1
|
Pei Y, Sun M, Wang M, Lei A, Liu X, Chen H, Yang S. Characteristics of intestinal microbial communities and occurrence of antibiotic resistance genes during degradation of antibiotic mycelial residues by black soldier fly (Hermetia illucens L.) larvae. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 371:125940. [PMID: 40023244 DOI: 10.1016/j.envpol.2025.125940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/26/2025] [Accepted: 02/26/2025] [Indexed: 03/04/2025]
Abstract
The disposal of antibiotic mycelial residues (AMR) presents a distinctive challenge as hazardous organic waste, posing a persistent dilemma for pharmaceutical enterprises in the search for safe and effective solutions. Research has focused on treating chlortetracycline mycelial residue (CMR) using black soldier fly larvae (BSFL) with wheat straw. Different CMR/wheat ratios (0:1 CK, 1:20 L, 1:4 M, and 1:2 H) were used as larval biotransformation substrates. Comprehensive investigations were conducted on BSFL biophysiological parameters, CMR conversion, chlortetracycline (CTC) degradation, the microbial community, the prevalence of antibiotic resistance genes (ARGs), and functional microbes in the BSFL gut. The substrate consumption rates ranged from 28.9% to 34.9%, with the harvested BSFL biomass reaching 0.50-1.04 g/10 larvae. Effective degradation of CTC was observed, with a degradation rate ranging from 32.0% to 61.1%. Tetracycline resistance genes (TRGs) predominated among the ARGs. Three TRG classes (tet_rpp, tet_efflux, and tet_mod) were confirmed in the BSFL intestinal microbiota. A total of 341 out of 368 ARG classes presented significant positive correlations with each other, facilitated by plasmids and integrons. Notably, Clostridium, Enterococcus, Leucobacter, and Morganella were identified as hosts of TRGs, whereas Dysgonomonas, Bacteroides, and Massilibacteroides were the key contributors to BSFL biomass. These findings underscore the ability of the BSFL intestinal microbiota to digest and convert CMR, supporting the simultaneous AFR transformation by BSFL with wheat straw addition.
Collapse
Affiliation(s)
- Yaxin Pei
- Key Laboratory of Enzyme Engineering of Agricultural Microbiology (Ministry of Agriculture), School of Life Sciences, Henan Agricultural University, Zhengzhou, Henan Province, 450046, China.
| | - Mengxiao Sun
- Key Laboratory of Enzyme Engineering of Agricultural Microbiology (Ministry of Agriculture), School of Life Sciences, Henan Agricultural University, Zhengzhou, Henan Province, 450046, China
| | - Minghui Wang
- Key Laboratory of Enzyme Engineering of Agricultural Microbiology (Ministry of Agriculture), School of Life Sciences, Henan Agricultural University, Zhengzhou, Henan Province, 450046, China
| | - Aojie Lei
- Key Laboratory of Enzyme Engineering of Agricultural Microbiology (Ministry of Agriculture), School of Life Sciences, Henan Agricultural University, Zhengzhou, Henan Province, 450046, China
| | - Xinyu Liu
- Key Laboratory of Enzyme Engineering of Agricultural Microbiology (Ministry of Agriculture), School of Life Sciences, Henan Agricultural University, Zhengzhou, Henan Province, 450046, China
| | - Hongge Chen
- Key Laboratory of Enzyme Engineering of Agricultural Microbiology (Ministry of Agriculture), School of Life Sciences, Henan Agricultural University, Zhengzhou, Henan Province, 450046, China
| | - Sen Yang
- Key Laboratory of Enzyme Engineering of Agricultural Microbiology (Ministry of Agriculture), School of Life Sciences, Henan Agricultural University, Zhengzhou, Henan Province, 450046, China.
| |
Collapse
|
2
|
Berillo D, Malika T, Baimakhanova BB, Sadanov AK, Berezin VE, Trenozhnikova LP, Baimakhanova GB, Amangeldi AA, Kerimzhanova B. An Overview of Microorganisms Immobilized in a Gel Structure for the Production of Precursors, Antibiotics, and Valuable Products. Gels 2024; 10:646. [PMID: 39451299 PMCID: PMC11508006 DOI: 10.3390/gels10100646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/07/2024] [Accepted: 09/15/2024] [Indexed: 10/26/2024] Open
Abstract
Using free microorganisms for industrial processes has some limitations, such as the extensive consumption of substrates for growth, significant sensitivity to the microenvironment, and the necessity of separation from the product and, therefore, the cyclic process. It is widely acknowledged that confining or immobilizing cells in a matrix or support structure enhances enzyme stability, facilitates recycling, enhances rheological resilience, lowers bioprocess costs, and serves as a fundamental prerequisite for large-scale applications. This report summarizes the various cell immobilization methods, including several synthetic (polyvinylalcohol, polyethylenimine, polyacrylates, and Eudragit) and natural (gelatin, chitosan, alginate, cellulose, agar-agar, carboxymethylcellulose, and other polysaccharides) polymeric materials in the form of thin films, hydrogels, and cryogels. Advancements in the production of well-known antibiotics like penicillin and cephalosporin by various strains were discussed. Additionally, we highlighted cutting-edge research related to strain producers of peptide-based antibiotics (polymyxin B, Subtilin, Tyrothricin, varigomycin, gramicidin S, friulimicin, and bacteriocin), glusoseamines, and polyene derivatives. Crosslinking agents, especially covalent linkers, significantly affect the activity and stability of biocatalysts (penicillin G acylase, penicillinase, deacetoxycephalosporinase, L-asparaginase, β-glucosidase, Xylanase, and urease). The molecular weight of polymers is an important parameter influencing oxygen and nutrient diffusion, the kinetics of hydrogel formation, rigidity, rheology, elastic moduli, and other mechanical properties crucial for long-term utilization. A comparison of stability and enzymatic activity between immobilized enzymes and their free native counterparts was explored. The discussion was not limited to recent advancements in the biopharmaceutical field, such as microorganism or enzyme immobilization, but also extended to methods used in sensor and biosensor applications. In this study, we present data on the advantages of cell and enzyme immobilization over microorganism (bacteria and fungi) suspension states to produce various bioproducts and metabolites-such as antibiotics, enzymes, and precursors-and determine the efficiency of immobilization processes and the optimal conditions and process parameters to maximize the yield of the target products.
Collapse
Affiliation(s)
- Dmitriy Berillo
- LLP “Research and Production Center for Microbiology and Virology”, Almaty 050000, Kazakhstan; (B.B.B.)
- Department of Chemistry and Biochemical Engineering, Satbayev University, Almaty 050013, Kazakhstan;
- Department of Pharmaceutical and Toxicological Chemistry, School of Pharmacy, Asfendiyarov Kazakh National Medical University, Almaty 050000, Kazakhstan
| | - Turganova Malika
- Department of Chemistry and Biochemical Engineering, Satbayev University, Almaty 050013, Kazakhstan;
| | - Baiken B. Baimakhanova
- LLP “Research and Production Center for Microbiology and Virology”, Almaty 050000, Kazakhstan; (B.B.B.)
| | - Amankeldi K. Sadanov
- LLP “Research and Production Center for Microbiology and Virology”, Almaty 050000, Kazakhstan; (B.B.B.)
| | - Vladimir E. Berezin
- LLP “Research and Production Center for Microbiology and Virology”, Almaty 050000, Kazakhstan; (B.B.B.)
| | - Lyudmila P. Trenozhnikova
- LLP “Research and Production Center for Microbiology and Virology”, Almaty 050000, Kazakhstan; (B.B.B.)
| | - Gul B. Baimakhanova
- LLP “Research and Production Center for Microbiology and Virology”, Almaty 050000, Kazakhstan; (B.B.B.)
| | - Alma A. Amangeldi
- LLP “Research and Production Center for Microbiology and Virology”, Almaty 050000, Kazakhstan; (B.B.B.)
| | | |
Collapse
|
3
|
Pšeničnik A, Slemc L, Avbelj M, Tome M, Šala M, Herron P, Shmatkov M, Petek M, Baebler Š, Mrak P, Hranueli D, Starčević A, Hunter IS, Petković H. Oxytetracycline hyper-production through targeted genome reduction of Streptomyces rimosus. mSystems 2024; 9:e0025024. [PMID: 38564716 PMCID: PMC11097637 DOI: 10.1128/msystems.00250-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/07/2024] [Indexed: 04/04/2024] Open
Abstract
Most biosynthetic gene clusters (BGC) encoding the synthesis of important microbial secondary metabolites, such as antibiotics, are either silent or poorly expressed; therefore, to ensure a strong pipeline of novel antibiotics, there is a need to develop rapid and efficient strain development approaches. This study uses comparative genome analysis to instruct rational strain improvement, using Streptomyces rimosus, the producer of the important antibiotic oxytetracycline (OTC) as a model system. Sequencing of the genomes of two industrial strains M4018 and R6-500, developed independently from a common ancestor, identified large DNA rearrangements located at the chromosome end. We evaluated the effect of these genome deletions on the parental S. rimosus Type Strain (ATCC 10970) genome where introduction of a 145 kb deletion close to the OTC BGC in the Type Strain resulted in massive OTC overproduction, achieving titers that were equivalent to M4018 and R6-500. Transcriptome data supported the hypothesis that the reason for such an increase in OTC biosynthesis was due to enhanced transcription of the OTC BGC and not due to enhanced substrate supply. We also observed changes in the expression of other cryptic BGCs; some metabolites, undetectable in ATCC 10970, were now produced at high titers. This study demonstrated for the first time that the main force behind BGC overexpression is genome rearrangement. This new approach demonstrates great potential to activate cryptic gene clusters of yet unexplored natural products of medical and industrial value.IMPORTANCEThere is a critical need to develop novel antibiotics to combat antimicrobial resistance. Streptomyces species are very rich source of antibiotics, typically encoding 20-60 biosynthetic gene clusters (BGCs). However, under laboratory conditions, most are either silent or poorly expressed so that their products are only detectable at nanogram quantities, which hampers drug development efforts. To address this subject, we used comparative genome analysis of industrial Streptomyces rimosus strains producing high titers of a broad spectrum antibiotic oxytetracycline (OTC), developed during decades of industrial strain improvement. Interestingly, large-scale chromosomal deletions were observed. Based on this information, we carried out targeted genome deletions in the native strain S. rimosus ATCC 10970, and we show that a targeted deletion in the vicinity of the OTC BGC significantly induced expression of the OTC BGC, as well as some other silent BGCs, thus suggesting that this approach may be a useful way to identify new natural products.
Collapse
Affiliation(s)
- Alen Pšeničnik
- Chair of Biotechnology, Microbiology and Food Safety, University of Ljubljana Biotechnical Faculty, Ljubljana, Slovenia
| | - Lucija Slemc
- Chair of Biotechnology, Microbiology and Food Safety, University of Ljubljana Biotechnical Faculty, Ljubljana, Slovenia
| | - Martina Avbelj
- Chair of Biotechnology, Microbiology and Food Safety, University of Ljubljana Biotechnical Faculty, Ljubljana, Slovenia
| | - Miha Tome
- Chair of Biotechnology, Microbiology and Food Safety, University of Ljubljana Biotechnical Faculty, Ljubljana, Slovenia
| | - Martin Šala
- National Institute of Chemistry, Ljubljana, Slovenia
| | - Paul Herron
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Maksym Shmatkov
- Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
- Educational and Scientific Institute of High Technologies, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Marko Petek
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Špela Baebler
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Peter Mrak
- Antiinfectives, Sandoz, Mengeš, Slovenia
| | - Daslav Hranueli
- Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Antonio Starčević
- Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Iain S. Hunter
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Hrvoje Petković
- Chair of Biotechnology, Microbiology and Food Safety, University of Ljubljana Biotechnical Faculty, Ljubljana, Slovenia
| |
Collapse
|
4
|
Vojnovic S, Aleksic I, Ilic-Tomic T, Stevanovic M, Nikodinovic-Runic J. Bacillus and Streptomyces spp. as hosts for production of industrially relevant enzymes. Appl Microbiol Biotechnol 2024; 108:185. [PMID: 38289383 PMCID: PMC10827964 DOI: 10.1007/s00253-023-12900-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/28/2023] [Accepted: 12/05/2023] [Indexed: 02/01/2024]
Abstract
The application of enzymes is expanding across diverse industries due to their nontoxic and biodegradable characteristics. Another advantage is their cost-effectiveness, reflected in reduced processing time, water, and energy consumption. Although Gram-positive bacteria, Bacillus, and Streptomyces spp. are successfully used for production of industrially relevant enzymes, they still lag far behind Escherichia coli as hosts for recombinant protein production. Generally, proteins secreted by Bacillus and Streptomyces hosts are released into the culture medium; their native conformation is preserved and easier recovery process enabled. Given the resilience of both hosts in harsh environmental conditions and their spore-forming capability, a deeper understanding and broader use of Bacillus and Streptomyces as expression hosts could significantly enhance the robustness of industrial bioprocesses. This mini-review aims to compare two expression hosts, emphasizing their specific advantages in industrial surroundings such are chemical, detergent, textile, food, animal feed, leather, and paper industries. The homologous sources, heterologous hosts, and molecular tools used for the production of recombinant proteins in these hosts are discussed. The potential to use both hosts as biocatalysts is also evaluated. Undoubtedly, Bacillus and Streptomyces spp. as production hosts possess the potential to take on a more substantial role, providing superior (bio-based) process robustness and flexibility. KEY POINTS: • Bacillus and Streptomyces spp. as robust hosts for enzyme production. • Industrially relevant enzyme groups for production in alternative hosts highlighted. • Molecular biology techniques are enabling easier utilization of both hosts.
Collapse
Affiliation(s)
- Sandra Vojnovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade 152, Serbia.
| | - Ivana Aleksic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade 152, Serbia
| | - Tatjana Ilic-Tomic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade 152, Serbia
| | - Milena Stevanovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade 152, Serbia
| | - Jasmina Nikodinovic-Runic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade 152, Serbia.
| |
Collapse
|
5
|
Beganovic S, Rückert-Reed C, Sucipto H, Shu W, Gläser L, Patschkowski T, Struck B, Kalinowski J, Luzhetskyy A, Wittmann C. Systems biology of industrial oxytetracycline production in Streptomyces rimosus: the secrets of a mutagenized hyperproducer. Microb Cell Fact 2023; 22:222. [PMID: 37898787 PMCID: PMC10612213 DOI: 10.1186/s12934-023-02215-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/26/2023] [Indexed: 10/30/2023] Open
Abstract
BACKGROUND Oxytetracycline which is derived from Streptomyces rimosus, inhibits a wide range of bacteria and is industrially important. The underlying biosynthetic processes are complex and hinder rational engineering, so industrial manufacturing currently relies on classical mutants for production. While the biochemistry underlying oxytetracycline synthesis is known to involve polyketide synthase, hyperproducing strains of S. rimosus have not been extensively studied, limiting our knowledge on fundamental mechanisms that drive production. RESULTS In this study, a multiomics analysis of S. rimosus is performed and wild-type and hyperproducing strains are compared. Insights into the metabolic and regulatory networks driving oxytetracycline formation were obtained. The overproducer exhibited increased acetyl-CoA and malonyl CoA supply, upregulated oxytetracycline biosynthesis, reduced competing byproduct formation, and streamlined morphology. These features were used to synthesize bhimamycin, an antibiotic, and a novel microbial chassis strain was created. A cluster deletion derivative showed enhanced bhimamycin production. CONCLUSIONS This study suggests that the precursor supply should be globally increased to further increase the expression of the oxytetracycline cluster while maintaining the natural cluster sequence. The mutagenized hyperproducer S. rimosus HP126 exhibited numerous mutations, including large genomic rearrangements, due to natural genetic instability, and single nucleotide changes. More complex mutations were found than those typically observed in mutagenized bacteria, impacting gene expression, and complicating rational engineering. Overall, the approach revealed key traits influencing oxytetracycline production in S. rimosus, suggesting that similar studies for other antibiotics could uncover general mechanisms to improve production.
Collapse
Affiliation(s)
- Selma Beganovic
- Institute of Systems Biotechnology, Saarland University, Campus A1 5, 66123, Saarbrücken, Germany
| | | | - Hilda Sucipto
- Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - Wei Shu
- Institute of Systems Biotechnology, Saarland University, Campus A1 5, 66123, Saarbrücken, Germany
| | - Lars Gläser
- Institute of Systems Biotechnology, Saarland University, Campus A1 5, 66123, Saarbrücken, Germany
| | | | - Ben Struck
- Centre for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Jörn Kalinowski
- Centre for Biotechnology, Bielefeld University, Bielefeld, Germany
| | | | - Christoph Wittmann
- Institute of Systems Biotechnology, Saarland University, Campus A1 5, 66123, Saarbrücken, Germany. *
| |
Collapse
|
6
|
WANG H, WANG L, FAN K, PAN G. Tetracycline natural products: discovery, biosynthesis and engineering. Chin J Nat Med 2022; 20:773-794. [DOI: 10.1016/s1875-5364(22)60224-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Indexed: 11/03/2022]
|
7
|
Del Carratore F, Hanko EK, Breitling R, Takano E. Biotechnological application of Streptomyces for the production of clinical drugs and other bioactive molecules. Curr Opin Biotechnol 2022; 77:102762. [PMID: 35908316 DOI: 10.1016/j.copbio.2022.102762] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 11/30/2022]
Abstract
Streptomyces is one of the most relevant genera in biotechnology, and its rich secondary metabolism is responsible for the biosynthesis of a plethora of bioactive compounds, including several clinically relevant drugs. The use of Streptomyces species for the manufacture of natural products has been established for more than half a century; however, the tremendous advances observed in recent years in genetic engineering and molecular biology have revolutionised the optimisation of Streptomyces as cell factories and drastically expanded the biotechnological potential of these bacteria. Here, we illustrate the most exciting advances reported in the past few years, with a particular focus on the approaches significantly improving the biotechnological capacity of Streptomyces to produce clinical drugs and other valuable secondary metabolites.
Collapse
Affiliation(s)
- Francesco Del Carratore
- Manchester Institute of Biotechnology, Faculty of Science and Engineering, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Erik Kr Hanko
- Manchester Institute of Biotechnology, Faculty of Science and Engineering, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Rainer Breitling
- Manchester Institute of Biotechnology, Faculty of Science and Engineering, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Eriko Takano
- Manchester Institute of Biotechnology, Faculty of Science and Engineering, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom.
| |
Collapse
|
8
|
Hwang S, Lee Y, Kim JH, Kim G, Kim H, Kim W, Cho S, Palsson BO, Cho BK. Streptomyces as Microbial Chassis for Heterologous Protein Expression. Front Bioeng Biotechnol 2022; 9:804295. [PMID: 34993191 PMCID: PMC8724576 DOI: 10.3389/fbioe.2021.804295] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/30/2021] [Indexed: 12/29/2022] Open
Abstract
Heterologous production of recombinant proteins is gaining increasing interest in biotechnology with respect to productivity, scalability, and wide applicability. The members of genus Streptomyces have been proposed as remarkable hosts for heterologous production due to their versatile nature of expressing various secondary metabolite biosynthetic gene clusters and secretory enzymes. However, there are several issues that limit their use, including low yield, difficulty in genetic manipulation, and their complex cellular features. In this review, we summarize rational engineering approaches to optimizing the heterologous production of secondary metabolites and recombinant proteins in Streptomyces species in terms of genetic tool development and chassis construction. Further perspectives on the development of optimal Streptomyces chassis by the design-build-test-learn cycle in systems are suggested, which may increase the availability of secondary metabolites and recombinant proteins.
Collapse
Affiliation(s)
- Soonkyu Hwang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Yongjae Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Ji Hun Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Gahyeon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Hyeseong Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Woori Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Suhyung Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Bernhard O Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States.,Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States.,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Byung-Kwan Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,Innovative Biomaterials Research Center, KAIST Institutes, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| |
Collapse
|
9
|
Sharma V, Kaur R, Salwan R. Streptomyces: host for refactoring of diverse bioactive secondary metabolites. 3 Biotech 2021; 11:340. [PMID: 34221811 DOI: 10.1007/s13205-021-02872-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/31/2021] [Indexed: 12/22/2022] Open
Abstract
Microbial secondary metabolites are intensively explored due to their demands in pharmaceutical, agricultural and food industries. Streptomyces are one of the largest sources of secondary metabolites having diverse applications. In particular, the abundance of secondary metabolites encoding biosynthetic gene clusters and presence of wobble position in Streptomyces strains make it potential candidate as a native or heterologous host for secondary metabolite production including several cryptic gene clusters expression. Here, we have discussed the developments in Streptomyces strains genome mining, its exploration as a suitable host and application of synthetic biology for refactoring genetic systems for developing chassis for enhanced as well as novel secondary metabolites with reduced genome and cleaned background.
Collapse
Affiliation(s)
- Vivek Sharma
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, Punjab 140413 India
| | - Randhir Kaur
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, Punjab 140413 India
| | - Richa Salwan
- College of Horticulture and Forestry, Dr YS Parmar University of Horticulture and Forestry, Neri, Hamirpur, Himachal Pradesh 177001 India
| |
Collapse
|
10
|
Rational engineering strategies for achieving high-yield, high-quality and high-stability of natural product production in actinomycetes. Metab Eng 2021; 67:198-215. [PMID: 34166765 DOI: 10.1016/j.ymben.2021.06.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/30/2021] [Accepted: 06/19/2021] [Indexed: 12/11/2022]
Abstract
Actinomycetes are recognized as excellent producers of microbial natural products, which have a wide range of applications, especially in medicine, agriculture and stockbreeding. The three main indexes of industrialization (titer, purity and stability) must be taken into overall consideration in the manufacturing process of natural products. Over the past decades, synthetic biology techniques have expedited the development of industrially competitive strains with excellent performances. Here, we summarize various rational engineering strategies for upgrading the performance of industrial actinomycetes, which include enhancing the yield of natural products, eliminating the by-products and improving the genetic stability of engineered strains. Furthermore, the current challenges and future perspectives for optimizing the industrial strains more systematically through combinatorial engineering strategies are also discussed.
Collapse
|
11
|
Breitling R, Avbelj M, Bilyk O, Carratore F, Filisetti A, Hanko EKR, Iorio M, Redondo RP, Reyes F, Rudden M, Severi E, Slemc L, Schmidt K, Whittall DR, Donadio S, García AR, Genilloud O, Kosec G, De Lucrezia D, Petković H, Thomas G, Takano E. Synthetic biology approaches to actinomycete strain improvement. FEMS Microbiol Lett 2021; 368:6289918. [PMID: 34057181 PMCID: PMC8195692 DOI: 10.1093/femsle/fnab060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/28/2021] [Indexed: 12/17/2022] Open
Abstract
Their biochemical versatility and biotechnological importance make actinomycete bacteria attractive targets for ambitious genetic engineering using the toolkit of synthetic biology. But their complex biology also poses unique challenges. This mini review discusses some of the recent advances in synthetic biology approaches from an actinomycete perspective and presents examples of their application to the rational improvement of industrially relevant strains.
Collapse
Affiliation(s)
- Rainer Breitling
- Department of Chemistry, Manchester Institute of Biotechnology, Manchester Synthetic Biology Research Centre SYNBIOCHEM, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Martina Avbelj
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Oksana Bilyk
- Department of Chemistry, Manchester Institute of Biotechnology, Manchester Synthetic Biology Research Centre SYNBIOCHEM, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Francesco Del Carratore
- Department of Chemistry, Manchester Institute of Biotechnology, Manchester Synthetic Biology Research Centre SYNBIOCHEM, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | | | - Erik K R Hanko
- Department of Chemistry, Manchester Institute of Biotechnology, Manchester Synthetic Biology Research Centre SYNBIOCHEM, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | | | | | - Fernando Reyes
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avenida del Conocimiento 34, Parque Tecnologico de Ciencias de la Salud, 18016 Armilla, Granada, Spain
| | - Michelle Rudden
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | | | - Lucija Slemc
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Kamila Schmidt
- Department of Chemistry, Manchester Institute of Biotechnology, Manchester Synthetic Biology Research Centre SYNBIOCHEM, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Dominic R Whittall
- Department of Chemistry, Manchester Institute of Biotechnology, Manchester Synthetic Biology Research Centre SYNBIOCHEM, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | | | | | - Olga Genilloud
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avenida del Conocimiento 34, Parque Tecnologico de Ciencias de la Salud, 18016 Armilla, Granada, Spain
| | - Gregor Kosec
- Acies Bio d.o.o., Tehnološki Park 21, 1000, Ljubljana, Slovenia
| | - Davide De Lucrezia
- Explora Biotech Srl, Doulix business unit, Via Torino 107, 30133 Venice, Italy
| | - Hrvoje Petković
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Gavin Thomas
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Eriko Takano
- Corresponding author: Department of Chemistry, Manchester Institute of Biotechnology, Manchester Synthetic Biology Research Centre SYNBIOCHEM, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK. E-mail:
| |
Collapse
|
12
|
Yang Y, Sun Q, Liu Y, Yin H, Yang W, Wang Y, Liu Y, Li Y, Pang S, Liu W, Zhang Q, Yuan F, Qiu S, Li J, Wang X, Fan K, Wang W, Li Z, Yin S. Development of a pyrF-based counterselectable system for targeted gene deletion in Streptomyces rimosus. J Zhejiang Univ Sci B 2021; 22:383-396. [PMID: 33973420 DOI: 10.1631/jzus.b2000606] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Streptomyces produces many valuable and important biomolecules with clinical and pharmaceutical applications. The development of simple and highly efficient gene editing tools for genetic modification of Streptomyces is highly desirable. In this study, we developed a screening system for targeted gene knockout using a uracil auxotrophic host (ΔpyrF) resistant to the highly toxic uracil analog of 5-fluoroorotic acid (5-FOA) converted by PyrF, and a non-replicative vector pKC1132-pyrF carrying the complemented pyrF gene coding for orotidine-5'-phosphate decarboxylase. The pyrF gene acts as a positive selection and counterselection marker for recombinants during genetic modifications. Single-crossover homologous integration mutants were selected on minimal medium without uracil by reintroducing pyrF along with pKC1132-pyrF into the genome of the mutant ΔpyrF at the targeted locus. Double-crossover recombinants were generated, from which the pyrF gene, plasmid backbone, and targeted gene were excised through homologous recombination exchange. These recombinants were rapidly screened by the counterselection agent, 5-FOA. We demonstrated the feasibility and advantage of using this pyrF-based screening system through deleting the otcR gene, which encodes the cluster-situated regulator that directly activates oxytetracycline biosynthesis in Streptomyces rimosus M4018. This system provides a new genetic tool for investigating the genetic characteristics of Streptomyces species.
Collapse
Affiliation(s)
- Yiying Yang
- School of Life Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Qingqing Sun
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yang Liu
- School of Life Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Hanzhi Yin
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenping Yang
- School of Life Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Yang Wang
- School of Life Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Ying Liu
- School of Life Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Yuxian Li
- School of Life Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Shen Pang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenxi Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qian Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Fang Yuan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shiwen Qiu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiong Li
- Shengxue Dacheng Pharmaceutical Co., Ltd., Shijiazhuang 051430, China
| | - Xuefeng Wang
- Shengxue Dacheng Pharmaceutical Co., Ltd., Shijiazhuang 051430, China
| | - Keqiang Fan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Weishan Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zilong Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Shouliang Yin
- School of Life Sciences, North China University of Science and Technology, Tangshan 063210, China. ,
| |
Collapse
|
13
|
Slemc L, Pikl Š, Petković H, Avbelj M. Molecular Biology Methods in Streptomyces rimosus, a Producer of Oxytetracycline. Methods Mol Biol 2021; 2296:303-330. [PMID: 33977456 DOI: 10.1007/978-1-0716-1358-0_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Streptomyces rimosus is used for production of the broad-spectrum antibiotic oxytetracycline (OTC). S. rimosus belongs to Actinomyces species, a large group of microorganisms that produce diverse set of natural metabolites of high importance in many aspects of our life. In this chapter, we describe specific molecular biology methods and a classical homologous recombination approach for targeted in-frame deletion of a target gene or entire operon in S. rimosus genome. The presented protocols will guide you through the design of experiment and construction of homology arms and their cloning into appropriate vectors, which are suitable for gene-engineering work with S. rimosus. Furthermore, two different protocols for S. rimosus transformation are described including detailed procedure for targeted gene replacement via double crossover recombination event. Gene deletion is confirmed by colony PCR, and colonies are further characterized by cultivation and metabolite analysis. As the final step, we present in trans complementation of the deleted gene, to confirm functionality of the engineering approach achieved by gene disruption. A number of methodological steps and protocols are optimized for S. rimosus strains including the use of the selected reporter genes. Protocols described in this chapter can be applied for studying function of any individual gene product in diverse OTC-producing Streptomyces rimosus strains.
Collapse
Affiliation(s)
- Lucija Slemc
- Chair of Biotechnology, Microbiology and Food Safety, Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Špela Pikl
- Chair of Biotechnology, Microbiology and Food Safety, Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Hrvoje Petković
- Chair of Biotechnology, Microbiology and Food Safety, Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Martina Avbelj
- Chair of Biotechnology, Microbiology and Food Safety, Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
14
|
Recent Advances in the Heterologous Biosynthesis of Natural Products from Streptomyces. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11041851] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Streptomyces is a significant source of natural products that are used as therapeutic antibiotics, anticancer and antitumor agents, pesticides, and dyes. Recently, with the advances in metabolite analysis, many new secondary metabolites have been characterized. Moreover, genome mining approaches demonstrate that many silent and cryptic biosynthetic gene clusters (BGCs) and many secondary metabolites are produced in very low amounts under laboratory conditions. One strain many compounds (OSMAC), overexpression/deletion of regulatory genes, ribosome engineering, and promoter replacement have been utilized to activate or enhance the production titer of target compounds. Hence, the heterologous expression of BGCs by transferring to a suitable production platform has been successfully employed for the detection, characterization, and yield quantity production of many secondary metabolites. In this review, we introduce the systematic approach for the heterologous production of secondary metabolites from Streptomyces in Streptomyces and other hosts, the genome analysis tools, the host selection, and the development of genetic control elements for heterologous expression and the production of secondary metabolites.
Collapse
|
15
|
Pikl Š, Carrillo Rincón AF, Slemc L, Goranovič D, Avbelj M, Gjuračić K, Sucipto H, Stare K, Baebler Š, Šala M, Guo M, Luzhetskyy A, Petković H, Magdevska V. Multiple copies of the oxytetracycline gene cluster in selected Streptomyces rimosus strains can provide significantly increased titers. Microb Cell Fact 2021; 20:47. [PMID: 33596911 PMCID: PMC7890619 DOI: 10.1186/s12934-021-01522-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 01/19/2021] [Indexed: 11/23/2022] Open
Abstract
Background Natural products are a valuable source of biologically active compounds that have applications in medicine and agriculture. One disadvantage with natural products is the slow, time-consuming strain improvement regimes that are necessary to ensure sufficient quantities of target compounds for commercial production. Although great efforts have been invested in strain selection methods, many of these technologies have not been improved in decades, which might pose a serious threat to the economic and industrial viability of such important bioprocesses. Results In recent years, introduction of extra copies of an entire biosynthetic pathway that encodes a target product in a single microbial host has become a technically feasible approach. However, this often results in minor to moderate increases in target titers. Strain stability and process reproducibility are the other critical factors in the industrial setting. Industrial Streptomyces rimosus strains for production of oxytetracycline are one of the most economically efficient strains ever developed, and thus these represent a very good industrial case. To evaluate the applicability of amplification of an entire gene cluster in a single host strain, we developed and evaluated various gene tools to introduce multiple copies of the entire oxytetracycline gene cluster into three different Streptomyces rimosus strains: wild-type, and medium and high oxytetracycline-producing strains. We evaluated the production levels of these engineered S. rimosus strains with extra copies of the oxytetracycline gene cluster and their stability, and the oxytetracycline gene cluster expression profiles; we also identified the chromosomal integration sites. Conclusions This study shows that stable and reproducible increases in target secondary metabolite titers can be achieved in wild-type and in high oxytetracycline-producing strains, which always reflects the metabolic background of each independent S. rimosus strain. Although this approach is technically very demanding and requires systematic effort, when combined with modern strain selection methods, it might constitute a very valuable approach in industrial process development.
Collapse
Affiliation(s)
- Špela Pikl
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | | | - Lucija Slemc
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | | | - Martina Avbelj
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | | | - Hilda Sucipto
- Pharmazeutische Biotechnologie, Universität des Saarlandes, Saarbrücken, Germany.,Helmholtz-Institut für Pharmazeutische Forschung Saarland, Saarbrücken, Germany
| | - Katja Stare
- National Institute of Biology, Večna pot 111, Ljubljana, Slovenia
| | - Špela Baebler
- National Institute of Biology, Večna pot 111, Ljubljana, Slovenia
| | - Martin Šala
- National Institute of Chemistry, Hajdrihova 19, SI-1000, Ljubljana, Slovenia
| | - Meijin Guo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Andriy Luzhetskyy
- Pharmazeutische Biotechnologie, Universität des Saarlandes, Saarbrücken, Germany.,Helmholtz-Institut für Pharmazeutische Forschung Saarland, Saarbrücken, Germany
| | - Hrvoje Petković
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia.
| | | |
Collapse
|
16
|
Park D, Swayambhu G, Lyga T, Pfeifer BA. Complex natural product production methods and options. Synth Syst Biotechnol 2021; 6:1-11. [PMID: 33474503 PMCID: PMC7803631 DOI: 10.1016/j.synbio.2020.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/19/2020] [Accepted: 12/21/2020] [Indexed: 12/29/2022] Open
Abstract
Natural products have had a major impact upon quality of life, with antibiotics as a classic example of having a transformative impact upon human health. In this contribution, we will highlight both historic and emerging methods of natural product bio-manufacturing. Traditional methods of natural product production relied upon native cellular host systems. In this context, pragmatic and effective methodologies were established to enable widespread access to natural products. In reviewing such strategies, we will also highlight the development of heterologous natural product biosynthesis, which relies instead on a surrogate host system theoretically capable of advanced production potential. In comparing native and heterologous systems, we will comment on the base organisms used for natural product biosynthesis and how the properties of such cellular hosts dictate scaled engineering practices to facilitate compound distribution. In concluding the article, we will examine novel efforts in production practices that entirely eliminate the constraints of cellular production hosts. That is, cell free production efforts will be introduced and reviewed for the purpose of complex natural product biosynthesis. Included in this final analysis will be research efforts made on our part to test the cell free biosynthesis of the complex polyketide antibiotic natural product erythromycin.
Collapse
Affiliation(s)
- Dongwon Park
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Girish Swayambhu
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Thomas Lyga
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Blaine A Pfeifer
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, USA
| |
Collapse
|
17
|
Liu J, Wu X, Yao M, Xiao W, Zha J. Chassis engineering for microbial production of chemicals: from natural microbes to synthetic organisms. Curr Opin Biotechnol 2020; 66:105-112. [PMID: 32738762 DOI: 10.1016/j.copbio.2020.06.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/21/2020] [Accepted: 06/21/2020] [Indexed: 12/13/2022]
Abstract
Chassis provides a setting for the expression of heterologous pathway genes, which often requires extensive engineering to achieve complete functions. Traditionally, chassis engineering relies on gene deletion/overexpression for the regulation of precursor/cofactor supply and product transportation, which has generated thousands of high-performance strains. With the development of synthetic biology, chassis modifications have expanded to the synthesis of artificial cellular machineries, creating synthetic cells for the biosynthesis of bioproducts. In this review, we will discuss the development of chassis engineering technologies, termed the first-generation and second-generation technologies, and their applications in the creation of chassis for the production of valued-added chemicals, with an emphasis on synthetic chassis and their applications and potential. The development of chassis engineering technologies will advance rational design and construction of customized chassis for the manufacturing of target bioproducts.
Collapse
Affiliation(s)
- Jingyi Liu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Xia Wu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Mingdong Yao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China; Frontier Technology Research Institute, Tianjin University, Tianjin 301700, China
| | - Wenhai Xiao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China.
| | - Jian Zha
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China.
| |
Collapse
|