diseases affecting livestock can have ripple effects on surrounding ecosystems, especially by contaminating water sources. Their occurrence poses significant public health issues, especially in areas such as the Eastern Cape province in South Africa, susceptible to climatic variations and where people and animals often share water sources, increasing the risk of transmission of waterborne zoonoses. Waterborne zoonoses are infectious diseases caused by zoonotic pathogens, including bacteria, viruses, protozoa, and parasitic helminths transmitted from animals through the aquatic environment to humans and vice versa. Tracking zoonoses in livestock is an early indicator of potential contamination of water sources used by animals and humans. This study analysed trends in prevalence of water-transmissible bacterial zoonoses over ten years, identifying the most frequently recorded zoonoses, their geographical distribution, and determining the animal species most commonly associated with these diseases. Bacterial zoonoses remain a global threat due to their potential for re-emergence, antimicrobial resistance, and economic impact. This study employed monthly reports on livestock disease from the Ruminant Veterinary Association of South Africa (RuVASA) website. The data was aggregated by month and scale of importance to summarise the trend in scale of importance over time. Following this, the specific diseases frequently, with more than 10 cases reported monthly, were explored. The findings from this study reveal a notable rise in cases of zoonoses in animals, particularly colibacillosis, across several regions in Eastern Cape, South Africa, such as Alexandria, Graaff-Reinet, and Jeffreys Bay. Cattle had the highest prevalence of all three diseases-brucellosis, colibacillosis, and salmonellosis-emphasising their role as key reservoirs, compared to sheep, cattle and goats. The findings of this study provide critical understanding, such as zoonoses posing the highest risk, local hotspots for disease transmission, and the animal's reservoirs that will potentially and significantly contaminate shared water sources by their presence near water. Analysing trends in animal diseases that can impact water quality and pose risks for zoonosis transmission, spread and outbreak is the needed holistic outlook recognising that regress in animal health can have broader environmental and public health implications, which is in line with the One Health principle that considers the interconnectedness between human, animal, and environmental health systems.
Collapse
Affiliation(s)
- Chika Felicitas Nnadozie
- Centre for Environmental Water Quality, Institute for Water Research (IWR), Rhodes University, Old Geology Building (off Artillery Road), P.O Box 94, Grahamstown 6140, South Africa.
| | - Oghenekaro Nelson Odume
- Centre for Environmental Water Quality, Institute for Water Research (IWR), Rhodes University, Old Geology Building (off Artillery Road), P.O Box 94, Grahamstown 6140, South Africa
| |
Collapse
|
5
|
Niu Q, Lu Y, Ren M, Zhu J, Zhao Y, Zhang R, Yang X, Sun Q. Alterations of lung and gut microbiota in sodium butyrate alleviating heat stress-induced lung injury of broilers. Poult Sci 2025; 104:104796. [PMID: 39799858 PMCID: PMC11770502 DOI: 10.1016/j.psj.2025.104796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/27/2024] [Accepted: 01/08/2025] [Indexed: 01/15/2025] Open
Abstract
Heat-induced stress has a significant impact on the health of broilers. It induces panting behavior and elevates oxygen consumption, leading to considerable strain on the broiler lungs. However, the precise effects of heat stress on lung injury, along with changes in the lung and gut microbiota, are not yet fully understood. In our study, Arbor Acres (AA) broilers were employed as a model to assess the efficacy of sodium butyrate (SB) in mitigating heat stress-induced lung injury, while concurrently exploring the potential role of lung and gut microbiota in this phenomenon. Heat stress negatively affected broilers, particularly leading to lung injury, which was alleviated by dietary supplementation with SB. However, antibiotic-induced dysbiosis of the microbiota diminished the protective effects of SB, highlighting the critical importance of gut microbiota homeostasis. Heat stress resulted in a reduction in lung microbial diversity and altered its composition, primarily due to the depletion of g_Clostridia and the proliferation of g_Staphylococcus. SB supplementation helped restore beneficial microbes and improved their adaptation to heat stress. Heat stress induced comparable effects on the gut microbiota, resulting in a decline in p_Firmicutes and an elevation in p_Bacteroidetes. However, SB supplementation effectively modulated these alterations in the gut microbiota, promoting a more beneficial microbial profile. Our findings highlighted the significant contributions of both lung and gut microbiota in maintaining homeostasis during heat stress. Moreover, SB administration demonstrated its efficacy in mitigating heat stress-induced lung injury in broilers. This study provides critical insights for developing dietary strategies to reduce heat stress and promote broiler health.
Collapse
Affiliation(s)
- Qiang Niu
- College of Animal Science and Technology, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Yiwen Lu
- College of Animal Science and Technology, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Meijuan Ren
- College of Animal Science and Technology, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Jiale Zhu
- College of Animal Science and Technology, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Yan Zhao
- College of Animal Science and Technology, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - RuMeng Zhang
- College of Animal Science and Technology, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Qingzhu Sun
- College of Animal Science and Technology, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi 712100, China.
| |
Collapse
|
6
|
Peng X, Li S, Dou W, Li M, Gontcharov AA, Peng Z, Qi B, Wang Q, Li Y. Metagenomic Insight into the Associated Microbiome in Plasmodia of Myxomycetes. Microorganisms 2024; 12:2540. [PMID: 39770743 PMCID: PMC11677963 DOI: 10.3390/microorganisms12122540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/28/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
During the trophic period of myxomycetes, the plasmodia of myxomycetes can perform crawling feeding and phagocytosis of bacteria, fungi, and organic matter. Culture-based studies have suggested that plasmodia are associated with one or several species of bacteria; however, by amplicon sequencing, it was shown that up to 31-52 bacteria species could be detected in one myxomycete, suggesting that the bacterial diversity associated with myxomycetes was likely to be underestimated. To fill this gap and characterize myxomycetes' microbiota and functional traits, the diversity and functional characteristics of microbiota associated with the plasmodia of six myxomycetes species were investigated by metagenomic sequencing. The results indicate that the plasmodia harbored diverse microbial communities, including eukaryotes, viruses, archaea, and the dominant bacteria. The associated microbiomes represented more than 22.27% of the plasmodia genome, suggesting that these microbes may not merely be parasitic or present as food but rather may play functional roles within the plasmodium. The six myxomycetes contained similar bacteria, but the bacteria community compositions in each myxomycete were species-specific. Functional analysis revealed a highly conserved microbial functional profile across the six plasmodia, suggesting they may serve a specific function for the myxomycetes. While the host-specific selection may shape the microbial community compositions within plasmodia, functional redundancy ensures functional stability across different myxomycetes.
Collapse
Affiliation(s)
- Xueyan Peng
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; (X.P.); (W.D.); (M.L.); (B.Q.); (Y.L.)
- Hefei Mycological Valley Innovation Institute, Hefei 231131, China;
| | - Shu Li
- Hefei Mycological Valley Innovation Institute, Hefei 231131, China;
| | - Wenjun Dou
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; (X.P.); (W.D.); (M.L.); (B.Q.); (Y.L.)
- Hefei Mycological Valley Innovation Institute, Hefei 231131, China;
| | - Mingxin Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; (X.P.); (W.D.); (M.L.); (B.Q.); (Y.L.)
- Hefei Mycological Valley Innovation Institute, Hefei 231131, China;
| | - Andrey A. Gontcharov
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia;
| | - Zhanwu Peng
- Information Center, Jilin Agricultural University, Changchun 130118, China
| | - Bao Qi
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; (X.P.); (W.D.); (M.L.); (B.Q.); (Y.L.)
| | - Qi Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; (X.P.); (W.D.); (M.L.); (B.Q.); (Y.L.)
- Hefei Mycological Valley Innovation Institute, Hefei 231131, China;
| | - Yu Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; (X.P.); (W.D.); (M.L.); (B.Q.); (Y.L.)
- Hefei Mycological Valley Innovation Institute, Hefei 231131, China;
| |
Collapse
|
7
|
Kalaignazhal G, Sejian V, Velayudhan SM, Mishra C, Rebez EB, Chauhan SS, DiGiacomo K, Lacetera N, Dunshea FR. Applications of Next-Generation Sequencing Technologies and Statistical Tools in Identifying Pathways and Biomarkers for Heat Tolerance in Livestock. Vet Sci 2024; 11:616. [PMID: 39728955 DOI: 10.3390/vetsci11120616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/17/2024] [Accepted: 11/29/2024] [Indexed: 12/28/2024] Open
Abstract
The climate change-associated abnormal weather patterns negatively influences the productivity and performance of farm animals. Heat stress is the major detrimental factor hampering production, causing substantial economic loss to the livestock industry. Therefore, it is important to identify heat-tolerant breeds that can survive and produce optimally in any given environment. To achieve this goal, a clearer understanding of the genetic differences and the underlying molecular mechanisms associated with climate change impacts and heat tolerance are a prerequisite. Adopting next-generation biotechnological and statistical tools like whole transcriptome analysis, whole metagenome sequencing, bisulphite sequencing, genome-wide association studies (GWAS), and selection signatures provides an opportunity to achieve this goal. Through these techniques, it is possible to identify permanent genetic markers for heat tolerance, and by incorporating those markers in marker-assisted breeding selection, it is possible to achieve the target of breeding for heat tolerance in livestock. This review gives an overview of the recent advancements in assessing heat tolerance in livestock using such 'omics' approaches and statistical models. The salient findings from this research highlighted several candidate biomarkers that have the potential to be incorporated into future heat-tolerance studies. Such approaches could revolutionise livestock production in the changing climate scenario and support the food demands of the growing human population.
Collapse
Affiliation(s)
- Gajendirane Kalaignazhal
- Rajiv Gandhi Institute of Veterinary Education and Research, Kurumbapet 605009, Puducherry, India
- Department of Animal Breeding and Genetics, College of Veterinary Science and Animal Husbandry, Odisha University of Agriculture and Technology, Bhubaneshwar 751003, Odisha, India
| | - Veerasamy Sejian
- Rajiv Gandhi Institute of Veterinary Education and Research, Kurumbapet 605009, Puducherry, India
| | | | - Chinmoy Mishra
- Department of Animal Breeding and Genetics, College of Veterinary Science and Animal Husbandry, Odisha University of Agriculture and Technology, Bhubaneshwar 751003, Odisha, India
| | - Ebenezer Binuni Rebez
- Rajiv Gandhi Institute of Veterinary Education and Research, Kurumbapet 605009, Puducherry, India
| | - Surinder Singh Chauhan
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Kristy DiGiacomo
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Nicola Lacetera
- Department of Agriculture and Forest Sciences, University of Tuscia, 01100 Viterbo, Italy
| | - Frank Rowland Dunshea
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Melbourne, VIC 3010, Australia
- Faculty of Biological Sciences, The University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
8
|
Cao S, Ye M, Wei W, Yang F. Different sound exposures causes alterations in stress-related serum indicators, behaviors, and cecal microbiota of green-shell egg-laying chickens under different stocking densities. PeerJ 2024; 12:e18544. [PMID: 39587999 PMCID: PMC11587876 DOI: 10.7717/peerj.18544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 10/28/2024] [Indexed: 11/27/2024] Open
Abstract
Sound and stocking density are two common factors which influence the performance and welfare of layers. Accumulated studies have been conducted on the impacts of the two factors on production performance, while knowledge regarding the impacts of the two factors and their interactions on stress-related serum indicators, behaviors, and cecal bacterial communities in laying hens is still limited. A 3 × 3 factorial design with three sound sources (natural sound (NS), instrumental music (IMS), or mixed road noise (MRS)) and three stocking densities (low density (LD), medium density (MD), and high density (HD)) was used in this 24-day experiment, in which 378 30-week-old Xiandao green-shell layers were randomly distributed into nine treatments with six replicates per treatment. At the 3rd, 12th, and 24th experimental day, we evaluated the serum levels of adrenocorticotropic hormone (ACTH) and corticosterone (CORT) and recorded stress-related animal behaviors. At the end of the experiment, 16S rRNA gene amplicon sequencing of the cecal bacterial communities was performed. Our results confirmed that MRS and HD induced significantly elevated serum ACTH and CORT levels, and were correlated with significantly increased feather pecking behavior. IMS and LD were associated with enhanced preening behavior and reduced feather pecking behavior. LD significantly increased the Firmicutes/Bacteriodetes ratio and IMS significantly enriched the beneficial Lactobacillus population. Based on the obtained results we proposed that music exposure and reduced stocking density were helpful in reducing stress and improving cecal bacterial profile, which were beneficial for improving layers' health status and welfare.
Collapse
Affiliation(s)
- Shiwen Cao
- Department of Animal Behavior, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Manhong Ye
- Department of Animal Behavior, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Wanhong Wei
- Department of Animal Behavior, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Fengping Yang
- Department of Animal Behavior, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
9
|
Zhou X, Wei C, Chen Z, Xia X, Wang L, Li X. Potential mechanisms of ischemic stroke induced by heat exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175815. [PMID: 39197783 DOI: 10.1016/j.scitotenv.2024.175815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/04/2024] [Accepted: 08/24/2024] [Indexed: 09/01/2024]
Abstract
Recent decades of epidemiological and clinical research have suggested that heat exposure could be a potential risk factor for ischemic stroke. Despite climate factors having a minor impact on individuals compared with established risk factors such as smoking, their widespread and persistent effects significantly affect public health. The mechanisms by which heat exposure triggers ischemic stroke are currently unclear. However, several potential mechanisms, such as the impact of temperature variability on stroke risk factors, inflammation, oxidative stress, and coagulation system changes, have been proposed. This article details the potential mechanisms by which heat exposure may induce ischemic stroke, aiming to guide the prevention and treatment of high-risk groups in hot climates and support public health policy development.
Collapse
Affiliation(s)
- Xiao Zhou
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Chanjuan Wei
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhuangzhuang Chen
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xiaoshuang Xia
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Lin Wang
- Department of Geriatrics, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xin Li
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin, China; Department of Geriatrics, The Second Hospital of Tianjin Medical University, Tianjin, China.
| |
Collapse
|
10
|
Leino LI, Vesterinen EJ, Sánchez-Virosta P, Puigbò P, Eeva T, Rainio MJ. Pollution-related changes in nest microbiota: Implications for growth and fledging in three passerine birds. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124434. [PMID: 38936789 DOI: 10.1016/j.envpol.2024.124434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/12/2024] [Accepted: 06/23/2024] [Indexed: 06/29/2024]
Abstract
Non-ferrous smelters emit toxic metals into the environment, posing a threat to wildlife health. Despite the acknowledged role of microbes in host health, the impact of such emissions on host-associated microbiota, especially in wild birds, remains largely unexplored. This study investigates the associations of metal pollution, fitness, and nest microbiota (serving as a proxy for early-life microbial environment) which may influence the nestling health and development. Our study focuses on three passerine birds, the great tit (Parus major), blue tit (Cyanistes caeruleus), and pied flycatcher (Ficedula hypoleuca), within control and metal-polluted sites around a Finnish copper-nickel smelter. The polluted sites had been contaminated with arsenic (As), cadmium (Cd), copper (Cu), nickel (Ni), and zinc (Zn). We performed bacterial 16S rRNA sequencing and metal analyses on 90 nests and monitored nestling body mass, fledging success, and various biotic and abiotic factors. Our findings revealed species-specific responses to metal exposure in terms of both fitness and nest microbiota. P. major and C. caeruleus showed sensitivity to pollution, with decreased nestling growth and fledging in the polluted zone. This was accompanied by a shift in the bacterial community composition, which was characterized by an increase in some pathogenic bacteria (in P. major and C. caeruleus nests) and by a decrease in plant-associated bacteria (within C. caeruleus nests). Conversely, F. hypoleuca and their nest microbiota showed limited responses to pollution, indicating greater tolerance to pollution-induced environmental changes. Although pollution did not correlate with nest alpha diversity or the most abundant bacterial taxa across all species, certain potential pathogens within the nests were enriched in polluted environments and negatively correlated with nestling fitness parameters. Our results suggest that metal pollution may alter the nest bacterial composition in some bird species, either directly or indirectly through environmental changes, promoting pathogenic bacteria and potentially impacting bird survival.
Collapse
Affiliation(s)
- Lyydia I Leino
- Department of Biology, University of Turku, Henrikinkatu 2, 20014, Turku, Finland.
| | - Eero J Vesterinen
- Department of Biology, University of Turku, Henrikinkatu 2, 20014, Turku, Finland.
| | - Pablo Sánchez-Virosta
- Department of Biology, Norwegian University of Science and Technology, NO-7491, Trondheim, Norway.
| | - Pere Puigbò
- Department of Biology, University of Turku, Henrikinkatu 2, 20014, Turku, Finland; Eurecat, Technology Centre of Catalonia, Reus, Catalonia, Spain; Department of Biochemistry and Biotechnology, Rovira I Virgili University, Tarragona, Catalonia, Spain.
| | - Tapio Eeva
- Department of Biology, University of Turku, Henrikinkatu 2, 20014, Turku, Finland.
| | - Miia J Rainio
- Department of Biology, University of Turku, Henrikinkatu 2, 20014, Turku, Finland.
| |
Collapse
|
11
|
Liu Y, Wang Y, Wei F, Chai L, Wang H. Gut microbiota-bile acid crosstalk contributes to intestinal damage after nitrate exposure in Bufo gargarizans tadpoles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 943:173795. [PMID: 38851338 DOI: 10.1016/j.scitotenv.2024.173795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/24/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Bile acids (BAs) are amphipathic steroid acids whose production and diversity depend on both host and microbial metabolism. Nitrate (NO3-) is a widespread pollutant in aquatic ecosystems, which can cause rapid changes in microbial community structure and function. However, the effect of gut microbiota reshaped by nitrate‑nitrogen (NO3-N) on BAs profiles remains unclarified. To test this, intestinal targeted BAs metabolomics and fecal metagenomic sequencing were performed on Bufo gargarizans tadpoles treated with different concentrations of NO3-N. NO3-N exposure induced a reduction in the abundance of microbiota with bile acid-inducible enzymes (BAIs) and/or hydroxysteroid dehydrogenases (HSDHs), thus inhibiting the conversion of primary BAs to secondary BAs. Inhibition of BAs biotransformation decreased protective hydrophilic BAs (UDCA) and increased toxic hydrophobic BAs (CA and CDCA), which may contribute to intestinal histopathological damage. Moreover, we found that NO3-N treatment increased microbial virulence factors and decreased Glycoside hydrolases, further highlighting the deleterious risk of NO3-N. Overall, this study shed light on the complex interactions of NO3-N, gut microbiota, and BAs, and emphasized the hazardous effects of NO3-N pollution on the health of amphibians.
Collapse
Affiliation(s)
- Ying Liu
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Yaxi Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Fei Wei
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Lihong Chai
- School of Water and Environment, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an 710054, China
| | - Hongyuan Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China.
| |
Collapse
|
12
|
Shen W, Gao P, Zhou K, Li J, Bo T, Xu D. The Impact of High-Temperature Stress on Gut Microbiota and Reproduction in Siberian Hamsters ( Phodopus sungorus). Microorganisms 2024; 12:1426. [PMID: 39065194 PMCID: PMC11278997 DOI: 10.3390/microorganisms12071426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/04/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Global warming has induced alterations in the grassland ecosystem, such as elevated temperatures and decreased precipitation, which disturb the equilibrium of these ecosystems and impact various physiological processes of grassland rodents, encompassing growth, development, and reproduction. As global warming intensifies, the repercussions of high-temperature stress on small mammals are garnering increased attention. Recently, research has highlighted that the composition and ratio of gut microbiota are not only shaped by environmental factors and the host itself but also reciprocally influence an array of physiological functions and energy metabolism in animals. In this research, we combined 16S rRNA high-throughput sequencing with conventional physiological assessments, to elucidate the consequences of high-temperature stress on the gut microbiota structure and reproductive capacity of Siberian hamsters (Phodopus sungorus). The results were as follows: 1. The growth and development of male and female hamsters in the high-temperature group were delayed, with lower body weight and reduced food intake. 2. High temperature inhibits the development of reproductive organs in both female and male hamsters. 3. High temperature changes the composition and proportion of gut microbiota, reducing bacteria that promote reproduction, such as Pseudobutyricoccus, Ruminiclostridium-E, Sporofaciens, UMGS1071, and CAG_353. Consequently, our study elucidates the specific impacts of high-temperature stress on the gut microbiota dynamics and reproductive health of Siberian hamsters, thereby furnishing insights for managing rodent populations amidst global climatic shifts. It also offers a valuable framework for understanding seasonal variations in mammalian reproductive strategies, contributing to the broader discourse on conservation and adaptation under changing environmental conditions.
Collapse
Affiliation(s)
- Wenjing Shen
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China; (W.S.); (P.G.)
| | - Peng Gao
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China; (W.S.); (P.G.)
| | - Kunying Zhou
- School of Life Sciences, Qufu Normal University, Qufu 273165, China; (K.Z.); (J.L.)
| | - Jin Li
- School of Life Sciences, Qufu Normal University, Qufu 273165, China; (K.Z.); (J.L.)
| | - Tingbei Bo
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China; (W.S.); (P.G.)
| | - Deli Xu
- School of Life Sciences, Qufu Normal University, Qufu 273165, China; (K.Z.); (J.L.)
| |
Collapse
|
13
|
Zhang Y, Chen J, Du M, Ruan Y, Wang Y, Guo J, Yang Q, Shao R, Wang H. Metagenomic insights into microbial variation and carbon cycling function in crop rotation systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174529. [PMID: 38986711 DOI: 10.1016/j.scitotenv.2024.174529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/12/2024]
Abstract
The decomposition and utilization of plant-derived carbon by microorganisms and carbon fixation are crucial pathways for enhancing soil organic carbon (SOC) storage. However, a gap remains in our understanding of the impact of microorganisms on the decomposition of plant-derived carbon and their capacity for carbon fixation in crop rotation systems. Based on a 12-year experiment with wheat-maize (WM), wheat-cotton (WC), and wheat-soybean (WS) rotations, the microbial communities and carbon cycle function were investigated. The results indicated that WS rotation significantly increased SOC content compared to WM and WC. In addition, a significant increase was observed in microbially available carbon and microbial biomass carbon in the WS soil compared with those in the others. Further analysis of the microbial community factors that influenced SOC content revealed that WS rotation, in contrast to WM rotation, enhanced the diversity and richness of bacteria and fungi. Analysis of microbial carbon decomposition functions revealed an increase in starch, lignin, and hemicellulose decomposition genes in the WS soil compared to the others. The changes in carbon decomposition genes were primarily attributed to six bacterial genera, namely Nocardioides, Agromyces, Microvirga, Skermanella, Anaeromyxobacter, and Arthrobacter, as well as four fungal genera, namely Dendryphion, Staphylotrichum, Apiotrichum, and Abortiporus, which were significantly influenced by the crop rotation systems. In addition, microbial carbon fixation-related genes such as ACAT, IDH1, GAPDH, rpiA, and rbcS were significantly enriched in WS. Species annotation of differential carbon fixation genes identified 18 genera that play a role in soil carbon fixation variation within the crop rotation systems. This study highlights the impact of crop rotation systems on SOC content and alterations in specific microbial communities on carbon cycle function.
Collapse
Affiliation(s)
- Yinglei Zhang
- College of Agronomy, Henan Agriculture University, Zhengzhou 450046, Henan, PR China
| | - Jinping Chen
- Shangqiu Station of National Field Agroecosystem Experimental Network, Shangqiu 476000, Henan, PR China
| | - Mingxue Du
- College of Agronomy, Henan Agriculture University, Zhengzhou 450046, Henan, PR China
| | - Yihao Ruan
- College of Agronomy, Henan Agriculture University, Zhengzhou 450046, Henan, PR China
| | - Yongchao Wang
- College of Agronomy, Henan Agriculture University, Zhengzhou 450046, Henan, PR China; Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Zhengzhou 450046, Henan, PR China
| | - Jiameng Guo
- College of Agronomy, Henan Agriculture University, Zhengzhou 450046, Henan, PR China; Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Zhengzhou 450046, Henan, PR China
| | - Qinghua Yang
- College of Agronomy, Henan Agriculture University, Zhengzhou 450046, Henan, PR China; Engineering Research Center for Crop Chemical Regulation, Zhengzhou 450046, Henan, PR China.
| | - Ruixin Shao
- College of Agronomy, Henan Agriculture University, Zhengzhou 450046, Henan, PR China; Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Zhengzhou 450046, Henan, PR China
| | - Hao Wang
- College of Agronomy, Henan Agriculture University, Zhengzhou 450046, Henan, PR China; Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Zhengzhou 450046, Henan, PR China.
| |
Collapse
|
14
|
Luo X, Hounmanou YMG, Ndayisenga F, Yu Z. Spontaneous fermentation mitigates the frequency of genes encoding antimicrobial resistance spreading from the phyllosphere reservoir to the diet. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172712. [PMID: 38677439 DOI: 10.1016/j.scitotenv.2024.172712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/18/2024] [Accepted: 04/21/2024] [Indexed: 04/29/2024]
Abstract
The phyllosphere microbiome of vegetable products constitutes an important reservoir for multidrug resistant bacteria and Antibiotic Resistance Genes (ARG). Vegetable products including fermented products such as Paocai therefore may serve as a shuttle for extrinsic microorganisms with ARGs into the gut of consumers. Here we study the effect of fermentation on Paocai ARG dissemination by metagenomic analysis. Microbial abundance and diversity of the Paocai microbiome were diminished during fermentation, which correlated with the reduction of abundance in ARGs. Specifically, as fermentation progressed, Enterobacterales overtook Pseudomonadales as the predominant ARG carriers, and Lactobacillales and Enterobacteriales became the determinants of Paocai resistome variation. Moreover, the dual effect of microbes and metal resistance genes (MRGs) was the major contributor driving Paocai resistome dynamics. We recovered several metagenome-assembled genomes (MAGs) carrying acquired ARGs in the phyllosphere microbiome. ARGs of potential clinical and epidemiological relevance such as tet M and emrB-qacA, were mainly hosted by non-dominant bacterial genera. Overall, our study provides evidence that changes in microbial community composition by fermentation aid in constraining ARG dispersal from raw ingredients to the human microbiome but does not eliminate them.
Collapse
Affiliation(s)
- Xiao Luo
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101408, China; RCEES-IMCAS-UCAS Joint-Lab of Microbial Technology for Environmental Science, Beijing 100085, China
| | - Yaovi Mahuton Gildas Hounmanou
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Stigbojlen 4, 1870 Frederiksberg, Denmark
| | - Fabrice Ndayisenga
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; RCEES-IMCAS-UCAS Joint-Lab of Microbial Technology for Environmental Science, Beijing 100085, China
| | - Zhisheng Yu
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101408, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; RCEES-IMCAS-UCAS Joint-Lab of Microbial Technology for Environmental Science, Beijing 100085, China.
| |
Collapse
|
15
|
Zhu XM, Chen JQ, Du Y, Lin CX, Qu YF, Lin LH, Ji X. Microbial communities are thermally more sensitive in warm-climate lizards compared with their cold-climate counterparts. Front Microbiol 2024; 15:1374209. [PMID: 38686106 PMCID: PMC11056556 DOI: 10.3389/fmicb.2024.1374209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/01/2024] [Indexed: 05/02/2024] Open
Abstract
Environmental temperature affects the composition, structure, and function of the gut microbial communities in host animals. To elucidate the role of gut microbiota in thermal adaptation, we designed a 2 species × 3 temperatures experiment, whereby we acclimated adult males of two agamid lizard species (warm-climate Leiolepis reevesii and cold-climate Phrynocephalus przewalskii) to 20, 28, and 36°C for 2 weeks and then collected their fecal and small-intestinal samples to analyze and compare the microbiota using 16S rRNA gene amplicon sequencing technology. The fecal microbiota displayed more pronounced interspecific differences in microbial community than the small-intestinal microbiota in the two species occurring in thermally different regions. The response of fecal and small-intestinal microbiota to temperature increase or decrease differed between the two species, with more bacterial taxa affected by acclimation temperature in L. reevesii than in P. przewalskii. Both species, the warm-climate species in particular, could cope with temperature change by adjusting the relative abundance of functional categories associated with metabolism and environmental information processing. Functional genes associated with carbohydrate metabolism were enhanced in P. przewalskii, suggesting the contribution of the fecal microbiota to cold-climate adaptation in P. przewalskii. Taken together, our results validate the two hypotheses tested, of which one suggests that the gut microbiota should help lizards adapt to thermal environments in which they live, and the other suggests that microbial communities should be thermally more sensitive in warm-climate lizards than in cold-climate lizards.
Collapse
Affiliation(s)
- Xia-Ming Zhu
- College of Life Sciences, Nanjing Normal University, Nanjing, China
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Jun-Qiong Chen
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yu Du
- Hainan Key Laboratory of Herpetological Research, College of Fisheries and Life Sciences, Hainan Tropical Ocean University, Sanya, China
| | - Chi-Xian Lin
- Hainan Key Laboratory of Herpetological Research, College of Fisheries and Life Sciences, Hainan Tropical Ocean University, Sanya, China
| | - Yan-Fu Qu
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Long-Hui Lin
- Herpetological Research Center, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Xiang Ji
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| |
Collapse
|
16
|
Khan S, McWhorter AR, Andrews DM, Underwood GJ, Moore RJ, Van TTH, Gast RK, Chousalkar KK. A live attenuated Salmonella Typhimurium vaccine dose and diluent have minimal effects on the caecal microbiota of layer chickens. Front Vet Sci 2024; 11:1364731. [PMID: 38686027 PMCID: PMC11057240 DOI: 10.3389/fvets.2024.1364731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/06/2024] [Indexed: 05/02/2024] Open
Abstract
Among the Salmonella reduction strategies in poultry production, one option is to use a Salmonella vaccine. The aim of vaccinating layer flocks is to reduce the shedding of wild-type Salmonella in the poultry environment, thereby reducing the contamination of poultry products (eggs and meat). Nutritive diluent and a higher dose of vaccine may enhance its colonization potential in the gut of chickens. In this study, a commercially available live attenuated vaccine (Vaxsafe® ST) was reconstituted in different media and delivered orally to day-old chicks at three different doses (107, 108, and 109 CFU/chick). Gut colonization of the vaccine strain and the effects of vaccination on gut microbiota were assessed in commercial-layer chickens. The vaccine diluent and dosage minimally affected microbiota alpha diversity. Microbiota beta diversity was significantly different (P < 0.05) based on the vaccine diluent and dose, which indicated that the vaccinated and unvaccinated chickens had different gut microbial communities. Differences were noted in the abundance of several genera, including Blautia, Colidextribacter, Dickeya, Enterococcus, Lactobacillus, Pediococcus, and Sellimonas. The abundance of Colidextribacter was significantly lower in chickens that received vaccine reconstituted in Marek's and water diluents, while Lactobacillus abundance was significantly lower in the water group. The highest vaccine dose (109 CFU/chick) did not significantly alter (P > 0.05) the abundance of microbial genera. Chicken age affected the microbiota composition more significantly than the vaccine dose and diluent. The abundance of Lactobacillus, Blautia, Caproiciproducens, Pediococcus, and Colidextribacter was significantly higher on day 14 compared with day 7 post-vaccination. The Salmonella Typhimurium vaccine load in the caeca was not significantly affected by diluent and vaccine dose; however, it was significantly lower (P < 0.0001) on day 14 compared with day 7 post-vaccination. Overall, the S. Typhimurium vaccine minimally affected the gut microbiota structure of layer chicks, whereas changes in microbiota were more significant with chicken age.
Collapse
Affiliation(s)
- Samiullah Khan
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| | - Andrea R. McWhorter
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| | | | | | - Robert J. Moore
- School of Science, RMIT University, Bundoora, VIC, Australia
| | - Thi Thu Hao Van
- School of Science, RMIT University, Bundoora, VIC, Australia
| | - Richard K. Gast
- U. S. National Poultry Research Center, USDA Agricultural Research Service, Athens, GA, United States
| | - Kapil K. Chousalkar
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| |
Collapse
|
17
|
Chen X, Gong Y, Li Z, Guo Y, Zhang H, Hu B, Yang W, Cao Y, Mu R. Key function of Kouleothrix in stable formation of filamentous aerobic granular sludge at low superficial gas velocity with polymeric substrates. BIORESOURCE TECHNOLOGY 2024; 397:130466. [PMID: 38373501 DOI: 10.1016/j.biortech.2024.130466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/29/2024] [Accepted: 02/16/2024] [Indexed: 02/21/2024]
Abstract
Forming and maintaining stable aerobic granular sludge (AGS) at a low superficial gas velocity (SGV) is challenging, particularly with polymeric substrates. This study cultivated filamentous aerobic granular sludge (FAGS) with filamentous Kouleothrix (Type 1851) at low SGV (0.15 cm/s) utilizing mixed acetate-soluble starch. Within approximately 260 days, notable increases in the relative abundance of Kouleothrix (from 4 % to 10 %) and Ca. Competibacter (from 1 % to 26 %) were observed through 16S rRNA gene analysis. Metagenomic analysis revealed increased expression of functional genes involved in volatile fatty acid (VFA) production (e.g., ackA and pta) and polyhydroxyalkanoate synthesis (e.g., phbB and phbC). Kouleothrix acted as a skeleton for bacterial attachment and was the key fermenting bacteria promoting granulation and maintaining granule stability. This study provides insight into the formation of FAGS with low-energy and non-VFA substrates.
Collapse
Affiliation(s)
- Xi Chen
- School of Urban Planning and Municipal Engineering, Xi'an Polytechnic University, Xi'an 710048, China.
| | - Yanzhe Gong
- School of Urban Planning and Municipal Engineering, Xi'an Polytechnic University, Xi'an 710048, China
| | - Zhihua Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yingming Guo
- School of Urban Planning and Municipal Engineering, Xi'an Polytechnic University, Xi'an 710048, China
| | - Hongjiang Zhang
- North China Electric Power Research Institute Co., Ltd, Beijing 100045, China
| | - Bin Hu
- School of Urban Planning and Municipal Engineering, Xi'an Polytechnic University, Xi'an 710048, China
| | - Wenhao Yang
- School of Urban Planning and Municipal Engineering, Xi'an Polytechnic University, Xi'an 710048, China
| | - Yinhuan Cao
- School of Urban Planning and Municipal Engineering, Xi'an Polytechnic University, Xi'an 710048, China
| | - Ruihua Mu
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an 710048, China
| |
Collapse
|
18
|
Li B, Wu K, Duan G, Yin W, Lei M, Yan Y, Ren Y, Zhang C. Folic Acid and Taurine Alleviate the Impairment of Redox Status, Immunity, Rumen Microbial Composition and Fermentation of Lambs under Heat Stress. Animals (Basel) 2024; 14:998. [PMID: 38612237 PMCID: PMC11010938 DOI: 10.3390/ani14070998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/14/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
The aim of this study was to investigate if the supplementation of folic acid and taurine can relieve the adverse effects of different levels of heat stress (HS) on growth performance, physiological indices, antioxidative capacity, immunity, rumen fermentation and microbiota. A total of 24 Dorper × Hu crossbred lambs (27.51 ± 0.96 kg) were divided into four groups: control group (C, 25 °C), moderate HS group (MHS, 35 °C), severe HS group (SHS, 40 °C), and the treatment group, under severe HS (RHS, 40 °C, 4 and 40 mg/kg BW/d coated folic acid and taurine, respectively). Results showed that, compared with Group C, HS significantly decreased the ADG of lambs (p < 0.05), and the ADG in the RHS group was markedly higher than in the MHS and SHS group (p < 0.05). HS had significant detrimental effects on physiological indices, antioxidative indices and immune status on the 4th day (p < 0.05). The physiological indices, such as RR and ST, increased significantly (p < 0.05) with the HS level and were significantly decreased in the RHS group, compared to the SHS group (p < 0.05). HS induced the significant increase of MDA, TNF-α, and IL-β, and the decrease of T-AOC, SOD, GPx, IL-10, IL-13, IgA, IgG, and IgM (p < 0.05). However, there was a significant improvement in these indices after the supplementation of folic acid and taurine under HS. Moreover, there were a significant increase in Quinella and Succinivibrio, and an evident decrease of the genera Rikenellaceae_RC9_gut_group and Asteroleplasma under HS (p < 0.05). The LEfSe analysis showed that the genera Butyrivibrio, Eubacterium_ventriosum_group, and f_Bifidobacteriaceae were enriched in the MHS, SHS and RHS groups, respectively. Correlated analysis indicated that the genus Rikenellaceae_RC9_gut_group was positively associated with MDA, while it was negatively involved in IL-10, IgA, IgM, and SOD (p < 0.05); The genus Anaeroplasma was positively associated with the propionate and valerate, while the genus Succinivibrio was negatively involved in TNF-α (p < 0.05). In conclusion, folic acid and taurine may alleviate the adverse effects of HS on antioxidant capacity, immunomodulation, and rumen fermentation of lambs by inducing changes in the microbiome that improve animal growth performance.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Youshe Ren
- College of Animal Science, Shanxi Agricultural University, Taiyuan 030031, China; (B.L.); (K.W.); (G.D.); (W.Y.); (M.L.); (Y.Y.)
| | - Chunxiang Zhang
- College of Animal Science, Shanxi Agricultural University, Taiyuan 030031, China; (B.L.); (K.W.); (G.D.); (W.Y.); (M.L.); (Y.Y.)
| |
Collapse
|
19
|
Liu M, Kang Z, Cao X, Jiao H, Wang X, Zhao J, Lin H. Prevotella and succinate treatments altered gut microbiota, increased laying performance, and suppressed hepatic lipid accumulation in laying hens. J Anim Sci Biotechnol 2024; 15:26. [PMID: 38369510 PMCID: PMC10874536 DOI: 10.1186/s40104-023-00975-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 12/12/2023] [Indexed: 02/20/2024] Open
Abstract
BACKGROUND This work aimed to investigate the potential benefits of administering Prevotella and its primary metabolite succinate on performance, hepatic lipid accumulation and gut microbiota in laying hens. RESULTS One hundred and fifty 58-week-old Hyline Brown laying hens, with laying rate below 80% and plasma triglyceride (TG) exceeding 5 mmol/L, were used in this study. The hens were randomly allocated into 5 groups and subjected to one of the following treatments: fed with a basal diet (negative control, NC), oral gavage of 3 mL/hen saline every other day (positive control, PC), gavage of 3 mL/hen Prevotella melaninogenica (107 CFU/mL, PM) or 3 mL/hen Prevotella copri (107 CFU/mL, P. copri) every other day, and basal diet supplemented with 0.25% sodium succinate (Succinate). The results showed that PM and P. copri treatments significantly improved laying rate compared to the PC (P < 0.05). The amount of lipid droplet was notably decreased by PM, P. copri, and Succinate treatments at week 4 and decreased by P. copri at week 8 (P < 0.05). Correspondingly, the plasma TG level in Succinate group was lower than that of PC (P < 0.05). Hepatic TG content, however, was not significantly influenced at week 4 and 8 (P > 0.05). PM treatment increased (P < 0.05) the mRNA levels of genes PGC-1β and APB-5B at week 4, and ACC and CPT-1 at week 8. The results indicated enhanced antioxidant activities at week 8, as evidenced by reduced hepatic malondialdehyde (MDA) level and improved antioxidant enzymes activities in PM and Succinate groups (P < 0.05). Supplementing with Prevotella or succinate can alter the cecal microbiota. Specifically, the abundance of Prevotella in the Succinate group was significantly higher than that in the other 4 groups at the family and genus levels (P < 0.05). CONCLUSIONS Oral intake of Prevotella and dietary supplementation of succinate can ameliorate lipid metabolism of laying hens. The beneficial effect of Prevotella is consistent across different species. The finding highlights that succinate, the primary metabolite of Prevotella, represents a more feasible feed additive for alleviating fatty liver in laying hens.
Collapse
Affiliation(s)
- Min Liu
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an, 271018, China
| | - Zeyue Kang
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an, 271018, China
| | - Xikang Cao
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an, 271018, China
| | - Hongchao Jiao
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an, 271018, China
| | - Xiaojuan Wang
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an, 271018, China
| | - Jingpeng Zhao
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an, 271018, China
| | - Hai Lin
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an, 271018, China.
| |
Collapse
|
20
|
Kang K, Gao W, Cui Y, Xiao M, An L, Wu J. Curcumin Changed the Number, Particle Size, and miRNA Profile of Serum Exosomes in Roman Laying Hens under Heat Stress. Genes (Basel) 2024; 15:217. [PMID: 38397207 PMCID: PMC10887567 DOI: 10.3390/genes15020217] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Exosomes have the ability to transport RNA/miRNAs and possess immune modulatory functions. Heat stress, a significant limiting factor in the poultry industry, can induce oxidative stress and suppress the immune responses of laying hens. In this study, we investigated the expression profiles of serum exosomes and their miRNAs in Roman laying hens who were fed a diet with either 0 or 200 mg/kg curcumin under heat stress conditions. The numbers of exosomes were significantly higher in both the HC (heat stress) and HT (heat stress with 200 mg/kg curcumin) groups compared to the NC (control) group and NT (control with 200 mg/kg curcumin) group (p < 0.05). Additionally, we observed that the most prevalent particle diameters were 68.75 nm, 68.25 nm, 54.25 nm, and 60.25 nm in the NC, NT, HC, and HT groups, respectively. From our sRNA library analysis, we identified a total of 863 unique miRNAs; among them, we screened out for subsequent bioinformatics analysis a total of 328 gga-miRNAs(chicken miRNA from the miRbase database). The KEGG pathways that are associated with target genes which are regulated by differentially expressed miRNAs across all four groups at a p-value < 0.01 included oxidative phosphorylation, protein export, cysteine and methionine metabolism, fatty acid degradation, ubiquitin-mediated proteolysis, and cardiac muscle contraction. The above findings suggest that curcumin could mitigate heat-induced effects on laying hens by altering the miRNA expression profiles of serum exosomes along with related regulatory pathways.
Collapse
Affiliation(s)
| | | | | | | | | | - Jiang Wu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (K.K.)
| |
Collapse
|
21
|
Nguyen JB, Marshall CW, Cook CN. The buzz within: the role of the gut microbiome in honeybee social behavior. J Exp Biol 2024; 227:jeb246400. [PMID: 38344873 DOI: 10.1242/jeb.246400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Gut symbionts influence the physiology and behavior of their host, but the extent to which these effects scale to social behaviors is an emerging area of research. The use of the western honeybee (Apis mellifera) as a model enables researchers to investigate the gut microbiome and behavior at several levels of social organization. Insight into gut microbial effects at the societal level is critical for our understanding of how involved microbial symbionts are in host biology. In this Commentary, we discuss recent findings in honeybee gut microbiome research and synthesize these with knowledge of the physiology and behavior of other model organisms to hypothesize how host-microbe interactions at the individual level could shape societal dynamics and evolution.
Collapse
Affiliation(s)
- J B Nguyen
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA
| | - C W Marshall
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA
| | - C N Cook
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA
| |
Collapse
|
22
|
Yu Z, Cantet JM, Paz HA, Kaufman JD, Orellano MS, Ipharraguerre IR, Ríus AG. Heat stress-associated changes in the intestinal barrier, inflammatory signals, and microbiome communities in dairy calves. J Dairy Sci 2024; 107:1175-1196. [PMID: 37730180 DOI: 10.3168/jds.2023-23873] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/25/2023] [Indexed: 09/22/2023]
Abstract
Recent studies indicate that heat stress pathophysiology is associated with intestinal barrier dysfunction, local and systemic inflammation, and gut dysbiosis. However, inconclusive results and a poor description of tissue-specific changes must be addressed to identify potential intervention targets against heat stress illness in growing calves. Therefore, the objective of this study was to evaluate components of the intestinal barrier, pro- and anti-inflammatory signals, and microbiota community composition in Holstein bull calves exposed to heat stress. Animals (mean age = 12 wk old; mean body weight = 122 kg) penned individually in temperature-controlled rooms were assigned to (1) thermoneutral conditions (constant room temperature at 19.5°C) and restricted offer of feed (TNR, n = 8), or (2) heat stress conditions (cycles of room temperatures ranging from 20 to 37.8°C) along with ad libitum offer of feed (HS, n = 8) for 7 d. Upon treatment completion, sections of the jejunum, ileum, and colon were collected and snap-frozen immediately to evaluate gene and protein expression, cytokine concentrations, and myeloperoxidase activity. Digesta aliquots of the ileum, colon, and rectum were collected to assess bacterial communities. Plasma was harvested on d 2, 5, and 7 to determine cytokine concentrations. Overall, results showed a section-specific effect of HS on intestinal integrity. Jejunal mRNA expression of TJP1 was decreased by 70.9% in HS relative to TNR calves. In agreement, jejunal expression of heat shock transcription factor-1 protein, a known tight junction protein expression regulator, decreased by 48% in HS calves. Jejunal analyses showed that HS decreased concentrations of IL-1α by 36.6% and tended to decrease the concentration of IL-17A. Conversely, HS elicited a 3.5-fold increase in jejunal concentration of anti-inflammatory IL-36 receptor antagonist. Plasma analysis of pro-inflammatory cytokines showed that IL-6 decreased by 51% in HS relative to TNR calves. Heat stress alteration of the large intestine bacterial communities was characterized by increased genus Butyrivibrio_3, a known butyrate-producing organism, and changes in bacteria metabolism of energy and AA. A strong positive correlation between the rectal temperature and pro-inflammatory Eggerthii spp. was detected in HS calves. In conclusion, this work indicates that HS impairs the intestinal barrier function of jejunum. The pro- and anti-inflammatory signal changes may be part of a broader response to restore intestinal homeostasis in jejunum. The changes in large intestine bacterial communities favoring butyrate-producing organisms (e.g., Butyrivibrio spp.) may be part of a successful response to maintain the integrity of the colonic mucosa of HS calves. The alteration of intestinal homeostasis should be the target for heat stress therapies to restore biological functions, and, thus highlights the relevance of this work.
Collapse
Affiliation(s)
- Z Yu
- Department of Animal Science, University of Tennessee Institute of Agriculture, Knoxville, TN 37996
| | - J M Cantet
- Department of Animal Science, University of Tennessee Institute of Agriculture, Knoxville, TN 37996
| | - H A Paz
- Department of Pediatrics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205; Arkansas Children's Nutrition Center, Little Rock, AR 72202
| | - J D Kaufman
- Department of Animal Science, University of Tennessee Institute of Agriculture, Knoxville, TN 37996
| | - M S Orellano
- Centro de Investigaciones y Transferencia de Villa María, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Villa María, Villa María, Córdoba 5900, Argentina
| | - I R Ipharraguerre
- Institute of Human Nutrition and Food Science, University of Kiel, Kiel 24118, Germany
| | - A G Ríus
- Department of Animal Science, University of Tennessee Institute of Agriculture, Knoxville, TN 37996.
| |
Collapse
|
23
|
Qin M, Wang Z, Liang M, Sha Y, Liu M, Liu J, Wang T, Zhao C, Wang Z, Guo D, Li R. Effects of dietary supplementation with tea polyphenols and probiotics on laying performance, biochemical parameters intestinal morphology and microflora of laying hens. Int J Biol Macromol 2024; 256:128368. [PMID: 38029914 DOI: 10.1016/j.ijbiomac.2023.128368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 11/19/2023] [Accepted: 11/21/2023] [Indexed: 12/01/2023]
Abstract
This study was conducted to investigate the effects of tea polyphenols (TP) and probiotics (PB) on the production performance, biochemical indices, and gut health of laying hens. A total of 400 Hy-line Brown layers (45 weeks old) were randomly assigned to 8 diet groups for 8-week feeding trial. Compared with the control basal diet (CT), dietary high dosage of TP and PB (HTP-PB) increased egg mass (P < 0.05). Supplementation with HTP-PB improved the levels of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) and decreased the malonic dialdehyde (MDA) content (P < 0.05) without affecting the contents of immunoglobulins in the serum. The combination of HTP and PB supplementation promoted the secretion of estradiol (E2) and progesterone (PROG) compared with treatment with TP or PB alone (P < 0.05). The combined use of HTP and PB induced higher jejunal villus height (VH) than the CT group (P < 0.05). Dietary TP and PB could optimize the functional network of intestinal microflora and the interactions between the intestinal microflora and the host. Therefore, the combined use of the high dosage of TP and PB affected laying performance, improved antioxidant capacity, and promoted intestinal health, which may be associated with regulation of the intestinal microbiota.
Collapse
Affiliation(s)
- Ming Qin
- Institute of Animal Science and Veterinary Medicine, Yantai Academy of Agricultural Sciences, Yantai 265500, China
| | - Zengguang Wang
- Institute of Animal Science and Veterinary Medicine, Yantai Academy of Agricultural Sciences, Yantai 265500, China
| | - Mingzhi Liang
- Institute of Animal Science and Veterinary Medicine, Yantai Academy of Agricultural Sciences, Yantai 265500, China
| | - Yufen Sha
- Institute of Animal Science and Veterinary Medicine, Yantai Academy of Agricultural Sciences, Yantai 265500, China
| | - Minxiao Liu
- Institute of Animal Science and Veterinary Medicine, Yantai Academy of Agricultural Sciences, Yantai 265500, China
| | - Jiewei Liu
- College of Animal Science and Technology, Jiangxi Agriculture University, Nanchang 330045, China; GuangDong Shengdilecun Ecological Food Co., Ltd, Kaiping 529300, China
| | - Ting Wang
- Yantai Municipal Agriculture and Rural Affairs Bureau, Yantai 264000, China
| | - Chengxin Zhao
- Yantai Jinhai Pharmaceutical Co., Ltd, Yantai 265323, China
| | - Zhixin Wang
- Institute of Animal Science and Veterinary Medicine, Yantai Academy of Agricultural Sciences, Yantai 265500, China
| | - Duitian Guo
- Institute of Animal Science and Veterinary Medicine, Yantai Academy of Agricultural Sciences, Yantai 265500, China
| | - Ruili Li
- Institute of Animal Science and Veterinary Medicine, Yantai Academy of Agricultural Sciences, Yantai 265500, China.
| |
Collapse
|
24
|
Sakda P, Xiang X, Song Z, Wu Y, Zhou L. Impact of Season on Intestinal Bacterial Communities and Pathogenic Diversity in Two Captive Duck Species. Animals (Basel) 2023; 13:3879. [PMID: 38136916 PMCID: PMC10740475 DOI: 10.3390/ani13243879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Vertebrates and their gut bacteria interact in complex and mutually beneficial ways. The intestinal microbial composition is influenced by several external influences. In addition to food, the abiotic elements of the environment, such as temperature, humidity, and seasonal fluctuation are also important determinants. Fecal samples were collected from two captive duck species, Baikal teal (Sibirionetta formosa) and common teal (Anas crecca) across four seasons (summer, autumn, winter, and spring). These ducks were consistently fed the same diet throughout the entire experiment. High throughput sequencing (Illumina Mi-seq) was employed to analyze the V4-V5 region of the 16sRNA gene. The dominant phyla in all seasons were Proteobacteria and Firmicutes. Interestingly, the alpha diversity was higher in winter for both species. The NMDS, PCoA, and ANOSIM analysis showed the distinct clustering of bacterial composition between different seasons, while no significant differences were discovered between duck species within the same season. In addition, LefSe analysis demonstrated specific biomarkers in different seasons, with the highest number revealed in winter. The co-occurrence network analysis also showed that during winter, the network illustrated a more intricate structure with the greatest number of nodes and edges. However, this study identified ten potentially pathogenic bacterial species, which showed significantly enhanced diversity and abundance throughout the summer. Overall, our results revealed that season mainly regulated the intestinal bacterial community composition and pathogenic bacteria of captive ducks under the instant diet. This study provides an important new understanding of the seasonal variations in captive wild ducks' intestinal bacterial community structure. The information available here may be essential data for preventing and controlling infections caused by pathogenic bacteria in captive waterbirds.
Collapse
Affiliation(s)
- Patthanan Sakda
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; (P.S.); (Z.S.); (Y.W.)
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, Anhui University, Hefei 230601, China
| | - Xingjia Xiang
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; (P.S.); (Z.S.); (Y.W.)
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, Anhui University, Hefei 230601, China
- Anhui Shengjin Lake Wetland Ecology National Long-Term Scientific Research Base, Chizhou 247230, China
| | - Zhongqiao Song
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; (P.S.); (Z.S.); (Y.W.)
| | - Yuannuo Wu
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; (P.S.); (Z.S.); (Y.W.)
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, Anhui University, Hefei 230601, China
| | - Lizhi Zhou
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; (P.S.); (Z.S.); (Y.W.)
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, Anhui University, Hefei 230601, China
- Anhui Shengjin Lake Wetland Ecology National Long-Term Scientific Research Base, Chizhou 247230, China
| |
Collapse
|
25
|
Nam JH, Han GP, Kim DY, Kwon CH, Kil DY. Effect of dietary glycine supplementation on productive performance, egg quality, stress response, and fatty liver incidence in laying hens raised under heat stress conditions. Poult Sci 2023; 102:103101. [PMID: 37826904 PMCID: PMC10571020 DOI: 10.1016/j.psj.2023.103101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/22/2023] [Accepted: 09/06/2023] [Indexed: 10/14/2023] Open
Abstract
The current experiment aimed to investigate the effect of dietary glycine (Gly) supplementation on productive performance, egg quality, stress response, and fatty liver incidence in laying hens raised under heat stress (HS) conditions. A total of two hundred eighty 24-wk-old Lohmann Brown-Lite laying hens were randomly allotted to 1 of 4 dietary treatments with 7 replicates. The negative control (NC) diet was prepared to meet or exceed the nutrient and energy requirement for Lohmann Brown laying hens, whereas the positive control (PC) diet was formulated to increase AMEn by 100 kcal/kg compared with the NC diet. Two additional diets were prepared by supplementing 0.341% and 0.683% Gly to the NC diet. All hens were exposed to cyclic HS at 31.4 ± 1.17°C for 8 h/d and 26.7 ± 1.10°C for the remaining time for a 12-wk trial. Results indicated that increasing supplementation of Gly in diets tended (linear, P = 0.088) to decrease the FCR of laying hens. Increasing supplementation of Gly in diets increased (linear, P < 0.05) eggshell lightness and decreased (linear, P < 0.05) egg yolk color. Moreover, a tendency for a quadratic association (P < 0.10) of serum aspartate aminotransferase and alanine aminotransferase concentrations with increasing supplementation of Gly was observed. Increasing supplementation of Gly in diets decreased (linear, P < 0.05) blood heterophil:lymphocyte ratio of laying hens. Hens fed the NC diet showed higher fatty liver incidence (P < 0.05) than those fed the PC diet, but increasing supplementation of Gly decreased (linear, P < 0.05) fatty liver incidence of laying hens. In conclusion, increasing supplementation of Gly up to 0.683% in diets decreases FCR, stress response, and fatty liver incidence in laying hens raised under HS conditions.
Collapse
Affiliation(s)
- Jeong Hun Nam
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Gi Ppeum Han
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Deok Yun Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Chan Ho Kwon
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Dong Yong Kil
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea.
| |
Collapse
|
26
|
Xu X, Rothrock MJ, Mishra A, Kumar GD, Mishra A. Relationship of the Poultry Microbiome to Pathogen Colonization, Farm Management, Poultry Production, and Foodborne Illness Risk Assessment. J Food Prot 2023; 86:100169. [PMID: 37774838 DOI: 10.1016/j.jfp.2023.100169] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/01/2023]
Abstract
Despite the continuous progress in food science and technology, the global burden of foodborne illnesses remains substantial, with pathogens in food causing millions of infections each year. Traditional microbiological culture methods are inadequate in detecting the full spectrum of these microorganisms, highlighting the need for more comprehensive detection strategies. This review paper aims to elucidate the relationship between foodborne pathogen colonization and the composition of the poultry microbiome, and how this knowledge can be used for improved food safety. Our review highlights that the relationship between pathogen colonization varies across different sections of the poultry microbiome. Further, our review suggests that the microbiome profile of poultry litter, farm soil, and farm dust may serve as potential indicators of the farm environment's food safety issues. We also agree that the microbiome of processed chicken samples may reveal potential pathogen contamination and food quality issues. In addition, utilizing predictive modeling techniques on the collected microbiome data, we suggest establishing correlations between particular taxonomic groups and the colonization of pathogens, thus providing insights into food safety, and offering a comprehensive overview of the microbial community. In conclusion, this review underscores the potential of microbiome analysis as a powerful tool in food safety, pathogen detection, and risk assessment.
Collapse
Affiliation(s)
- Xinran Xu
- Department of Food Science and Technology, University of Georgia, Athens, GA, USA
| | - Michael J Rothrock
- Egg Safety and Quality Research Unit, U.S. National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture, Athens, GA, USA
| | - Aditya Mishra
- Department of Statistics, University of Georgia, Athens, GA, USA
| | | | - Abhinav Mishra
- Department of Food Science and Technology, University of Georgia, Athens, GA, USA.
| |
Collapse
|
27
|
Chen X, Xiong P, Song W, Song Q, Zou Z, Huang J, Chen J, Xu C, Su W, Ai G, Wei Q. Dietary supplementation with honeycomb extracts positively improved egg nutritional and flavor quality, serum antioxidant and immune functions of laying ducks. Front Vet Sci 2023; 10:1277293. [PMID: 37901107 PMCID: PMC10600442 DOI: 10.3389/fvets.2023.1277293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023] Open
Abstract
Introduction Honeycomb is a traditional natural health medicine and has antioxidant, antibacterial, anti-inflammatory, antiviral and antitumor activities. It is currently unclear whether honeycomb extract supplementation has positive effects on the intensive farming laying duck production. This study aims to evaluate the effects of honeycomb extracts on the laying performance, egg nutritional and flavor quality, serum biochemical indexes, and antioxidant and immune status in laying ducks. Methods A total of 672 healthy 28-week-old Shanma laying ducks with similar laying performance and body weight were randomly distributed into four dietary treatments with 6 replicates of 28 birds. The birds in each treatment were fed the basal diet supplemented with 0 (control group), 0.5, 1.0 or 1.5 g/kg honeycomb extracts, respectively. Feed and water were provided ad libitum for 45 days. Laying performance, egg quality, egg nutrition and flavor quality, serum parameters were assessed. Results The results showed that compared with the control group, honeycomb extracts addition significantly increased the average daily feed intake but did not affect the other laying performance indexes, egg quality or serum biochemical indexes of laying ducks. Dietary supplementation with honeycomb extracts significantly increased crude protein content and decreased the contents of cholesterol and trimethylamine in eggs. Diets supplemented with 1.5 g/kg honeycomb extracts significantly improved egg total amino acids and flavor amino acids contents, monounsaturated fatty acids and polyunsaturated fatty acids composition and enhanced the serum antioxidant activity and immune functions of ducks. Discussion Duck eggs are rich in nutrients and a valuable source of high-quality food for human, while they are rarely consumed directly by consumers because of their stronger fishy odor and lower sensory quality. Many studies have showed that the influence of dietary supplementation on egg components. This study indicated that dietary supplementation with honeycomb extracts positively reduced the contents of egg cholesterol and trimethylamine, improve egg amino acids contents and fatty acid profiles, enhanced serum antioxidant and immune status of laying ducks. The recommended supplemental level of honeycomb extracts was 1.5 g/kg in the diet of laying ducks.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Qipeng Wei
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| |
Collapse
|
28
|
Qin Q, Li Z, Zhang M, Dai Y, Li S, Wu H, Zhang Z, Chen P. Effects of melittin on production performance, antioxidant function, immune function, heat shock protein, intestinal morphology, and cecal microbiota in heat-stressed quails. Poult Sci 2023; 102:102713. [PMID: 37540950 PMCID: PMC10407909 DOI: 10.1016/j.psj.2023.102713] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/06/2023] [Accepted: 04/09/2023] [Indexed: 08/06/2023] Open
Abstract
The purpose of this study was to investigate the effects of melittin on production performance, antioxidant function, immune function, heat shock protein, intestinal morphology, and cecal microbiota of heat-stressed quails. A total of 120 (30-day-old) male quails were randomly divided into 3 groups. Each group consisted of 4 replicates with 10 birds per replicate. The ambient temperature of the control group (group W) was 24°C ± 2°C. The heat stress group (group WH) and the heat stress + melittin group (group WHA2) were subjected to heat stress for 4 h from 12:00 to 16:00 every day, and the temperature was 36°C ± 2°C for 10 d. The results showed that compared with the group W, heat stress significantly decreased growth performance, serum and liver antioxidative function, immune function, intestinal villus height (VH) and villus height-to-crypt depth ratio (VH/CD), and cecal microbiota Chao and ACE index (P < 0.05). The crypt depth (CD) in the small intestine, and HSP70 and HSP90 mRNA levels in the heart, liver, spleen, and kidney were significantly increased (P < 0.05). Dietary melittin significantly increased growth performance, serum and liver antioxidative function, immune function, intestinal VH and VH/CD, and cecal microbiota Shannon index in heat-stressed quails (P < 0.05). Melittin significantly decreased small intestinal CD, and HSP70 and HSP90 mRNA levels in the viscera (P < 0.05). Furthermore, dietary melittin could have balanced the disorder of cecal microbiota caused by heat stress and increased the abundance and diversity of beneficial microbiota (e.g., Firmicutes were significantly increased). PICRUSt2 functional prediction revealed that most of the KEGG pathways with differential abundance caused by high temperature were related to metabolism, and melittin could have restored them close to normal levels. Spearman correlation analysis showed that the beneficial intestinal bacteria Anaerotruncus, Bacteroidales_S24-7_group_norank, Lachnospiraceae_unclassified, Shuttleworthia, and Ruminococcaceae_UCG-014 increased by melittin were positively correlated with average daily feed intake, the average daily gain, serum and liver superoxide dismutase, IgG, IgA, bursa of Fabricius index, and ileum VH and VH/CD. In sum, our results demonstrate for the first time that dietary melittin could improve the adverse effects of heat stress on antioxidant function, immune function, heat shock protein, intestinal morphology, and cecal microbiota in quails, consequently improving their production performance under heat stress.
Collapse
Affiliation(s)
- Qingming Qin
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, Henan Province 464000, PR China
| | - Zhili Li
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, Henan Province 464000, PR China
| | - Min Zhang
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, Henan Province 464000, PR China
| | - Yaqi Dai
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, Henan Province 464000, PR China
| | - Shuohan Li
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, Henan Province 464000, PR China
| | - Haigang Wu
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, Henan Province 464000, PR China
| | - Zifu Zhang
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, Henan Province 464000, PR China
| | - Peirong Chen
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, Henan Province 464000, PR China.
| |
Collapse
|
29
|
Kogut MH, Fernandez Miyakawa ME. Phenotype Alterations in the Cecal Ecosystem Involved in the Asymptomatic Intestinal Persistence of Paratyphoid Salmonella in Chickens. Animals (Basel) 2023; 13:2824. [PMID: 37760224 PMCID: PMC10525526 DOI: 10.3390/ani13182824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/28/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
The gastrointestinal ecosystem involves interactions between the host, gut microbiota, and external environment. To colonize the gut of poultry, Salmonella must surmount barriers levied by the intestine including mucosal innate immune responses and microbiota-mediated niche restrictions. Accordingly, comprehending Salmonella intestinal colonization in poultry requires an understanding of how the pathogen interacts with the intestinal ecosystem. In chickens, the paratyphoid Salmonella have evolved the capacity to survive the initial immune response and persist in the avian ceca for months without triggering clinical signs. The persistence of a Salmonella infection in the avian host involves both host defenses and tolerogenic defense strategies. The initial phase of the Salmonella-gut ecosystem interaction is characteristically an innate pro-inflammatory response that controls bacterial invasion. The second phase is initiated by an expansion of the T regulatory cell population in the cecum of Salmonella-infected chickens accompanied by well-defined shifts in the enteric neuro-immunometabolic pathways that changes the local phenotype from pro-inflammatory to an anti-inflammatory environment. Thus, paratyphoid Salmonella in chickens have evolved a unique survival strategy that minimizes the inflammatory response (disease resistance) during the initial infection and then induces an immunometabolic reprogramming in the cecum that alters the host defense to disease tolerance that provides an environment conducive to drive asymptomatic carriage of the bacterial pathogen.
Collapse
Affiliation(s)
- Michael H. Kogut
- Southern Plains Agricultural Research Center, USDA-ARS, College Station, TX 77845, USA
| | - Mariano Enrique Fernandez Miyakawa
- Instituto de Patobiología, Instituto Nacional de Tecnología, Nicolas Repetto y Los Reseros S/N, Hurlingham 1686, Buenos Aires, Argentina;
| |
Collapse
|
30
|
Gershoni M. Transgenerational transmission of environmental effects in livestock in the age of global warming. Cell Stress Chaperones 2023; 28:445-454. [PMID: 36715961 PMCID: PMC10468476 DOI: 10.1007/s12192-023-01325-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 01/10/2023] [Accepted: 01/22/2023] [Indexed: 01/31/2023] Open
Abstract
Recent decades provide mounting evidence for the continual increase in global temperatures, now termed "global warming," to the point of drastic worldwide change in the climate. Climatic change is a long-term shift in temperatures and weather patterns, including increased frequency and intensity of extreme environmental events such as heat waves accompanied by extreme temperatures and high humidity. Climate change and global warming put several challenges to the livestock industry by directly affecting the animal's production, reproduction, health, and welfare. The broad impact of global warming, and in particular heat stress, on-farm animals' performance has been comprehensively studied. It has been estimated that the US livestock industry's loss caused by heat stress is up to $2.4 billion annually. However, the long-term intergenerational and transgenerational effects of climatic change and global warming on farm animals are sparse. Transgenerational effects, which are mediated by epigenetic mechanisms, can affect the animal's performance regardless of its immediate environment by altering its phenotypic expression to fit its ancestors' environment. In many animal species, environmental effects are epigenetically encoded within a narrow time interval during the organism's gametogenesis, and these epigenetic modifications can then be intergenerationally transmitted. Several epigenetic mechanisms mediate intergenerational transmission of environmental effects, typically in a parent-dependent manner. Therefore, exposure of the animal to an extreme climatic event and other environmental stressors during gametogenesis can undergo epigenetic stabilization in the germline and be passed to the offspring. As a result, the offspring might express a phenotype adjusted to fit the stressors experienced by their ancestors, regardless of their direct environment. The purpose of this perspective is to review current evidence for intergenerational and transgenerational transmission of environmental stress effects, specifically in the context of global warming and climate change, and to offer viewpoints on the possible impacts on the livestock industry.
Collapse
Affiliation(s)
- Moran Gershoni
- Institute of Animal Science, Agricultural Research Organization, Volcani Center, 7505101, Rishon LeZion, Israel.
| |
Collapse
|
31
|
Liu S, Xiao Y, Wang X, Guo D, Wang Y, Wang Y. Effects of Microhabitat Temperature Variations on the Gut Microbiotas of Free-Living Hibernating Animals. Microbiol Spectr 2023; 11:e0043323. [PMID: 37378560 PMCID: PMC10434193 DOI: 10.1128/spectrum.00433-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Variations in ambient temperature (Ta) may significantly influence the gut microbiotas of ectothermic and endothermic animals, affecting fitness. It remains unclear, however, whether temperature fluctuations affect the gut microbial communities of hibernating animals during torpor. To investigate temperature-induced changes in the gut microbiota during hibernation under entirely natural conditions, we took advantage of two adjacent but distinct populations of the least horseshoe bat (Rhinolophus pusillus), which inhabit sites with a similar summer Ta but a different winter Ta. Using 16S rRNA gene high-throughput sequencing, we estimated differences in gut microbial diversity and composition between the hibernating (winter) and active (summer) R. pusillus populations at both sites. During the active period, gut microbiotas did not differ significantly between the two populations, probably due to the similar Tas. However, during hibernation, a higher Ta was associated with decreased α-diversity in the gut microbiome. During hibernation, temperature variation did not significantly affect the relative abundance of Proteobacteria, the dominant phylum at both sites, but marked site-specific differences were detected in the relative abundances of Firmicutes, Actinobacteria, and Tenericutes. In total, 74 amplicon sequence variants (ASVs) were significantly differentially abundant between the hibernating and active bat guts across the two sites; most of these ASVs were associated with the cooler site, and many belonged to pathogenic genera, suggesting that lower ambient temperatures during hibernation may increase the risk of pathogen proliferation in the host gut. Our findings help to clarify the mechanisms underlying the gut microbiota-driven adaptation of hibernating mammals to temperature changes. IMPORTANCE Temperature variations affect gut microbiome diversity and structure in both ectothermic and endothermic animals. Here, we aimed to characterize temperature-induced changes in the gut microbiotas of adjacent natural populations of the least horseshoe bat (Rhinolophus pusillus) which hibernate at different ambient temperatures. We found that the ambient temperature significantly affected the α-diversity, but not the β-diversity, of the gut microbiota. Bats hibernating at cooler temperatures experienced more drastic shifts in gut microbiome structure, with consequent effects on energy-related metabolic pathways. Our results provide novel insights into the effects of ambient temperature on the gut microbiotas of hibernating animals.
Collapse
Affiliation(s)
- Sen Liu
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Yanhong Xiao
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Xufan Wang
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Dongge Guo
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Yanmei Wang
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Ying Wang
- College of Life Sciences, Henan Normal University, Xinxiang, China
| |
Collapse
|
32
|
Shi M, Qin T, Cheng Z, Zheng D, Pu Z, Yang Z, Lim KJ, Yang M, Wang Z. Exploring the Core Bacteria and Functional Traits in Pecan (Carya illinoinensis) Rhizosphere. Microbiol Spectr 2023; 11:e0011023. [PMID: 37310220 PMCID: PMC10433825 DOI: 10.1128/spectrum.00110-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/19/2023] [Indexed: 06/14/2023] Open
Abstract
Pecan (Carya illinoinensis) and Chinese hickory (Carya cathayensis) are important commercially cultivated nut trees. They are phylogenetically closely related plants; however, they exhibit significantly different phenotypes in response to abiotic stress and development. The rhizosphere selects core microorganisms from bulk soil, playing a pivotal role in the plant's resistance to abiotic stress and growth. In this study, we used metagenomic sequencing to compare the selection capabilities of seedling pecan and seedling hickory at taxonomic and functional levels in bulk soil and the rhizosphere. We observed that pecan has a stronger capacity to enrich rhizosphere plant-beneficial microbe bacteria (e.g., Rhizobium, Novosphingobium, Variovorax, Sphingobium, and Sphingomonas) and their associated functional traits than hickory. We also noted that the ABC transporters (e.g., monosaccharide transporter) and bacterial secretion systems (e.g., type IV secretion system) are the core functional traits of pecan rhizosphere bacteria. Rhizobium and Novosphingobium are the main contributors to the core functional traits. These results suggest that monosaccharides may help Rhizobium to efficiently enrich this niche. Novosphingobium may use a type IV secretion system to interact with other bacteria and thereby influence the assembly of pecan rhizosphere microbiomes. Our data provide valuable information to guide core microbial isolation and expand our knowledge of the assembly mechanisms of plant rhizosphere microbes. IMPORTANCE The rhizosphere microbiome has been identified as a fundamental factor in maintaining plant health, helping plants to fight the deleterious effects of diseases and abiotic stresses. However, to date, studies on the nut tree microbiome have been scarce. Here, we observed a significant "rhizosphere effect" on the seedling pecan. We furthermore demonstrated the core rhizosphere microbiome and function in the seedling pecan. Moreover, we deduced possible factors that help the core bacteria, such as Rhizobium, to efficiently enrich the pecan rhizosphere and the importance of the type IV system for the assembly of pecan rhizosphere bacterial communities. Our findings provide information for understanding the mechanism of the rhizosphere microbial community enrichment process.
Collapse
Affiliation(s)
- Mengting Shi
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Tao Qin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Zhitao Cheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Dingwei Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Zhenyang Pu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Zhengfu Yang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Kean-Jin Lim
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Menghua Yang
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Hangzhou, Zhejiang, China
- Key Laboratory of Applied Technology on Green-Eco Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, Hangzhou, Zhejiang, China
| | - Zhengjia Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
| |
Collapse
|
33
|
Zmrhal V, Svoradova A, Venusova E, Slama P. The Influence of Heat Stress on Chicken Immune System and Mitigation of Negative Impacts by Baicalin and Baicalein. Animals (Basel) 2023; 13:2564. [PMID: 37627355 PMCID: PMC10451628 DOI: 10.3390/ani13162564] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/06/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Heat stress (HS) in poultry husbandry is an important stressor and with increasing global temperatures its importance will increase. The negative effects of stress on the quality and quantity of poultry production are described in a range of research studies. However, a lack of attention is devoted to the impacts of HS on individual chicken immune cells and whole lymphoid tissue in birds. Oxidative stress and increased inflammation are accompanying processes of HS, but with deleterious effects on the whole organism. They play a key role in the inflammation and oxidative stress of the chicken immune system. There are a range of strategies that can help mitigate the adverse effects of HS in poultry. Phytochemicals are well studied and some of them report promising results to mitigate oxidative stress and inflammation, a major consequence of HS. Current studies revealed that mitigating these two main impacts of HS will be a key factor in solving the problem of increasing temperatures in poultry production. Improved function of the chicken immune system is another benefit of using phytochemicals in poultry due to the importance of poultry health management in today's post pandemic world. Based on the current literature, baicalin and baicalein have proven to have strong anti-inflammatory and antioxidative effects in mammalian and avian models. Taken together, this review is dedicated to collecting the literature about the known effects of HS on chicken immune cells and lymphoid tissue. The second part of the review is dedicated to the potential use of baicalin and baicalein in poultry to mitigate the negative impacts of HS on poultry production.
Collapse
Affiliation(s)
- Vladimir Zmrhal
- Laboratory of Animal Immunology and Biotechnology, Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, 613 00 Brno, Czech Republic; (V.Z.); (A.S.); (E.V.)
| | - Andrea Svoradova
- Laboratory of Animal Immunology and Biotechnology, Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, 613 00 Brno, Czech Republic; (V.Z.); (A.S.); (E.V.)
- NPPC, Research Institute for Animal Production in Nitra, 951 41 Luzianky, Slovakia
| | - Eva Venusova
- Laboratory of Animal Immunology and Biotechnology, Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, 613 00 Brno, Czech Republic; (V.Z.); (A.S.); (E.V.)
| | - Petr Slama
- Laboratory of Animal Immunology and Biotechnology, Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, 613 00 Brno, Czech Republic; (V.Z.); (A.S.); (E.V.)
| |
Collapse
|
34
|
Wang W, Cai T, Yang Y, Guo H, Shang Z, Shahid H, Zhang Y, Qiu S, Zeng X, Xu X, Liu Y, Fang P, Ding P, Mao Z, Shan T. Diversity of Fungal Communities on Diseased and Healthy Cinnamomum burmannii Fruits and Antibacterial Activity of Secondary Metabolites. Microbiol Spectr 2023; 11:e0008023. [PMID: 37162357 PMCID: PMC10269519 DOI: 10.1128/spectrum.00080-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/19/2023] [Indexed: 05/11/2023] Open
Abstract
The composition and structure of fungal communities on healthy and diseased fruits of Cinnamomum burmannii (Nees and Nees) Blume were characterized, with evaluation of the antibacterial activity of secondary metabolites from culturable fungi following the first identification of secondary metabolites in the fungus Medicopsis romeroi (Esf-14; GenBank accession number OK242756). These results are significant for understanding the functional variation in bioactivity in fungal communities and developing a broader range of bioactive resources. High-throughput sequencing results indicated that the fungal community in diseased fruit differed from that in healthy fruit at the phylum, class, order, or genus level, with significant differences in the species and relative abundance of the dominant flora. A total of 49 (healthy fruit) and 122 (diseased fruit) artificially cultivable endophytic fungi were isolated, and 41 different strains (11 from healthy fruit and 30 from diseased fruit) were successfully identified by morphological and molecular biological analyses, which were classified into 8 groups and 23 genera by phylogenetic tree analysis, with Pleosporales, Glomerellales, and Hypocreales being the dominant groups at the order level and Colletotrichum being the dominant group at the genus level. The results of the antibacterial assay demonstrated that the secondary metabolites of all strains had different degrees of antibacterial activity, while the secondary metabolites of endophytic fungi from diseased fruit were generally stronger than those of fungi from healthy fruit, with the active secondary metabolites dominated by small and moderately polar compounds. Combined analysis of fungal communities, phylogenetic tree analysis, and bioactivity analysis of culturable strains revealed strong antibacterial activity of both upregulated and downregulated flora in diseased fruit. Five compounds, including two new (5,6-dimethoxy-[1',1:4,1″-terphenyl]-2-ol [compound 1] and 5-(methoxycarbonyl)-2-methylbenzo[d][1,3]dioxole-2-carboxylic acid [compound 2]) and three known compounds (3,7-dihydroxy-1,9-dimethyldibenzofuran [compound 3], methyl 3-hydroxybenzoate [compound 4], and uracil [compound 5]), were isolated and identified for the first time from the endophytic fungus Medicopsis romeroi. In general, the diversity of fungal communities on diseased fruit was lower than that on healthy fruits, while the antibacterial activity of artificially cultured endophytic fungi on diseased fruits was generally stronger than that on healthy fruits, suggesting excellent promise for the development of secondary metabolites from active strains on diseased fruit as antibacterial agents. IMPORTANCE Powdery fruit disease is a notorious disease of Cinnamomum burmannii that causes severe loss in fruit production. Studies on the function of endophytic fungal communities in healthy plant tissues are not new, while little is known about the functional changes of fungal communities in disease-causing plant tissues. Our results demonstrate that fungal communities in diseased fruits differ from those in healthy fruits at the level of phylum, class, order, or genus, with significant differences in the species and relative abundance of dominant groups. Endophytic fungi in diseased fruits appeared to produce secondary metabolites with stronger antibacterial properties, although the community diversity was not as varied as that in healthy fruits. In addition, secondary metabolites of the Medicopsis romeroi strain from diseased fruits were identified for the first time. These results have important implications for understanding the functional variation of bioactivity in fungal communities and for developing a broader resource of bioactivity.
Collapse
Affiliation(s)
- Wei Wang
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Teng Cai
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuting Yang
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Hui Guo
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Zhuo Shang
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Hamza Shahid
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Yirong Zhang
- College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Sirun Qiu
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Xinnian Zeng
- College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Xiaoli Xu
- Instrumental Analysis and Research Center of SCAU, South China Agricultural University, Guangzhou, China
| | - Yi Liu
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Ping Fang
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Ping Ding
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ziling Mao
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Tijiang Shan
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
35
|
Marcato F, Rebel JMJ, Kar SK, Wouters IM, Schokker D, Bossers A, Harders F, van Riel JW, Wolthuis-Fillerup M, de Jong IC. Host genotype affects endotoxin release in excreta of broilers at slaughter age. Front Genet 2023; 14:1202135. [PMID: 37359374 PMCID: PMC10285083 DOI: 10.3389/fgene.2023.1202135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
Host genotype, early post-hatch feeding, and pre- and probiotics are factors known to modulate the gut microbiome. However, there is a knowledge gap on the effect of both chicken genotype and these dietary strategies and their interplay on fecal microbiome composition and diversity, which, in turn, can affect the release of endotoxins in the excreta of broilers. Endotoxins are a major concern as they can be harmful to both animal and human health. The main goal of the current study was to investigate whether it was possible to modulate the fecal microbiome, thereby reducing endotoxin concentrations in the excreta of broiler chickens. An experiment was carried out with a 2 × 2 × 2 factorial arrangement including the following three factors: 1) genetic strain (fast-growing Ross 308 vs. slower growing Hubbard JA757); 2) no vs. combined use of probiotics and prebiotics in the diet and drinking water; and 3) early feeding at the hatchery vs. non-early feeding. A total of 624 Ross 308 and 624 Hubbard JA757 day-old male broiler chickens were included until d 37 and d 51 of age, respectively. Broilers (N = 26 chicks/pen) were housed in a total of 48 pens, and there were six replicate pens/treatment groups. Pooled cloacal swabs (N = 10 chickens/pen) for microbiome and endotoxin analyses were collected at a target body weight (BW) of 200 g, 1 kg, and 2.5 kg. Endotoxin concentration significantly increased with age (p = 0.01). At a target BW of 2.5 kg, Ross 308 chickens produced a considerably higher amount of endotoxins (Δ = 552.5 EU/mL) than the Hubbard JA757 chickens (p < 0.01). A significant difference in the Shannon index was observed for the interaction between the use of prebiotics and probiotics, and host genotype (p = 0.02), where Ross 308 chickens with pre-/probiotics had lower diversity than Hubbard JA757 chickens with pre-/probiotics. Early feeding did not affect both the fecal microbiome and endotoxin release. Overall, the results suggest that the chicken genetic strain may be an important factor to take into account regarding fecal endotoxin release, although this needs to be further investigated under commercial conditions.
Collapse
Affiliation(s)
- F. Marcato
- Wageningen Livestock Research, Wageningen University and Research, Wageningen, Netherlands
| | - J. M. J. Rebel
- Wageningen Bioveterinary Research, Lelystad, Netherlands
| | - S. K. Kar
- Wageningen Livestock Research, Wageningen University and Research, Wageningen, Netherlands
| | - I. M. Wouters
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands
| | - D. Schokker
- Wageningen Bioveterinary Research, Lelystad, Netherlands
| | - A. Bossers
- Wageningen Bioveterinary Research, Lelystad, Netherlands
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands
| | - F. Harders
- Wageningen Bioveterinary Research, Lelystad, Netherlands
| | - J. W. van Riel
- Wageningen Livestock Research, Wageningen University and Research, Wageningen, Netherlands
| | - M. Wolthuis-Fillerup
- Wageningen Livestock Research, Wageningen University and Research, Wageningen, Netherlands
| | - I. C. de Jong
- Wageningen Livestock Research, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
36
|
Zhou C, Gao P, Wang J. Comprehensive Analysis of Microbiome, Metabolome, and Transcriptome Revealed the Mechanisms of Intestinal Injury in Rainbow Trout under Heat Stress. Int J Mol Sci 2023; 24:ijms24108569. [PMID: 37239914 DOI: 10.3390/ijms24108569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Global warming is one of the most common environmental challenges faced by cold-water fish farming. Intestinal barrier function, gut microbiota, and gut microbial metabolites are significantly altered under heat stress, posing serious obstacles to the healthy artificial culture of rainbow trout. However, the molecular mechanisms underlying intestinal injury in rainbow trout under heat stress remain unclear. In the present study, the optimal growth temperature for rainbow trout (16 °C) was used for the control group, and the maximum temperature tolerated by rainbow trout (24 °C) was used for the heat stress group, which was subjected to heat stress for 21 days. The mechanism of intestinal injury in rainbow trout under heat stress was explored by combining animal histology, 16S rRNA gene amplicon sequencing, ultra-high performance liquid chromatography-mass spectrometry, and transcriptome sequencing. The results showed that the antioxidant capacity of rainbow trout was enhanced under heat stress, the levels of stress-related hormones were significantly increased, and the relative expression of genes related to heat stress proteins was significantly increased, indicating that the heat stress model of rainbow trout was successfully established. Secondly, the intestinal tract of rainbow trout showed inflammatory pathological characteristics under heat stress, with increased permeability, activation of the inflammatory factor signaling pathway, and increased relative expression of inflammatory factor genes, suggesting that the intestinal barrier function was impaired. Thirdly, heat stress caused an imbalance of intestinal commensal microbiota and changes in intestinal metabolites in rainbow trout, which participated in the stress response mainly by affecting lipid metabolism and amino acid metabolism. Finally, heat stress promoted intestinal injury in rainbow trout by activating the peroxisome proliferator-activated receptor-α signaling pathway. These results not only expand the understanding of fish stress physiology and regulation mechanisms, but also provide a scientific basis for healthy artificial culture and the reduction of rainbow trout production costs.
Collapse
Affiliation(s)
- Changqing Zhou
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Grassland Agriculture Engineering Center, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
- College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Pan Gao
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Grassland Agriculture Engineering Center, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Jianlin Wang
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Grassland Agriculture Engineering Center, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| |
Collapse
|
37
|
Lüning J, Campe A, Rautenschlein S. Investigations of Histomonosis-Favouring Conditions: A Hypotheses-Generating Case-Series-Study. Animals (Basel) 2023; 13:ani13091472. [PMID: 37174508 PMCID: PMC10177171 DOI: 10.3390/ani13091472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Since the ban of effective feed additives and therapeutics, histomonosis has become an important disease and, subsequently, a welfare issue for turkey production. We conducted an interview-based case series study to generate hypotheses about possible disease-favouring conditions in 31 H. meleagridis-infected flocks. The determined parameters were related to the general farm (flock management, biosecurity measures, etc.) as well as the histomonosis-specific disease management. Some inadequate biosecurity measures were observed. An inappropriate usage of the hygiene lock and cleaning as well as the disinfection frequency of equipment, clothes, and the hygiene lock could possibly be histomonosis-favouring conditions. These factors could increase the risk for the introduction of H. meleagridis and the risk of a pathogen spread on an affected farm. Insects, wild birds, litter materials, and contaminated dung could be potential vectors of H. meleagridis. Predisposing gastrointestinal diseases were observed in 71% of the affected flocks. Additionally, stress events related to higher temperature, movement of birds, and vaccination were documented in association with clinical histomonosis. The results emphasise the need for both good disease control and health management to ensure sustainable animal health and welfare.
Collapse
Affiliation(s)
- Julia Lüning
- Clinic for Poultry, University of Veterinary Medicine Hannover, Foundation, Buenteweg 17, 30559 Hannover, Germany
| | - Amely Campe
- Department of Biometry, Epidemiology and Information Processing (IBEI), WHO Collaborating Centre for Research and Training for Health at the Human-Animal-Environment Interface, University of Veterinary Medicine Hannover, Foundation, Buenteweg 2, 30559 Hannover, Germany
| | - Silke Rautenschlein
- Clinic for Poultry, University of Veterinary Medicine Hannover, Foundation, Buenteweg 17, 30559 Hannover, Germany
| |
Collapse
|
38
|
Neha SA, Salazar-Bravo J. Fine-scale spatial variation shape fecal microbiome diversity and composition in black-tailed prairie dogs (Cynomys ludovicianus). BMC Microbiol 2023; 23:51. [PMID: 36858951 PMCID: PMC9979494 DOI: 10.1186/s12866-023-02778-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/19/2023] [Indexed: 03/03/2023] Open
Abstract
BACKGROUND Host associated gut microbiota are important in understanding the coevolution of host-microbe, and how they may help wildlife populations to adapt to rapid environmental changes. Mammalian gut microbiota composition and diversity may be affected by a variety of factors including geographic variation, seasonal variation in diet, habitat disturbance, environmental conditions, age, and sex. However, there have been few studies that examined how ecological and environmental factors influence gut microbiota composition in animals' natural environments. In this study, we explore how host habitat, geographical location and environmental factors affect the fecal microbiota of Cynomys ludovicianus at a small spatial scale. We collected fecal samples from five geographically distinct locations in the Texas Panhandle classified as urban and rural areas and analyzed them using high throughput 16S rRNA gene amplicon sequencing. RESULTS The results showed that microbiota of these fecal samples was largely dominated by the phylum Bacteroidetes. Fecal microbiome diversity and composition differed significantly across sampling sites and habitats. Prairie dogs inhabiting urban areas showed reduced fecal diversity due to more homogenous environment and, likely, anthropogenic disturbance. Urban prairie dog colonies displayed greater phylogenetic variation among replicates than those in rural habitats. Differentially abundant analysis revealed that bacterial species pathogenic to humans and animals were highly abundant in urban areas which indicates that host health and fitness might be negatively affected. Random forest models identified Alistipes shahii as the important species driving the changes in fecal microbiome composition. Despite the effects of habitat and geographic location of host, we found a strong correlation with environmental factors and that- average maximum temperature was the best predictor of prairie dog fecal microbial diversity. CONCLUSIONS Our findings suggest that reduction in alpha diversity in conjunction with greater dispersion in beta diversity could be indicative of declining host health in urban areas; this information may, in turn, help determine future conservation efforts. Moreover, several bacterial species pathogenic to humans and other animals were enriched in prairie dog colonies near urban areas, which may in turn adversely affect host phenotype and fitness.
Collapse
Affiliation(s)
- Sufia Akter Neha
- International Center for Arid and Semi-Arid Land Studies, Texas Tech University, Lubbock, TX, 79409, USA.
- Department of Biological Sciences, Texas Tech University, Lubbock, 79409, USA.
| | - Jorge Salazar-Bravo
- International Center for Arid and Semi-Arid Land Studies, Texas Tech University, Lubbock, TX, 79409, USA
- Department of Biological Sciences, Texas Tech University, Lubbock, 79409, USA
| |
Collapse
|
39
|
Lin Z, Lu P, Wang R, Liu X, Yuan T. Sulfur: a neglected driver of the increased abundance of antibiotic resistance genes in agricultural reclaimed subsidence land located in coal mines with high phreatic water levels. Heliyon 2023; 9:e14364. [PMID: 36994396 PMCID: PMC10040520 DOI: 10.1016/j.heliyon.2023.e14364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 03/01/2023] [Accepted: 03/01/2023] [Indexed: 03/09/2023] Open
Abstract
Due to the shallow burial of groundwater in coal mines with a high phreatic water level, a large area of subsidence lakes is formed after the mine collapses. Agricultural and fishery reclamation activities have been carried out, which introduced antibiotics and exacerbated the contamination of antibiotic resistance genes (ARGs), but this has received limited attention. This study analyzed ARG occurrence in reclaimed mining areas, the key impact factors, and the underlying mechanism. The results show that sulfur is the most critical factor impacting the abundance of ARGs in reclaimed soil, which is due to changes in the microbial community. The species and abundance of ARGs in the reclaimed soil were higher than those in the controlled soil. The relative abundances of most ARGs increased with the depth of reclaimed soil (from 0 to 80 cm). In addition, the microbial structures of the reclaimed and controlled soils were significantly different. Proteobacteria, was the most dominant microbial phylum in the reclaimed soil. This difference is likely related to the high abundance of sulfur metabolism functional genes in the reclaimed soil. Correlation analysis showed that the differences in ARGs and microorganisms in the two soil types were highly correlated with the sulfur content. High levels of sulfur promoted the proliferation of sulfur-metabolizing microbial populations such as Proteobacteria and Gemmatimonadetes in the reclaimed soils. Remarkably, these microbial phyla were the main antibiotic-resistant bacteria in this study, and their proliferation created conditions for the enrichment of ARGs. Overall, this study underscores the risk of the abundance and spread of ARGs driven by high-level sulfur in reclaimed soils and reveals the mechanisms.
Collapse
|
40
|
Li J, Bates KA, Hoang KL, Hector TE, Knowles SCL, King KC. Experimental temperatures shape host microbiome diversity and composition. GLOBAL CHANGE BIOLOGY 2023; 29:41-56. [PMID: 36251487 PMCID: PMC10092218 DOI: 10.1111/gcb.16429] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/20/2022] [Indexed: 05/10/2023]
Abstract
Global climate change has led to more extreme thermal events. Plants and animals harbour diverse microbial communities, which may be vital for their physiological performance and help them survive stressful climatic conditions. The extent to which microbiome communities change in response to warming or cooling may be important for predicting host performance under global change. Using a meta-analysis of 1377 microbiomes from 43 terrestrial and aquatic species, we found a decrease in the amplicon sequence variant-level microbiome phylogenetic diversity and alteration of microbiome composition under both experimental warming and cooling. Microbiome beta dispersion was not affected by temperature changes. We showed that the host habitat and experimental factors affected microbiome diversity and composition more than host biological traits. In particular, aquatic organisms-especially in marine habitats-experienced a greater depletion in microbiome diversity under cold conditions, compared to terrestrial hosts. Exposure involving a sudden long and static temperature shift was associated with microbiome diversity loss, but this reduction was attenuated by prior-experimental lab acclimation or when a ramped regime (i.e., warming) was used. Microbial differential abundance and co-occurrence network analyses revealed several potential indicator bacterial classes for hosts in heated environments and on different biome levels. Overall, our findings improve our understanding on the impact of global temperature changes on animal and plant microbiome structures across a diverse range of habitats. The next step is to link these changes to measures of host fitness, as well as microbial community functions, to determine whether microbiomes can buffer some species against a more thermally variable and extreme world.
Collapse
Affiliation(s)
- Jingdi Li
- Department of BiologyUniversity of OxfordOxfordUK
| | | | - Kim L. Hoang
- Department of BiologyUniversity of OxfordOxfordUK
| | | | | | | |
Collapse
|
41
|
Effects of garlic and lemon essential oils on performance, digestibility, plasma metabolite, and intestinal health in broilers under environmental heat stress. BMC Vet Res 2022; 18:430. [PMID: 36503512 PMCID: PMC9743731 DOI: 10.1186/s12917-022-03530-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Natural feed additives play an important role in poultry production due to their safety and potential properties as an antioxidant and antimicrobial, as well as a growth stimulant. The present research was designed to assess the influence of dietary supplementation of either garlic, lemon essential oil, or their mixture on performance, nutrient digestibility, plasma constituents, immunity, and oxidative status, as well as intestinal development assessed by microbiota-histomorphology development in broilers under environmental heat stress. METHODS A total of 480 broiler chicks (Ross 308) at one-day-old were randomly divided into four groups (120 chicks/ group). The control group received the basal diet (CON), while the other three groups received the basal diet supplemented with 200 mg/kg garlic essential oil (GEO), 200 mg/kg lemon essential oil (LEO), and their mixture (GLO) 200 mg/kg diet, respectively for 35 days. RESULTS The obtained results revealed that broilers fed essential oils as a mixture or individually had an improvement in average body weight, feed conversion ratio, carcass dressing, and an increase in digestive enzymes activities compared to the control group, furthermore, there was a reduction in the mortality rate and abdominal fat content. Adding essential oils as a mixture or individually led to a decrease in (P < 0.05) blood plasma triglycerides, cholesterol, low-density lipoprotein, and an increase in high-density lipoprotein. Broilers fed diets supplemented with essential oils as a mixture or individually had higher values of superoxide dismutase and glutathione peroxidase; while plasma malondialdehyde was lower (P < 0.05) compared to the control diet. Moreover, there was a significant enhancement in intestinal microbial content, and intestinal histological status of chickens fed with essential oils. CONCLUSIONS Conclusively, including the mixture of essential oils improved performance, nutrient digestibility, and digestive enzymes activities. It also enhanced immunity, antioxidant state, and lipid profile, and gut microbiota- histomorphology in broilers. It was proposed that the broilers diet be supplemented with a mixture of essential oils to a mitigation of the effects of heat stress.
Collapse
|
42
|
Sumanu VO, Naidoo V, Oosthuizen MC, Chamunorwa JP. Adverse effects of heat stress during summer on broiler chickens production and antioxidant mitigating effects. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2022; 66:2379-2393. [PMID: 36169706 DOI: 10.1007/s00484-022-02372-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 08/22/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Broiler chicken meat is a good source of protein consumed universally, and is one of the most commonly farmed species in world. In addition to providing food, poultry non-edible byproducts also have value. A major advantage of broiler chicken production is their short production cycle, which results in a greater rate of production in comparison to other species. However, as with any production system, there are constraints in broiler production with one of the most pressing being energy requirements to keep the birds warm as chicks and cool later in the growth cycle, as a result of the cost needing mechanical heating and cooling. While this is feasible in more advanced economies, this is not readily affordable in developing economies. As a result, farmers rely on natural ventilation to cool the rearing houses, which generally becoming excessively warm with the resultant heat stress on the birds. Since little can be done without resorting to mechanical ventilation and cooling, exploring the use of other means to reduce heat stress is needed. For this review, we cover the various factors that induce heat stress, the physiological and behavioral responses of broiler chickens to heat stress. We also look at mitigating the adverse effect of heat stress through the use of antioxidants which possess either an anti-stress and/or antioxidant effects.
Collapse
Affiliation(s)
- V O Sumanu
- Department of Anatomy and Physiology, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa.
| | - V Naidoo
- Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | - M C Oosthuizen
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | - J P Chamunorwa
- Department of Anatomy and Physiology, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| |
Collapse
|
43
|
Lüning J, Auerbach M, Lindenwald R, Campe A, Rautenschlein S. Retrospective Investigations of Recurring Histomonosis on a Turkey Farm. Avian Dis 2022; 66:410-417. [PMID: 36715472 DOI: 10.1637/aviandiseases-d-22-00041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 10/12/2022] [Indexed: 12/30/2022]
Abstract
The ban of effective feed additives and therapeutics in the European Union and in other parts of the world led to a dramatic increase of histomonosis in turkeys. Despite the impact of the disease on the health and welfare of poultry, many questions remain open regarding the epidemiology of the pathogen. In this study, we retrospectively monitored a farm with recurring cases of histomonosis to identify possible routes of pathogen introduction and predisposing factors that may influence the disease development. We included 32 consecutive turkey flocks, which were fattened between 2007 and 2021 on the same farm under the same management and housing conditions. During this period, Histomonas meleagridis was detected in eight flocks of toms and four flocks of hens with a high variability in disease development. Outbreaks in toms led to significantly (P ≤ 0.05) higher mortality rates (5.3%-98.3%) than in hens (2.6%-6.1%). Most of the outbreaks (9/12) were diagnosed between June and September with a peak in August, suggesting a possible impact of higher temperatures either on the host or on the pathogen and pathogen-transmitting vectors. Further investigation is necessary to determine why hens might cope better with histomonosis than toms. Continuous flock and hygiene management is important to prevent an introduction of the causative pathogen and to control potential vectors.
Collapse
Affiliation(s)
- J Lüning
- Clinic for Poultry, University of Veterinary Medicine, 30559 Hannover, Germany
| | - M Auerbach
- Clinic for Poultry, University of Veterinary Medicine, 30559 Hannover, Germany
| | - R Lindenwald
- Clinic for Poultry, University of Veterinary Medicine, 30559 Hannover, Germany
| | - A Campe
- Department of Biometry, Epidemiology and Information Processing (IBEI), WHO Collaborating Centre for Research and Training for Health at the Human-Animal-Environment Interface, University of Veterinary Medicine, 30559 Hannover, Germany
| | - S Rautenschlein
- Clinic for Poultry, University of Veterinary Medicine, 30559 Hannover, Germany,
| |
Collapse
|
44
|
Interactions of Microbiota and Mucosal Immunity in the Ceca of Broiler Chickens Infected with Eimeria tenella. Vaccines (Basel) 2022; 10:vaccines10111941. [PMID: 36423036 PMCID: PMC9693493 DOI: 10.3390/vaccines10111941] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/09/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
The purpose of the study was to investigate the effects of Eimeria tenella infection on the cecal microbiome, the protein concentration of cecal content, cecal mucosal immunity, and serum endotoxin levels in broilers. Three hundred sixty 14-day-old broilers were allocated to five infection doses with six replicates. The five infection doses were: ID0: 0, ID1: 6250, ID2: 12,500, ID3: 25,000, and ID4: 50,000 Eimeria tenella oocysts. Eimeria tenella infection significantly increased the relative abundance of the phylum Proteobacteria, which includes diverse pathogenic bacteria, and significantly decreased the relative abundance of the phylum Firmicutes. Protein concentration of the cecal content was linearly increased (p < 0.05), and the concentration of secretory immunoglobulin A (sIgA) in the cecal content was linearly decreased by Eimeria tenella infection (p < 0.05). Goblet cell density was linearly reduced in the ceca by Eimeria tenella infection (p < 0.05). Eimeria tenella infection tended to linearly decrease the relative mRNA expression of antimicrobial peptide genes such as avian beta-defensin 9 (AvBD9; p = 0.10) and liver-expressed antimicrobial peptide 2 (LEAP2; p = 0.08) in the cecal tissue. Therefore, Eimeria tenella infection negatively modulated cecal microbiota via impairing cecal mucosal immunity and increasing protein concentration in the cecal content in broilers.
Collapse
|
45
|
Khalid AR, Yasoob TB, Zhang Z, Zhu X, Hang S. Dietary Moringa oleifera leaf powder improves jejunal permeability and digestive function by modulating the microbiota composition and mucosal immunity in heat stressed rabbits. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:80952-80967. [PMID: 35725877 DOI: 10.1007/s11356-022-20737-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Heat stress (HS) has detrimental effects on intestinal health by altering digestive and immune responses in animals. Dietary Moringa oleifera leaf powder (MOLP) has been implicated in ameliorating the impact of HS, but its effects in terms of intestinal function improvement under HS remain poorly characterized. Therefore, the current study investigated the impact of HS and MOLP supplementation on tight junction barriers, intestinal microbiota (jejunal digesta), and differentially expressed genes (DEGs) in jejunal mucosa of heat-stressed rabbits by using the next-generation sequencing techniques. A total of 21 male New Zealand White rabbits (32 weeks old mean body weight of 3318 ± 171 g) were divided into three groups (n = 7/group) as control (CON, 25 °C), heat stress (HS, 35 °C for 7 h daily), and HS with MOLP supplementation (HSM, 35 °C for 7 h daily) gavage at 200 mg/kg body weight per day for 4 weeks. The results indicated that MOLP supplementation increased mRNA expression of tight junction proteins and glutathione transferase activity, while the malonaldehyde concentration was decreased in the jejunal mucosa compared to HS group (P < 0.05). Furthermore, MOLP decreased the concentrations of lipopolysaccharide, pro-inflammatory cytokines, and myeloperoxidase compared with HS group (P < 0.05). Intestinal microbiota analysis revealed that at phyla level, the relative abundance of Bacteroidetes was higher in HSM group compared to CON and HS groups. MOLP supplementation also resulted in higher abundance of putatively health-associated genera such as Christensenellaceae R-7 gut group, Ruminococcaceae NK4A214 group, Ruminococcus 2, Lachnospiraceae NK4A136 group, and Lachnospiraceae unclassified along with higher butyrate levels in HSM group as compared to HS group. The analysis of DEGs revealed that MOLP reversed inflammatory response by downregulation of genes, such as TNFRSF13C, LBP, and COX2 in enriched KEGG pathway of NF-kβ pathway. MOLP supplementation also significantly upregulated the expression of genes in protein digestion and absorption pathway, including PRSS2, LOC100349163, CPA1, CPB1, SLC9A3, SLC1A1, and SLC7A9 in HSM group. Three genes of fibrillar collagens, i.e., COL3A1, COL5A3, and COL12A1 in protein digestion were also down-regulated in HSM group. In conclusion, MOLP supplementation could improve jejunal permeability and digestive function, positively modulate microbiota composition and mucosal immunity in heat-stressed rabbits.
Collapse
Affiliation(s)
- Abdur Rauf Khalid
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, No.1 WeiGang, Xuanwu region, Nanjing, 210095, Jiangsu, China
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, No.1 WeiGang, Xuanwu region, Nanjing, 210095, Jiangsu, China
| | - Talat Bilal Yasoob
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, No.1 WeiGang, Xuanwu region, Nanjing, 210095, Jiangsu, China
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, No.1 WeiGang, Xuanwu region, Nanjing, 210095, Jiangsu, China
| | - Zhen Zhang
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, No.1 WeiGang, Xuanwu region, Nanjing, 210095, Jiangsu, China
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, No.1 WeiGang, Xuanwu region, Nanjing, 210095, Jiangsu, China
| | - Xiaofeng Zhu
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, No.1 WeiGang, Xuanwu region, Nanjing, 210095, Jiangsu, China
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, No.1 WeiGang, Xuanwu region, Nanjing, 210095, Jiangsu, China
| | - Suqin Hang
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, No.1 WeiGang, Xuanwu region, Nanjing, 210095, Jiangsu, China.
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, No.1 WeiGang, Xuanwu region, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
46
|
Cao X, Guo L, Zhou C, Huang C, Li G, Zhuang Y, Yang F, Liu P, Hu G, Gao X, Guo X. Effects of N-acetyl-l-cysteine on chronic heat stress-induced oxidative stress and inflammation in the ovaries of growing pullets. Poult Sci 2022; 102:102274. [PMID: 36402045 PMCID: PMC9673114 DOI: 10.1016/j.psj.2022.102274] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/08/2022] [Accepted: 10/15/2022] [Indexed: 11/05/2022] Open
Abstract
The aims of this study were to investigate the effects of supplemental N-acetyl-l-cysteine (NAC) on chronic heat stress-induced oxidative stress and inflammation in the ovaries of growing pullets. A total of 120, 12-wk-old, Hy-Line Brown hens were randomly separated into 4 groups with 6 replicates of 5 birds in each group for 21 d. The 4 treatments were as follows: the CON group and CN group were supplemented with basal diet or basal diet with 1 g/kg NAC, respectively; and the HS group and HSN group were heat-stressed groups supplemented with basal diet or basal diet with 1 g/kg NAC, respectively. The results indicated that the ovaries suffered pathological damage due to chronic heat stress and that NAC effectively ameliorated these changes. Compared with the HS group, antioxidant enzyme activities (including SOD, GSH-Px, CAT, and T-AOC) were enhanced, while the MDA contents and the expression levels of HSP70 were decreased in the HSN group. In addition, NAC upregulated the expression levels of HO-1, SOD2, and GST by upregulating the activity of Nrf2 at different time points to mitigate oxidative stress caused by heat exposure. Simultaneously, NAC attenuated chronic heat stress-induced NF-κB pathway activation and decreased the expression levels of the proinflammatory cytokines IL-8, IL-18, TNF-α, IKK-α, and IFN-γ. Cumulatively, our results indicated that NAC could ameliorate chronic heat stress-induced ovarian damage by upregulating the antioxidative capacity and reducing the secretion of proinflammatory cytokines.
Collapse
|
47
|
Chen JQ, Zhang LW, Zhao RM, Wu HX, Lin LH, Li P, Li H, Qu YF, Ji X. Gut microbiota differs between two cold-climate lizards distributed in thermally different regions. BMC Ecol Evol 2022; 22:120. [PMID: 36271355 PMCID: PMC9585762 DOI: 10.1186/s12862-022-02077-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 10/10/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND The metabolic cold-climate adaption hypothesis predicts that animals from cold environments have relatively high metabolic rates compared with their warm-climate counterparts. However, studies testing this hypothesis are sparse. Here, we compared gut microbes between two cold-climate lizard species of the genus Phrynocephalus to see if gut microbiota could help lizards adapt to cold environments by promoting metabolism. We conducted a 2 species (P. erythrurus and P. przewalskii) × 2 temperatures (24 and 30 °C) factorial design experiment, whereby we kept lizards of two Phrynocephalus species at 24 and 30 °C for 25 d and then collected their fecal samples to analyze and compare the microbiota based on 16S rRNA gene sequencing technology. RESULTS The gut microbiota was mainly composed of bacteria of the phyla Proteobacteria, Firmicutes, Bacteroidetes, and Verrucomicrobia in both species (Proteobacteria > Firmicutes > Verrucomicrobiota in P. erythrurus, and Bacteroidetes > Proteobacteria > Firmicutes in P. przewalskii). Further analysis revealed that the gut microbiota promoted thermal adaptation in both lizard species, but with differences in the relative abundance of the contributory bacteria between the two species. An analysis based on the Kyoto Encyclopedia of Genes and Genomes revealed that the gut microbiota played important roles in metabolism, genetic information processing, cellular processes, and environmental information processing in both species. Furthermore, genes related to metabolism were more abundant in P. erythrurus at 24 °C than in other species ⋅ temperature combinations. CONCLUSION Our study provides evidence that gut microbiota promotes thermal adaptation in both species but more evidently in P. erythrurus using colder habitats than P. przewalskii all year round, thus confirming the role of gut microbiota in cold-climate adaptation in lizards.
Collapse
Affiliation(s)
- Jun-Qiong Chen
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 210023, Nanjing, Jiangsu, China
| | - Lu-Wen Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 210023, Nanjing, Jiangsu, China
| | - Ru-Meng Zhao
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 210023, Nanjing, Jiangsu, China
| | - Hai-Xia Wu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 210023, Nanjing, Jiangsu, China
| | - Long-Hui Lin
- Hangzhou Key Laboratory for Ecosystem Protection and Restoration, College of Life and Environmental Sciences, Hangzhou Normal University, 311121, Hangzhou, Zhejiang, China
| | - Peng Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 210023, Nanjing, Jiangsu, China
| | - Hong Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 210023, Nanjing, Jiangsu, China
| | - Yan-Fu Qu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 210023, Nanjing, Jiangsu, China.
| | - Xiang Ji
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Sciences, Wenzhou University, 325035, Wenzhou, Zhejiang, China.
| |
Collapse
|
48
|
Wang M, Huang X, Liu Y, Zeng J. Effects of Macleaya cordata Extract on Blood Biochemical Indices and Intestinal Flora in Heat-Stressed Mice. Animals (Basel) 2022; 12:ani12192589. [PMID: 36230331 PMCID: PMC9558519 DOI: 10.3390/ani12192589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/12/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Heat stress (HS) leads to disturbance of homeostasis and gut microbiota. Macleaya cordata extract (MCE) has anti-inflammatory, antibacterial, and gut health maintenance properties. Still, the specific effects of MCE on blood biochemical indices and gut microbiota homeostasis in heat-stressed mice are not entirely understood. This study aimed to investigate the impact of MCE on blood biochemical indices and gut microbiota in heat-stressed mice. A control group (CON) (25 °C, n = 6) and HS group (42 °C, n = 6) were gavaged with normal saline 0.2 mL/g body weight/day, and HS plus MCE group (HS-MCE) (42 °C, n = 6) was gavaged with 5 mg MCE/kg/day. HS (2 h/d) on 8–14 d. The experiment lasted 14 days. The results showed that HS increased mice’ serum aspartate transaminase, alanine transferase activities, heat shock protein 70 level, and malondialdehyde concentrations, and decreased serum catalase and superoxide dismutase activities. HS also disrupted microbiota diversity and community structure in mice, increasing the Bacteroidetes and decreasing Firmicutes and Lactobacillus; however, MCE can alleviate the disturbance of biochemical indicators caused by HS and regulate the flora homeostasis. Furthermore, MCE was able to moderate HS-induced metabolic pathways changes in gut microbiota. The Spearman correlation analysis implied that changes in serum redox status potentially correlate with gut microbiota alterations in HS-treated mice.
Collapse
Affiliation(s)
- Mingcan Wang
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taiyuan 030801, China
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha 410000, China
| | - Xiuqiong Huang
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha 410000, China
| | - Yisong Liu
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha 410000, China
| | - Jianguo Zeng
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taiyuan 030801, China
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha 410000, China
- Correspondence: ; Tel.: +86-731-84686560
| |
Collapse
|
49
|
Sustained Drought, but Not Short-Term Warming, Alters the Gut Microbiomes of Wild Anolis Lizards. Appl Environ Microbiol 2022; 88:e0053022. [PMID: 36165625 PMCID: PMC9552597 DOI: 10.1128/aem.00530-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
As rising temperatures threaten biodiversity across the globe, tropical ectotherms are thought to be particularly vulnerable due to their narrow thermal tolerance ranges. Nevertheless, physiology-based models highlighting the vulnerability of tropical organisms rarely consider the contributions of their gut microbiota, even though microbiomes influence numerous host traits, including thermal tolerance. We combined field and lab experiments to understand the response of the slender anole lizard (Anolis apletophallus) gut microbiome to climatic shifts of various magnitude and duration. First, to examine the effects of long-term climate warming in the wild, we transplanted lizards from the mainland Panama to a series of warmer islands in the Panama Canal and compared their gut microbiome compositions after three generations of divergence. Next, we mimicked the effects of a short-term "heat-wave" by using a greenhouse experiment and explored the link between gut microbiome composition and lizard thermal physiology. Finally, we examined variation in gut microbiomes in our mainland population in the years both before and after a naturally occurring drought. Our results suggest that slender anole microbiomes are surprisingly resilient to short-term warming. However, both the taxonomic and predicted functional compositions of the gut microbiome varied by sampling year across all sites, suggesting that the drought may have had a regional effect. We provide evidence that short-term heat waves may not substantially affect the gut microbiota, while more sustained climate anomalies may have effects at broad geographic scales. IMPORTANCE As climate change progresses, it is crucial to understand how animals will respond to shifts in their local environments. One component of this response involves changes in the microbial communities living in and on host organisms. These "microbiomes" can affect many processes that contribute to host health and survival, yet few studies have measured changes in the microbiomes of wild organisms experiencing novel climatic conditions. We examined the effects of shifting climates on the gut microbiome of the slender anole lizard (Anolis apletophallus) by using a combination of field and laboratory studies, including transplants to warm islands in the Panama Canal. We found that slender anole microbiomes remain stable in response to short-term warming but may be sensitive to sustained climate anomalies, such as droughts. We discuss the significance of these findings for a species that is considered highly vulnerable to climate change.
Collapse
|
50
|
Chen Q, Wang Z, Shao D, Shi S. Effects of heat stress on the intestinal microorganisms in poultry and its nutritional regulations: a review. WORLD POULTRY SCI J 2022. [DOI: 10.1080/00439339.2022.2106344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Qingyi Chen
- Poultry Institute, Chinese Academy of Agricultural Science, Yangzhou, China
- Huanan Agricultural University, Guangzhou, China
| | - Zhenxin Wang
- Poultry Institute, Chinese Academy of Agricultural Science, Yangzhou, China
| | - Dan Shao
- Poultry Institute, Chinese Academy of Agricultural Science, Yangzhou, China
| | - Shourong Shi
- Poultry Institute, Chinese Academy of Agricultural Science, Yangzhou, China
- Center of Effective Evaluation of Feed and Feed Additive (Poultry Institute) Ministry of Agriculture, Yangzhou, China
| |
Collapse
|