1
|
Hajihassan Z, Yaseri A, Yazdi M. Optimization of recombinant neurturin expression in Escherichia coli using response surface methodology. Biotechnol Lett 2025; 47:36. [PMID: 40100421 DOI: 10.1007/s10529-025-03575-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/21/2025] [Accepted: 02/28/2025] [Indexed: 03/20/2025]
Abstract
Neurturin, a neurotrophic growth factor, has been identified as a potential treatment or reversal agent for neurodegenerative conditions. Although Escherichia coli is an appropriate host for recombinant protein expression, the production of proteins with disulfide bonds, such as neurturin, in this strain is frequently accompanied by the formation of inclusion bodies. In this study, the Rosetta-gami strain, which is well-suited for the accurate formation of disulfide bonds was employed for the soluble production of neurturin. Response surface methodology (RSM) was also used to investigate the effects of IPTG concentration, post-induction time and temperature on the soluble production of neurturin. The results showed that the highest yield of neurturin production occurred in the presence of 0.8 mM of IPTG after 5.5 h at 26 ºC. Fractional Factorial Design was used in the subsequent stage to screen the effects of culture medium components on the protein production. The best concentrations of yeast extract, tryptone and MgSO4 to have a significant effect on total protein concentration were determined by RSM design to be 15 g/l for both tryptone and yeast extract and 2.2 g/l for MgSO4. Finally, an experiment was carried out under optimized conditions to evaluate the yield of the process. The results demonstrated a notable enhancement in neurturin production following optimization, with an increase of 8.6-fold compared to the normal condition.
Collapse
Affiliation(s)
- Zahra Hajihassan
- School of Life Science Engineering, College of Interdisciplinary Science and Technology, University of Tehran, Tehran, Iran.
| | - Aysan Yaseri
- School of Life Science Engineering, College of Interdisciplinary Science and Technology, University of Tehran, Tehran, Iran
| | - Mina Yazdi
- School of Life Science Engineering, College of Interdisciplinary Science and Technology, University of Tehran, Tehran, Iran
| |
Collapse
|
2
|
de Marco A. Recent advances in recombinant production of soluble proteins in E. coli. Microb Cell Fact 2025; 24:21. [PMID: 39815265 PMCID: PMC11736966 DOI: 10.1186/s12934-025-02646-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 01/07/2025] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND E. coli still remains the most commonly used organism to produce recombinant proteins in research labs. This condition is mirrored by the attention that researchers dedicate to understanding the biology behind protein expression, which is then exploited to improve the effectiveness of the technology. This effort is witnessed by an impressive number of publications, and this review aims to organize the most relevant novelties proposed in recent years. RESULTS The examined contributions address several of the known bottlenecks related to recombinant expression in E. coli, such as improved glycosylation pathways, more reliable production of proteins whose folding depends on the formation of disulfide bonds, the possibility of controlling and even benefiting from the formation of aggregates or the need to overcome the dependence of bacteria on antibiotics during bacterial culture. Nevertheless, the majority of the published papers aimed at identifying the conditions for optimal control of the translation process to achieve maximal yields of functional exogenous proteins. CONCLUSIONS Despite community commitment, the critical question of what really is the metabolic burden and how it affects both host metabolism and recombinant protein production remains elusive because some experimental results are contradictory. This contribution aims to offer researchers a tool to orient themselves in this complexity. The new capacities offered by artificial intelligence tools could help clarifying this issue, but the training phase will probably require more systematic experimental approaches to collect sufficiently uniform data.
Collapse
Affiliation(s)
- Ario de Marco
- Lab of Environmental and Life Sciences, University of Nova Gorica, Vipavska cesta 13, Nova Gorica, 5000, Slovenia.
| |
Collapse
|
3
|
Kaur D, Singh RP, Gupta S. Construction of Pseudomonas aeruginosa SDK-6 with synthetic lipase gene cassette and optimization of different parameters using response surface methodology for over-expression of recombinant lipase. Folia Microbiol (Praha) 2024; 69:1279-1290. [PMID: 38700831 DOI: 10.1007/s12223-024-01167-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/13/2024] [Indexed: 10/17/2024]
Abstract
Lipases are industrially important enzymes having vast applications in various fields. Cloning and expression of lipase enzyme-encoding genes in suitable host lead to their widespread use in different fields. The present study represents the first attempt towards the expression of the synthetic lipase gene in Pseudomonas aeruginosa. An alkalophilic lipase gene (GenBank accession number: NP_388152) from Bacillus subtilis was synthetically designed and introduced in the pJN105 vector and subsequently cloned in Pseudomonas aeruginosa SDK-6. Agarose gel electrophoresis confirmed the transformation of SDK-6, exhibiting a band difference of ~ 700 bp between native and recombinant pJN105. Further amplification of cloned lipase gene was confirmed using PCR amplification with Lip 1 and Lip 2 primers respectively, followed by restriction analysis. Approximately 15-fold increase in lipase production was observed in recombinant Pseudomonas as compared to the native strain. One factor at a time (OFAT) analysis revealed L-arabinose, inoculum size (0.5%; v/v), and agitation (120 rpm) as significant factors affecting the over-expression of lipase enzyme. Optimization of enzyme induction conditions by central composite design (CCD) led to 1.60-fold increase in the production of lipase at 0.65% (w/v) inducer concentration, OD600-1.075 before induction and 35 °C post induction temperature with overall lipase production of 50.50 IU/mL. Statistical validation of observed value via ANOVA showed an F-value of 138.70 at p < 0.01 with R2 of 0.9921.
Collapse
Affiliation(s)
- Damanjeet Kaur
- Department of Microbiology, Mata Gujri College, Fatehgarh Sahib-140406, Punjab, India
- Department of Biotechnology and Food Technology, Punjabi University, Patiala-147002, Punjab, India
| | - Rupinder Pal Singh
- Department of Food Processing Technology, Sri Guru Granth Sahib World University, Fatehgarh Sahib-140406, Punjab, India
| | - Saurabh Gupta
- Department of Microbiology, Mata Gujri College, Fatehgarh Sahib-140406, Punjab, India.
| |
Collapse
|
4
|
Chen A, Dong Y, Jiang H, Yang S, Zhang J, Wei D. Identification and analysis of the key genes for Escherichia coli heterologous protein expression by transcriptomic profiling. Mol Biol Rep 2024; 51:1074. [PMID: 39425817 DOI: 10.1007/s11033-024-10011-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Escherichia coli is a frequently used host for heterologous protein expression, but its expression efficiency is hindered by several limitations, such as formation of inclusion bodies and proteolytic degradation. METHODS AND RESULTS In this study, we employed high-density fermentation of heterologous protein production in a 5-L bioreactor, resulting in a yield 2.25 times higher than that of the control group. Transcriptional analysis was conducted at three time points after induction for 0 h, 4 h, and 12 h, revealing 420, 301, and 570 upregulated differentially expressed genes, as well as 424, 202, and 525 downregulated genes, respectively. By conducting enrichment analysis, we constructed strains that relieved without iron limitation, exhibiting a 36% increase in biomass and a 32% increase in protein expression. Furthermore, no overflow metabolism of acetic acid was detected during the protein expression process when utilizing chemostat culture, which indicated that the utilization efficiency of glucose was significantly enhanced without iron limitation. CONCLUSIONS This study presents a novel approach to better comprehend the mechanism of high-yield production of heterologous proteins in Escherichia coli.
Collapse
Affiliation(s)
- Anxiang Chen
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yuguo Dong
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Huaigu Jiang
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Shengli Yang
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jian Zhang
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Dongzhi Wei
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
5
|
Azizi-Dargahlou S, Pouresmaeil M, Ahmadabadi M. Tobacco Plant: A Novel and Promising Heterologous Bioreactor for the Production of Recombinant Bovine Chymosin. Mol Biotechnol 2024; 66:2595-2605. [PMID: 38244177 DOI: 10.1007/s12033-023-01043-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/18/2023] [Indexed: 01/22/2024]
Abstract
The natural source of chymosin, a key enzyme in the dairy industry, is insufficient for rapidly growing cheese industries. Large-scale production of recombinant proteins in heterologous hosts provides an efficient alternative solution. Here, the codon-optimized synthetic prochymosin gene, which has a CAI index of 0.926, was subcloned from a cloning vector (pUC57-bCYM) into the pBI121 vector, resulting in the construct named pBI121-bCYM. CAI ranges from 0 to 1 and higher CAI improves gene expression in heterologous hosts. The overexpression of the prochymosin gene was under the control of constitutive CaMV 35S promoter and NOS terminator and was transferred into the tobacco via A. tumefaciens strain LBA4404. Explant type, regeneration method, inoculation temperature, cell density (OD600) of Agrobacterium for inoculation, and acetosyringone concentration were leaf explants, direct somatic embryogenesis, 19 °C, 0.1, and 100 µM, respectively. The successful integration and expression of the prochymosin gene, along with the bioactivity of recombinant chymosin, were confirmed by PCR, RT-PCR, and milk coagulation assay, respectively. Overall, this study reports the first successful overexpression of the codon-optimized prochymosin form of the bovine chymosin enzyme in the tobacco via indirect transformation. Production of recombinant bovine chymosin in plants can be an easy-to-scale-up, safe, and inexpensive platform.
Collapse
Affiliation(s)
- Shahnam Azizi-Dargahlou
- Seed and Plant Certification and Registration Institute, Ardabil Agricultural and Natural Resources Research Center, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.
| | - Mahin Pouresmaeil
- Faculty of Agricultural Sciences and Natural Resources, University of Mohaghegh Ardabili, Ardabi, Iran
| | - Mohammad Ahmadabadi
- Department of Biotechnology, Azarbaijan Shahid Madani University, Tabriz, Iran
| |
Collapse
|
6
|
Hennigan JN, Menacho-Melgar R, Sarkar P, Golovsky M, Lynch MD. Scalable, robust, high-throughput expression & purification of nanobodies enabled by 2-stage dynamic control. Metab Eng 2024; 85:116-130. [PMID: 39059674 PMCID: PMC11408108 DOI: 10.1016/j.ymben.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/16/2024] [Accepted: 07/24/2024] [Indexed: 07/28/2024]
Abstract
Nanobodies are single-domain antibody fragments that have garnered considerable use as diagnostic and therapeutic agents as well as research tools. However, obtaining pure VHHs, like many proteins, can be laborious and inconsistent. High level cytoplasmic expression in E. coli can be challenging due to improper folding and insoluble aggregation caused by reduction of the conserved disulfide bond. We report a systems engineering approach leveraging engineered strains of E. coli, in combination with a two-stage process and simplified downstream purification, enabling improved, robust, soluble cytoplasmic nanobody expression, as well as rapid cell autolysis and purification. This approach relies on the dynamic control over the reduction potential of the cytoplasm, incorporates lysis enzymes for purification, and can also integrate dynamic expression of protein folding catalysts. Collectively, the engineered system results in more robust growth and protein expression, enabling efficient scalable nanobody production, and purification from high throughput microtiter plates, to routine shake flask cultures and larger instrumented bioreactors. We expect this system will expedite VHH development.
Collapse
Affiliation(s)
| | | | - Payel Sarkar
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | | | - Michael D Lynch
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
| |
Collapse
|
7
|
Hashizume T, Ying BW. Challenges in developing cell culture media using machine learning. Biotechnol Adv 2024; 70:108293. [PMID: 37984683 DOI: 10.1016/j.biotechadv.2023.108293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 10/17/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023]
Abstract
Microbial and mammalian cells are widely used in the food, pharmaceutical, and medical industries. Developing or optimizing culture media is essential to improve cell culture performance as a critical technology in cell culture engineering. Methodologies for media optimization have been developed to a great extent, such as the approaches of one-factor-at-a-time (OFAT) and response surface methodology (RSM). The present review introduces the emerging machine learning (ML) technology in cell culture engineering by combining high-throughput experimental technologies to develop highly efficient and effective culture media. The commonly used ML algorithms and the successful applications of employing ML in medium optimization are summarized. This review highlights the benefits of ML-assisted medium development and guides the selection of the media optimization method appropriate for various cell culture purposes.
Collapse
Affiliation(s)
- Takamasa Hashizume
- School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8572 Ibaraki, Japan
| | - Bei-Wen Ying
- School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8572 Ibaraki, Japan.
| |
Collapse
|
8
|
Lefin N, Miranda J, Beltrán JF, Belén LH, Effer B, Pessoa A, Farias JG, Zamorano M. Current state of molecular and metabolic strategies for the improvement of L-asparaginase expression in heterologous systems. Front Pharmacol 2023; 14:1208277. [PMID: 37426818 PMCID: PMC10323146 DOI: 10.3389/fphar.2023.1208277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/12/2023] [Indexed: 07/11/2023] Open
Abstract
Heterologous expression of L-asparaginase (L-ASNase) has become an important area of research due to its clinical and food industry applications. This review provides a comprehensive overview of the molecular and metabolic strategies that can be used to optimize the expression of L-ASNase in heterologous systems. This article describes various approaches that have been employed to increase enzyme production, including the use of molecular tools, strain engineering, and in silico optimization. The review article highlights the critical role that rational design plays in achieving successful heterologous expression and underscores the challenges of large-scale production of L-ASNase, such as inadequate protein folding and the metabolic burden on host cells. Improved gene expression is shown to be achievable through the optimization of codon usage, synthetic promoters, transcription and translation regulation, and host strain improvement, among others. Additionally, this review provides a deep understanding of the enzymatic properties of L-ASNase and how this knowledge has been employed to enhance its properties and production. Finally, future trends in L-ASNase production, including the integration of CRISPR and machine learning tools are discussed. This work serves as a valuable resource for researchers looking to design effective heterologous expression systems for L-ASNase production as well as for enzymes production in general.
Collapse
Affiliation(s)
- Nicolás Lefin
- Department of Chemical Engineering, Science and Engineering Faculty, Universidad de La Frontera, Temuco, Chile
| | - Javiera Miranda
- Department of Chemical Engineering, Science and Engineering Faculty, Universidad de La Frontera, Temuco, Chile
| | - Jorge F. Beltrán
- Department of Chemical Engineering, Science and Engineering Faculty, Universidad de La Frontera, Temuco, Chile
| | - Lisandra Herrera Belén
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Santiago, Chile
| | - Brian Effer
- Center of Excellence in Translational Medicine and Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
| | - Adalberto Pessoa
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Jorge G. Farias
- Department of Chemical Engineering, Science and Engineering Faculty, Universidad de La Frontera, Temuco, Chile
| | - Mauricio Zamorano
- Department of Chemical Engineering, Science and Engineering Faculty, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
9
|
Yu Z, Li W, Ge C, Sun X, Wang J, Shen X, Yuan Q. Functional expansion of the natural inorganic phosphorus starvation response system in Escherichia coli. Biotechnol Adv 2023; 66:108154. [PMID: 37062526 DOI: 10.1016/j.biotechadv.2023.108154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/08/2023] [Accepted: 04/09/2023] [Indexed: 04/18/2023]
Abstract
Phosphorus, an indispensable nutrient, plays an essential role in cell composition, metabolism, and signal transduction. When inorganic phosphorus (Pi) is scarce, the Pi starvation response in E. coli is activated to increase phosphorus acquisition and drive the cells into a non-growing state to reduce phosphorus consumption. In the six decades of research history, the initiation, output, and shutdown processes of the Pi starvation response have been extensively studied. Simultaneously, Pi starvation has been used in biosensor development, recombinant protein production, and natural product biosynthesis. In this review, we focus on the output process and the applications of the Pi starvation response that have not been summarized before. Meanwhile, based on the current status of mechanistic studies and applications, we propose practical strategies to develop the natural Pi starvation response into a multifunctional and standardized regulatory system in four aspects, including response threshold, temporal expression, intensity range, and bifunctional regulation, which will contribute to its broader application in more fields such as industrial production, medical analysis, and environmental protection.
Collapse
Affiliation(s)
- Zheng Yu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wenna Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chang Ge
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xinxiao Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jia Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaolin Shen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Qipeng Yuan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
10
|
Gladilina YA, Shishparenok AN, Zhdanov DD. [Approaches for improving L-asparaginase expression in heterologous systems]. BIOMEDITSINSKAIA KHIMIIA 2023; 69:19-38. [PMID: 36857424 DOI: 10.18097/pbmc20236901019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
L-asparaginase (EC 3.5.1.1) is one of the most demanded enzymes used in the pharmaceutical industry as a drug and in the food industry to prevent the formation of toxic acrylamide. Researchers aimed to improve specific activity and reduce side effects to create safer and more potent enzyme products. However, protein modifications and heterologous expression remain problematic in the production of asparaginases from different species. Heterologous expression in optimized producer strains is rationally organized; therefore, modified and heterologous protein expression is enhanced, which is the main strategy in the production of asparaginase. This strategy solves several problems: incorrect protein folding, metabolic load on the producer strain and codon misreading, which affects translation and final protein domains, leading to a decrease in catalytic activity. The main approaches developed to improve the heterologous expression of L-asparaginases are considered in this paper.
Collapse
Affiliation(s)
| | | | - D D Zhdanov
- Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
11
|
Zabolotskii AI, Kozlovskiy SV, Katrukha AG. The Influence of the Nucleotide Composition of Genes and Gene Regulatory Elements on the Efficiency of Protein Expression in Escherichia coli. BIOCHEMISTRY (MOSCOW) 2023; 88:S176-S191. [PMID: 37069120 DOI: 10.1134/s0006297923140109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Recombinant proteins expressed in Escherichia coli are widely used in biochemical research and industrial processes. At the same time, achieving higher protein expression levels and correct protein folding still remains the key problem, since optimization of nutrient media, growth conditions, and methods for induction of protein synthesis do not always lead to the desired result. Often, low protein expression is determined by the sequences of the expressed genes and their regulatory regions. The genetic code is degenerated; 18 out of 20 amino acids are encoded by more than one codon. Choosing between synonymous codons in the coding sequence can significantly affect the level of protein expression and protein folding due to the influence of the gene nucleotide composition on the probability of formation of secondary mRNA structures that affect the ribosome binding at the translation initiation phase, as well as the ribosome movement along the mRNA during elongation, which, in turn, influences the mRNA degradation and the folding of the nascent protein. The nucleotide composition of the mRNA untranslated regions, in particular the promoter and Shine-Dalgarno sequences, also affects the efficiency of mRNA transcription, translation, and degradation. In this review, we describe the genetic principles that determine the efficiency of protein production in Escherichia coli.
Collapse
Affiliation(s)
- Artur I Zabolotskii
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | | | - Alexey G Katrukha
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
12
|
Bae Y, Chun J, Park W, Kim S, Kim S, Kim N, Kim M, Moon S, Hwang J, Jung Y, Kweon DH. Expression of a Full-Length Influenza Virus Hemagglutinin in Escherichia coli. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
13
|
Rahmatabadi SS, Mobini K, Askari S, Najafian J, Karami K, Soleymani B, Mostafaie A. In silico characterization of fructosyl peptide oxidase properties from Eupenicillium terrenum. J Mol Recognit 2022; 35:e2980. [PMID: 35657361 DOI: 10.1002/jmr.2980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/23/2022] [Accepted: 06/01/2022] [Indexed: 12/24/2022]
Abstract
Fructosyl peptide oxidase (FPOX) enzyme from Eupenicillium terrenum has a high potential to be applied as a diagnostic enzyme. The aim of the present study is the characterization of FPOX from E. terrenum using different bioinformatics tools. The computational prediction of the RNA and protein secondary structures of FPOX, solubility profile in Escherichia coli, stability, domains, and functional properties were performed. In the FPOX protein, six motifs were detected. The d-amino acid oxidase motif was found as the most important motif that is a FAD-dependent oxidoreductase. The cysteines including 97, 154, 234, 280, and 360 showed a lower score than -10 that have a low possibility for participitation in the formation of the SS bond. The 56.52% of FPOX amino acids are nonpolar. Random coils are dominant in the FPOX sequence, followed by alpha-helix and extended strand. The fpox gene is capable of generating a stable RNA secondary structure (-423.90 kcal/mol) in E. coli. FPOX has a large number of hydrophobic amino acids. FPOX showed a low solubility in E. coli which has several aggregation-prone sites in its 3-D structure. According to the scores, the best mutation candidate for increasing solubility was the conversion of methionine 302 to arginine. The melting temperature of FPOX based on its amino acid sequence was 55°C to 65°C. The amounts of thermodynamic parameters for the FPOX enzyme were -137.4 kcal/mol, -3.59 kcal/(mol K), and -6.8 kcal/mol for standard folding enthalpy, heat capacity, and folding free energy, respectively. In conclusion, the in silico study of proteins can provide a valuable method for better understanding the protein properties and functions for use in our purposes.
Collapse
Affiliation(s)
| | - Keivan Mobini
- Department of Hematology, Faculty of Allied Medical Science, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Soudabeh Askari
- Department Biotechnolgy, Applied Razi Biotechnology, Kermanshah, Iran
| | - Javad Najafian
- Department of Biology, Faculty of Basic Science, University of Mazandaran, Baboulsar, Iran
| | - Keyvan Karami
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Bijan Soleymani
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Mostafaie
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
14
|
Zhang ZX, Nong FT, Wang YZ, Yan CX, Gu Y, Song P, Sun XM. Strategies for efficient production of recombinant proteins in Escherichia coli: alleviating the host burden and enhancing protein activity. Microb Cell Fact 2022; 21:191. [PMID: 36109777 PMCID: PMC9479345 DOI: 10.1186/s12934-022-01917-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
Escherichia coli, one of the most efficient expression hosts for recombinant proteins (RPs), is widely used in chemical, medical, food and other industries. However, conventional expression strains are unable to effectively express proteins with complex structures or toxicity. The key to solving this problem is to alleviate the host burden associated with protein overproduction and to enhance the ability to accurately fold and modify RPs at high expression levels. Here, we summarize the recently developed optimization strategies for the high-level production of RPs from the two aspects of host burden and protein activity. The aim is to maximize the ability of researchers to quickly select an appropriate optimization strategy for improving the production of RPs.
Collapse
|
15
|
Abuei H, Pirouzfar M, Mojiri A, Behzad-Behbahani A, Kalantari T, Bemani P, Farhadi A. Maximizing the recovery of the native p28 bacterial peptide with improved activity and maintained solubility and stability in Escherichia coli BL21 (DE3). J Microbiol Methods 2022; 200:106560. [PMID: 36031157 DOI: 10.1016/j.mimet.2022.106560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/10/2022] [Accepted: 08/20/2022] [Indexed: 02/06/2023]
Abstract
p28 is a natural bacterial product, which recently has attracted much attention as an efficient cell penetrating peptide (CPP) and a promising anticancer agent. Considering the interesting biological qualities of p28, maximizing its expression appears to be a prominent priority. The optimization of such bioprocesses might be facilitated by utilizing statistical approaches such as Design of Experiment (DoE). In this study, we aimed to maximize the expression of "biologically active" p28 in Escherichia coli BL21 (DE3) host by harnessing statistical tools and experimental methods. Using Minitab, Plackett-Burman and Box-Behnken Response Surface Methodology (RSM) designs were generated to optimize the conditions for the expression of p28. Each condition was experimentally investigated by assessing the biological activity of the purified p28 in the MCF-7 breast cancer cell line. Seven independent variables were investigated, and three of them including ethanol concentration, OD600 of the culture at the time of induction, and the post-induction temperature were demonstrated to significantly affect the p28 expression in E. coli. The cytotoxicity, penetration efficiency, and total process time were measured as dependent variables. The optimized expression conditions were validated experimentally, and the final products were investigated in terms of expression yield, solubility, and stability in vitro. Following the optimization, an 8-fold increase of the concentration of p28 expression was observed. In this study, we suggest an optimized combination of effective factors to produce soluble p28 in the E. coli host, a protocol that results in the production of a significantly high amount of the biologically active peptide with retained solubility and stability.
Collapse
Affiliation(s)
- Haniyeh Abuei
- Division of Medical Biotechnology, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Pirouzfar
- Human and Animal Cell Bank, Iranian Biological Resource Center (IBRC), ACECR, Tehran, Iran
| | - Anahita Mojiri
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston 77030, TX, USA
| | - Abbas Behzad-Behbahani
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tahereh Kalantari
- Division of Medical Biotechnology, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran; Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Peyman Bemani
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Farhadi
- Division of Medical Biotechnology, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran; Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
16
|
Mishra V. Dot-Blotting: A Quick Method for Expression Analysis of Recombinant Proteins. Curr Protoc 2022; 2:e546. [PMID: 36094175 PMCID: PMC9473290 DOI: 10.1002/cpz1.546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Expressing recombinant proteins in heterologous host cells is a prerequisite for purification and other downstream processes. Cell cultures require a protein expression test to optimize incubation time, temperature, and additives (like chemical inducers) to identify the best growth conditions with maximum recombinant protein yield. However, running SDS-PAGE followed by western blotting is cumbersome and results are not quick. Here, I describe a simple protocol to quickly check the presence of recombinant protein in cell cultures using a dot-blot experiment. The cells can be rapidly lysed and directly spotted on the nitrocellulose membrane. Then, the membrane is incubated with a horseradish peroxidase (HRP) conjugated antibody raised against the affinity tag present on the recombinant protein to confirm the protein expression by chemiluminescence. It takes less than an hour to get results. This method rapidly investigates recombinant protein expression in different cell lines and tests other variables. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Protein expression analysis for eukaryotic systems Basic Protocol 2: Protein expression analysis for bacterial systems.
Collapse
Affiliation(s)
- Vibhor Mishra
- St. Jude Children's Research Hospital, Memphis, Tennessee
| |
Collapse
|
17
|
Santos SP, Garcés LFS, Silva FS, Santiago LF, Pinheiro CS, Alcantara-Neves NM, Pacheco LG. Engineering an optimized expression operating unit for improved recombinant protein production in Escherichia coli. Protein Expr Purif 2022; 199:106150. [DOI: 10.1016/j.pep.2022.106150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 10/31/2022]
|
18
|
Karaiyan P, Chang CCH, Chan ES, Tey BT, Ramanan RN, Ooi CW. In silico screening and heterologous expression of soluble dimethyl sulfide monooxygenases of microbial origin in Escherichia coli. Appl Microbiol Biotechnol 2022; 106:4523-4537. [PMID: 35713659 PMCID: PMC9259527 DOI: 10.1007/s00253-022-12008-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 11/28/2022]
Abstract
Abstract Sequence-based screening has been widely applied in the discovery of novel microbial enzymes. However, majority of the sequences in the genomic databases were annotated using computational approaches and lacks experimental characterization. Hence, the success in obtaining the functional biocatalysts with improved characteristics requires an efficient screening method that considers a wide array of factors. Recombinant expression of microbial enzymes is often hampered by the undesirable formation of inclusion body. Here, we present a systematic in silico screening method to identify the proteins expressible in soluble form and with the desired biological properties. The screening approach was adopted in the recombinant expression of dimethyl sulfide (DMS) monooxygenase in Escherichia coli. DMS monooxygenase, a two-component enzyme consisting of DmoA and DmoB subunits, was used as a model protein. The success rate of producing soluble and active DmoA is 71% (5 out of 7 genes). Interestingly, the soluble recombinant DmoA enzymes exhibited the NADH:FMN oxidoreductase activity in the absence of DmoB (second subunit), and the cofactor FMN, suggesting that DmoA is also an oxidoreductase. DmoA originated from Janthinobacterium sp. AD80 showed the maximum NADH oxidation activity (maximum reaction rate: 6.6 µM/min; specific activity: 133 µM/min/mg). This novel finding may allow DmoA to be used as an oxidoreductase biocatalyst for various industrial applications. The in silico gene screening methodology established from this study can increase the success rate of producing soluble and functional enzymes while avoiding the laborious trial and error involved in the screening of a large pool of genes available. Key points • A systematic gene screening method was demonstrated. • DmoA is also an oxidoreductase capable of oxidizing NADH and reducing FMN. • DmoA oxidizes NADH in the absence of external FMN. Supplementary Information The online version contains supplementary material available at 10.1007/s00253-022-12008-8.
Collapse
Affiliation(s)
- Prasanth Karaiyan
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Catherine Ching Han Chang
- Arkema Thiochemicals Sdn. Bhd., Jalan PJU 1A/7A OASIS Ara Damansara, 47301, Petaling Jaya, Selangor Darul Ehsan, Malaysia
| | - Eng-Seng Chan
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Beng Ti Tey
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia.,Advanced Engineering Platform, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Ramakrishnan Nagasundara Ramanan
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia. .,Arkema Thiochemicals Sdn. Bhd., Jalan PJU 1A/7A OASIS Ara Damansara, 47301, Petaling Jaya, Selangor Darul Ehsan, Malaysia.
| | - Chien Wei Ooi
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia. .,Advanced Engineering Platform, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
19
|
Response Surface Methodology for Optimization Membrane Disruption Using Thermolysis in Lipase Lk2 and Lk3. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.2.56] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lk2 and Lk3 were thermostable recombinant lipase and highly expressed in Escherichia coli BL21 (DE3). However, Lk2 and Lk3 accumulated as an inclusion body. To further characterize both recombinant lipases, the soluble enzyme must be obtained first. This study aimed to optimize the disruption of the cell membrane in order to obtain soluble and active lipases. The effects of temperature lysis, pH, and SDS concentration on lipolytic activity Lk2 and Lk3 were investigated using a three-factor Box-Behnken design response surface methods. The optimum condition for the temperature variables at 50°C, pH 8, and 0.34% SDS which gave a lipolytic activity of 0.9 U for Lk2. Meanwhile, Lk3 lipolytic activity of 0.9 U obtained at the temperature of 50°C, pH 8, and 0.1% SDS. This result showed efficient one-step membrane disruption methods using thermolysis with addition of a low concentration of detergent at pH 8. The methods used were effective and applicable in the production of active and soluble thermostable recombinant lipase.
Collapse
|
20
|
Packiam KAR, Ooi CW, Li F, Mei S, Tey BT, Fang Ong H, Song J, Ramanan RN. PERISCOPE-Opt: Machine learning-based prediction of optimal fermentation conditions and yields of recombinant periplasmic protein expressed in Escherichia coli. Comput Struct Biotechnol J 2022; 20:2909-2920. [PMID: 35765650 PMCID: PMC9201004 DOI: 10.1016/j.csbj.2022.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/01/2022] [Accepted: 06/01/2022] [Indexed: 11/26/2022] Open
Abstract
The ensemble model considered both fermentation conditions and protein properties. Optimal fermentation conditions and periplasmic recombinant protein yield can be predicted. Predictor’s accuracy and Pearson correlation coefficient are 75% and 0.91, respectively.
Optimization of the fermentation process for recombinant protein production (RPP) is often resource-intensive. Machine learning (ML) approaches are helpful in minimizing the experimentations and find vast applications in RPP. However, these ML-based tools primarily focus on features with respect to amino-acid-sequence, ruling out the influence of fermentation process conditions. The present study combines the features derived from fermentation process conditions with that from amino acid-sequence to construct an ML-based model that predicts the maximal protein yields and the corresponding fermentation conditions for the expression of target recombinant protein in the Escherichia coli periplasm. Two sets of XGBoost classifiers were employed in the first stage to classify the expression levels of the target protein as high (>50 mg/L), medium (between 0.5 and 50 mg/L), or low (<0.5 mg/L). The second-stage framework consisted of three regression models involving support vector machines and random forest to predict the expression yields corresponding to each expression-level-class. Independent tests showed that the predictor achieved an overall average accuracy of 75% and a Pearson coefficient correlation of 0.91 for the correctly classified instances. Therefore, our model offers a reliable substitution of numerous trial-and-error experiments to identify the optimal fermentation conditions and yield for RPP. It is also implemented as an open-access webserver, PERISCOPE-Opt (http://periscope-opt.erc.monash.edu).
Collapse
|
21
|
Khalilvand AB, Aminzadeh S, Sanati MH, Mahboudi F. Media optimization for SHuffle T7 Escherichia coli expressing SUMO-Lispro proinsulin by response surface methodology. BMC Biotechnol 2022; 22:1. [PMID: 34980082 PMCID: PMC8722112 DOI: 10.1186/s12896-021-00732-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 12/22/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND SHuffle is a suitable Escherichia coli (E. coli) strain for high yield cytoplasmic soluble expression of disulfide-bonded proteins such as Insulin due to its oxidative cytoplasmic condition and the ability to correct the arrangement of disulfide bonds. Lispro is an Insulin analog that is conventionally produced in E. coli as inclusion bodies (IBs) with prolonged production time and low recovery. Here in this study, we aimed to optimize cultivation media composition for high cell density fermentation of SHuffle T7 E. coli expressing soluble Lispro proinsulin fused to SUMO tag (SU-INS construct) to obtain high cell density fermentation. RESULTS Factors including carbon and nitrogen sources, salts, metal ions, and pH were screened via Plackett-Burman design for their effectiveness on cell dry weight (CDW) as a measure of cell growth. The most significant variables of the screening experiment were Yeast extract and MgCl2 concentration, as well as pH. Succeedingly, The Central Composite Design was utilized to further evaluate and optimize the level of significant variables. The Optimized media (OM-I) enhanced biomass by 2.3 fold in the shake flask (2.5 g/L CDW) that reached 6.45 g/L (2.6 fold increase) when applied in batch culture fermentation. The efficacy of OM-I media for soluble expression was confirmed in both shake flask and fermentor. CONCLUSION The proposed media was suitable for high cell density fermentation of E. coli SHuffle T7 and was applicable for high yield soluble expression of Lispro proinsulin.
Collapse
Affiliation(s)
- Aida Bakhshi Khalilvand
- Bioprocess Engineering Group, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Saeed Aminzadeh
- Bioprocess Engineering Group, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| | - Mohammad Hossein Sanati
- Medical Genetics Group, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | | |
Collapse
|
22
|
Yu TH, Tan SI, Yi YC, Xue C, Ting WW, Chang JJ, Ng IS. New insight into the codon usage and medium optimization toward stable and high-level 5-aminolevulinic acid production in Escherichia coli. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2021.108259] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
23
|
Abulmagd S, Khattab AENA, Zedan H. Expression of full and fragment-B of diphtheria toxin genes in Escherichia coli for generating of recombinant diphtheria vaccines. Clin Exp Vaccine Res 2022; 11:12-29. [PMID: 35223662 PMCID: PMC8844665 DOI: 10.7774/cevr.2022.11.1.12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/21/2021] [Accepted: 12/18/2021] [Indexed: 11/29/2022] Open
Abstract
Purpose In the present study, whole diphtheria toxin (dt) and fragment B (dtb) genes from Corynebacterium diphtheriae Park William were cloned into Escherichia coli, the purified expressed proteins were evaluated for ultimately using as a candidate vaccine. Materials and Methods The dt and dtb genes were isolated from bacterial strain ATCC (American Type Culture Collection) no. 13812. Plasmid pET29a+ was extracted by DNA-spin TM plasmid purification kit where genes were inserted using BamHI and HindIII-HF. Cloned pET29a+dt and pET29a+dtb plasmids were transformed into E. coli BL21(DE3)PlysS as expression host. The identity of the sequences was validated by blasting the sequence (BLASTn) against all the reported nucleotide sequences in the NCBI (National Center for Biotechnology Information) GenBank. Production of proteins in high yield by different types and parameters of fermentation to determine optimal conditions. Lastly, the purified concentrated rdtx and rdtb were injected to BALB/c mice and antibody titers were detected. Results The genetic transformation of E. coli DH5α and E. coli BL21 with the pET-29a(+) carrying the dt and dtb genes was confirmed by colony polymerase chain reaction assay and were positive to grow on Luria-Bertani/kanamycin medium. The open reading frame of dt and dtb sequences consisted of 1,600 bp and 1,000 bp, were found to be 100% identical to dt and dtb sequence of C. diphtheriae (accession number KX702999.1 and KX702993.1) respectively. The optimal condition for high cell density is fed-batch fermentation production to express the rdtx and rdtb at 280 and 240 Lf/mL, dissolved oxygen was about 24% and 22% and the dry cell weight of bacteria was 2.41 g/L and 2.18 g/L, respectively. Conclusion This study concluded with success in preparing genetically modified two strains for the production of a diphtheria vaccine, and to reach ideal production conditions to achieve the highest productivity.
Collapse
Affiliation(s)
| | | | - Hamdallah Zedan
- Microbiology and Immunology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
24
|
Ferrer-Miralles N, Saccardo P, Corchero JL, Garcia-Fruitós E. Recombinant Protein Production and Purification of Insoluble Proteins. Methods Mol Biol 2022; 2406:1-31. [PMID: 35089548 DOI: 10.1007/978-1-0716-1859-2_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Proteins are synthesized in heterologous systems because of the impossibility to obtain satisfactory yields from natural sources. The efficient production of soluble and functional recombinant proteins is among the main goals in the biotechnological field. In this context, it is important to point out that under stress conditions, protein folding machinery is saturated and this promotes protein misfolding and, consequently, protein aggregation. Thus, the selection of the optimal expression organism and its growth conditions to minimize the formation of insoluble protein aggregates should be done according to the protein characteristics and downstream requirements. Escherichia coli is the most popular recombinant protein expression system despite the great development achieved so far by eukaryotic expression systems. Besides, other prokaryotic expression systems, such as lactic acid bacteria and psychrophilic bacteria, are gaining interest in this field. However, it is worth mentioning that prokaryotic expression system poses, in many cases, severe restrictions for a successful heterologous protein production. Thus, eukaryotic systems such as mammalian cells, insect cells, yeast, filamentous fungus, and microalgae are an interesting alternative for the production of these difficult-to-express proteins.
Collapse
Affiliation(s)
- Neus Ferrer-Miralles
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Cerdanyola del Vallès, Spain
| | - Paolo Saccardo
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Cerdanyola del Vallès, Spain
| | - José Luis Corchero
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Cerdanyola del Vallès, Spain
| | - Elena Garcia-Fruitós
- Department of Ruminant Production, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Caldes de Montbui, Spain.
| |
Collapse
|
25
|
Abdollahi S, Morowvat MH, Savardashtaki A, Irajie C, Najafipour S, Ghasemi Y. Evaluating Five Escherichia coli Derivative Strains as a Platform for Arginine Deiminase Overproduction. Recent Pat Biotechnol 2021; 16:174-183. [PMID: 34809551 DOI: 10.2174/1872208315666211122114625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/03/2021] [Accepted: 10/24/2021] [Indexed: 11/22/2022]
Abstract
AIMS This study attempted to evaluate the five host strains, including BL21 (DE3), Rosetta (DE3), DH5α, XL1-BLUE, and SHuffle, in terms of arginine deiminase (ADI) production and enzyme activity. BACKGROUND Escherichia coli is one of the most preferred host microorganisms for the production of recombinant proteins due to its well-characterized genome, availability of various expression vectors, and host strains. Choosing a proper host strain for the overproduction of a desired recombinant protein is very important because of the diversity of genetically modified expression strains. Various E. coli cells have been examined in different patent applications. METHOD ADI was chosen as a bacterial enzyme that degrades L-arginine. It is effective in the treatment of some types of human cancers like melanoma and hepatocellular carcinoma (HCC), which are arginine-auxotrophic. Five mentioned E. coli strains were cultivated. The pET-3a was used as the expression vector. The competent E. coli cells were obtained through the CaCl2 method. It was then transformed with the construct of pET3a-ADI using the heat shock strategy. The ADI production levels were examined by 10% SDS-PAGE analysis. The ability of host strains for the expression of the requested recombinant protein was compared. The enzymatic activity of the obtained recombinant ADI from each studied strain was assessed by a colorimetric 96-well microtiter plate assay. RESULT All the five strains exhibited a significant band at 46 kDa. BL21 (DE3) produced the highest amount of ADI protein, followed by Rosetta (DE3). The following activity assay showed that ADI from BL21 (DE3) and Rosetta (DE3) had the most activity. CONCLUSION There are some genetic and metabolic differences among the various E. coli strains, leading to differences in the amount of recombinant protein production. The results of this study can be used for the efficacy evaluation of the five studied strains for the production of similar pharmaceutical enzymes. The strains also could be analyzed in terms of proteomics.
Collapse
Affiliation(s)
- Sara Abdollahi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, P.O. Box 71348-14366, Shiraz. Iran
| | - Mohammad Hossein Morowvat
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, P.O. Box 71348-14366, Shiraz. Iran
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, P.O. Box 71348-14366, Shiraz. Iran
| | - Cambyz Irajie
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, P.O. Box 71348-14366, Shiraz. Iran
| | - Sohrab Najafipour
- Department of Microbiology, School of Medicine, Fasa University of Medical Sciences, P.O. Box 74616-86688, Fasa. Iran
| | - Younes Ghasemi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, P.O. Box 71348-14366, Shiraz. Iran
| |
Collapse
|
26
|
Gilman J, Walls L, Bandiera L, Menolascina F. Statistical Design of Experiments for Synthetic Biology. ACS Synth Biol 2021; 10:1-18. [PMID: 33406821 DOI: 10.1021/acssynbio.0c00385] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The design and optimization of biological systems is an inherently complex undertaking that requires careful balancing of myriad synergistic and antagonistic variables. However, despite this complexity, much synthetic biology research is predicated on One Factor at A Time (OFAT) experimentation; the genetic and environmental variables affecting the activity of a system of interest are sequentially altered while all other variables are held constant. Beyond being time and resource intensive, OFAT experimentation crucially ignores the effect of interactions between factors. Given the ubiquity of interacting genetic and environmental factors in biology this failure to account for interaction effects in OFAT experimentation can result in the development of suboptimal systems. To address these limitations, an increasing number of studies have turned to Design of Experiments (DoE), a suite of methods that enable efficient, systematic exploration and exploitation of complex design spaces. This review provides an overview of DoE for synthetic biologists. Key concepts and commonly used experimental designs are introduced, and we discuss the advantages of DoE as compared to OFAT experimentation. We dissect the applicability of DoE in the context of synthetic biology and review studies which have successfully employed these methods, illustrating the potential of statistical experimental design to guide the design, characterization, and optimization of biological protocols, pathways, and processes.
Collapse
Affiliation(s)
- James Gilman
- Institute for Bioengineering, School of Engineering, University of Edinburgh, Edinburgh EH8 9YL, U.K
| | - Laura Walls
- Institute for Bioengineering, School of Engineering, University of Edinburgh, Edinburgh EH8 9YL, U.K
| | - Lucia Bandiera
- Institute for Bioengineering, School of Engineering, University of Edinburgh, Edinburgh EH8 9YL, U.K
| | - Filippo Menolascina
- Institute for Bioengineering, School of Engineering, University of Edinburgh, Edinburgh EH8 9YL, U.K
| |
Collapse
|