1
|
Luo X, Luo R, Zhou Y, Jiang Y, Han C, Song A, Qian K, Qu C, Cao R, Xu B, Cheng Z. Design and synthesis of GRPR-targeted PET probes based on Dar derivatives for imaging of prostate cancer. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2025; 67:102829. [PMID: 40412546 DOI: 10.1016/j.nano.2025.102829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2025] [Revised: 05/17/2025] [Accepted: 05/21/2025] [Indexed: 05/27/2025]
Abstract
Gastrin-releasing peptide receptor (GRPR) is overexpressed in most prostate cancers (PCa) and is a potential target in diagnosis and treatment. In this study, based on the previously reported GRPR antagonist RM26 and novel chelating agent Dar derivatives, we designed and evaluated two radiopharmaceuticals, [68Ga]Ga-Dar-C5-P2-RM26 and [68Ga]Ga-Dar-P2-RM26. Both radiotracers were easily prepared at room temperature and showed high radiochemical stability in phosphate-buffered saline (PBS) and fetal bovine serum (FBS). Cellular and animal experiments indicated that the two radiotracers exhibited specific tumor uptakes in PC-3 xenograft mice models. Specifically, [68Ga]Ga-Dar-C5-P2-RM26 and [68Ga]Ga-Dar-P2-RM26 displayed 6.617 ± 0.245 % ID/g and 5.973 ± 1.261 % ID/g tumor uptake, respectively. Positron emission tomography/ computer tomography (PET/CT) imaging results indicated that these two radiotracers showed excellent tumor-to-background contrast at 0.5 h, 1 h, and 2 h post intravenous injection (p.i.). In summary, [68Ga]Ga-Dar-C5-RM26 and [68Ga]Ga-Dar-RM26 are GRPR-targeted radiotracers with high potential for clinical translation in tumor-targeted imaging.
Collapse
Affiliation(s)
- Xiangning Luo
- Department of Chemistry, Innovative Drug Research Center, Shanghai University, Shanghai 200444, China; State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Renli Luo
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yuanyuan Zhou
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yuanpeng Jiang
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Cong Han
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Aiguo Song
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Shandong, Yantai 264117, China
| | - Kun Qian
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Chunrong Qu
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Rui Cao
- Department of Nuclear Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200235, China.
| | - Bin Xu
- Department of Chemistry, Innovative Drug Research Center, Shanghai University, Shanghai 200444, China.
| | - Zhen Cheng
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Shandong, Yantai 264117, China.
| |
Collapse
|
2
|
Morgat C, Duan H, Dalm S, Hindié E, Günther T, Krause BJ, Kramer V, Cavelier F, Stephens AW, Moran S, Lamb L, Iagaru A. A Vision for Gastrin-Releasing Peptide Receptor Targeting for Imaging and Therapy: Perspective from Academia and Industry. J Nucl Med 2025:jnumed.124.269444. [PMID: 40341094 DOI: 10.2967/jnumed.124.269444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 03/25/2025] [Indexed: 05/10/2025] Open
Abstract
The gastrin-releasing peptide receptor (GRPR) is overexpressed in various cancers, including prostate cancer, breast cancer, small cell and non-small cell lung cancer, uterine and ovarian cancer, colon cancer, and gastrointestinal stromal tumors. This makes GRPR a multicancer target for theranostics, that is, molecular imaging and therapy. Here, we explore the current state of GRPR-targeted theranostics from bench to bedside, highlighting the preclinical development of various GRPR-targeting compounds and clinical applications. We review the role of GRPR-targeted molecular imaging for all stages of prostate cancer, breast cancer, and other tumors and provide a quo vadis GRPR. We aimed to offer a comprehensive overview of GRPR-targeted theranostics to inform researchers, clinicians, pharma, and regulators of the potential benefits and emerging opportunities in the pursuit of personalized precision cancer care.
Collapse
Affiliation(s)
- Clément Morgat
- Nuclear Medicine Department, Bordeaux University Hospital, Bordeaux, France
- INCIA, University of Bordeaux, CNRS, EPHE, UMR 5287, Bordeaux, France
| | - Heying Duan
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Stanford University, Stanford, California
| | - Simone Dalm
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Elif Hindié
- Nuclear Medicine Department, Bordeaux University Hospital, Bordeaux, France
- INCIA, University of Bordeaux, CNRS, EPHE, UMR 5287, Bordeaux, France
- Institut Universitaire de France, Paris, France
| | - Thomas Günther
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Stanford University, Stanford, California
| | | | - Vasko Kramer
- Nuclear Medicine and PET/CT Center PositronMed, Santiago, Chile
- Positronpharma SA, Santiago, Chile
| | - Florine Cavelier
- Pôle Chime Balard, IBMM, UMR 5247 CNRS, Université Montpellier ENSCM, Montpellier, France
| | | | | | - Laura Lamb
- Clarity Pharmaceuticals Ltd., Sydney, Australia
| | - Andrei Iagaru
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Stanford University, Stanford, California;
| |
Collapse
|
3
|
Kanellopoulos P, Yu Q, Abouzayed A, Bezverkhniaia E, Tolmachev V, Orlova A. Evaluation of maSSS/maSES-PEG2-RM26 for their potential therapeutic use after labeling with Re-188. Could their [ 99mTc]Tc-labeled counterparts be used to estimate dosimetry? EJNMMI Radiopharm Chem 2025; 10:3. [PMID: 39825204 PMCID: PMC11748620 DOI: 10.1186/s41181-024-00326-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 12/19/2024] [Indexed: 01/20/2025] Open
Abstract
BACKGROUND Gastrin releasing peptide receptor (GRPR)-directed radiopharmaceuticals for targeted radionuclide therapy may be a very promising addition in prostate and breast cancer patient management. Aiming to provide a GRPR-targeting theranostic pair, we have utilized the Tc-99m/Re-188 radiometal pair, in combination with two bombesin based antagonists, maSSS-PEG2-RM26 and maSES-PEG2-RM26. The two main aims of the current study were (i) to elucidate the influence of the radiometal-exchange on the biodistribution profile of the two peptides and (ii) to evaluate the feasibility of using the [99mTc]Tc labeled counterparts for the dosimetry estimation for the [188Re]Re-labeled conjugates. RESULTS Both peptides were successfully labeled with Re-188 and evaluated both in vitro and in vivo. In GRPR expressing PC-3 cells, both [188Re]Re-labeled peptides displayed high cellular uptake (8.5 ± 0.1% and 5 ± 0.3% of added activity, respectively), heavily GRPR-driven, while retaining the radioantagonistic profile with slow internalization rates. Both agents demonstrated high receptor affinity when loaded with natRe (7.5 nM and 8 nM, respectively). When tested in vivo in GRPR expressing PC-3 xenografts, both radioantagonists demonstrated high tumor accumulation (6.3 ± 0.5%IA/g and 5 ± 1%IA/g at 1 h pi, respectively), with good retention over time (4 ± 2%IA/g and 3.1 ± 0.1%IA/g at 4 h pi, respectively). In addition, their biodistribution profiles were closely mimicking their [99mTc]Tc-labeled counterparts. Statistically significant lower tumor uptake was found for both conjugates labeled with Tc-99m, which may result in underestimation of the dose delivered to the tumor. CONCLUSIONS All the results indicate that Tc-99 m could be used for dosimetry evaluation for the two [188Re]Re-labeled radioligands, with minimal alterations in their biodistribution pattern and tumor targeting capabilities.
Collapse
Affiliation(s)
| | - Quanyi Yu
- Department of Medicinal Chemistry, Uppsala University, Uppsala, 751 23, Sweden
| | - Abouzayed Abouzayed
- Department of Medicinal Chemistry, Uppsala University, Uppsala, 751 23, Sweden
| | | | - Vladimir Tolmachev
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, 751 83, Sweden
| | - Anna Orlova
- Department of Medicinal Chemistry, Uppsala University, Uppsala, 751 23, Sweden
- Science for Life Laboratory, Uppsala University, Uppsala, 752 37, Sweden
| |
Collapse
|
4
|
Zhang H, Qi L, Cai Y, Gao X. Gastrin-releasing peptide receptor (GRPR) as a novel biomarker and therapeutic target in prostate cancer. Ann Med 2024; 56:2320301. [PMID: 38442298 PMCID: PMC10916925 DOI: 10.1080/07853890.2024.2320301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/13/2024] [Indexed: 03/07/2024] Open
Abstract
Aim: This comprehensive review aims to explore the potential applications of Gastrin-releasing peptide receptor (GRPR) in the diagnosis and treatment of prostate cancer. Additionally, the study investigates the role of GRPR in prognostic assessment for individuals afflicted with prostate cancer.Methods: The review encompasses a thorough examination of existing literature and research studies related to the upregulation of GRPR in various tumor types, with a specific focus on prostate. The review also evaluates the utility of GRPR as a molecular target in prostate cancer research, comparing its significance to the well-established Prostate-specific membrane antigen (PSMA). The integration of radionuclide-targeted therapy with GRPR antagonists is explored as an innovative therapeutic approach for individuals with prostate cancer.Results: Research findings suggest that GRPR serves as a promising molecular target for visualizing low-grade prostate cancer. Furthermore, it is demonstrated to complement the detection of lesions that may be negative for PSMA. The integration of radionuclide-targeted therapy with GRPR antagonists presents a novel therapeutic paradigm, offering potential benefits for individuals undergoing treatment for prostate cancer.Conclusions: In conclusion, this review highlights the emerging role of GRPR in prostate cancer diagnosis and treatment. Moreover, the integration of radionuclide-targeted therapy with GRPR antagonists introduces an innovative therapeutic approach that holds promise for improving outcomes in individuals dealing with prostate cancer. The potential prognostic value of GRPR in assessing the disease's progression adds another dimension to its clinical significance in the realm of urology.
Collapse
Affiliation(s)
- Honghu Zhang
- Department of Urology, Disorders of Prostate Cancer Multidisciplinary Team, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha City, P. R. China
| | - Lin Qi
- Department of Urology, Disorders of Prostate Cancer Multidisciplinary Team, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha City, P. R. China
| | - Yi Cai
- Department of Urology, Disorders of Prostate Cancer Multidisciplinary Team, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha City, P. R. China
| | - Xiaomei Gao
- Department of Pathology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha City, P. R. China
| |
Collapse
|
5
|
Belge Bilgin G, Bilgin C, Orscelik A, Burkett BJ, Thorpe MP, Johnson DR, Johnson GB, Kallmes DF, Sartor O, Kendi AT. Detection rate of gastrin-releasing peptide receptor (GRPr) targeted tracers for positron emission tomography (PET) imaging in primary prostate cancer: a systematic review and meta-analysis. Ann Nucl Med 2024; 38:865-876. [PMID: 39287742 DOI: 10.1007/s12149-024-01978-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/04/2024] [Indexed: 09/19/2024]
Abstract
The gastrin-releasing peptide receptor (GRPr) has gained recognition as a promising target for both diagnostic and therapeutic applications in a variety of human cancers. This study aims to explore the primary tumor detection capabilities of [68Ga] Ga-GRPr PET imaging, specifically in newly diagnosed intra-prostatic prostate cancer lesions (PCa). Following PRISMA-DTA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses of Diagnostic Test Accuracy Studies) guidelines, a systematic literature search was conducted using the Medline, Embase, Scopus, and Web of Science databases. Data regarding patient characteristics and imaging procedure details-including the type of radiotracer used, administered activity, image acquisition time, scanner modality, criteria, and detection rate of index test-were extracted from the included studies. The pooled patient-and lesion-based detection rates, along with their corresponding 95% confidence intervals (CI), were calculated using a random effects model. The final analysis included 9 studies involving 291 patients and 350 intra-prostatic lesions with [68Ga] Ga-GRPr PET imaging in primary PCa. In per-patient-based analysis of [68Ga] Ga-GRPr PET imaging, the pooled detection rates of overall and patients with Gleason score ≥ 7 were 87.09% (95% CI 74.98-93.82) and 89.01% (95% CI 68.17-96.84), respectively. In per-lesion-based analysis, the pooled detection rate [68Ga] Ga-GRPr PET imaging was 78.54% (95% CI 69.8-85.29). The pooled detection rate mpMRI (multiparametric magnetic resonance imaging) in patient-based analysis was 91.85% (95% CI 80.12-96.92). The difference between the detection rates of the mpMRI and [68Ga] Ga-GRPr PET imaging was not statistically significant (OR 0.90, 95% CI 0.23-3.51). Our findings suggest that [68Ga] Ga-GRPr PET imaging has the potential as a diagnostic target for primary PCa. Future research is needed to determine the effectiveness of [68Ga] Ga-GRPr PET in delivering additional imaging data and guiding therapeutic decisions.
Collapse
Affiliation(s)
| | - Cem Bilgin
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Atakan Orscelik
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | | | | | | | - Geoffrey B Johnson
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
- Department of Immunology, Mayo Clinic, Rochester, MN, USA
| | | | - Oliver Sartor
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
- Division of Medical Oncology, Department of Oncology, Mayo Clinic, Rochester, MN, USA
- Department of Urology, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
6
|
Wang L, Kuo HT, Chapple DE, Chen CC, Kurkowska S, Colpo N, Uribe C, Bénard F, Lin KS. Synthesis and Evaluation of 68Ga- and 177Lu-Labeled [Pro 14]bombesin(8-14) Derivatives for Detection and Radioligand Therapy of Gastrin-Releasing Peptide Receptor-Expressing Cancer. Mol Pharm 2024. [PMID: 39460729 DOI: 10.1021/acs.molpharmaceut.4c00952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
The gastrin-releasing peptide receptor (GRPR) is overexpressed in a variety of cancers and represents a promising target for diagnosis and therapy. However, the extremely high accumulation in the pancreas observed for most of the clinically evaluated GRPR-targeted radiopharmaceuticals could limit their applications. In this study, we synthesized one GRPR antagonist (ProBOMB5) and two GRPR agonists (LW02056 and LW02057) by replacing the 4-thiazolidinecarboxylic acid (Thz14) residue in our previously reported GRPR-targeted tracers with Pro14. The 68Ga and 177Lu labeling were conducted in HEPES (2 M, pH 5.0) buffer and acetate (0.1 M, pH 4.5) buffer, respectively, and the radiolabeled products were obtained in a 24-57% decay-corrected radiochemical yield and >92% radiochemical purity. The binding affinities (Ki) of Ga-ProBOMB5, Ga-LW02056, Ga-LW02057, and Lu-ProBOMB5 were measured via in vitro competition binding assays and were 12.2 ± 1.89, 14.7 ± 4.81, 13.8 ± 2.24, and 13.6 ± 0.25 nM, respectively. The PET imaging and ex vivo biodistribution studies were conducted in PC-3 tumor-bearing mice at 1 h post injection. [68Ga]Ga-ProBOMB5, [68Ga]Ga-LW02056, and [68Ga]Ga-LW02057 enabled clear tumor visualization in PET images. The tumor uptake values of [68Ga]Ga-ProBOMB5, [68Ga]Ga-LW02056, and [68Ga]Ga-LW02057 were 12.4 ± 1.35, 8.93 ± 1.96, and 7.64 ± 0.55%ID/g, respectively, and their average pancreas uptake values were minimal (0.60-1.37%ID/g). Longitudinal SPECT imaging and ex vivo biodistribution studies were also conducted for [177Lu]Lu-ProBOMB5 and clinically validated [177Lu]Lu-RM2. Despite comparable tumor uptake at 1 h post injection ([177Lu]Lu-ProBOMB5:8.09 ± 1.70%ID/g; [177Lu]Lu-RM2:7.73 ± 0.96%ID/g), a faster clearance from PC-3 tumor xenografts was observed for [177Lu]Lu-ProBOMB5, leading to a lower radiation-absorbed dose delivered to tumors. Our data demonstrate that [68Ga]Ga-ProBOMB5 is a promising tracer for clinical translation for detecting GRPR-expressing tumor lesions. However, further optimizations are needed for [177Lu]Lu-ProBOMB5 to prolong tumor retention for therapeutic applications.
Collapse
Affiliation(s)
- Lei Wang
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, British Columbia V5Z 1L3, Canada
| | - Hsiou-Ting Kuo
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, British Columbia V5Z 1L3, Canada
| | - Devon E Chapple
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, British Columbia V5Z 1L3, Canada
| | - Chao-Cheng Chen
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, British Columbia V5Z 1L3, Canada
| | - Sara Kurkowska
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, British Columbia V5Z 1L3, Canada
- Department of Nuclear Medicine, Pomeranian Medical University, Szczecin 70-204, Poland
| | - Nadine Colpo
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, British Columbia V5Z 1L3, Canada
- Department of Molecular Imaging and Therapy, BC Cancer Research Institute, Vancouver, British Columbia V5Z 4E6, Canada
| | - Carlos Uribe
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, British Columbia V5Z 1L3, Canada
- Department of Molecular Imaging and Therapy, BC Cancer Research Institute, Vancouver, British Columbia V5Z 4E6, Canada
- Department of Radiology, University of British Columbia, Vancouver, British Columbia V5Z 1M9, Canada
| | - François Bénard
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, British Columbia V5Z 1L3, Canada
- Department of Molecular Imaging and Therapy, BC Cancer Research Institute, Vancouver, British Columbia V5Z 4E6, Canada
- Department of Radiology, University of British Columbia, Vancouver, British Columbia V5Z 1M9, Canada
| | - Kuo-Shyan Lin
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, British Columbia V5Z 1L3, Canada
- Department of Molecular Imaging and Therapy, BC Cancer Research Institute, Vancouver, British Columbia V5Z 4E6, Canada
- Department of Radiology, University of British Columbia, Vancouver, British Columbia V5Z 1M9, Canada
| |
Collapse
|
7
|
Zou Y, Huang M, Hu M, Wang H, Chen W, Tian R. Radiopharmaceuticals Targeting Gastrin-Releasing Peptide Receptor for Diagnosis and Therapy of Prostate Cancer. Mol Pharm 2024; 21:4199-4216. [PMID: 39219355 DOI: 10.1021/acs.molpharmaceut.4c00066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The high incidence and heavy disease burden of prostate cancer (PC) require accurate and comprehensive assessment for appropriate disease management. Prostate-specific membrane antigen (PSMA) positron emission tomography (PET) cannot detect PSMA-negative lesions, despite its key role in PC disease management. The overexpression of gastrin-releasing peptide receptor (GRPR) in PC lesions reportedly performs as a complementary target for the diagnosis and therapy of PC. Radiopharmaceuticals derived from the natural ligands of GRPR have been developed. These radiopharmaceuticals enable the visualization and quantification of GRPR within the body, which can be used for disease assessment and therapeutic guidance. Recently developed radiopharmaceuticals exhibit improved pharmacokinetic parameters without deterioration in affinity. Several heterodimers targeting GRPR have been constructed as alternatives because of their potential to detect tumor lesions with a low diagnostic efficiency of single target detection. Moreover, some GRPR-targeted radiopharmaceuticals have entered clinical trials for the initial staging or biochemical recurrence detection of PC to guide disease stratification and therapy, indicating considerable potential in PC disease management. Herein, we comprehensively summarize the progress of radiopharmaceuticals targeting GRPR. In particular, we discuss the impact of ligands, chelators, and linkers on the distribution of radiopharmaceuticals. Furthermore, we summarize a potential design scheme to facilitate the advancement of radiopharmaceuticals and, thus, prompt clinical translation.
Collapse
Affiliation(s)
- Yuheng Zou
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Mingxing Huang
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Mingxing Hu
- Department of Nuclear Medicine and Clinical Nuclear Medicine Research Lab, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hui Wang
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Wei Chen
- Department of Nuclear Medicine and Clinical Nuclear Medicine Research Lab, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Rong Tian
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
8
|
Wang L, Kuo HT, Chen CC, Chapple D, Colpo N, Ng P, Lau WS, Jozi S, Bénard F, Lin KS. Synthesis and Evaluation of the First 68Ga-Labeled C-Terminal Hydroxamate-Derived Gastrin-Releasing Peptide Receptor-Targeted Tracers for Cancer Imaging with Positron Emission Tomography. Molecules 2024; 29:3102. [PMID: 38999054 PMCID: PMC11243334 DOI: 10.3390/molecules29133102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/14/2024] Open
Abstract
Gastrin-releasing peptide receptor (GRPR), overexpressed in many solid tumors, is a promising imaging marker and therapeutic target. Most reported GRPR-targeted radioligands contain a C-terminal amide. Based on the reported potent antagonist D-Phe-Gln-Trp-Ala-Val-Gly-His-Leu-NHOH, we synthesized C-terminal hydroxamate-derived [68Ga]Ga-LW02075 ([68Ga]Ga-DOTA-pABzA-DIG-D-Phe-Gln-Trp-Ala-Val-Gly-His-Leu-NHOH) and [68Ga]Ga-LW02050 ([68Ga]Ga-DOTA-Pip-D-Phe-Gln-Trp-Ala-Val-Gly-His-Leu-NHOH), and compared them with the closely related and clinically validated [68Ga]Ga-SB3 ([68Ga]Ga-DOTA-pABzA-DIG-D-Phe-Gln-Trp-Ala-Val-Gly-His-Leu-NHEt). Binding affinities (Ki) of Ga-SB3, Ga-LW02075, and Ga-LW02050 were 1.20 ± 0.31, 1.39 ± 0.54, and 8.53 ± 1.52 nM, respectively. Both Ga-LW02075 and Ga-LW02050 were confirmed to be GRPR antagonists by calcium release assay. Imaging studies showed that PC-3 prostate cancer tumor xenografts were clearly visualized at 1 h post injection by [68Ga]Ga-SB3 and [68Ga]Ga-LW02050 in PET images, but not by [68Ga]Ga-LW02075. Ex vivo biodistribution studies conducted at 1 h post injection showed that the tumor uptake of [68Ga]Ga-LW02050 was comparable to that of [68Ga]Ga-SB3 (5.38 ± 1.00 vs. 6.98 ± 1.36 %ID/g), followed by [68Ga]Ga-LW02075 (3.97 ± 1.71 %ID/g). [68Ga]Ga-SB3 had the highest pancreas uptake (37.3 ± 6.90 %ID/g) followed by [68Ga]Ga-LW02075 (17.8 ± 5.24 %ID/g), while the pancreas uptake of [68Ga]Ga-LW02050 was only 0.53 ± 0.11 %ID/g. Our data suggest that [68Ga]Ga-LW02050 is a promising PET tracer for detecting GRPR-expressing cancer lesions.
Collapse
Affiliation(s)
- Lei Wang
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Hsiou-Ting Kuo
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Chao-Cheng Chen
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Devon Chapple
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Nadine Colpo
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- Department of Molecular Imaging and Therapy, BC Cancer, Vancouver, BC V5Z 4E6, Canada
| | - Pauline Ng
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Wing Sum Lau
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Shireen Jozi
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - François Bénard
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- Department of Molecular Imaging and Therapy, BC Cancer, Vancouver, BC V5Z 4E6, Canada
- Department of Radiology, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Kuo-Shyan Lin
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- Department of Molecular Imaging and Therapy, BC Cancer, Vancouver, BC V5Z 4E6, Canada
- Department of Radiology, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| |
Collapse
|
9
|
Kanellopoulos P, Bezverkhniaia E, Abouzayed A, Rosenström U, Tolmachev V, Orlova A. Two Novel [ 68Ga]Ga-Labeled Radiotracers Based on Metabolically Stable [Sar 11]RM26 Antagonistic Peptide for Diagnostic Positron Emission Tomography Imaging of GRPR-Positive Prostate Cancer. ACS OMEGA 2024; 9:18608-18616. [PMID: 38680331 PMCID: PMC11044165 DOI: 10.1021/acsomega.4c01348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 05/01/2024]
Abstract
Gastrin releasing peptide receptor (GRPR) is overexpressed in prostate cancer (PC-3) and can be used for diagnostic purposes. We herein present the design and preclinical evaluation of two novel NOTA/NODAGA-containing peptides suitable for labeling with the positron emission tomography (PET) radionuclide Ga-68. These analogs are based on the previously reported GRPR-antagonist DOTAGA-PEG2-[Sar11]RM26, developed for targeted radiotheraostic applications. Both NOTA-PEG2-[Sar11]RM26 and NODAGA-PEG2-[Sar11]RM26 were successfully labeled with Ga-68 and evaluated in vitro and in vivo using PC-3 cell models. Both, [68Ga]Ga-NOTA-PEG2-[Sar11]RM26 and [68Ga]Ga-NODAGA-PEG2-[Sar11]RM26 displayed high metal-chelate stability in phosphate buffered saline and against the EDTA-challenge. The two [68Ga]Ga-labeled conjugates demonstrated highly GRPR-mediated uptake in vitro and in vivo and exhibited a slow internalization over time, typical for radioantagonistis. The [natGa]Ga-loaded peptides displayed affinity in the low nanomole range for GRPR in competition binding experiments. The new radiotracers demonstrated biodistribution profiles suitable for diagnostic imaging shortly after administration with fast background clearance. Their high tumor uptake (13 ± 1 and 15 ± 3% IA/g for NOTA and NODAGA conjugates, respectively) and high tumor-to-blood ratios (60 ± 10 and 220 ± 70, respectively) 3 h pi renders them promising PET tracers for use in patients. Tumor-to-normal organ ratios were higher for [68Ga]Ga-NODAGA-PEG2-[Sar11]RM26 than for the NOTA-containing counterpart. The performance of the two radiopeptides was further supported with the PET/CT images. In conclusion, [68Ga]Ga-NODAGA-PEG2-[Sar11]RM26 is a promising PET imaging tracer for visualization of GRPR-expressing lesions with high imaging contrast shortly after administration.
Collapse
Affiliation(s)
| | | | - Ayman Abouzayed
- Department
of Medicinal Chemistry, Uppsala University, Uppsala 751 23, Sweden
| | - Ulrika Rosenström
- Department
of Medicinal Chemistry, Uppsala University, Uppsala 751 23, Sweden
| | - Vladimir Tolmachev
- Department
of Immunology, Genetics and Pathology, Uppsala
University, Uppsala 752 37, Sweden
| | - Anna Orlova
- Department
of Medicinal Chemistry, Uppsala University, Uppsala 751 23, Sweden
- Science
for Life Laboratory, Uppsala University, Uppsala 752 37, Sweden
| |
Collapse
|
10
|
Baun C, Naghavi-Behzad M, Hildebrandt MG, Gerke O, Thisgaard H. Gastrin-releasing peptide receptor as a theranostic target in breast cancer: a systematic scoping review. Semin Nucl Med 2024; 54:256-269. [PMID: 38342656 DOI: 10.1053/j.semnuclmed.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/13/2024]
Abstract
The gastrin-releasing peptide receptor (GRPR) is known to be overexpressed in breast cancer, making it a promising target for both imaging and therapy within a theranostic framework. Various radioligands targeting GRPR have undergone investigation in preclinical and clinical studies related to breast cancer. This systematic scoping review aimed to assess the current evidence on GRPR-targeted radioligands for diagnostic and therapeutic applications in breast cancer. The methodology followed the PRISMA-ScR protocol. The literature search was conducted in September 2023 and encompassed MEDLINE, Embase, Cochrane, and Scopus databases. We included original peer-reviewed studies focused on breast cancer patients or in vivo breast cancer models. Two reviewers performed the study selection process independently. Data were extracted, synthesized, and categorized into preclinical and clinical studies, further subdivided based on radioligand properties. A total of 35 original studies were included in the review, with three of them evaluating therapeutic outcomes. The results indicated that GRPR-radioantagonists are superior to GRPR-agonists, exhibiting preferable in vivo stability, rapid, specific tumor targeting, and enhanced retention. Both preclinical and clinical evaluations demonstrated renal excretion and high uptake in normal GRPR-expressing tissue, primarily the pancreas. A significant positive correlation was observed between GRPR and estrogen-receptor expression. In the clinical setting, GRPR-radioligands effectively detected primary tumors and, to a lesser extent, lymph node metastases. Moreover, GRPR-targeted radioantagonists successfully identified distant metastases originating from various sites in advanced metastatic disease, strongly correlated with positive estrogen receptor expression. Preclinical therapeutic evaluation of GRPR-radioligands labeled with lutetium-177 showed promising tumor responses, and none of the studies reported any observed or measured side effects, indicating a safe profile. In conclusion, the evidence presented in this review indicates a preference for GRPR-targeted antagonists over agonists, owing to their superior kinetics and promising diagnostic potential. Clinical assessments suggested diagnostic value for GRPR-targeted theranostics in breast cancer patients, particularly those with high estrogen receptor expression. Nevertheless, in the therapeutic clinical context, paying attention to the radiation dose administered to the pancreas and kidneys is crucial.
Collapse
Affiliation(s)
- Christina Baun
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark.
| | - Mohammad Naghavi-Behzad
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Malene Grubbe Hildebrandt
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark; Center for Personalized Response Monitoring in Oncology (PREMIO), Odense University Hospital, Odense, Denmark; Centre for Innovative Medical Technology, Odense University Hospital, Odense, Denmark
| | - Oke Gerke
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Helge Thisgaard
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
11
|
Kanellopoulos P, Mattsson A, Abouzayed A, Obeid K, Nock BA, Tolmachev V, Maina T, Orlova A. Preclinical evaluation of new GRPR-antagonists with improved metabolic stability for radiotheranostic use in oncology. EJNMMI Radiopharm Chem 2024; 9:13. [PMID: 38366299 PMCID: PMC10873254 DOI: 10.1186/s41181-024-00242-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/05/2024] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND The gastrin-releasing peptide receptor (GRPR) has been extensively studied as a biomolecular target for peptide-based radiotheranostics. However, the lack of metabolic stability and the rapid clearance of peptide radioligands, including radiolabeled GRPR-antagonists, often impede clinical application. Aiming at circumventing these drawbacks, we have designed three new GRPR-antagonist radioligands using [99mTc]Tc-DB15 ([99mTc]Tc-N4-AMA-DIG-DPhe-Gln-Trp-Ala-Val-Sar-His-Leu-NHEt; AMA: p-aminomethylaniline; DIG: diglycolate) as a motif, due to its high GRPR-affinity and stability to neprilysin (NEP). The new analogues carry the DOTAGA-chelator (1,4,7,10-tetraazacyclododecane-1-glutaric acid-4,7,10-triacetic acid) through different linkers at the N-terminus to allow for labeling with the theranostic radionuclide pair In-111/Lu-177. After labeling with In-111 the following radioligands were evaluated: (i) [111In]In-AU-SAR-M1 ([111In]In-DOTAGA-AMA-DIG-DPhe-Gln-Trp-Ala-Val-Sar-His-Leu-NHEt), (ii) [111In]In-AU-SAR-M2 ([111In]In-[DOTAGA-Arg]AU-SAR-M1) and (iii) [111In]In-AU-SAR-M3 ([111In]In-[DOTAGA-DArg]AU-SAR-M1). RESULTS These radioligands were compared in a series of in vitro assays using prostate adenocarcinoma PC-3 cells and in murine models. They all displayed high and GRPR-specific uptake in PC-3 cells. Analysis of mice blood collected 5 min post-injection (pi) revealed similar or even higher metabolic stability of the new radioligands compared with [99mTc]Tc-DB15. The stability could be further increased when the mice were treated with Entresto® to in situ induce NEP-inhibition. In PC-3 xenograft-bearing mice, [111In]In-AU-SAR-M1 displayed the most favourable biodistribution profile, combining a good tumor retention with the highest tumor-to-organ ratios, with the kidneys as the dose-limiting organ. CONCLUSIONS These findings strongly point at AU-SAR-M1 as a promising radiotherapeutic candidate when labeled with Lu-177, or other medically appealing therapeutic radiometals, especially when combined with in situ NEP-inhibition. To this goal further investigations are currently pursued.
Collapse
Affiliation(s)
- Panagiotis Kanellopoulos
- Department of Medicinal Chemistry, Uppsala University, 75183, Uppsala, Sweden
- Molecular Radiopharmacy, INRaSTES, NCSR "Demokritos", 15341, Athens, Greece
| | - Adam Mattsson
- Department of Medicinal Chemistry, Uppsala University, 75183, Uppsala, Sweden
| | - Ayman Abouzayed
- Department of Medicinal Chemistry, Uppsala University, 75183, Uppsala, Sweden
| | - Karim Obeid
- Department of Medicinal Chemistry, Uppsala University, 75183, Uppsala, Sweden
| | - Berthold A Nock
- Molecular Radiopharmacy, INRaSTES, NCSR "Demokritos", 15341, Athens, Greece
| | - Vladimir Tolmachev
- Department of Immunology, Genetics and Pathology, Uppsala University, 75183, Uppsala, Sweden
| | - Theodosia Maina
- Molecular Radiopharmacy, INRaSTES, NCSR "Demokritos", 15341, Athens, Greece
| | - Anna Orlova
- Department of Medicinal Chemistry, Uppsala University, 75183, Uppsala, Sweden.
- Science for Life Laboratory, Uppsala University, 75237, Uppsala, Sweden.
| |
Collapse
|
12
|
Kalaba P, Sanchez de la Rosa C, Möller A, Alewood PF, Muttenthaler M. Targeting the Oxytocin Receptor for Breast Cancer Management: A Niche for Peptide Tracers. J Med Chem 2024; 67:1625-1640. [PMID: 38235665 PMCID: PMC10859963 DOI: 10.1021/acs.jmedchem.3c01089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 12/07/2023] [Accepted: 12/20/2023] [Indexed: 01/19/2024]
Abstract
Breast cancer is a leading cause of death in women, and its management highly depends on early disease diagnosis and monitoring. This remains challenging due to breast cancer's heterogeneity and a scarcity of specific biomarkers that could predict responses to therapy and enable personalized treatment. This Perspective describes the diagnostic landscape for breast cancer management, molecular strategies targeting receptors overexpressed in tumors, the theranostic potential of the oxytocin receptor (OTR) as an emerging breast cancer target, and the development of OTR-specific optical and nuclear tracers to study, visualize, and treat tumors. A special focus is on the chemistry and pharmacology underpinning OTR tracer development, preclinical in vitro and in vivo studies, challenges, and future directions. The use of peptide-based tracers targeting upregulated receptors in cancer is a highly promising strategy complementing current diagnostics and therapies and providing new opportunities to improve cancer management and patient survival.
Collapse
Affiliation(s)
- Predrag Kalaba
- Institute
of Biological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | | | - Andreas Möller
- QIMR
Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
- The
Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Paul F. Alewood
- Institute
for Molecular Bioscience, The University
of Queensland, Brisbane, Queensland 4072, Australia
| | - Markus Muttenthaler
- Institute
of Biological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
- Institute
for Molecular Bioscience, The University
of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
13
|
Ma Y, Gao F. Advances of radiolabeled GRPR ligands for PET/CT imaging of cancers. Cancer Imaging 2024; 24:19. [PMID: 38279185 PMCID: PMC10811881 DOI: 10.1186/s40644-024-00658-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 01/09/2024] [Indexed: 01/28/2024] Open
Abstract
GRPR is a type of seven-transmembrane G-protein coupled receptor that belongs to the bombesin protein receptor family. It is highly expressed in various cancers, including prostate cancer, breast cancer, lung cancer, gastrointestinal cancer, and so on. As a result, molecular imaging studies have been conducted using radiolabeled GRPR ligands for tumor diagnosis, as well as monitoring of recurrence and metastasis. In this paper, we provided a comprehensive overview of relevant literature from the past two decades, with a specific focus on the advancements made in radiolabeled GRPR ligands for imaging prostate cancer and breast cancer.
Collapse
Affiliation(s)
- Yuze Ma
- Research Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Feng Gao
- Research Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
14
|
Fernández R, Soza-Ried C, Iagaru A, Stephens A, Müller A, Schieferstein H, Sandoval C, Amaral H, Kramer V. Imaging GRPr Expression in Metastatic Castration-Resistant Prostate Cancer with [ 68Ga]Ga-RM2-A Head-to-Head Pilot Comparison with [ 68Ga]Ga-PSMA-11. Cancers (Basel) 2023; 16:173. [PMID: 38201600 PMCID: PMC10778208 DOI: 10.3390/cancers16010173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/18/2023] [Accepted: 12/24/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND The gastrin-releasing peptide receptor (GRPr) is highly overexpressed in several solid tumors, including treatment-naïve and recurrent prostate cancer. [68Ga]Ga-RM2 is a well-established radiotracer for PET imaging of GRPr, and [177Lu]Lu-RM2 has been proposed as a therapeutic alternative for patients with heterogeneous and/or low expression of PSMA. In this study, we aimed to evaluate the expression of GRPr and PSMA in a group of patients diagnosed with castration-resistant prostate cancer (mCRPC) by means of PET imaging. METHODS Seventeen mCRPC patients referred for radio-ligand therapy (RLT) were enrolled and underwent [68Ga]Ga-PSMA-11 and [68Ga]Ga-RM2 PET/CT imaging, 8.8 ± 8.6 days apart, to compare the biodistribution of each tracer. Uptake in healthy organs and tumor lesions was assessed by SUV values, and tumor-to-background ratios were analyzed. RESULTS [68Ga]Ga-PSMA-11 showed significantly higher uptake in tumor lesions in bone, lymph nodes, prostate, and soft tissues and detected 23% more lesions compared to [68Ga]Ga-RM2. In 4/17 patients (23.5%), the biodistribution of both tracers was comparable. CONCLUSIONS Our results show that in our cohort of mCRPC patients, PSMA expression was higher compared to GRPr. Nevertheless, RLT with [177Lu]Lu-RM2 may be an alternative treatment option for selected patients or patients in earlier disease stages, such as biochemical recurrence.
Collapse
Affiliation(s)
- René Fernández
- Nuclear Medicine and PET/CT Center PositronMed, Providencia, Santiago 7501068, Chile; (C.S.-R.); (H.A.); (V.K.)
| | - Cristian Soza-Ried
- Nuclear Medicine and PET/CT Center PositronMed, Providencia, Santiago 7501068, Chile; (C.S.-R.); (H.A.); (V.K.)
- Positronpharma SA, Providencia, Santiago 7501068, Chile
| | - Andrei Iagaru
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Stanford University, Stanford, CA 94305, USA;
| | - Andrew Stephens
- Life Molecular Imaging GmbH, 13353 Berlin, Germany; (A.S.); (A.M.)
| | - Andre Müller
- Life Molecular Imaging GmbH, 13353 Berlin, Germany; (A.S.); (A.M.)
| | - Hanno Schieferstein
- Formerly Piramal Imaging GmbH, 13353 Berlin, Germany;
- Merck Healthcare KGaA, 64293 Darmstadt, Germany
| | - Camilo Sandoval
- Fundación Arturo López Pérez, Providencia, Santiago 750069, Chile;
| | - Horacio Amaral
- Nuclear Medicine and PET/CT Center PositronMed, Providencia, Santiago 7501068, Chile; (C.S.-R.); (H.A.); (V.K.)
- Positronpharma SA, Providencia, Santiago 7501068, Chile
| | - Vasko Kramer
- Nuclear Medicine and PET/CT Center PositronMed, Providencia, Santiago 7501068, Chile; (C.S.-R.); (H.A.); (V.K.)
- Positronpharma SA, Providencia, Santiago 7501068, Chile
| |
Collapse
|
15
|
D’Onofrio A, Engelbrecht S, Läppchen T, Rominger A, Gourni E. GRPR-targeting radiotheranostics for breast cancer management. Front Med (Lausanne) 2023; 10:1250799. [PMID: 38020178 PMCID: PMC10657217 DOI: 10.3389/fmed.2023.1250799] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023] Open
Abstract
Breast Cancer (BC) is the most common cancer worldwide and, despite the advancements made toward early diagnosis and novel treatments, there is an urgent need to reduce its mortality. The Gastrin-Releasing Peptide Receptor (GRPR) is a promising target for the development of theranostic radioligands for luminal BC with positive estrogen receptor (ER) expression, because GRPR is expressed not only in primary lesions but also in lymph nodes and distant metastasis. In the last decades, several GRPR-targeting molecules have been evaluated both at preclinical and clinical level, however, most of the studies have been focused on prostate cancer (PC). Nonetheless, given the relevance of non-invasive diagnosis and potential treatment of BC through Peptide Receptor Radioligand Therapy (PRRT), this review aims at collecting the available preclinical and clinical data on GRPR-targeting radiopeptides for the imaging and therapy of BC, to better understand the current state-of-the-art and identify future perspectives and possible limitations to their clinical translation. In fact, since luminal-like tumors account for approximately 80% of all BC, many BC patients are likely to benefit from the development of GRPR-radiotheranostics.
Collapse
Affiliation(s)
| | | | | | | | - Eleni Gourni
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
16
|
Damiana TST, Paraïso P, de Ridder C, Stuurman D, Seimbille Y, Dalm SU. Side-by-side comparison of the two widely studied GRPR radiotracers, radiolabeled NeoB and RM2, in a preclinical setting. Eur J Nucl Med Mol Imaging 2023; 50:3851-3861. [PMID: 37584725 PMCID: PMC10611828 DOI: 10.1007/s00259-023-06364-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/24/2023] [Indexed: 08/17/2023]
Abstract
INTRODUCTION NeoB and RM2 are the most investigated gastrin-releasing peptide receptor (GRPR)-targeting radiotracers in preclinical and clinical studies. Therefore, an extensive side-by-side comparison of the two radiotracers is valuable to demonstrate whether one has advantages over the other. Accordingly, this study aims to compare the in vitro and in vivo characteristics of radiolabeled NeoB and RM2 to guide future clinical studies. METHOD The stability of the radiolabeled GRPR analogs was determined in phosphate buffered saline (PBS), and commercially available mouse and human serum. Target affinity was determined by incubating human prostate cancer PC-3 cells with [177Lu]Lu-NeoB or [177Lu]Lu-RM2, + / - increasing concentrations of unlabeled NeoB, RM2, or Tyr4-bombesin (BBN). To determine uptake and specificity cells were incubated with [177Lu]Lu-NeoB or [177Lu]Lu-RM2 + / - Tyr4-BBN. Moreover, in vivo studies were performed to determine biodistribution and pharmacokinetics. Finally, radiotracer binding to various GRPR-expressing human cancer tissues was investigated. RESULTS Both radiotracers demonstrated high stability in PBS and human serum, but stability in mouse serum decreased substantially over time. Moreover, both radiotracers demonstrated high GRPR affinity and specificity, but a higher uptake of [177Lu]Lu-NeoB was observed in in vitro studies. In vivo, no difference in tumor uptake was seen. The most prominent difference in uptake in physiological organs was observed in the GRPR-expressing pancreas; [177Lu]Lu-RM2 had less pancreatic uptake and a shorter pancreatic half-life than [177Lu]Lu-NeoB. Furthermore, [177Lu]Lu-RM2 presented with a lower tumor-to-kidney ratio, while the tumor-to-blood ratio was lower for [177Lu]Lu-NeoB. The autoradiography studies revealed higher binding of radiolabeled NeoB to all human tumor tissues. CONCLUSION Based on these findings, we conclude that the in vivo tumor-targeting capability of radiolabeled NeoB and RM2 is similar. Additional studies are needed to determine whether the differences observed in physiological organ uptakes, i.e., the pancreas, kidneys, and blood, result in relevant differences in organ absorbed doses when the radiotracers are applied for therapeutic purposes.
Collapse
Affiliation(s)
- T S T Damiana
- Department of Radiology & Nuclear Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - P Paraïso
- Department of Radiology & Nuclear Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - C de Ridder
- Department of Experimental Urology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - D Stuurman
- Department of Radiology & Nuclear Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Y Seimbille
- Department of Radiology & Nuclear Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - S U Dalm
- Department of Radiology & Nuclear Medicine, Erasmus Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
17
|
Koller L, Joksch M, Schwarzenböck S, Kurth J, Heuschkel M, Holzleitner N, Beck R, von Amsberg G, Wester HJ, Krause BJ, Günther T. Preclinical Comparison of the 64Cu- and 68Ga-Labeled GRPR-Targeted Compounds RM2 and AMTG, as Well as First-in-Humans [ 68Ga]Ga-AMTG PET/CT. J Nucl Med 2023; 64:1654-1659. [PMID: 37934025 PMCID: PMC10586479 DOI: 10.2967/jnumed.123.265771] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/12/2023] [Indexed: 07/22/2023] Open
Abstract
Despite the recent success of prostate-specific membrane antigen (PSMA)-targeted compounds for theranostic use in prostate cancer (PCa), alternative options for the detection and treatment of PSMA-negative lesions are needed. We have recently developed a novel gastrin-releasing peptide receptor (GRPR) ligand with improved metabolic stability, which might improve diagnostic and therapeutic efficacy and could be valuable for PSMA-negative PCa patients. Our aim was to examine its suitability for theranostic use. We performed a comparative preclinical study on [64Cu]Cu-/[68Ga]Ga-AMTG ([64Cu]Cu-/[68Ga]Ga-α-Me-l-Trp8-RM2) using [64Cu]Cu-/[68Ga]Ga-RM2 ([64Cu]Cu-/[68Ga]Ga-DOTA-Pip5-Phe6-Gln7-Trp8-Ala9-Val10-Gly11-His12-Sta13-Leu14-NH2) as a reference compound and investigated [68Ga]Ga-AMTG in a proof-of-concept study in a PCa patient. Methods: Peptides were labeled with 64Cu (80 °C, 1.0 M NaOAc, pH 5.50) and 68Ga (90 °C, 0.25 M NaOAc, pH 4.50). GRPR affinity (half-maximal inhibitory concentration, room temperature, 2 h) and GRPR-mediated internalization (37 °C, 60 min) were examined on PC-3 cells. Biodistribution studies were performed at 1 h after injection in PC-3 tumor-bearing mice. For a first-in-humans application, 173 MBq of [68Ga]Ga-AMTG were administered intravenously and whole-body PET/CT scans were acquired at 75 min after injection. Results: 64Cu- and 68Ga-labeling proceeded almost quantitatively (>98%). All compounds revealed similarly high GRPR affinity (half-maximal inhibitory concentration, 1.5-4.0 nM) and high receptor-bound fractions (79%-84% of cell-associated activity). In vivo, high activity levels (percentage injected dose per gram) were found in the PC-3 tumor (14.1-15.1 %ID/g) and the pancreas (12.6-30.7 %ID/g), whereas further off-target accumulation was low at 1 h after injection, except for elevated liver uptake observed for both 64Cu-labeled compounds. Overall biodistribution profiles and tumor-to-background ratios were comparable but slightly enhanced for the 68Ga-labeled analogs in most organs. [68Ga]Ga-AMTG confirmed the favorable pharmacokinetics-as evident from preclinical studies-in a patient with metastasized castration-resistant PCa showing intense uptake in several lesions. Conclusion: AMTG is eligible for theranostic use, as labeling with 64Cu and 68Ga, as well as 177Lu (known from previous study), does not have a negative influence on its favorable biodistribution pattern. For this reason, further clinical evaluation is warranted.
Collapse
Affiliation(s)
- Lena Koller
- Pharmaceutical Radiochemistry, Technical University of Munich, Garching, Germany
| | - Markus Joksch
- Department of Nuclear Medicine, Rostock University Medical Center, Rostock, Germany; and
| | - Sarah Schwarzenböck
- Department of Nuclear Medicine, Rostock University Medical Center, Rostock, Germany; and
| | - Jens Kurth
- Department of Nuclear Medicine, Rostock University Medical Center, Rostock, Germany; and
| | - Martin Heuschkel
- Department of Nuclear Medicine, Rostock University Medical Center, Rostock, Germany; and
| | - Nadine Holzleitner
- Pharmaceutical Radiochemistry, Technical University of Munich, Garching, Germany
| | - Roswitha Beck
- Pharmaceutical Radiochemistry, Technical University of Munich, Garching, Germany
| | - Gunhild von Amsberg
- Department of Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hans-Jürgen Wester
- Pharmaceutical Radiochemistry, Technical University of Munich, Garching, Germany
| | - Bernd Joachim Krause
- Department of Nuclear Medicine, Rostock University Medical Center, Rostock, Germany; and
| | - Thomas Günther
- Pharmaceutical Radiochemistry, Technical University of Munich, Garching, Germany;
| |
Collapse
|
18
|
Nock BA, Kanellopoulos P, Joosten L, Mansi R, Maina T. Peptide Radioligands in Cancer Theranostics: Agonists and Antagonists. Pharmaceuticals (Basel) 2023; 16:ph16050674. [PMID: 37242457 DOI: 10.3390/ph16050674] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
The clinical success of radiolabeled somatostatin analogs in the diagnosis and therapy-"theranostics"-of tumors expressing the somatostatin subtype 2 receptor (SST2R) has paved the way for the development of a broader panel of peptide radioligands targeting different human tumors. This approach relies on the overexpression of other receptor-targets in different cancer types. In recent years, a shift in paradigm from internalizing agonists to antagonists has occurred. Thus, SST2R-antagonist radioligands were first shown to accumulate more efficiently in tumor lesions and clear faster from the background in animal models and patients. The switch to receptor antagonists was soon adopted in the field of radiolabeled bombesin (BBN). Unlike the stable cyclic octapeptides used in the case of somatostatin, BBN-like peptides are linear, fast to biodegradable and elicit adverse effects in the body. Thus, the advent of BBN-like antagonists provided an elegant way to obtain effective and safe radiotheranostics. Likewise, the pursuit of gastrin and exendin antagonist-based radioligands is advancing with exciting new outcomes on the horizon. In the present review, we discuss these developments with a focus on clinical results, commenting on challenges and opportunities for personalized treatment of cancer patients by means of state-of-the-art antagonist-based radiopharmaceuticals.
Collapse
Affiliation(s)
- Berthold A Nock
- Molecular Radiopharmacy, INRaSTES, NCSR "Demokritos", 15310 Athens, Greece
| | | | - Lieke Joosten
- Department of Medical Imaging, Nuclear Medicine, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Rosalba Mansi
- Division of Radiopharmaceutical Chemistry, Clinic of Radiology and Nuclear Medicine, University Hospital Basel, 4031 Basel, Switzerland
| | - Theodosia Maina
- Molecular Radiopharmacy, INRaSTES, NCSR "Demokritos", 15310 Athens, Greece
| |
Collapse
|
19
|
Sun HL, Ma QY, Bian HG, Meng XM, Jin J. Novel insight on GRP/GRPR axis in diseases. Biomed Pharmacother 2023; 161:114497. [PMID: 36933382 DOI: 10.1016/j.biopha.2023.114497] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/26/2023] [Accepted: 03/07/2023] [Indexed: 03/18/2023] Open
Abstract
The gastrin-releasing peptide receptor (GRPR), a member of the G protein-coupled receptors (GPCRs), binds to ligands such as gastrin-releasing peptide (GRP) and plays a variety of biological roles. GRP/GRPR signalling is involved in the pathophysiological processes of many diseases, including inflammatory diseases, cardiovascular diseases, neurological diseases, and various cancers. In the immune system, the unique function of GRP/GRPR in neutrophil chemotaxis suggests that GRPR can be directly stimulated through GRP-mediated neutrophils to activate selective signalling pathways, such as PI3K, PKC, and MAPK, and participate in the occurrence and development of inflammation-related diseases. In the cardiovascular system, GRP increases intercellular adhesion molecule 1 (ICAM-1) and induces vascular cell adhesion molecule-1 (VCAM-1). GRP activates ERK1/2, MAPK, and AKT, leading to cardiovascular diseases, including myocardial infarction. Central nervous system signal transduction mediated by the GRP/GRPR axis plays a vital role in emotional responses, social interaction, and memory. The GRP/GRPR axis is elevated in various cancers, including lung, cervical, colorectal, renal cell, and head and neck squamous cell carcinomas. GRP is a mitogen in a variety of tumour cell lines. Its precursor, pro-gastrin-releasing peptide (ProGRP), may play an important role as an emerging tumour marker in early tumour diagnosis. GPCRs serve as therapeutic targets for drug development, but their function in each disease remains unclear, and their involvement in disease progression has not been well explored or summarised. This review lays out the above mentioned pathophysiological processes based on previous research conclusions. The GRP/GRPR axis may be a potential target for treating multiple diseases, and the study of this signalling axis is particularly important.
Collapse
Affiliation(s)
- Hao-Lu Sun
- School of Basic Medical Sciences, Anhui Medical University, Anhui, China
| | - Qiu-Ying Ma
- Department of pharmacy, The First Affiliated Hospital of Anhui Medical University, Anhui Public Health Clinical Center, No. 100 Huaihai Road, Hefei, Anhui, 230012, China
| | - He-Ge Bian
- School of Basic Medical Sciences, Anhui Medical University, Anhui, China
| | - Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei 230032, China.
| | - Juan Jin
- School of Basic Medical Sciences, Anhui Medical University, Anhui, China.
| |
Collapse
|
20
|
[ 99mTc]Tc-HYNIC-RM2: A potential SPECT probe targeting GRPR expression in prostate cancers. Nucl Med Biol 2023; 118-119:108331. [PMID: 36933456 DOI: 10.1016/j.nucmedbio.2023.108331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/13/2023] [Accepted: 02/22/2023] [Indexed: 03/11/2023]
Abstract
INTRODUCTION Elevated density of gastrin releasing peptide receptors (GRPR) in prostate cancer has led to exploration of several radiolabeled peptides for imaging and staging of the disease. The GRPR antagonist peptide RM2 has been successfully conjugated with several chelators and radiolabeled with gallium-68. The goal of this study was to synthesize a 99mTc-labeled probe and investigate its potential for SPECT imaging of prostate cancer. Towards this HYNIC-RM2 peptide conjugate was synthesized, radiolabeled with 99mTc and evaluated in GRPR-positive PC3 tumor xenografts. METHODS HYNIC-RM2 was manually synthesized by standard Fmoc solid phase strategy and radiolabeled with 99mTc. In vitro cell studies were performed in GRPR-positive human prostate carcinoma (PC3) cells. Metabolic stability studies of [99mTc]Tc-HYNIC-RM2 were performed in normal mice in the presence as well as absence of neutral endopeptidase (NEP) inhibitor, phosphoramidon (PA). Biodistribution and imaging studies of [99mTc]Tc-HYNIC-RM2 were performed in SCID mice bearing PC3-xenograft. RESULTS [99mTc]Tc-HYNIC-RM2 exhibited high binding affinity in low nanomolar range (Kd = 1.83 ± 0.31 nM). Metabolic stability studies in mice indicated that in the absence of PA, radiolabeled peptide was about 65 % intact in the blood at 15 min p.i., whereas proportion of intact radiolabeled peptide was enhanced to 90 % on co-administration of PA. Biodistribution studies in PC3 tumor bearing mice demonstrated high tumor uptake (8.02 ± 0.9%ID/g and 6.13 ± 0.44%ID/g at 1 h and 3 h p.i.). Co-administration of PA with the radiolabeled peptide resulted in further enhancement of tumor uptake (14.24 ± 0.76 % ID/g and 11.71 ± 0.59%ID/g at 1 h and 3 h p.i.). SPECT/CT images of [99mTc]Tc-HYNIC-RM2 could clearly visualize the tumor. Significant (p < 0.001) reduction in the tumor uptake with a co-injected blocking dose of unlabeled peptide ascertained the GRPR specificity of [99mTc]Tc-HYNIC-RM2. CONCLUSION Encouraging results obtained in biodistribution and imaging studies indicate the potential of [99mTc]Tc-HYNIC-RM2 for further exploration as GRPR targeting agent.
Collapse
|
21
|
Phase I Trial of [99mTc]Tc-maSSS-PEG2-RM26, a Bombesin Analogue Antagonistic to Gastrin-Releasing Peptide Receptors (GRPRs), for SPECT Imaging of GRPR Expression in Malignant Tumors. Cancers (Basel) 2023; 15:cancers15061631. [PMID: 36980517 PMCID: PMC10046460 DOI: 10.3390/cancers15061631] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/26/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
The gastrin-releasing peptide receptor (GRPR) is overexpressed in prostate cancer (PCa) and in hormone-driven breast cancer (BCa). The aim of this phase I clinical trial was to evaluate safety, biodistribution, and dosimetry after the administration of the recently developed GRPR-targeting antagonistic bombesin analogue [99mTc]Tc-maSSS-PEG2-RM26 in PCa and BCa patients. Planar and whole-body SPECT/CT imaging was performed in six PCa patients and seven BCa patients 2, 4, 6, and 24 h post the intravenous administration of 40 µg of [99mTc]Tc-maSSS-PEG2-RM26 (600–700 MBq). No adverse events or pathological changes were observed. The rapid blood clearance of [99mTc]Tc-maSSS-PEG2-RM26 was observed with predominantly hepatobiliary excretion. The effective doses were 0.0053 ± 0.0007 for male patients and 0.008 ± 0.003 mSv/MBq for female patients. The accumulation of [99mTc]Tc-maSSS-PEG2-RM26 in tumors was observed in four out of six PCa and in seven out of seven BCa patients. In four BCa patients, a high uptake of the agent into the axillary lymph nodes was detected. Immunohistochemistry revealed positive GRPR expression in 60% of primary PCa, 71.4% of BCa tumors, and 50% of examined BCa lymph nodes. In conclusion, a single administration of [99mTc]Tc-maSSS-PEG2-RM26 was safe and well tolerated. [99mTc]Tc-maSSS-PEG2-RM26 SPECT may be useful for tumor detection in PCa and BCa patients, pending further studies.
Collapse
|
22
|
Abstract
Molecular imaging is advancing rapidly with promising new molecular targets emerging for theragnostic, ie, imaging and treatment with the same compound, to provide targeted, personalized medicine. Gastrin-releasing peptide receptors (GRPR) are overexpressed in prostate cancer. Gallium-68 (68Ga) RM2 is a GRPR antagonist and shows high sensitivity and specificity for the detection of primary prostate cancer and recurrent disease. However, compared with the widely used 68Ga-PSMA11 and 18F-DCFPyL, a discordance in uptake pattern is seen reflecting the heterogeneity in tumor biology of prostate cancer. In this review, we present the background, current status, and future perspectives of PET imaging using 68Ga-RM2.
Collapse
Affiliation(s)
- Heying Duan
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Stanford University, 300 Pasteur Drive, H2200, Stanford, CA 94305, USA
| | - Andrei Iagaru
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Stanford University, 300 Pasteur Drive, H2200, Stanford, CA 94305, USA.
| |
Collapse
|
23
|
Kurth J, Potratz M, Heuschkel M, Krause BJ, Schwarzenböck SM. GRPr Theranostics: Current Status of Imaging and Therapy using GRPr Targeting Radiopharmaceuticals. Nuklearmedizin 2022; 61:247-261. [PMID: 35668669 DOI: 10.1055/a-1759-4189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Addressing molecular targets, that are overexpressed by various tumor entities, using radiolabeled molecules for a combined diagnostic and therapeutic (theranostic) approach is of increasing interest in oncology. The gastrin-releasing peptide receptor (GRPr), which is part of the bombesin family, has shown to be overexpressed in a variety of tumors, therefore, serving as a promising target for those theranostic applications. A large amount of differently radiolabeled bombesin derivatives addressing the GRPr have been evaluated in the preclinical as well as clinical setting showing fast blood clearance and urinary excretion with selective GRPr-binding. Most of the available studies on GRPr-targeted imaging and therapy have evaluated the theranostic approach in prostate and breast cancer applying bombesin derivatives tagged with the predominantly used theranostic pair of 68Ga/177Lu which is the focus of this review.
Collapse
Affiliation(s)
- Jens Kurth
- Department of Nuclear Medicine, Rostock University Medical Center, Rostock, Germany
| | - Madlin Potratz
- Department of Nuclear Medicine, Rostock University Medical Center, Rostock, Germany
| | - Martin Heuschkel
- Department of Nuclear Medicine, Rostock University Medical Center, Rostock, Germany
| | - Bernd J Krause
- Department of Nuclear Medicine, Rostock University Medical Center, Rostock, Germany
| | | |
Collapse
|
24
|
Ye S, Li H, Hu K, Li L, Zhong J, Yan Q, Wang Q. Radiosynthesis and biological evaluation of 18F-labeled bispecific heterodimer targeted dual gastrin-releasing peptide receptor and prostate-specific membrane antigen for prostate cancer imaging. Nucl Med Commun 2022; 43:323-331. [PMID: 34919064 DOI: 10.1097/mnm.0000000000001520] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Approximately 5% of prostatic primary tumors and 15% of metastatic tumors were found to be prostate-specific membrane antigen (PSMA)-negative. Targeting gastrin-releasing peptide receptor (GRPR) has been shown to complement patients with PSMA-negative prostate cancer (PCa). Based on previous findings, simultaneously targeting PSMA and GRPR imaging may improve the diagnosis of PCa. In this study, we report the radiosynthesis and biological evaluation of a bispecific heterodimer of NOTA-GRPR-PSMA that targeted both PSMA and GRPR for extended PCa imaging. METHODS NOTA-GRPR-PSMA was labeled using the Al18F-chelating one-step method. The competitive combination experiment and specific binding assay were performed in vitro using 22Rv1 (PSMA+) and PC-3 (GRPR+) cells. To determine the distribution and specificity in vivo, biodistribution and micro-PET/computed tomography of [18F]AlF-GRPR-PSMA were performed on mice bearing 22Rv1 or PC-3 tumors. RESULTS [18F]AlF-GRPR-PSMA had a radiochemical purity of over 98% and demonstrated high stability in vivo and in vitro, with a LogD of -1.2 ± 0.05. Cell uptake and inhibition studies of [18F]AlF-GRPR-PSMA in 22Rv1 and PC-3 cells revealed bispecific GRPR and PSMA bindings. According to the biodistribution study and PET imaging, [18F]AlF-GRPR-PSMA was mainly excreted through the kidney. Tumor uptake was high in 22Rv1 tumor (10.1 ± 0.4 %ID/g) and moderate in PC-3 tumor (2.1 ± 0.6 %ID/g) 2 h p.i., whereas blocking studies significantly decreased the tumor uptake of 22Rv1 and PC-3. CONCLUSION [18F]AlF-GRPR-PSMA has the potential to simultaneously target PSMA and GRPR for PCa imaging.
Collapse
Affiliation(s)
- Shimin Ye
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou
| | - Hongsheng Li
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou
| | - Kongzhen Hu
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou
| | - Li Li
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou
| | - Jiawei Zhong
- Department of Chemistry, Jinan University, Guangzhou, China
| | - Qingsong Yan
- Department of Chemistry, Jinan University, Guangzhou, China
| | - Quanshi Wang
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou
| |
Collapse
|
25
|
Han Z, Ke M, Liu X, Wang J, Guan Z, Qiao L, Wu Z, Sun Y, Sun X. Molecular Imaging, How Close to Clinical Precision Medicine in Lung, Brain, Prostate and Breast Cancers. Mol Imaging Biol 2022; 24:8-22. [PMID: 34269972 DOI: 10.1007/s11307-021-01631-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 07/03/2021] [Accepted: 07/06/2021] [Indexed: 12/15/2022]
Abstract
Precision medicine is playing a pivotal role in strategies of cancer therapy. Unlike conventional one-size-fits-all chemotherapy or radiotherapy modalities, precision medicine could customize an individual treatment plan for cancer patients to acquire superior efficacy, while minimizing side effects. Precision medicine in cancer therapy relies on precise and timely tumor biological information. Traditional tissue biopsies, however, are often inadequate in meeting this requirement due to cancer heterogeneity, poor tolerance, and invasiveness. Molecular imaging could detect tumor biology characterization in a noninvasive and visual manner, and provide information about therapeutic targets, treatment response, and pharmacodynamic evaluation. This summates to significant value in guiding cancer precision medicine in aspects of patient screening, treatment monitoring, and estimating prognoses. Although growing clinical evidences support the further application of molecular imaging in precision medicine of cancer, some challenges remain. In this review, we briefly summarize and discuss representative clinical trials of molecular imaging in improving precision medicine of cancer patients, aiming to provide useful references for facilitating further clinical translation of molecular imaging to precision medicine of cancers.
Collapse
Affiliation(s)
- Zhaoguo Han
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, 766 Xiangan N street, Harbin, 150028, Heilongjiang, China
- Department of Nuclear Medicine, The Fourth Hospital of Harbin Medical University, Harbin, China
- Biomedical Research Imaging Center, Department of Radiology, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Mingxing Ke
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, 766 Xiangan N street, Harbin, 150028, Heilongjiang, China
- Department of Nuclear Medicine, The Fourth Hospital of Harbin Medical University, Harbin, China
| | - Xiang Liu
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, 766 Xiangan N street, Harbin, 150028, Heilongjiang, China
- Department of Nuclear Medicine, The Fourth Hospital of Harbin Medical University, Harbin, China
| | - Jing Wang
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, 766 Xiangan N street, Harbin, 150028, Heilongjiang, China
- Department of Nuclear Medicine, The Fourth Hospital of Harbin Medical University, Harbin, China
| | - Zhengqi Guan
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, 766 Xiangan N street, Harbin, 150028, Heilongjiang, China
- Department of Nuclear Medicine, The Fourth Hospital of Harbin Medical University, Harbin, China
| | - Lina Qiao
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, 766 Xiangan N street, Harbin, 150028, Heilongjiang, China
- Department of Nuclear Medicine, The Fourth Hospital of Harbin Medical University, Harbin, China
| | - Zhexi Wu
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, 766 Xiangan N street, Harbin, 150028, Heilongjiang, China
- Department of Nuclear Medicine, The Fourth Hospital of Harbin Medical University, Harbin, China
| | - Yingying Sun
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, 766 Xiangan N street, Harbin, 150028, Heilongjiang, China
- Department of Nuclear Medicine, The Fourth Hospital of Harbin Medical University, Harbin, China
| | - Xilin Sun
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, 766 Xiangan N street, Harbin, 150028, Heilongjiang, China.
- Department of Nuclear Medicine, The Fourth Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
26
|
Maina T, Nock BA. Peptide radiopharmaceuticals for targeted diagnosis & therapy of human tumors. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00078-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
27
|
Achilli E, Flores C, Temprana C, Alonso SDV, Radrizzani M, Grasselli M. Enhanced gold nanoparticle-tumor cell recognition by albumin multilayer coating. OPENNANO 2021. [DOI: 10.1016/j.onano.2021.100033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Mansi R, Nock BA, Dalm SU, Busstra MB, van Weerden WM, Maina T. Radiolabeled Bombesin Analogs. Cancers (Basel) 2021; 13:cancers13225766. [PMID: 34830920 PMCID: PMC8616220 DOI: 10.3390/cancers13225766] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Recent medical advancements have strived for a personalized medicine approach to patients, aimed at optimizing therapy outcomes with minimum toxicity. In this respect, nuclear medicine methodologies have been playing increasingly important roles. For example, the overexpression of peptide receptors, such as the gastrin-releasing peptide receptor (GRPR), on tumor cells as opposed to their lack of expression in healthy surrounding tissues can be elegantly exploited with the aid of “smart” peptide carriers, such as the analogs of the amphibian 14-peptide bombesin (BBN). These molecules can bring clinically attractive radionuclides to malignant lesions in prostate, breast, and other human cancers, sparing healthy tissues. Depending upon the radionuclide in question, diagnostic imaging with single-photon emission computed tomography (SPECT) or positron emission tomography (PET) has been pursued, identifying patients who are eligible for peptide radionuclide receptor therapy (PRRT) in an integrated “theranostic” approach. In the present review, we (i) discuss the major steps taken in the development of anti-GRPR theranostic radioligands, with a focus on those selected for clinical testing; (ii) comment on the present status in this field of research; and (iii) reflect on the current limitations as well as on new opportunities for their broader and more successful clinical applications. Abstract The gastrin-releasing peptide receptor (GRPR) is expressed in high numbers in a variety of human tumors, including the frequently occurring prostate and breast cancers, and therefore provides the rationale for directing diagnostic or therapeutic radionuclides on cancer lesions after administration of anti-GRPR peptide analogs. This concept has been initially explored with analogs of the frog 14-peptide bombesin, suitably modified at the N-terminus with a number of radiometal chelates. Radiotracers that were selected for clinical testing revealed inherent problems associated with these GRPR agonists, related to low metabolic stability, unfavorable abdominal accumulation, and adverse effects. A shift toward GRPR antagonists soon followed, with safer analogs becoming available, whereby, metabolic stability and background clearance issues were gradually improved. Clinical testing of three main major antagonist types led to promising outcomes, but at the same time brought to light several limitations of this concept, partly related to the variation of GRPR expression levels across cancer types, stages, previous treatments, and other factors. Currently, these parameters are being rigorously addressed by cell biologists, chemists, nuclear medicine physicians, and other discipline practitioners in a common effort to make available more effective and safe state-of-the-art molecular tools to combat GRPR-positive tumors. In the present review, we present the background, current status, and future perspectives of this endeavor.
Collapse
Affiliation(s)
- Rosalba Mansi
- Division of Radiopharmaceutical Chemistry, Clinic of Radiology and Nuclear Medicine University Hospital Basel, 4031 Basel, Switzerland;
| | - Berthold A. Nock
- Molecular Radiopharmacy, INRaSTES, NCSR “Demokritos”, 15310 Athens, Greece;
| | - Simone U. Dalm
- Erasmus Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (S.U.D.); (M.B.B.); (W.M.v.W.)
| | - Martijn B. Busstra
- Erasmus Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (S.U.D.); (M.B.B.); (W.M.v.W.)
| | - Wytske M. van Weerden
- Erasmus Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (S.U.D.); (M.B.B.); (W.M.v.W.)
| | - Theodosia Maina
- Molecular Radiopharmacy, INRaSTES, NCSR “Demokritos”, 15310 Athens, Greece;
- Correspondence: ; Tel.: +30-650-3908/3891
| |
Collapse
|
29
|
Bakker IL, Fröberg AC, Busstra MB, Verzijlbergen JF, Konijnenberg M, van Leenders GJLH, Schoots IG, de Blois E, van Weerden WM, Dalm SU, Maina T, Nock BA, de Jong M. GRPr Antagonist 68Ga-SB3 PET/CT Imaging of Primary Prostate Cancer in Therapy-Naïve Patients. J Nucl Med 2021; 62:1517-1523. [PMID: 33789933 PMCID: PMC8612327 DOI: 10.2967/jnumed.120.258814] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 02/16/2021] [Indexed: 11/16/2022] Open
Abstract
The gastrin-releasing peptide receptor (GRPr) is overexpressed in prostate cancer (PCa) cells, making it an excellent tool for targeted imaging. The 68Ga-labeled GRPr antagonist SB3 has shown excellent results in preclinical and clinical studies and was selected for further clinical investigation. The aims of this phase I study were to investigate 68Ga-SB3 PET/CT imaging of primary PCa tumors and assess safety. More aims included an investigation of biodistribution and dosimetry and a comparison with pathology and GRPr expression. Methods: Ten therapy-naïve, biopsy-confirmed PCa patients planned for prostatectomy were included. A 3-h extensive PET/CT imaging protocol was performed within 2 wk before prostatectomy. Prostate tissue was evaluated for tumor localization and Gleason score, and in vitro autoradiography was performed to determine GRPr expression. Available MRI scans performed within 3 mo before the study were matched. For dosimetry, residence times were estimated and effective dose to the body as well as absorbed doses to organs were calculated using the IDAC dose model, version 2.1. Results: Administration of 68Ga-SB3 (187.4 ± 40.0 MBq, 40 ± 5 μg) was well tolerated; no significant changes in vital signs or laboratory results were observed. 68Ga-SB3 PET/CT showed lesions in 8 of 10 patients. Pathologic analysis revealed a total of 16 tumor lesions, of which PET/CT showed 14, resulting in a sensitivity of 88%. 68Ga-SB3 PET/CT imaging showed uptake in 2 large prostatic intraepithelial neoplasia foci, considered a precursor to PCa, resulting in an 88% specificity. Autoradiography of tumor lesions revealed heterogeneous GRPr expression and was negative in 4 patients. Both PET/CT-negative patients had a GRPr-negative tumor. In autoradiography-positive tumors, the level of GRPr expression showed a significant correlation to tracer uptake on PET/CT. Dosimetry calculations estimated the effective dose to be 0.0144 mSv/MBq, similar to other 68Ga-labeled radiopeptides. The highest absorbed dose was detected in the physiologic GRPr-expressing pancreas (0.198 mGy/MBq), followed by the bladder wall and kidneys. Conclusion:68Ga-SB3 PET/CT is a safe imaging method and a promising tool for early PCa imaging.
Collapse
Affiliation(s)
- Ingrid L Bakker
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Alida C Fröberg
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | | | - J Fred Verzijlbergen
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Mark Konijnenberg
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | | | - Ivo G Schoots
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Erik de Blois
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | | | - Simone U Dalm
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Theodosia Maina
- Molecular Radiopharmacy, INRASTES, NCSR "Demokritos," Athens, Greece
| | - Berthold A Nock
- Molecular Radiopharmacy, INRASTES, NCSR "Demokritos," Athens, Greece
| | - Marion de Jong
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands;
| |
Collapse
|
30
|
Manafi-Farid R, Ranjbar S, Jamshidi Araghi Z, Pilz J, Schweighofer-Zwink G, Pirich C, Beheshti M. Molecular Imaging in Primary Staging of Prostate Cancer Patients: Current Aspects and Future Trends. Cancers (Basel) 2021; 13:5360. [PMID: 34771523 PMCID: PMC8582501 DOI: 10.3390/cancers13215360] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/17/2021] [Accepted: 10/19/2021] [Indexed: 12/19/2022] Open
Abstract
Accurate primary staging is the cornerstone in all malignancies. Different morphological imaging modalities are employed in the evaluation of prostate cancer (PCa). Regardless of all developments in imaging, invasive histopathologic evaluation is still the standard method for the detection and staging of the primary PCa. Magnetic resonance imaging (MRI) and computed tomography (CT) play crucial roles; however, functional imaging provides additional valuable information, and it is gaining ever-growing acceptance in the management of PCa. Targeted imaging with different radiotracers has remarkably evolved in the past two decades. [111In]In-capromab pendetide scintigraphy was a new approach in the management of PCa. Afterwards, positron emission tomography (PET) tracers such as [11C/18F]choline and [11C]acetate were developed. Nevertheless, none found a role in the primary staging. By introduction of the highly sensitive small molecule prostate-specific membrane antigen (PSMA) PET/CT, as well as recent developments in MRI and hybrid PET/MRI systems, non-invasive staging of PCa is being contemplated. Several studies investigated the role of these sophisticated modalities in the primary staging of PCa, showing promising results. Here, we recapitulate the role of targeted functional imaging. We briefly mention the most popular radiotracers, their diagnostic accuracy in the primary staging of PCa, and impact on patient management.
Collapse
Affiliation(s)
- Reyhaneh Manafi-Farid
- Research Center for Nuclear Medicine, Tehran University of Medical Sciences, Tehran 1411713135, Iran;
| | - Shaghayegh Ranjbar
- Department of Nuclear Medicine, Division of Molecular Imaging and Theranostics, University Hospital Salzburg, Paracelsus Medical University, Muellner Hauptstrasse 48, 5020 Salzburg, Austria; (S.R.); (Z.J.A.); (J.P.); (G.S.-Z.); (C.P.)
| | - Zahra Jamshidi Araghi
- Department of Nuclear Medicine, Division of Molecular Imaging and Theranostics, University Hospital Salzburg, Paracelsus Medical University, Muellner Hauptstrasse 48, 5020 Salzburg, Austria; (S.R.); (Z.J.A.); (J.P.); (G.S.-Z.); (C.P.)
| | - Julia Pilz
- Department of Nuclear Medicine, Division of Molecular Imaging and Theranostics, University Hospital Salzburg, Paracelsus Medical University, Muellner Hauptstrasse 48, 5020 Salzburg, Austria; (S.R.); (Z.J.A.); (J.P.); (G.S.-Z.); (C.P.)
| | - Gregor Schweighofer-Zwink
- Department of Nuclear Medicine, Division of Molecular Imaging and Theranostics, University Hospital Salzburg, Paracelsus Medical University, Muellner Hauptstrasse 48, 5020 Salzburg, Austria; (S.R.); (Z.J.A.); (J.P.); (G.S.-Z.); (C.P.)
| | - Christian Pirich
- Department of Nuclear Medicine, Division of Molecular Imaging and Theranostics, University Hospital Salzburg, Paracelsus Medical University, Muellner Hauptstrasse 48, 5020 Salzburg, Austria; (S.R.); (Z.J.A.); (J.P.); (G.S.-Z.); (C.P.)
| | - Mohsen Beheshti
- Department of Nuclear Medicine, Division of Molecular Imaging and Theranostics, University Hospital Salzburg, Paracelsus Medical University, Muellner Hauptstrasse 48, 5020 Salzburg, Austria; (S.R.); (Z.J.A.); (J.P.); (G.S.-Z.); (C.P.)
| |
Collapse
|
31
|
Potential Targets Other Than PSMA for Prostate Cancer Theranostics: A Systematic Review. J Clin Med 2021; 10:jcm10214909. [PMID: 34768432 PMCID: PMC8584491 DOI: 10.3390/jcm10214909] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 01/31/2023] Open
Abstract
Background: Prostate-specific membrane antigen (PSMA) is not sufficiently overexpressed in a small proportion of prostate cancer (PCa) patients, who require other strategies for imaging and/or treatment. We reviewed potential targets other than PSMA for PCa theranostics in nuclear medicine that have already been tested in humans. Methods: We performed a systematic web search in the PubMed and Cochrane databases, with no time restrictions by pooling terms (“prostate cancer”, “prostatic neoplasms”) and (“radioligand”, “radiotracer”). Included articles were clinical studies. The results were synthetized by the target type. Results: We included 38 studies on six different targets: gastrin-releasing peptide receptors (GRPRs) (n = 23), androgen receptor (n = 11), somatostatin receptors (n = 6), urokinase plasminogen activator surface receptor (n = 4), fibroblast activation protein (n = 2 studies) and integrin receptors (n = 1). GRPRs, the most studied target, has a lower expression in high-grade PCa, CRPC and bone metastases. Its use might be of higher interest in treating earlier stages of PCa or low-grade PCa. Radiolabeled fibroblast activation protein inhibitors were the most recent and promising molecules, but specific studies reporting their interest in PCa are needed. Conclusion: Theranostics in nuclear medicine will continue to develop in the future, especially for PCa patients. Targets other than PSMA exist and deserve to be promoted.
Collapse
|
32
|
[ 99mTc]Tc-DB15 in GRPR-Targeted Tumor Imaging with SPECT: From Preclinical Evaluation to the First Clinical Outcomes. Cancers (Basel) 2021; 13:cancers13205093. [PMID: 34680243 PMCID: PMC8533986 DOI: 10.3390/cancers13205093] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 12/15/2022] Open
Abstract
Diagnostic imaging and radionuclide therapy of prostate (PC) and breast cancer (BC) using radiolabeled gastrin-releasing peptide receptor (GRPR)-antagonists represents a promising approach. We herein propose the GRPR-antagonist based radiotracer [99mTc]Tc-DB15 ([99mTc]Tc-N4-AMA-DGA-DPhe6,Sar11,LeuNHEt13]BBN(6-13); N4: 6-carboxy-1,4,8,11-tetraazaundecane, AMA: aminomethyl-aniline, DGA: diglycolic acid) as a new diagnostic tool for GRPR-positive tumors applying SPECT/CT. The uptake of [99mTc]Tc-DB15 was tested in vitro in mammary (T-47D) and prostate cancer (PC-3) cells and in vivo in T-47D or PC-3 xenograft-bearing mice as well as in BC patients. DB15 showed high GRPR-affinity (IC50 = 0.37 ± 0.03 nM) and [99mTc]Tc-DB15 strongly bound to the cell-membrane of T-47D and PC-3 cells, according to a radiolabeled antagonist profile. In mice, the radiotracer showed high and prolonged GRPR-specific uptake in PC-3 (e.g., 25.56 ± 2.78 %IA/g vs. 0.72 ± 0.12 %IA/g in block; 4 h pi) and T-47D (e.g., 15.82 ± 3.20 %IA/g vs. 3.82 ± 0.30 %IA/g in block; 4 h pi) tumors, while rapidly clearing from background. In patients with advanced BC, the tracer could reveal several bone and soft tissue metastases on SPECT/CT. The attractive pharmacokinetic profile of [99mTc]DB15 in mice and its capability to target GRPR-positive BC lesions in patients highlight its prospects for a broader clinical use, an option currently being explored by ongoing clinical studies.
Collapse
|
33
|
Najafi Khosroshahi F, Feng Y, Ma L, Manring S, Rold TL, Gallazzi FA, Kelley SP, Embree MF, Hennkens HM, Hoffman TJ, Jurisson SS. A New, Second Generation Trithiol Bifunctional Chelate for 72,77As: Trithiol(b)-(Ser) 2-RM2. Bioconjug Chem 2021; 32:1364-1373. [PMID: 33423467 DOI: 10.1021/acs.bioconjchem.0c00658] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Trithiol chelates are suitable for labeling radioarsenic (72As: 2.49 MeV β+, 26 h; 77As: 0.683 MeV β-, 38.8 h) to form potential theranostic radiopharmaceuticals for positron emission tomography (PET) imaging and therapy. A trithiol(b)-(Ser)2-RM2 bioconjugate and its arsenic complex were synthesized and characterized. The trithiol(b)-(Ser)2-RM2 bioconjugate was radiolabeled with no-carrier-added 77As in over 95% radiochemical yield and was stable for over 48 h, and in vitro IC50 cell binding studies of [77As]As-trithiol(b)-(Ser)2-RM2 in PC-3 cells demonstrated high affinity for the gastrin-releasing peptide (GRP) receptor (low nanomolar range). Limited biodistribution studies in normal mice were performed with HPLC purified 77As-trithiol(b)-(Ser)2-RM2 demonstrating both pancreatic uptake and hepatobiliary clearance.
Collapse
Affiliation(s)
| | | | | | | | - Tammy L Rold
- Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri 65201, United States
| | | | | | | | | | - Timothy J Hoffman
- Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri 65201, United States
| | | |
Collapse
|
34
|
Prognostic and Theranostic Applications of Positron Emission Tomography for a Personalized Approach to Metastatic Castration-Resistant Prostate Cancer. Int J Mol Sci 2021; 22:ijms22063036. [PMID: 33809749 PMCID: PMC8002334 DOI: 10.3390/ijms22063036] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 01/25/2023] Open
Abstract
Metastatic castration-resistant prostate cancer (mCRPC) represents a condition of progressive disease in spite of androgen deprivation therapy (ADT), with a broad spectrum of manifestations ranging from no symptoms to severe debilitation due to bone or visceral metastatization. The management of mCRPC has been profoundly modified by introducing novel therapeutic tools such as antiandrogen drugs (i.e., abiraterone acetate and enzalutamide), immunotherapy through sipuleucel-T, and targeted alpha therapy (TAT). This variety of approaches calls for unmet need of biomarkers suitable for patients’ pre-treatment selection and prognostic stratification. In this scenario, imaging with positron emission computed tomography (PET/CT) presents great and still unexplored potential to detect specific molecular and metabolic signatures, some of whom, such as the prostate specific membrane antigen (PSMA), can also be exploited as therapeutic targets, thus combining diagnosis and therapy in the so-called “theranostic” approach. In this review, we performed a web-based and desktop literature research to investigate the prognostic and theranostic potential of several PET imaging probes, such as 18F-FDG, 18F-choline and 68Ga-PSMA-11, also covering the emerging tracers still in a pre-clinical phase (e.g., PARP-inhibitors’ analogs and the radioligands binding to gastrin releasing peptide receptors/GRPR), highlighting their potential for defining personalized care pathways in mCRPC.
Collapse
|
35
|
In Vivo Biodistribution and Efficacy Evaluation of NeoB, a Radiotracer Targeted to GRPR, in Mice Bearing Gastrointestinal Stromal Tumor. Cancers (Basel) 2021; 13:cancers13051051. [PMID: 33801382 PMCID: PMC7958597 DOI: 10.3390/cancers13051051] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary NeoB is undergoing evaluation as a novel theragnostic agent—that is, that it can be employed either for the diagnosis of tumor expressing gastrin-releasing peptide receptor (GRPR) using nuclear imaging, or for the therapy of such GRPR positive tumors using internal radiotherapy. The switch from diagnosis to therapy simply rely on the choice of the radioisotope that is coupled to NeoB. The aim of our study was to investigate—for the first time—the potency of NeoB for tumor therapy once labeled with the beta- emitter Lu-177. This study has been conducted in mice bearing human Gastrointestinal Stromal Tumors (GIST). [177Lu]Lu-NeoB was found to accumulate in the tumor, with only minimal retention in off-target organs. Consequently, mice treated with therapeutic doses of [177Lu]Lu-NeoB (37MBq/week for three weeks) exhibited tumor regression and therefore long term survival in comparison to the control untreated mice. Abstract NeoB is a radiotracer targeting the gastrin-releasing peptide receptor (GRPR), a G-protein–coupled receptor expressed in various cancers. The aim of the present study was to evaluate the biodistribution and efficacy of this new therapeutic agent in Gastrointestinal Stromal Tumors (GIST). Eighty-two SCID mice bearing GIST-882 tumors were employed. [177Lu]Lu-NeoB biodistribution was evaluated up to seven days by organ sampling (200 pmol/0.8 MBq, i.v.). For efficacy evaluation, mice received either saline, 400 pmol or 800 pmol of [177Lu]Lu-NeoB (37MBq, 1/w, 3 w, i.v.). SPECT/CT imaging was performed at 24 h, and tumor volume was determined up to 100 days. Elevated and specific [177Lu]Lu-NeoB uptake was found in the GIST tumor, as demonstrated by in vivo competition (19.1 ± 3.9 %ID/g vs. 0.3 ± 0.1 %ID/g at 4h). [177Lu]Lu-NeoB tumor retention (half-life of 40.2 h) resulted in elevated tumor-to-background ratios. Tumor volumes were significantly reduced in both treated groups (p < 0.01), even leading to complete tumor regression at the 400 pmol dose. [177Lu]Lu-NeoB exhibited excellent pharmacokinetics with elevated and prolonged tumor uptake and low uptake in non-target organs such as pancreas. The potential of this new theragnostic agent in different indications, including GIST, is under evaluation in the FIH [177Lu]Lu-NeoB clinical trial.
Collapse
|
36
|
Fu H, Du B, Chen Z, Li Y. Radiolabeled Peptides for SPECT and PET Imaging in the Detection of Breast Cancer: Preclinical and Clinical Perspectives. Curr Med Chem 2021; 27:6987-7002. [PMID: 32003658 DOI: 10.2174/0929867327666200128110827] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/22/2019] [Accepted: 01/02/2020] [Indexed: 01/05/2023]
Abstract
Breast cancer is the most common cancer in women worldwide. Due to the heterogeneous nature of breast cancer, the optimal treatment and expected response for each patient may not necessarily be universal. Molecular imaging techniques could play an important role in the early detection and targeted therapy evaluation of breast cancer. This review focuses on the development of peptides labeled with SPECT and PET radionuclides for breast cancer imaging. We summarized the current status of radiolabeled peptides for different receptors in breast cancer. The characteristics of radionuclides and major techniques for peptide labeling are also briefly discussed.
Collapse
Affiliation(s)
- Hao Fu
- Medical College of Xiamen University, Xiamen University, Xiamen, China
| | - Bulin Du
- Department of Nuclear Medicine, The First Hospital of China Medical University, Shenyang 110001, China
| | - Zijun Chen
- Medical College of Xiamen University, Xiamen University, Xiamen, China
| | - Yesen Li
- Department of Nuclear Medicine & Minnan PET Center, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Teaching Hospital of Fujian Medical University, Xiamen, China
| |
Collapse
|
37
|
Mitran B, Tolmachev V, Orlova A. Radiolabeled GRPR Antagonists for Imaging of Disseminated Prostate Cancer - Influence of Labeling Chemistry on Targeting Properties. Curr Med Chem 2021; 27:7090-7111. [PMID: 32164503 DOI: 10.2174/0929867327666200312114902] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/31/2019] [Accepted: 01/10/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Radionuclide molecular imaging of Gastrin-Releasing Peptide Receptor (GRPR) expression promises unparalleled opportunities for visualizing subtle prostate tumors, which due to small size, adjacent benign tissue, or a challenging location would otherwise remain undetected by conventional imaging. Achieving high imaging contrast is essential for this purpose and the molecular design of any probe for molecular imaging of prostate cancer should be aimed at obtaining as high tumor-to-organ ratios as possible. OBJECTIVE This short review summarizes the key imaging modalities currently used in prostate cancer, with a special focus on radionuclide molecular imaging. Emphasis is laid mainly on the issue of radiometals labeling chemistry and its influence on the targeting properties and biodistribution of radiolabeled GRPR antagonists for imaging of disseminated prostate cancer. METHODS A comprehensive literature search of the PubMed/MEDLINE, and Scopus library databases was conducted to find relevant articles. RESULTS The combination of radionuclide, chelator and required labeling chemistry was shown to have a significant influence on the stability, binding affinity and internalization rate, off-target interaction with normal tissues and blood proteins, interaction with enzymes, activity uptake and retention in excretory organs and activity uptake in tumors of radiolabeled bombesin antagonistic analogues. CONCLUSION Labeling chemistry has a very strong impact on the biodistribution profile of GRPRtargeting peptide based imaging probes and needs to be considered when designing a targeting probe for high contrast molecular imaging. Taking into account the complexity of in vivo interactions, it is not currently possible to accurately predict the optimal labeling approach. Therefore, a detailed in vivo characterization and optimization is essential for the rational design of imaging agents.
Collapse
Affiliation(s)
- Bogdan Mitran
- Department of Medicianl Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Vladimir Tolmachev
- Department of Immunology, Genetics and Pathology, Faculty of Medicine, Uppsala University, Uppsala, Sweden
| | - Anna Orlova
- Department of Medicianl Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden
| |
Collapse
|
38
|
Mukai H, Watanabe Y. Review: PET imaging with macro- and middle-sized molecular probes. Nucl Med Biol 2021; 92:156-170. [PMID: 32660789 DOI: 10.1016/j.nucmedbio.2020.06.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/22/2020] [Accepted: 06/22/2020] [Indexed: 12/16/2022]
Abstract
Recent progress in radiolabeling of macro- and middle-sized molecular probes has been extending possibilities to use PET molecular imaging for dynamic application to drug development and therapeutic evaluation. Theranostics concept also accelerated the use of macro- and middle-sized molecular probes for sharpening the contrast of proper target recognition even the cellular types/subtypes and proper selection of the patients who should be treated by the same molecules recognition. Here, brief summary of the present status of immuno-PET, and then further development of advanced technologies related to immuno-PET, peptidic PET probes, and nucleic acids PET probes are described.
Collapse
Affiliation(s)
- Hidefumi Mukai
- Laboratory for Molecular Delivery and Imaging Technology, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.
| | - Yasuyoshi Watanabe
- Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.
| |
Collapse
|
39
|
Aloj L, Attili B, Lau D, Caraco C, Lechermann LM, Mendichovszky IA, Harper I, Cheow H, Casey RT, Sala E, Gilbert FJ, Gallagher FA. The emerging role of cell surface receptor and protein binding radiopharmaceuticals in cancer diagnostics and therapy. Nucl Med Biol 2021; 92:53-64. [PMID: 32563612 DOI: 10.1016/j.nucmedbio.2020.06.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 06/10/2020] [Indexed: 12/17/2022]
Abstract
Targeting specific cell membrane markers for both diagnostic imaging and radionuclide therapy is a rapidly evolving field in cancer research. Some of these applications have now found a role in routine clinical practice and have been shown to have a significant impact on patient management. Several molecular targets are being investigated in ongoing clinical trials and show promise for future implementation. Advancements in molecular biology have facilitated the identification of new cancer-specific targets for radiopharmaceutical development.
Collapse
Affiliation(s)
- Luigi Aloj
- Department of Radiology, University of Cambridge, Cambridge, United Kingdom; Department of Nuclear Medicine, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom; Cancer Research UK Cambridge Centre, Cambridge, United Kingdom.
| | - Bala Attili
- Department of Radiology, University of Cambridge, Cambridge, United Kingdom; Cancer Research UK Cambridge Centre, Cambridge, United Kingdom
| | - Doreen Lau
- Department of Radiology, University of Cambridge, Cambridge, United Kingdom; Cancer Research UK Cambridge Centre, Cambridge, United Kingdom
| | - Corradina Caraco
- Department of Radiology, University of Cambridge, Cambridge, United Kingdom
| | - Laura M Lechermann
- Department of Radiology, University of Cambridge, Cambridge, United Kingdom; Cancer Research UK Cambridge Centre, Cambridge, United Kingdom
| | - Iosif A Mendichovszky
- Department of Radiology, University of Cambridge, Cambridge, United Kingdom; Department of Nuclear Medicine, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom; Cancer Research UK Cambridge Centre, Cambridge, United Kingdom
| | - Ines Harper
- Department of Nuclear Medicine, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Heok Cheow
- Department of Nuclear Medicine, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Ruth T Casey
- Department of Endocrinology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom; Department of Medical Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Evis Sala
- Department of Radiology, University of Cambridge, Cambridge, United Kingdom; Cancer Research UK Cambridge Centre, Cambridge, United Kingdom
| | - Fiona J Gilbert
- Department of Radiology, University of Cambridge, Cambridge, United Kingdom; Cancer Research UK Cambridge Centre, Cambridge, United Kingdom
| | - Ferdia A Gallagher
- Department of Radiology, University of Cambridge, Cambridge, United Kingdom; Cancer Research UK Cambridge Centre, Cambridge, United Kingdom
| |
Collapse
|
40
|
Li X, Cai H, Wu X, Li L, Wu H, Tian R. New Frontiers in Molecular Imaging Using Peptide-Based Radiopharmaceuticals for Prostate Cancer. Front Chem 2020; 8:583309. [PMID: 33335885 PMCID: PMC7736158 DOI: 10.3389/fchem.2020.583309] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/27/2020] [Indexed: 02/05/2023] Open
Abstract
The high incidence of prostate cancer (PCa) increases the need for progress in its diagnosis, staging, and precise treatment. The overexpression of tumor-specific receptors for peptides in human cancer cells, such as gastrin-releasing peptide receptor, natriuretic peptide receptor, and somatostatin receptor, has indicated the ideal molecular basis for targeted imaging and therapy. Targeting these receptors using radiolabeled peptides and analogs have been an essential topic on the current forefront of PCa studies. Radiolabeled peptides have been used to target receptors for molecular imaging in human PCa with high affinity and specificity. The radiolabeled peptides enable optimal quick elimination from blood and normal tissues, producing high contrast for positron emission computed tomography and single-photon emission computed tomography imaging with high tumor-to-normal tissue uptake ratios. Owing to their successful application in visualization, peptide derivatives with therapeutic radionuclides for peptide receptor radionuclide therapy in PCa have been explored in recent years. These developments offer the promise of personalized, molecular medicine for individual patients. Hence, we review the preclinical and clinical literature in the past 20 years and focus on the newer developments of peptide-based radiopharmaceuticals for the imaging and therapy of PCa.
Collapse
Affiliation(s)
- Xin Li
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Huawei Cai
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoai Wu
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Li Li
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Haoxing Wu
- Department of Nuclear Medicine, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital and West China School of Medicine, Sichuan University, Chengdu, China
| | - Rong Tian
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
41
|
Preclinical Evaluation of the Copper-64 Labeled GRPR-Antagonist RM26 in Comparison with the Cobalt-55 Labeled Counterpart for PET-Imaging of Prostate Cancer. Molecules 2020; 25:molecules25245993. [PMID: 33352838 PMCID: PMC7766840 DOI: 10.3390/molecules25245993] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/15/2020] [Accepted: 12/15/2020] [Indexed: 01/21/2023] Open
Abstract
Gastrin-releasing peptide receptor (GRPR) is overexpressed in the majority of prostate cancers. This study aimed to investigate the potential of 64Cu (radionuclide for late time-point PET-imaging) for imaging of GRPR expression using NOTA-PEG2-RM26 and NODAGA-PEG2-RM26. Methods: NOTA/NODAGA-PEG2-RM26 were labeled with 64Cu and evaluated in GRPR-expressing PC-3 cells. Biodistribution of [64Cu]Cu-NOTA/NODAGA-PEG2-RM26 was studied in PC-3 xenografted mice and compared to the biodistribution of [57Co]Co-NOTA/NODAGA-PEG2-RM26 at 3 and 24 h p.i. Preclinical PET/CT imaging was performed in tumor-bearing mice. NOTA/NODAGA-PEG2-RM26 were stably labeled with 64Cu with quantitative yields. In vitro, binding of [64Cu]Cu-NOTA/NODAGA-PEG2-RM26 was rapid and GRPR-specific with slow internalization. In vivo, [64Cu]Cu-NOTA/NODAGA-PEG2-RM26 bound specifically to GRPR-expressing tumors with fast clearance from blood and normal organs and displayed generally comparable biodistribution profiles to [57Co]Co-NOTA/NODAGA-PEG2-RM26; tumor uptake exceeded normal tissue uptake 3 h p.i.. Tumor-to-organ ratios did not increase significantly with time. [64Cu]Cu-NOTA-PEG2-RM26 had a significantly higher liver and pancreas uptake compared to other agents. 57Co-labeled radioconjugates showed overall higher tumor-to-non-tumor ratios, compared to the 64Cu-labeled counterparts. [64Cu]Cu-NOTA/NODAGA-PEG2-RM26 was able to visualize GRPR-expression in a murine PC model using PET. However, [55/57Co]Co-NOTA/NODAGA-PEG2-RM26 provided better in vivo stability and overall higher tumor-to-non-tumor ratios compared with the 64Cu-labeled conjugates.
Collapse
|
42
|
Hofstetter M, Moon ES, D'Angelo F, Geissbühler L, Alberts I, Afshar-Oromieh A, Rösch F, Rominger A, Gourni E. Effect of the versatile bifunctional chelator AAZTA 5 on the radiometal labelling properties and the in vitro performance of a gastrin releasing peptide receptor antagonist. EJNMMI Radiopharm Chem 2020; 5:29. [PMID: 33258012 PMCID: PMC7704979 DOI: 10.1186/s41181-020-00115-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/23/2020] [Indexed: 12/24/2022] Open
Abstract
Background Gastrin Releasing Peptide receptor (GRPr)-based radioligands have shown great promise for diagnostic imaging of GRPr-positive cancers, such as prostate and breast. The present study aims at developing and evaluating a versatile GRPr-based probe for both PET/SPECT imaging as well as intraoperative and therapeutic applications. The influence of the versatile chelator AAZTA5 on the radiometal labelling properties and the in vitro performance of the generated radiotracers were thoroughly investigated. The GRPr-based antagonist D-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2 was functionalized with the chelator 6-[Bis (carboxymethyl)amino]-1,4-bis (carboyxmethyl)-6-methyl-1,4-diazepane (AAZTA5) through the spacer 4-amino-1-carboxymethyl-piperidine (Pip) to obtain AAZTA5-Pip-D-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2 (LF1). LF1 was radiolabelled with gallium-68 (PET), indium-111 (SPECT, intraoperative applications) and lutetium-177 (therapy, SPECT). In vitro evaluation included stability studies, determination of lipophilicity, protein-binding studies, determination of Kd and Bmax as well as internalization studies using the epithelial human prostate cancer cell line PC3. In vitro monotherapy as well as combination therapy studies were further performed to assess its applicability as a theranostic compound. Results LF1 was labelled with gallium-68, indium-111 and lutetium-177 within 5 min at room temperature (RT). The apparent molar activities (Am) were ranging between 50 and 60 GBq/μmol for the 68Ga-labelled LF1, 10–20 GBq/μmol for the 111In- and 177Lu-labelled LF1. The radiotracers were stable for a period of 4 h post labeling exhibiting a hydrophilic profile with an average of a LogDoctanol/PBS of − 3, while the bound activity to the human serum protein was approximately 10%. 68/natGa-LF1, 177/natLu-LF1 and 111/natIn-LF1 exhibited high affinity for the PC3 cells, with Kd values of 16.3 ± 2.4 nM, 10.3 ± 2.73 nM and 5.2 ± 1.9 nM, respectively, and the required concentration of the radiotracers to saturate the receptors (Bmax) was between 0.5 and 0.8 nM which corresponds to approximately 4 × 105 receptors per cell. Low specific internalization rate was found in cell culture, while the total specific cell surface bound uptake always exceeded the internalized activity. In vitro therapy studies showed that inhibition of PC3 cells growth is somewhat more efficient when combination of 177Lu-labelled LF1 with rapamycin is applied compared to 177Lu-laballed LF1 alone. Conclusion Encouraged by these promising in vitro data, preclinical evaluation of the LF1 precursor are planned in tumour models in vivo.
Collapse
Affiliation(s)
- Michael Hofstetter
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Euy Sung Moon
- Department of Chemistry - TRIGA site, Johannes Gutenberg - University Mainz, Mainz, Germany
| | - Fabio D'Angelo
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Lucien Geissbühler
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Ian Alberts
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Ali Afshar-Oromieh
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Frank Rösch
- Department of Chemistry - TRIGA site, Johannes Gutenberg - University Mainz, Mainz, Germany
| | - Axel Rominger
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Eleni Gourni
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, Freiburgstr. 18, 3010, Bern, Switzerland.
| |
Collapse
|
43
|
Ferguson S, Wuest M, Richter S, Bergman C, Dufour J, Krys D, Simone J, Jans HS, Riauka T, Wuest F. A comparative PET imaging study of 44gSc- and 68Ga-labeled bombesin antagonist BBN2 derivatives in breast and prostate cancer models. Nucl Med Biol 2020; 90-91:74-83. [PMID: 33189947 DOI: 10.1016/j.nucmedbio.2020.10.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/15/2020] [Accepted: 10/21/2020] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Radiolabeled peptides play a central role in nuclear medicine as radiotheranostics for targeted imaging and therapy of cancer. We have recently proposed the use of metabolically stabilized GRPR antagonist BBN2 for radiolabeling with 18F and 68Ga and subsequent PET imaging of GRPRs in prostate cancer. The present work studied the impact of 44gSc- and 68Ga-labeled DOTA complexes attached to GRPR antagonist BBN2 on the in vitro GRPR binding affinity, and their biodistribution and tumor uptake profiles in MCF7 breast and PC3 prostate cancer models. METHODS DOTA-Ava-BBN2 was radiolabeled with radiometals 68Ga and 44gSc. Gastrin-releasing peptide receptor (GRPR) affinities of peptides were assessed in PC3 prostate cancer cells. GRPR expression profiles were studied in human breast cancer tissue samples and MCF7 breast cancer cells. PET imaging of 68Ga- and 44gSc-labeled peptides was performed in MCF7 and PC3 xenografts as breast and prostate cancer models. RESULTS Radiopeptides [68Ga]Ga-DOTA-Ava-BBN2 and [44gSc]Sc-DOTA-Ava BBN2 were prepared in radiochemical yields of 70-80% (decay-corrected), respectively. High binding affinities were found for both peptides (IC50 = 15 nM (natGa) and 5 nM (natSc)). Gene expression microarray analysis revealed high GRPR mRNA expression levels in estrogen receptor (ER)-positive breast cancer, which was further confirmed with Western blot and immunohistochemistry. However, PET imaging showed only low tumor uptake of both radiotracers in MCF7 xenografts ([68Ga]Ga-DOTA-BBN2 (SUV60min 0.27 ± 0.06); [44gSc]Sc-DOTA-BBN2 (SUV60min 0.20 ± 0.03)). In contrast, high tumor uptake and retention were found for both radiopeptides in PC3 tumors ([68Ga]Ga-DOTA-BBN2 (SUV60min 0.46 ± 0.07); [44gSc]Sc-DOTA-BBN2 (SUV60min 0.51 ± 0.11)). CONCLUSIONS Comparison of 68Ga- and 44gSc-labeled DOTA-Ava-BBN2 peptides revealed slight but noticeable differences of the radiometal with an impact on the in vitro GRPR receptor binding properties in PC3 cells. No differences were found in their in vivo biodistribution profiles in MCF7 and PC3 xenografts. Radiopeptides [68Ga]Ga-DOTA-Ava-BBN2 and [44gSc]Sc-DOTA-Ava-BBN2 displayed comparable tumor uptake and retention profiles with rapid blood and renal clearance profiles in both tumor models. ADVANCES IN KNOWLEDGE AND IMPLICATIONS FOR PATIENT CARE The favorable PET imaging performance of [44gSc]Sc-DOTA-Ava-BBN2 in prostate cancer should warrant the development of an [43Sc]Sc-DOTA-Ava-BBN2 analog for clinical translation which comes with a main γ-line of much lower energy and intensity compared to 44gSc.
Collapse
Affiliation(s)
- Simon Ferguson
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Melinda Wuest
- Department of Oncology, University of Alberta, Edmonton, AB, Canada; Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB, Canada
| | - Susan Richter
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Cody Bergman
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Jennifer Dufour
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Daniel Krys
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Jennifer Simone
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Hans-Sonke Jans
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Terence Riauka
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Frank Wuest
- Department of Oncology, University of Alberta, Edmonton, AB, Canada; Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada; Department of Chemistry, University of Alberta, Edmonton, AB, Canada; Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
44
|
[ 99mTc]Tc-DB1 Mimics with Different-Length PEG Spacers: Preclinical Comparison in GRPR-Positive Models. Molecules 2020; 25:molecules25153418. [PMID: 32731473 PMCID: PMC7435657 DOI: 10.3390/molecules25153418] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 07/24/2020] [Accepted: 07/25/2020] [Indexed: 02/07/2023] Open
Abstract
Background: The frequent overexpression of gastrin-releasing peptide receptors (GRPRs) in human cancers provides the rationale for delivering clinically useful radionuclides to tumor sites using peptide carriers. Radiolabeled GRPR antagonists, besides being safer for human use, have often shown higher tumor uptake and faster background clearance than agonists. We herein compared the biological profiles of the GRPR-antagonist-based radiotracers [99mTc]Tc-[N4-PEGx-DPhe6,Leu-NHEt13]BBN(6-13) (N4: 6-(carboxy)-1,4,8,11-tetraazaundecane; PEG: polyethyleneglycol): (i) [99mTc]Tc-DB7 (x = 2), (ii) [99mTc]Tc-DB13 (x = 3), and (iii) [99mTc]Tc-DB14 (x = 4), in GRPR-positive cells and animal models. The impact of in situ neprilysin (NEP)-inhibition on in vivo stability and tumor uptake was also assessed by treatment of mice with phosphoramidon (PA). Methods: The GRPR affinity of DB7/DB13/DB14 was determined in PC-3 cell membranes, and cell binding of the respective [99mTc]Tc-radioligands was assessed in PC-3 cells. Each of [99mTc]Tc-DB7, [99mTc]Tc-DB13, and [99mTc]Tc-DB14 was injected into mice without or with PA coinjection and 5 min blood samples were analyzed by HPLC. Biodistribution was conducted at 4 h postinjection (pi) in severe combined immunodeficiency disease (SCID) mice bearing PC-3 xenografts without or with PA coinjection. Results: DB7, -13, and -14 displayed single-digit nanomolar affinities for GRPR. The uptake rates of [99mTc]Tc-DB7, [99mTc]Tc-DB13, and [99mTc]Tc-DB14 in PC-3 cells was comparable and consistent with a radioantagonist profile. The radiotracers were found to be ≈70% intact in mouse blood and >94% intact after coinjection of PA. Treatment of mice with PA enhanced tumor uptake. Conclusions: The present study showed that increase of PEG-spacer length in the [99mTc]Tc-DB7-[99mTc]Tc-DB13-[99mTc]Tc-DB14 series had little effect on GRPR affinity, specific uptake in PC-3 cells, in vivo stability, or tumor uptake. A significant change in in vivo stability and tumor uptake was observed only after treatment of mice with PA, without compromising the favorably low background radioactivity levels.
Collapse
|
45
|
Mena E, Black PC, Rais-Bahrami S, Gorin M, Allaf M, Choyke P. Novel PET imaging methods for prostate cancer. World J Urol 2020; 39:687-699. [PMID: 32671604 DOI: 10.1007/s00345-020-03344-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/02/2020] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION Prostate cancer is a common neoplasm but conventional imaging methods such as CT and bone scan are often insensitive. A new class of PET agents have emerged to diagnose and manage prostate cancer. METHODS The relevant literature on PET imaging agents for prostate cancer was reviewed. RESULTS This review shows a broad range of PET imaging agents, the most successful of which is prostate specific membrane antigen (PSMA) PET. Other agents either lack the sensitivity or specificity of PSMA PET. CONCLUSION Among the available PET agents for prostate cancer, PSMA PET has emerged as the leader. It is likely to have great impact on the diagnosis, staging and management of prostate cancer patients.
Collapse
Affiliation(s)
- Esther Mena
- Molecular Imaging Program, National Cancer Institute, 10 Center Dr, Bldg 10, Room B3B69F, Bethesda, MD, 20892-1088, USA
| | - Peter C Black
- University of British Columbia, Vancouver, BC, Canada
| | | | - Michael Gorin
- Department of Urology, Johns Hopkins University, Baltimore, MD, USA
| | - Mohamad Allaf
- Department of Urology, Johns Hopkins University, Baltimore, MD, USA
| | - Peter Choyke
- Molecular Imaging Program, National Cancer Institute, 10 Center Dr, Bldg 10, Room B3B69F, Bethesda, MD, 20892-1088, USA.
| |
Collapse
|
46
|
Kaloudi A, Kanellopoulos P, Radolf T, Chepurny OG, Rouchota M, Loudos G, Andreae F, Holz GG, Nock BA, Maina T. [ 99mTc]Tc-DGA1, a Promising CCK 2R-Antagonist-Based Tracer for Tumor Diagnosis with Single-Photon Emission Computed Tomography. Mol Pharm 2020; 17:3116-3128. [PMID: 32568549 DOI: 10.1021/acs.molpharmaceut.0c00605] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Radiolabeled gastrin analogues have been proposed for theranostics of cholecystokinin subtype 2 receptor (CCK2R)-positive cancer. Peptide radioligands based on other receptor antagonists have displayed superior pharmacokinetics and higher biosafety than agonists. Here, we present DGA1, a derivative of the nonpeptidic CCK2R antagonist Z-360 carrying an acyclic tetraamine, for [99mTc]Tc labeling. Preclinical comparison of [99mTc]Tc-DGA1 with [99mTc]Tc-DG2 (CCK2R-agonist reference) was conducted in HEK293-CCK2R/CCK2i4svR cells and mice models, qualifying [99mTc]Tc-DGA1 for further study in patients with CCK2R-positive tumors and single-photon emission computed tomography/CT.
Collapse
Affiliation(s)
- Aikaterini Kaloudi
- Molecular Radiopharmacy, INRASTES, NCSR "Demokritos", 15310 Athens, Greece
| | | | - Thorsten Radolf
- piCHEM Forschungs-und Entwicklungs GmbH, Parkring 3, 8074 Grambach, Austria
| | - Oleg G Chepurny
- SUNY Upstate Medical University, IHP 4310 at 505 Irving Avenue, Syracuse, New York 13210, United States
| | - Maritina Rouchota
- BIOEMTECH, Lefkippos Attica Technology Park NCSR "Demokritos", 15310 Athens, Greece
| | - George Loudos
- BIOEMTECH, Lefkippos Attica Technology Park NCSR "Demokritos", 15310 Athens, Greece
| | - Fritz Andreae
- piCHEM Forschungs-und Entwicklungs GmbH, Parkring 3, 8074 Grambach, Austria
| | - George G Holz
- SUNY Upstate Medical University, IHP 4310 at 505 Irving Avenue, Syracuse, New York 13210, United States
| | | | - Theodosia Maina
- Molecular Radiopharmacy, INRASTES, NCSR "Demokritos", 15310 Athens, Greece
| |
Collapse
|
47
|
Lau J, Rousseau E, Kwon D, Lin KS, Bénard F, Chen X. Insight into the Development of PET Radiopharmaceuticals for Oncology. Cancers (Basel) 2020; 12:E1312. [PMID: 32455729 PMCID: PMC7281377 DOI: 10.3390/cancers12051312] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/17/2020] [Accepted: 05/18/2020] [Indexed: 12/20/2022] Open
Abstract
While the development of positron emission tomography (PET) radiopharmaceuticals closely follows that of traditional drug development, there are several key considerations in the chemical and radiochemical synthesis, preclinical assessment, and clinical translation of PET radiotracers. As such, we outline the fundamentals of radiotracer design, with respect to the selection of an appropriate pharmacophore. These concepts will be reinforced by exemplary cases of PET radiotracer development, both with respect to their preclinical and clinical evaluation. We also provide a guideline for the proper selection of a radionuclide and the appropriate labeling strategy to access a tracer with optimal imaging qualities. Finally, we summarize the methodology of their evaluation in in vitro and animal models and the road to clinical translation. This review is intended to be a primer for newcomers to the field and give insight into the workflow of developing radiopharmaceuticals.
Collapse
Affiliation(s)
- Joseph Lau
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Etienne Rousseau
- Department of Nuclear Medicine and Radiobiology, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada;
| | - Daniel Kwon
- Department of Molecular Oncology, BC Cancer, Vancouver, BC V5Z 1L3, Canada; (D.K.); (K.-S.L.); (F.B.)
| | - Kuo-Shyan Lin
- Department of Molecular Oncology, BC Cancer, Vancouver, BC V5Z 1L3, Canada; (D.K.); (K.-S.L.); (F.B.)
| | - François Bénard
- Department of Molecular Oncology, BC Cancer, Vancouver, BC V5Z 1L3, Canada; (D.K.); (K.-S.L.); (F.B.)
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA;
| |
Collapse
|
48
|
Sharif S, Zaman QU, Hassan F, Javaid S, Arif K, Mansha MZ, Ehsan N, Nazir S, Gul R, Iqbal M, Nazir A. Coagulation of Metallic Pollutants from Wastewater Using a Variety of Coagulants Based on Metal Binding Interaction Studies. ACTA ACUST UNITED AC 2020. [DOI: 10.1515/zpch-2019-1532] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
In this study, different organic (moringa and neem leaf powder) and inorganic (alum) coagulants were used for the wastewater treatment. Results revealed that all the coagulants at various doses significantly affected the pH, electrical conductivity (EC) and turbidity of wastewater. The maximum decrease in all the attributes was observed when 10 g of coagulants were used. Similarly, maximum adsorption potential was observed in case of moringa leaf powder. Maximum decrease in all physiochemical attributes such as pH (13%), EC (65%), turbidity (75%), total dissolved solids (TDS; 51%), total suspended solids (TSS; 48%), total hardness (TH; 29%), chloride contents (66%) and phosphate contents (44%) was observed. Regarding the heavy metals, maximum decrease for Cadmium (Cd; 96%), Lead (Pb; 88%), Arsenic (As; 23%), Iron (Fe; 90%), Manganese (Mn; 96%) and Zinc (Zn; 48%) was observed in same treatment. The decreasing order in terms of their adsorption potential for coagulants was moringa leaf powder > Alum > neem leaf powder. However, the maximum effect of coagulants was observed in case of textile wastewater as compared to the hospital wastewater. Based on the analyses, it is concluded that the moringa leaf powder has maximum adsorption potential for the remediation of wastewater.
Collapse
Affiliation(s)
- Saba Sharif
- Department of Environmental Sciences , The University of Lahore , Lahore , Pakistan
| | - Qamar uz Zaman
- Department of Environmental Sciences , The University of Lahore , Lahore , Pakistan
| | - Faiza Hassan
- Department of Chemistry , The University of Lahore , Lahore , Pakistan
| | - Sana Javaid
- Department of Environmental Sciences , The University of Lahore , Lahore , Pakistan
| | - Khalid Arif
- Department of Mathematics and Statistics , The University of Lahore , Lahore , Pakistan
| | - Muhammad Zeeshan Mansha
- College of Agriculture, Bahauddin Zakariya University , Bahadur Sub Campus, Layyah , Pakistan
| | - Nusrat Ehsan
- Department of Environmental Sciences , The University of Lahore , Lahore , Pakistan
| | - Saba Nazir
- Department of Environmental Sciences , The University of Lahore , Lahore , Pakistan
| | - Rehman Gul
- Soil and Water Testing Laboratory for Research , Lahore , Pakistan
| | - Munawar Iqbal
- Department of Chemistry , The University of Lahore , Lahore , Pakistan
| | - Arif Nazir
- Department of Chemistry , The University of Lahore , Lahore , Pakistan
| |
Collapse
|
49
|
Baratto L, Duan H, Mäcke H, Iagaru A. Imaging the Distribution of Gastrin-Releasing Peptide Receptors in Cancer. J Nucl Med 2020; 61:792-798. [DOI: 10.2967/jnumed.119.234971] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/06/2020] [Indexed: 01/01/2023] Open
|
50
|
Rangger C, Haubner R. Radiolabelled Peptides for Positron Emission Tomography and Endoradiotherapy in Oncology. Pharmaceuticals (Basel) 2020; 13:E22. [PMID: 32019275 PMCID: PMC7169460 DOI: 10.3390/ph13020022] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 02/07/2023] Open
Abstract
This review deals with the development of peptide-based radiopharmaceuticals for the use with positron emission tomography and peptide receptor radiotherapy. It discusses the pros and cons of this class of radiopharmaceuticals as well as the different labelling strategies, and summarises approaches to optimise metabolic stability. Additionally, it presents different target structures and addresses corresponding tracers, which are already used in clinical routine or are being investigated in clinical trials.
Collapse
Affiliation(s)
| | - Roland Haubner
- Department of Nuclear Medicine, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria;
| |
Collapse
|