1
|
Harr TJ, Gupta N, Rahar B, Stott K, Medina-Guevara Y, Gari MK, Oler AT, McDermott IS, Lee HJ, Rasoulianboroujeni M, Weichmann AM, Forati A, Holbert K, Langel TS, Coulter KW, Burkel BM, Tomasini-Johansson BR, Ponik SM, Engle JW, Hernandez R, Kwon GS, Sandbo N, Bernau K. The fibronectin-targeting PEG-FUD imaging probe shows enhanced uptake during fibrogenesis in experimental lung fibrosis. Respir Res 2025; 26:34. [PMID: 39844185 PMCID: PMC11756063 DOI: 10.1186/s12931-025-03107-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 01/07/2025] [Indexed: 01/24/2025] Open
Abstract
Progressive forms of interstitial lung diseases, including idiopathic pulmonary fibrosis (IPF), are deadly disorders lacking non-invasive biomarkers for assessment of early disease activity, which presents a major obstacle in disease management. Excessive extracellular matrix (ECM) deposition is a hallmark of these disorders, with fibronectin being an abundant ECM glycoprotein that is highly upregulated in early fibrosis and serves as a scaffold for the deposition of other matrix proteins. Due to its role in active fibrosis, we are targeting fibronectin as a biomarker of early lung fibrosis disease activity via the PEGylated fibronectin-binding polypeptide (PEG-FUD). In this work, we demonstrate the binding of PEG-FUD to the fibrotic lung throughout the course of bleomycin-induced murine model of pulmonary fibrosis. We first analyzed the binding of radiolabeled PEG-FUD following direct incubation to precision cut lung slices from mice at different stages of experimental lung fibrosis. Then, we administered fluorescently labeled PEG-FUD subcutaneously to mice over the course of bleomycin-induced pulmonary fibrosis and assessed peptide uptake 24 h later through ex vivo tissue imaging. Using both methods, we found that peptide targeting to the fibrotic lung is increased during the fibrogenic phase of the single dose bleomycin lung fibrosis model (days 7 and 14 post-bleomycin). At these timepoints we found a correlative relationship between peptide uptake and fibrotic burden. These data suggest that PEG-FUD targets fibronectin associated with active fibrogenesis in this model, making it a promising candidate for a clinically translatable molecular imaging probe to non-invasively determine pulmonary fibrosis disease activity, enabling accelerated therapeutic decision-making.
Collapse
Affiliation(s)
- Thomas J Harr
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI, 53792, USA
| | - Nikesh Gupta
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI, 53705, USA
| | - Babita Rahar
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI, 53792, USA
| | - Kristen Stott
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI, 53792, USA
| | - Yadira Medina-Guevara
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, 53705, USA
| | - Metti K Gari
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, 53705, USA
| | - Angie T Oler
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI, 53792, USA
| | - Ivy Sohee McDermott
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI, 53792, USA
| | - Hye Jin Lee
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI, 53705, USA
- College of Pharmacy, Chungbuk National University, Cheongju, 28160, Republic of Korea
| | - Morteza Rasoulianboroujeni
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI, 53705, USA
| | - Ashley M Weichmann
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, USA
| | - Amir Forati
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin- Madison, 600 Highland Avenue, Madison, WI, 53792, USA
| | - Kelsey Holbert
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI, 53792, USA
| | - Trevor S Langel
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI, 53792, USA
| | - Kade W Coulter
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI, 53792, USA
| | - Brian M Burkel
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, 53705, USA
| | - Bianca R Tomasini-Johansson
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI, 53792, USA
| | - Suzanne M Ponik
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, 53705, USA
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, USA
| | - Jonathan W Engle
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, 53705, USA
| | - Reinier Hernandez
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, 53705, USA
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, USA
| | - Glen S Kwon
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI, 53705, USA
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, USA
| | - Nathan Sandbo
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI, 53792, USA
| | - Ksenija Bernau
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI, 53792, USA.
| |
Collapse
|
2
|
Lindland K, Malenge MM, Li RG, Wouters R, Bønsdorff TB, Juzeniene A, Dragovic SM. Antigen targeting and anti-tumor activity of a novel anti-CD146 212Pb internalizing alpha-radioimmunoconjugate against malignant peritoneal mesothelioma. Sci Rep 2024; 14:25941. [PMID: 39472474 PMCID: PMC11522520 DOI: 10.1038/s41598-024-76778-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 10/16/2024] [Indexed: 11/02/2024] Open
Abstract
Malignant mesothelioma, a highly aggressive cancer that primarily affects the serosal membranes, has limited therapeutic options, particularly for cavitary tumors, such as peritoneal and pleural malignant mesothelioma. Intracavitary administration of a radioimmunoconjugate to locally target mesothelioma cancer cells has been proposed as a treatment. CD146, upregulated in mesothelioma but not in healthy tissues, is a promising therapeutic target. This study characterized CD146 expression and binding/internalization kinetics of the CD146-targeting antibody OI-3 coupled with 212Pb (212Pb-TCMC-OI-3) in human mesothelioma cells. Flow cytometry showed that both chimeric (chOI-3) and murine (mOI-3) antibodies rapidly bound and internalized within 1-6 h in MSTO-211H cells. 212Pb-TCMC-chOI-3 exhibited 3.1- to 13.7-fold and 3.1- to 8.5-fold increased internalized 212Pb and 212Bi atoms per cell at 2 and 24 h, respectively, compared to isotype control, underscoring enhanced internalization efficiency. Intraperitoneal administration of 212Pb-TCMC-mOI-3 to mice with intraperitoneal MSTO-211H xenografts improved median survival by a ratio of 1.3 compared to non-binding 212Pb-TCMC-mIgG1. The ability of 212Pb-TCMC-mOI-3 to target and inhibit the growth of intraperitoneal mesothelioma xenografts supports targeted radionuclide therapy's efficacy for metastatic peritoneal mesothelioma. This study highlights the potential of localized CD146-targeted radioimmunotherapy for malignant mesothelioma, offering a new avenue for improving patient outcomes.
Collapse
Affiliation(s)
- Kim Lindland
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0316, Oslo, Norway.
- Department of Radiation Biology, Institute of Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, 0379, Oslo, Norway.
- Oncoinvent ASA, 0484, Oslo, Norway.
| | | | | | - Roxanne Wouters
- Oncoinvent ASA, 0484, Oslo, Norway
- Laboratory of Tumour Immunology and Immunotherapy, Department of Oncology, Leuven Cancer Institute, KU Leuven, 3000, Leuven, Belgium
| | | | - Asta Juzeniene
- Department of Radiation Biology, Institute of Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, 0379, Oslo, Norway
- Department of Physics, University of Oslo, Oslo, Norway
| | | |
Collapse
|
3
|
Guo X, Hu M, Zhang Q, Liu J, Shi J, Tang Y, Liu S, Guo J, Kong Y, Zhu H, Yang Z. Preclinical ImmunoPET Imaging Using a Zr-89-Labeled Anti-CD146 Monoclonal Antibody for Diagnosis of Melanoma. Mol Pharm 2024; 21:4490-4497. [PMID: 39077827 DOI: 10.1021/acs.molpharmaceut.4c00348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
The aim of this study was to evaluate the preclinical efficacy of [89Zr]Zr-DFO-Ab253 as a novel positron emission tomography (PET) tracer for CD146-positive malignant melanoma imaging. Considering the high expression of CD146 in malignant melanoma, this study investigated the effect of different CD146 expression levels on the tumor uptake of [89Zr]Zr-DFO-Ab253. CD146 selectivity was investigated by using the CD146-positive human melanoma cell A375 and the CD146-negative human alveolar epithelial cell A549. The cell uptake of [89Zr]Zr-DFO-Ab253 tracers was investigated, and receptor-binding affinities were measured by radioactive enzyme-linked immunosorbent assay. Biodistribution studies and micro-PET imaging of the radiotracers were performed on mice bearing A375 and A549 xenografts under baseline and blocking conditions. An immunohistochemical test was performed using A375 and A549 tissue sections for CD146 expression level analysis. [89Zr]Zr-DFO-Ab253 was obtained with a high radiochemical yield (87.86 ± 4.66%) and a satisfactory radiochemical purity (>98.0%). The specificity and affinity of [89Zr]Zr-DFO-Ab253 were confirmed in melanoma A375 cells and in vivo PET imaging of A375 tumor models. [89Zr]Zr-DFO-IgG and A549 lung tumors were prepared as control radiotracers and negative models to verify the specificity of [89Zr]Zr-DFO-Ab253 on CD146. [89Zr]Zr-DFO-Ab253 has a Kd of 4.01 ± 0.50 nM. PET imaging and biodistribution showed a higher uptake of [89Zr]Zr-DFO-Ab253 in A375 melanomas than that in A549 tumors (42.1 ± 4.04% vs 7.87 ± 1.30% ID/g at 120 h, P < 0.05). A low tumor uptake of [89Zr]Zr-DFO-IgG was observed with uptakes of 1.91 ± 0.41 and 2.80 ± 0.14 ID%/g when blocked at 120 h. The radiation-absorbed dose was calculated to be 0.13 mSv/MBq. This study demonstrates the synthesis and preclinical evaluation of [89Zr]Zr-DFO-Ab253 and indicates that the novel tracer has promising applications in malignant melanoma-specific PET imaging because of its high uptake and long-time retention in malignant melanoma. It also provides feasibility for the development of integrated molecular probes for diagnosis and treatment based on the CD146 target.
Collapse
Affiliation(s)
- Xiaoyi Guo
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Muye Hu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Qian Zhang
- Guizhou University Medicine College, Guiyang 550025, Guizhou, China
| | - Jiayue Liu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Jing Shi
- Multitude Therapeutics, 159 Tianzhou Road, Xuhui District, Shanghai 200030, China
| | - Yanfang Tang
- Multitude Therapeutics, 159 Tianzhou Road, Xuhui District, Shanghai 200030, China
| | - ShuHui Liu
- Multitude Therapeutics, 159 Tianzhou Road, Xuhui District, Shanghai 200030, China
| | - Jun Guo
- Department of Renal Cancer and Melanoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Yan Kong
- Department of Renal Cancer and Melanoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Hua Zhu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Zhi Yang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| |
Collapse
|
4
|
Yang Q, Huang W, Hsu JC, Song L, Sun X, Li C, Cai W, Kang L. CD146-targeted nuclear medicine imaging in cancer: state of the art. VIEW 2023; 4:20220085. [PMID: 38076327 PMCID: PMC10703309 DOI: 10.1002/viw.20220085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/02/2023] [Indexed: 01/02/2024] Open
Abstract
The transmembrane glycoprotein adhesion molecule CD146 is overexpressed in a wide variety of cancers. Through molecular imaging, a specific biomarker's expression and distribution can be viewed in vivo non-invasively. Radionuclide-labeled monoclonal antibodies or relevant fragments that target CD146 may find potential applications in cancer imaging, thereby offering tremendous value in cancer diagnosis, staging, prognosis evaluation, and prediction of drug resistance. This review discusses the recent developments of CD146-targeted molecular imaging via nuclear medicine, especially in malignant melanoma, brain tumor, lung cancer, liver cancer, breast cancer, and pancreatic cancer. Many studies have proved that CD146 targeting may present a promising strategy for cancer theranostics.
Collapse
Affiliation(s)
- Qi Yang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Wenpeng Huang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Jessica C. Hsu
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States of America
| | - Lele Song
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Xinyao Sun
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Cuicui Li
- Department of Nuclear Medicine, Beijing Friendship Hospital of Capital Medical University, Beijing 100050, China
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States of America
| | - Lei Kang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| |
Collapse
|
5
|
Wathoni N, Puluhulawa LE, Joni IM, Muchtaridi M, Mohammed AFA, Elamin KM, Milanda T, Gozali D. Monoclonal antibody as a targeting mediator for nanoparticle targeted delivery system for lung cancer. Drug Deliv 2022; 29:2959-2970. [PMID: 36085575 PMCID: PMC9467540 DOI: 10.1080/10717544.2022.2120566] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Lung cancer is the second most common type of cancer after breast cancer. It ranks first in terms of mortality rate among all types of cancer. Lung cancer therapies are still being developed, one of which makes use of nanoparticle technology. However, conjugation with specific ligands capable of delivering drugs more precisely to cancer sites is still required to enhance nanoparticle targeting performance. Monoclonal antibodies are one type of mediator that can actively target nanoparticles. Due to the large number of antigens on the surface of cancer cells, monoclonal antibodies are widely used to deliver nanoparticles and improve drug targeting to cancer cells. Unfortunately, these antibodies have some drawbacks, such as rapid elimination, which results in a short half-life and ineffective dose. As a result, many of them are formulated in nanoparticles to minimize their major drawbacks and enhance drug targeting. This review summarizes and discusses articles on developing and applying various types of monoclonal antibody ligand nanoparticles as lung cancer target drugs. This review will serve as a guide for the choice of nanoparticle systems containing monoclonal antibody ligands for drug delivery in lung cancer therapy.
Collapse
Affiliation(s)
- Nasrul Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia
- Functional Nano Powder University Center of Excellence (FiNder U CoE), Universitas Padjadjaran, Sumedang, Indonesia
| | - Lisa Efriani Puluhulawa
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia
| | - I Made Joni
- Functional Nano Powder University Center of Excellence (FiNder U CoE), Universitas Padjadjaran, Sumedang, Indonesia
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, Indonesia
| | - Muchtaridi Muchtaridi
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, Indonesia
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia
| | - Ahmed Fouad Abdelwahab Mohammed
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia, Egypt
- Graduate school of Pharmaceutical sciences, Kumamoto University, Kumamoto, Japan
| | - Khaled M. Elamin
- Global Center for Natural Resources Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Tiana Milanda
- Departement of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia
| | - Dolih Gozali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia
| |
Collapse
|
6
|
Mulero F. ImmunoPET in oncology. Rev Esp Med Nucl Imagen Mol 2022; 41:332-339. [PMID: 35961857 DOI: 10.1016/j.remnie.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/01/2022] [Indexed: 01/14/2023]
Abstract
Due to increase of immunotherapy in oncology, it is essential to have a biological characterization of tumors. Knowing which antigens are expressed both on the surface of the tumor cell and at tumor microenvironment in order to predict the tretment response different therapeutic antibodies, has become a need. ImmunoPET is a non-invasive diagnostic imaging tool that combines the high specificity of antibodies against antigens with the high sensitivity, resolution and quantification capacity of PET imaging. With ImmunoPET we obtain a virtual biopsy of tumors, it has a big present and future in preclinical-clinical research, being already a reality in predicting and monitoring the response to treatments with monoclonal antibodies, allowing a selection of patients and therapies reaching a personalized medicine contributing to improve clinical decisions.
Collapse
Affiliation(s)
- Francisca Mulero
- Unidad de Imagen Molecular, Centro Nacional de Investigaciones Oncológicas, Melchor Fernández Almagro, 3, Madrid, Spain.
| |
Collapse
|
7
|
InmunoPET en oncología. Rev Esp Med Nucl Imagen Mol 2022. [DOI: 10.1016/j.remn.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
8
|
Wang Q, Zhang X, Wei W, Cao M. PET Imaging of Lung Cancers in Precision Medicine: Current Landscape and Future Perspective. Mol Pharm 2022; 19:3471-3483. [PMID: 35771950 DOI: 10.1021/acs.molpharmaceut.2c00353] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Despite the recent advances in cancer treatment, lung cancer remains the leading cause of cancer mortality worldwide. Immunotherapies using immune checkpoint inhibitors (ICIs) achieved substantial efficacy in nonsmall cell lung cancer (NSCLC). Currently, most ICIs are still a monoclonal antibody (mAb). Using mAbs or antibody derivatives labeled with radionuclide as the tracers, immunopositron emission tomography (immunoPET) possesses multiple advantages over traditional 18F-FDG PET in imaging lung cancers. ImmunoPET presents excellent potential in detecting, diagnosing, staging, risk stratification, treatment guidance, and recurrence monitoring of lung cancers. By using radiolabeled mAbs, immunoPET can visualize the biodistribution and uptake of ICIs, providing a noninvasive modality for patient stratification and response evaluation. Some novel targets and associated tracers for immunoPET have been discovered and investigated. This Review introduces the value of immunoPET in imaging lung cancers by summarizing both preclinical and clinical evidence. We also emphasize the value of immunoPET in optimizing immunotherapy in NSCLC. Lastly, immunoPET probes developed for imaging small cell lung cancer (SCLC) will also be discussed. Although the major focus is to summarize the immunoPET tracers for lung cancers, we also highlighted several small-molecule PET tracers to give readers a balanced view of the development status.
Collapse
Affiliation(s)
- Qing Wang
- Department of Thoracic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200217, China
| | - Xindi Zhang
- Department of Thoracic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200217, China
| | - Weijun Wei
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200217, China
| | - Min Cao
- Department of Thoracic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200217, China
| |
Collapse
|
9
|
Manafi-Farid R, Ataeinia B, Ranjbar S, Jamshidi Araghi Z, Moradi MM, Pirich C, Beheshti M. ImmunoPET: Antibody-Based PET Imaging in Solid Tumors. Front Med (Lausanne) 2022; 9:916693. [PMID: 35836956 PMCID: PMC9273828 DOI: 10.3389/fmed.2022.916693] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/24/2022] [Indexed: 12/13/2022] Open
Abstract
Immuno-positron emission tomography (immunoPET) is a molecular imaging modality combining the high sensitivity of PET with the specific targeting ability of monoclonal antibodies. Various radioimmunotracers have been successfully developed to target a broad spectrum of molecules expressed by malignant cells or tumor microenvironments. Only a few are translated into clinical studies and barely into clinical practices. Some drawbacks include slow radioimmunotracer kinetics, high physiologic uptake in lymphoid organs, and heterogeneous activity in tumoral lesions. Measures are taken to overcome the disadvantages, and new tracers are being developed. In this review, we aim to mention the fundamental components of immunoPET imaging, explore the groundbreaking success achieved using this new technique, and review different radioimmunotracers employed in various solid tumors to elaborate on this relatively new imaging modality.
Collapse
Affiliation(s)
- Reyhaneh Manafi-Farid
- Research Center for Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahar Ataeinia
- Department of Radiology, Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Shaghayegh Ranjbar
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Zahra Jamshidi Araghi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mobin Moradi
- Research Center for Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Christian Pirich
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Mohsen Beheshti
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
10
|
Evangelista L, Sepulcri M, Pasello G. PET/CT and the Response to Immunotherapy in Lung Cancer. Curr Radiopharm 2021; 13:177-184. [PMID: 31858908 PMCID: PMC8206188 DOI: 10.2174/1874471013666191220105449] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/11/2019] [Accepted: 11/11/2019] [Indexed: 12/26/2022]
Abstract
Objective In recent years, the introduction of immune checkpoint inhibitors has significantly changed the outcome of patients affected by lung cancer and cutaneous melanoma. Although the clinical advantages, the selection of patients and the evaluation of response to immunotherapy remain unclear, the immune-related Response Evaluation Criteria in Solid Tumor (irRECIST) was proposed as an update of the RECIST criteria for the assessment of response to immunotherapy. However, morphological images cannot predict early response to therapy that represents a challenge in clinical practice. 18F-FDG PET/CT before and after immunotherapy has an indeterminate role, demonstrating ambiguous results due to inflammatory effects secondary to activation of the immune system. The aim of the present review was to analyze the role of PET/CT as a guide for immunotherapy, by analyzing the current status and future perspectives. Methods A literature search was conducted in order to select all papers that discussed the role of PET/CT with FDG or other tracers in the evaluation or prediction of response to immunotherapy in lung cancer patients. Results Many papers are now available. Many clinical trials have demonstrated the efficacy of immunotherapy in lung cancer patients. FDG PET/CT can be used for the prediction of response to immunotherapy, while its utility for the evaluation of response is not still clearly reported. Moreover, the standardization of FDG PET/CT interpretation is missing and different criteria, such as information, have been investigated until now. Conclusion The utility of FDG PET/CT for patients with lung cancer undergoing immunotherapies is still preliminary and not well addressed. New agents for PET are promising, but large clinical trials are mandatory.
Collapse
Affiliation(s)
- Laura Evangelista
- Nuclear Medicine Unit, Department of Medicine - DIMED, University of Padua, 35128 Padua, Italy
| | - Matteo Sepulcri
- Radiation Oncology Unit, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Giulia Pasello
- Oncology 2 Unit, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| |
Collapse
|
11
|
Chomet M, van Dongen GAMS, Vugts DJ. State of the Art in Radiolabeling of Antibodies with Common and Uncommon Radiometals for Preclinical and Clinical Immuno-PET. Bioconjug Chem 2021; 32:1315-1330. [PMID: 33974403 PMCID: PMC8299458 DOI: 10.1021/acs.bioconjchem.1c00136] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
Inert
and stable radiolabeling of monoclonal antibodies (mAb),
antibody fragments, or antibody mimetics with radiometals is a prerequisite
for immuno-PET. While radiolabeling is preferably fast, mild, efficient,
and reproducible, especially when applied for human use in a current
Good Manufacturing Practice compliant way, it is crucial that the
obtained radioimmunoconjugate is stable and shows preserved immunoreactivity
and in vivo behavior. Radiometals and chelators have
extensively been evaluated to come to the most ideal radiometal–chelator
pair for each type of antibody derivative. Although PET imaging of
antibodies is a relatively recent tool, applications with 89Zr, 64Cu, and 68Ga have greatly increased in
recent years, especially in the clinical setting, while other less
common radionuclides such as 52Mn, 86Y, 66Ga, and 44Sc, but also 18F as in [18F]AlF are emerging promising candidates for the radiolabeling
of antibodies. This review presents a state of the art overview of
the practical aspects of radiolabeling of antibodies, ranging from
fast kinetic affibodies and nanobodies to slow kinetic intact mAbs.
Herein, we focus on the most common approach which consists of first
modification of the antibody with a chelator, and after eventual storage
of the premodified molecule, radiolabeling as a second step. Other
approaches are possible but have been excluded from this review. The
review includes recent and representative examples from the literature
highlighting which radiometal–chelator–antibody combinations
are the most successful for in vivo application.
Collapse
Affiliation(s)
- Marion Chomet
- Amsterdam UMC, Vrije Universiteit Amsterdam, Radiology & Nuclear Medicine, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam 1081 HV, The Netherlands
| | - Guus A M S van Dongen
- Amsterdam UMC, Vrije Universiteit Amsterdam, Radiology & Nuclear Medicine, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam 1081 HV, The Netherlands
| | - Danielle J Vugts
- Amsterdam UMC, Vrije Universiteit Amsterdam, Radiology & Nuclear Medicine, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam 1081 HV, The Netherlands
| |
Collapse
|
12
|
Li C, Kang L, Fan K, Ferreira CA, Becker KV, Huo N, Liu H, Yang Y, Engle JW, Wang R, Xu X, Jiang D, Cai W. ImmunoPET of CD146 in Orthotopic and Metastatic Breast Cancer Models. Bioconjug Chem 2021; 32:1306-1314. [PMID: 33475350 DOI: 10.1021/acs.bioconjchem.0c00649] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The overexpression of CD146 in breast cancer is considered a hallmark of tumor progression and metastasis, particularly in triple negative breast cancer. Aimed at imaging differential CD146 expressions in breast cancer, a noninvasive method for predictive prognosis and diagnosis was investigated using a 64Cu-labeled CD146-specific monoclonal antibody, YY146. CD146 expression was screened in human breast cancer cell lines using Western blotting. Binding ability was evaluated using flow cytometry and immunofluorescent staining. YY146 was conjugated with 1,4,7-triazacyclononane-triacetic acid (NOTA) and radiolabeled with 64Cu following standard procedures. Serial PET or PET/CT imaging was performed in orthotopic and metastatic breast cancer tumor models. Biodistribution was performed after the final time point of imaging. Finally, tissue immunofluorescent staining and hematoxylin and eosin (H&E) staining were performed on tumor tissues. The MDA-MB-435 cell line showed the highest CD146 expression level, whereas MCF-7 had the lowest level at the cellular level. ImmunoPET showed that MDA-MB-435 orthotopic tumors had high and clear radioactive accumulation after the administration of 64Cu-NOTA-YY146. The tumor uptake of 64Cu-NOTA-YY146 in MDA-MB-435 was significantly higher than that in MCF-7 and nonspecific IgG control groups (P < 0.01). Biodistribution verified the PET imaging results. For metastatic models, 64Cu-NOTA-YY146 allowed for the visualization of high radioactivity accumulation in metastatic MDA-MB-435 tumors, which was confirmed by ex vivo biodistribution of lung tissues. H&E staining proved the successful building of metastatic tumor models. Immunofluorescent staining verified the differential expression of CD146 in orthotopic tumors. Therefore, 64Cu-NOTA-YY146 could be used as an immunoPET probe to visualize CD146 in the breast cancer model and is potentially useful for cancer diagnosis, prognosis prediction, and monitoring therapeutic response.
Collapse
Affiliation(s)
- Cuicui Li
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China 100034
| | - Lei Kang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China 100034.,Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Kevin Fan
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Carolina A Ferreira
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Kaelyn V Becker
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Nan Huo
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing, China 100850
| | - Hanxiao Liu
- Department of Oncology, Harbin Medical University Affiliated Cancer Hospital, Harbin, China 150081
| | - Yunan Yang
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Jonathan W Engle
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Rongfu Wang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China 100034
| | - Xiaojie Xu
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing, China 100850
| | - Dawei Jiang
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China 430022
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| |
Collapse
|
13
|
Abstract
Immuno-positron emission tomography (immunoPET) is a paradigm-shifting molecular imaging modality combining the superior targeting specificity of monoclonal antibody (mAb) and the inherent sensitivity of PET technique. A variety of radionuclides and mAbs have been exploited to develop immunoPET probes, which has been driven by the development and optimization of radiochemistry and conjugation strategies. In addition, tumor-targeting vectors with a short circulation time (e.g., Nanobody) or with an enhanced binding affinity (e.g., bispecific antibody) are being used to design novel immunoPET probes. Accordingly, several immunoPET probes, such as 89Zr-Df-pertuzumab and 89Zr-atezolizumab, have been successfully translated for clinical use. By noninvasively and dynamically revealing the expression of heterogeneous tumor antigens, immunoPET imaging is gradually changing the theranostic landscape of several types of malignancies. ImmunoPET is the method of choice for imaging specific tumor markers, immune cells, immune checkpoints, and inflammatory processes. Furthermore, the integration of immunoPET imaging in antibody drug development is of substantial significance because it provides pivotal information regarding antibody targeting abilities and distribution profiles. Herein, we present the latest immunoPET imaging strategies and their preclinical and clinical applications. We also emphasize current conjugation strategies that can be leveraged to develop next-generation immunoPET probes. Lastly, we discuss practical considerations to tune the development and translation of immunoPET imaging strategies.
Collapse
Affiliation(s)
- Weijun Wei
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Room 7137, Madison, Wisconsin 53705, United States
| | - Zachary T Rosenkrans
- Department of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Jianjun Liu
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Gang Huang
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Quan-Yong Luo
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Room 7137, Madison, Wisconsin 53705, United States
- Department of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- University of Wisconsin Carbone Cancer Center, Madison, Wisconsin 53705, United States
| |
Collapse
|
14
|
Wei W, Jiang D, Ehlerding EB, Barnhart TE, Yang Y, Engle JW, Luo Q, Huang P, Cai W. CD146-Targeted Multimodal Image-Guided Photoimmunotherapy of Melanoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1801237. [PMID: 31065511 PMCID: PMC6498137 DOI: 10.1002/advs.201801237] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 02/01/2019] [Indexed: 05/23/2023]
Abstract
For melanoma resistant to molecularly targeted therapy and immunotherapy, new treatment strategies are urgently needed. A molecularly targeted theranostic pair may thus be of importance, where the diagnostic probe facilitates patient stratification and the therapeutic companion treats the selected cases. For this purpose, flow cytometry is used to assess the CD146 level in melanoma cells. Based on YY146, a CD146-specific monoclonal antibody, an imaging probe 89Zr-Df-YY146 is synthesized and its diagnostic performance is evaluated by positron emission tomography (PET) imaging. Furthermore, a photoimmunotherapy (PIT) agent IR700-YY146 is developed and the therapeutic effect of IR700-YY146 PIT is assessed comprehensively. CD146 is highly expressed in A375 and SK-MEL-5 cells. 89Zr-Df-YY146 PET readily detects CD146-positive A375 melanomas. Tumor accumulation of 89Zr-Df-YY146 peaks at 72 h with an uptake value of 26.48 ± 3.28%ID g-1, whereas the highest uptake of the nonspecific 89Zr-Df-IgG is 4.80 ± 1.75%ID g-1. More importantly, IR700-YY146 PIT effectively inhibits the growth of A375 tumors, owing to production of reactive oxygen species, decreased glucose metabolism, and reduced expression of CD146. To conclude, 89Zr-Df-YY146 and IR700-YY146 are a promising theranostic pair with the former revealing CD146 expression in melanoma as a PET probe and the latter specifically treating CD146-positive melanoma as an effective PIT agent.
Collapse
Affiliation(s)
- Weijun Wei
- Department of Nuclear MedicineShanghai Jiao Tong University Affiliated Sixth People's Hospital600 Yishan RoadShanghai200233China
- Department of RadiologyUniversity of Wisconsin–MadisonMadisonWI53705USA
| | - Dawei Jiang
- Department of RadiologyUniversity of Wisconsin–MadisonMadisonWI53705USA
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound ImagingCarson International Cancer CenterLaboratory of Evolutionary TheranosticsSchool of Biomedical EngineeringHealth Science CenterShenzhen UniversityShenzhen518060China
| | - Emily B. Ehlerding
- Department of Medical PhysicsUniversity of Wisconsin–MadisonMadisonWI53705USA
| | - Todd E. Barnhart
- Department of Medical PhysicsUniversity of Wisconsin–MadisonMadisonWI53705USA
| | - Yunan Yang
- Department of RadiologyUniversity of Wisconsin–MadisonMadisonWI53705USA
| | - Jonathan W. Engle
- Department of Medical PhysicsUniversity of Wisconsin–MadisonMadisonWI53705USA
| | - Quan‐Yong Luo
- Department of Nuclear MedicineShanghai Jiao Tong University Affiliated Sixth People's Hospital600 Yishan RoadShanghai200233China
| | - Peng Huang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound ImagingCarson International Cancer CenterLaboratory of Evolutionary TheranosticsSchool of Biomedical EngineeringHealth Science CenterShenzhen UniversityShenzhen518060China
| | - Weibo Cai
- Department of RadiologyUniversity of Wisconsin–MadisonMadisonWI53705USA
- Department of Medical PhysicsUniversity of Wisconsin–MadisonMadisonWI53705USA
- University of Wisconsin Carbone Cancer CenterMadisonWI53705USA
| |
Collapse
|
15
|
Le Bihan T, Navarro AS, Le Bris N, Le Saëc P, Gouard S, Haddad F, Gestin JF, Chérel M, Faivre-Chauvet A, Tripier R. Synthesis of C-functionalized TE1PA and comparison with its analogues. An example of bioconjugation on 9E7.4 mAb for multiple myeloma 64Cu-PET imaging. Org Biomol Chem 2019; 16:4261-4271. [PMID: 29701218 DOI: 10.1039/c8ob00499d] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In view of the excellent copper(ii) and 64-copper(ii) complexation of a TE1PA ligand, a monopicolinate cyclam, in both aqueous medium and in vivo, we looked for a way to make it bifunctional, while maintaining its chelating properties. Overcoming the already known drawback of grafting via its carboxyl group, which is essential to the overall properties of the ligand, a TE1PA bifunctional derivative bearing an additional isothiocyanate coupling function on a carbon atom of the macrocyclic ring was synthesized. This led to an architecture that is comparable to that of other commercially available bifunctional copper(ii) chelators such as p-SCN-Bn-DOTA already used in clinical trials for 64Cu-immuno-PET imaging. The C-functionalization of TE1PA on one carbon atom in the β-N position of the cyclam backbone was successfully achieved by adapting our patented methodology to the huge challenge, allowing the regiospecific mono-N-functionalization of the unsymmetrical ligand. The obtained ligand p-SCN-Bn-TE1PA was coupled to a 9E7.4 murine antibody (mAb), an IgG2a anti CD-138 for multiple myeloma (MM) targeting. The conjugation efficiency was assessed by looking at the 64Cu radiolabeling and the radiopharmaceutical 64Cu-9E7.4-p-SCN-Bn-TE1PA immunoreactivity, and in particular by comparing with 9E7.4-p-SCN-Bn-NOTA and 9E7.4-p-SCN-Bn-DOTA obtained from commercial and presumably highly efficient chelators NOTA and DOTA, respectively. The results are quite clear, showing that p-SCN-Bn-TE1PA has a coupling rate 5 times higher and an immunoreactivity 1.5 to 2 times greater than those of its two competitors. p-SCN-Bn-TE1PA also outperforms TE1PA conjugated via its carboxylic function on the same antibody. The first 64Cu-immuno-PET preclinical study in a syngeneic model of MM was performed, confirming the good in vivo properties of 64Cu-9E7.4-p-SCN-Bn-TE1PA for PET imaging, considering the high clearance even after 24 h and the particularly important tumor-to-liver ratio that was increasing at 48 h.
Collapse
Affiliation(s)
- Thomas Le Bihan
- Université de Brest, UMR-CNRS 6521/IBSAM, UFR Sciences et Techniques, 6 Avenue Victor le Gorgeu, C.S. 93837, 29238 Brest, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Lee HJ, Ehlerding EB, Cai W. Antibody-Based Tracers for PET/SPECT Imaging of Chronic Inflammatory Diseases. Chembiochem 2019; 20:422-436. [PMID: 30240550 PMCID: PMC6377337 DOI: 10.1002/cbic.201800429] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Indexed: 12/18/2022]
Abstract
Chronic inflammatory diseases are often progressive, resulting not only in physical damage to patients but also social and economic burdens, making early diagnosis of them critical. Nuclear medicine techniques can enhance the detection of inflammation by providing functional as well as anatomical information when combined with other modalities such as magnetic resonance imaging, computed tomography or ultrasonography. Although small molecules and peptides were mainly used for the treatment and imaging of chronic inflammatory diseases in the past, antibodies and their fragments have also been emerging for chronic inflammatory diseases as they show high specificity to their targets and can have various biological half-lives depending on how they are engineered. In addition, imaging with antibodies or their fragments can visualize the in vivo biodistribution of the probes or help monitor therapeutic responses, thereby providing physicians with a greater understanding of drug behavior in vivo and another means of monitoring their patients. In this review, we introduce various targets and radiolabeled antibody-based probes for the molecular imaging of chronic inflammatory diseases in preclinical and clinical studies. Targets can be classified into three different categories: 1) cell-adhesion molecules, 2) surface markers on immune cells, and 3) cytokines or enzymes. The limitations and future directions of using radiolabeled antibodies for imaging inflammatory diseases are also discussed.
Collapse
Affiliation(s)
- Hye Jin Lee
- Pharmaceutical Sciences Department, University of Wisconsin – Madison, Madison WI 53705, USA
| | - Emily B. Ehlerding
- Medical Physics Department, University of Wisconsin – Madison, Madison WI 53705, USA
| | - Weibo Cai
- Pharmaceutical Sciences Department, University of Wisconsin – Madison, Madison WI 53705, USA
- Medical Physics Department, University of Wisconsin – Madison, Madison WI 53705, USA
- Department of Radiology and Carbone Cancer Center, University of Wisconsin – Madison, Madison WI 53705, USA
| |
Collapse
|
17
|
Khalid U, Vi C, Henri J, Macdonald J, Eu P, Mandarano G, Shigdar S. Radiolabelled Aptamers for Theranostic Treatment of Cancer. Pharmaceuticals (Basel) 2018; 12:ph12010002. [PMID: 30586898 PMCID: PMC6469178 DOI: 10.3390/ph12010002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 11/30/2018] [Accepted: 12/17/2018] [Indexed: 12/18/2022] Open
Abstract
Cancer has a high incidence and mortality rate worldwide, which continues to grow as millions of people are diagnosed annually. Metastatic disease caused by cancer is largely responsible for the mortality rates, thus early detection of metastatic tumours can improve prognosis. However, a large number of patients will also present with micrometastasis tumours which are often missed, as conventional medical imaging modalities are unable to detect micrometastases due to the lack of specificity and sensitivity. Recent advances in radiochemistry and the development of nucleic acid based targeting molecules, have led to the development of novel agents for use in cancer diagnostics. Monoclonal antibodies may also be used, however, they have inherent issues, such as toxicity, cost, unspecified binding and their clinical use can be controversial. Aptamers are a class of single-stranded RNA or DNA ligands with high specificity, binding affinity and selectivity for a target, which makes them promising for molecular biomarker imaging. Aptamers are presented as being a superior choice over antibodies because of high binding affinity and pH stability, amongst other factors. A number of aptamers directed to cancer cell markers (breast, lung, colon, glioblastoma, melanoma) have been radiolabelled and characterised to date. Further work is ongoing to develop these for clinical applications.
Collapse
Affiliation(s)
- Umair Khalid
- School of Medicine Deakin University, Geelong, Victoria 3128, Australia.
| | - Chris Vi
- School of Medicine Deakin University, Geelong, Victoria 3128, Australia.
| | - Justin Henri
- School of Medicine Deakin University, Geelong, Victoria 3128, Australia.
| | - Joanna Macdonald
- School of Medicine Deakin University, Geelong, Victoria 3128, Australia.
| | - Peter Eu
- School of Medicine Deakin University, Geelong, Victoria 3128, Australia.
- Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia.
| | - Giovanni Mandarano
- School of Medicine Deakin University, Geelong, Victoria 3128, Australia.
| | - Sarah Shigdar
- School of Medicine Deakin University, Geelong, Victoria 3128, Australia.
- Centre for Molecular and Medical Research, Deakin University, Geelong, Victoria 3128, Australia.
| |
Collapse
|
18
|
Ferreira CA, Hernandez R, Yang Y, Valdovinos HF, Engle JW, Cai W. ImmunoPET of CD146 in a Murine Hindlimb Ischemia Model. Mol Pharm 2018; 15:3434-3441. [PMID: 29889530 DOI: 10.1021/acs.molpharmaceut.8b00424] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Peripheral arterial disease (PAD) consists of a persistent obstruction of lower-extremity arteries further from the aortic bifurcation attributable to atherosclerosis. PAD is correlated with an elevated risk of morbidity and mortality as well as of deterioration of the quality of life with claudication and chronic leg ischemia being the most frequent complications. Therapeutic angiogenesis is a promising therapeutic strategy that aims to restore the blood flow to the ischemic limb. In this context, assessing the efficacy of pro-angiogenic treatment using a reliable noninvasive imaging technique would greatly benefit the implementation of this therapeutic approach. Herein, we describe the angiogenesis and perfusion recovery characteristics of a mouse model of PAD via in vivo positron emission tomography (PET) imaging of CD146 expression. For that, ischemia was generated by ligation and excision of the right femoral artery of Balb/C mice and confirmed through laser Doppler imaging. The angiogenic process, induced by ischemia, was noninvasively monitored and quantified through PET imaging of CD146 expression in the injured leg using a 64Cu-labeled anti-CD146 monoclonal antibody, 64Cu-NOTA-YY146, at post-operative days 3, 10, and 17. The CD146-specific character of 64Cu-NOTA-YY146 was verified via a blocking study performed in another cohort at day 10 after surgery. Tracer uptake was correlated with in situ CD146 expression by histological analysis. PET scan results indicated that 64Cu-NOTA-YY146 uptake in the injured leg was significantly higher, with the highest uptake with a value of 14.1 ± 2.0 %ID/g at post-operative day 3, compared to the normal contralateral hindlimb, at all time points (maximum uptake of 2.2 ± 0.2 %ID/g). The pre-injection of a blocking dose resulted in a significantly lower tracer uptake in the ischemic hindlimb on day 10 after surgery, confirming tracer specificity. CD146/CD31 immunofluorescent co-staining showed an excellent correlation between the high uptake of the tracer with in situ CD146 expression levels and a marked co-localization of CD146 and CD31 signals. In conclusion, persistent and CD146-specific tracer accumulation in the ischemic hindlimb was observed, confirming the feasibility of 64Cu-NOTA-YY146 to be used as an imaging agent to monitor the progression of angiogenesis and recovery in future PAD research.
Collapse
Affiliation(s)
- Carolina A Ferreira
- Department of Biomedical Engineering , University of Wisconsin-Madison , Madison , Wisconsin , 53706 , United States
| | - Reinier Hernandez
- Department of Radiology , University of Wisconsin-Madison , Madison , Wisconsin , 53792 , United States
| | - Yunan Yang
- Department of Radiology , University of Wisconsin-Madison , Madison , Wisconsin , 53792 , United States
| | - Hector F Valdovinos
- Department of Medical Physics , University of Wisconsin-Madison , Madison , Wisconsin , 53705 , United States
| | - Jonathan W Engle
- Department of Medical Physics , University of Wisconsin-Madison , Madison , Wisconsin , 53705 , United States
| | - Weibo Cai
- Department of Biomedical Engineering , University of Wisconsin-Madison , Madison , Wisconsin , 53706 , United States.,Department of Radiology , University of Wisconsin-Madison , Madison , Wisconsin , 53792 , United States.,Department of Medical Physics , University of Wisconsin-Madison , Madison , Wisconsin , 53705 , United States.,University of Wisconsin Carbone Cancer Center , Madison , Wisconsin , 53792 , United States
| |
Collapse
|
19
|
Wei W, Jiang D, Ehlerding EB, Luo Q, Cai W. Noninvasive PET Imaging of T cells. Trends Cancer 2018; 4:359-373. [PMID: 29709260 DOI: 10.1016/j.trecan.2018.03.009] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 03/20/2018] [Accepted: 03/22/2018] [Indexed: 02/07/2023]
Abstract
The rapidly evolving field of cancer immunotherapy recently saw the approval of several new therapeutic antibodies. Several cell therapies, for example, chimeric antigen receptor-expressing T cells (CAR-T), are currently in clinical trials for a variety of cancers and other diseases. However, approaches to monitor changes in the immune status of tumors or to predict therapeutic responses are limited. Monitoring lymphocytes from whole blood or biopsies does not provide dynamic and spatial information about T cells in heterogeneous tumors. Positron emission tomography (PET) imaging using probes specific for T cells can noninvasively monitor systemic and intratumoral immune alterations during experimental therapies and may have an important and expanding value in the clinic.
Collapse
Affiliation(s)
- Weijun Wei
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China; Department of Radiology, Department of Medical Physics, University of Wisconsin, Madison, WI 53705, USA; These authors contributed equally to this work
| | - Dawei Jiang
- Department of Radiology, Department of Medical Physics, University of Wisconsin, Madison, WI 53705, USA; These authors contributed equally to this work
| | - Emily B Ehlerding
- Department of Medical Physics, University of Wisconsin, Madison, WI 53705, USA
| | - Quanyong Luo
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| | - Weibo Cai
- Department of Radiology, Department of Medical Physics, University of Wisconsin, Madison, WI 53705, USA; Department of Medical Physics, University of Wisconsin, Madison, WI 53705, USA; University of Wisconsin Carbone Cancer Center, Madison, Wisconsin 53705, USA.
| |
Collapse
|
20
|
Therapeutic and Diagnostic Antibodies to CD146: Thirty Years of Research on Its Potential for Detection and Treatment of Tumors. Antibodies (Basel) 2017; 6:antib6040017. [PMID: 31548532 PMCID: PMC6698816 DOI: 10.3390/antib6040017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 10/26/2017] [Accepted: 11/01/2017] [Indexed: 12/17/2022] Open
Abstract
CD146 (MCAM, MUC18, S-Endo1) is a transmembrane glycoprotein belonging to both CAM and mucin families. It exists as different splice variants and is cleaved from the membrane by metalloproteases to generate a soluble form. CD146 is expressed by numerous cancer cells as well as being one of the numerous proteins expressed by the vascular endothelium. It has also been identified on smooth muscle cells, pericytes, and some immune cells. This protein was initially described as an actor involved in tumor growth and metastatic dissemination processes. Some recent works highlighted the role of CD146 in angiogenesis. Interestingly, this knowledge allowed the development of therapeutic and diagnostic tools specifically targeting the different CD146 variants. The first anti-CD146 antibody designed to study the function of this molecule, MUC18, was described by the Pr. J.P. Jonhson in 1987. In this review, we will discuss the 30 following years of research focused on the detection, study, and blocking of this protein in physiological and pathological processes.
Collapse
|
21
|
England CG, Jiang D, Hernandez R, Sun H, Valdovinos HF, Ehlerding EB, Engle JW, Yang Y, Huang P, Cai W. ImmunoPET Imaging of CD146 in Murine Models of Intrapulmonary Metastasis of Non-Small Cell Lung Cancer. Mol Pharm 2017; 14:3239-3247. [PMID: 28825843 DOI: 10.1021/acs.molpharmaceut.7b00216] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
CD146 has been identified as an excellent biomarker for lung cancer as its overexpression in solid tumors has been linked to disease progression, invasion, and metastasis. Previously, our group described a positive correlation between 64Cu-labeled YY146 uptake and increased expression of CD146 in six human lung cancer cell lines using subcutaneous tumor models. In this study, we investigate a monoclonal antibody called YY146 for immunoPET imaging of CD146 in two intrapulmonary metastasis models of non-small cell lung cancer (NSCLC). The binding and immunoreactivity of the tracer were assessed by in vitro assays. Radiolabeling of YY146 with positron emitting Cu-64 (64Cu-NOTA-YY146) enabled PET imaging of intrapulmonary metastasis. Mice were intravenously injected with two million tumor cells, and CT imaging was used to verify the presence of lung metastases. 64Cu-NOTA-YY146 was injected into tumor-bearing mice, and animals were subjected to PET/CT imaging at 4, 24, and 48 h postinjection. Both the average and maximum lung PET signal intensities were quantified and compared between high and low CD146-expressing metastases. Further validation was accomplished through immunofluorescence imaging of resected tissues with CD31 and CD146. In flow cytometry, YY146 revealed strong binding to CD146 in H460 cells due to its high expression with minimal binding to CD146-low expressing H358 cells. Both YY146 and NOTA-YY146 showed similar binding, suggesting that NOTA conjugation did not elicit any negative effects on its binding affinity. Imaging of 64Cu-NOTA-YY146 in H460 tumor-bearing mice revealed rapid, persistent, and highly specific tracer accumulation. Uptake of 64Cu-NOTA-YY146 in the whole lung was calculated for H460 and H358 as 7.43 ± 0.38 and 3.95 ± 0.47% ID/g at 48 h postinjection (n = 4, p < 0.05), and the maximum lung signals were determined to be 13.85 ± 1.07 (H460) and 6.08 ± 0.73% ID/g (H358) at equivalent time points (n = 4, p < 0.05). To ensure the specificity of the tracer, a nonspecific antibody was injected into H460 tumor-bearing mice. Ex vivo biodistribution and immunofluorescence imaging validated the PET findings. In summary, 64Cu-NOTA-YY146 allowed for successful imaging of CD146-expressing intrapulmonary metastases of NSCLC in mice. This preliminary study provides evidence supporting the future clinical utilization of 64Cu-NOTA-YY146 for possible treatment monitoring of CD146-targeted therapy or improving patient stratification.
Collapse
Affiliation(s)
| | - Dawei Jiang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University , Shenzhen 518060, China
| | | | | | | | | | | | | | - Peng Huang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University , Shenzhen 518060, China
| | - Weibo Cai
- University of Wisconsin Carbone Cancer Center , Madison, Wisconsin 53705, United States
| |
Collapse
|
22
|
Hernandez R, England CG, Yang Y, Valdovinos HF, Liu B, Wong HC, Barnhart TE, Cai W. ImmunoPET imaging of tissue factor expression in pancreatic cancer with 89Zr-Df-ALT-836. J Control Release 2017; 264:160-168. [PMID: 28843831 DOI: 10.1016/j.jconrel.2017.08.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 08/22/2017] [Indexed: 12/17/2022]
Abstract
Overexpression of tissue factor (TF) has been associated with increased tumor growth, tumor angiogenesis, and metastatic potential in many malignancies, including pancreatic cancer. Additionally, high TF expression was shown to strongly correlate with poor prognoses and decreased survival in pancreatic cancer patients. Herein, we exploited the potential targeting of TF for positron emission tomography (PET) imaging of pancreatic cancer. The TF-targeted tracer was developed through radiolabeling of the anti-human TF monoclonal antibody (ALT-836) with 89Zr. The tracer was characterized by fluorescence microscopy and flow cytometry assays in BXPC-3 and PANC-1 cells, two pancreatic cancer cell lines with high and low TF expression levels, respectively. Non-invasive PET scans were acquired in tumor-bearing mice injected with 89Zr-Df-ALT-836. Additionally, ex vivo biodistribution, blocking, and histological studies were performed to establish the affinity and specificity of 89Zr-Df-ALT-836 for TF in vivo. 89Zr-labeling of Df-ALT-836 was achieved in high yield and good specific activity. Flow cytometry and microscopy studies revealed no detectable difference in TF-binding affinity between ALT-836 and Df-ALT-836 in vitro. Longitudinal PET scans unveiled a lasting and prominent 89Zr-Df-ALT-836 uptake in BXPC-3 tumors (peak at 31.5±6.0%ID/g at 48h post-injection; n=3), which was significantly abrogated (2.3±0.5%ID/g at 48h post-injection; n=3) when mice were pre-injected with a blocking dose (50mg/kg) of unlabeled ALT-836. Ex vivo biodistribution data confirmed the accuracy of the PET results, and histological analysis correlated high tumor uptake with in situ TF expression. Taken together, these results attest to the excellent affinity and TF-specificity of 89Zr-Df-ALT-836. With elevated, persistent, and specific accumulation in TF-positive BXPC-3 tumors, PET imaging using 89Zr-Df-ALT-836 promises to open new avenues for improving future diagnosis, stratification, and treatment response assessment in pancreatic cancer patients.
Collapse
Affiliation(s)
- Reinier Hernandez
- Department of Medical Physics, University of Wisconsin - Madison, WI 53705, USA
| | | | - Yunan Yang
- Department of Radiology, University of Wisconsin - Madison, WI 53705, USA
| | - Hector F Valdovinos
- Department of Medical Physics, University of Wisconsin - Madison, WI 53705, USA
| | - Bai Liu
- Altor Bioscience Corporation, Miramar, FL 33025, USA
| | - Hing C Wong
- Altor Bioscience Corporation, Miramar, FL 33025, USA
| | - Todd E Barnhart
- Department of Medical Physics, University of Wisconsin - Madison, WI 53705, USA
| | - Weibo Cai
- Department of Medical Physics, University of Wisconsin - Madison, WI 53705, USA; Department of Radiology, University of Wisconsin - Madison, WI 53705, USA; University of Wisconsin Carbone Cancer Center, Madison, WI 53792, USA.
| |
Collapse
|
23
|
131I-labeled monoclonal antibody targeting neuropilin receptor type-2 for tumor SPECT imaging. Int J Oncol 2016; 50:649-659. [PMID: 28000859 DOI: 10.3892/ijo.2016.3808] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 12/05/2016] [Indexed: 11/05/2022] Open
Abstract
As a co-receptor for vascular endothelial growth factor‑3 (VEGF‑3), neuropilin receptor type‑2 (NRP‑2) plays a central role in lymphangiogenesis and angiogenesis. Recently, mounting data of evidence show that NRP‑2 is overexpressed in several human cancers, and its overexpression is often associated with poor prognosis. Therefore, it is necessary for us to develop an affinity reagent for noninvasive imaging of NRP‑2 expression because it may be possible to provide early cancer diagnosis, more accurate prognosis, and better treatment planning. Due to their high affinity, and specificity, monoclonal antibodies (mAbs) have been considered attractive candidates for targeted cancer therapy and diagnostics. We recently generated and validated a monoclonal antibody that specifically binds NRP‑2 b1b2 domain with no cross‑reactivity to NRP‑1 b1b2 domain, also known to be overexpressed in a variety of cancers. Here, we developed a single photon emission computed tomography (SPECT) probe for imaging NRP‑2- positive tumors. Anti‑NRP‑2 monoclonal antibodies were prepared by hybridomas and were labeled with iodine‑131 by chloramine‑T method. The in vitro physicochemical properties of 131I‑anti‑NRP‑2 mAb was determined. Binding affinity and specificity of 131I‑anti‑NRP‑2 mAb to NRP‑2 were assessed using human lung adenocarcinoma A549 cells. Biodistribution and SPECT studies were performed in mice bearing A549 tumor xenografts to evaluate the in vivo performance of 131I‑anti‑NRP‑2 mAb. The preparation of anti‑NRP‑2 mAb was completed successfully by hybridoma with high purity (>95%) and specific for NRP‑2 b1b2 domain, but not NRP‑1 b1b2 domain. The radiosynthesis of 131I‑anti‑NRP‑2 mAb was completed successfully within 60 min with high labelling efficiency (94.69±3.63%), and radiochemical purity (98.56±0.48%). The resulting probe, 131I‑anti‑NRP‑2 mAb displayed excellent stability in PBS solution during 24-72 h. 131I‑anti‑NRP‑2 mAb showed high binding affinity with A549 cells (96.6±1.44 nM). In vivo biodistribution and SPECT studies demonstrated targeting of A549 glioma xenografts was NRP‑2 specific. The tumor uptake was 5.86±0.27% ID/g at 6 h, and kept at high level of 4.64±0.82% ID/g at 72 h‑post‑injection. The tumor to contralateral muscle ratio (T/NT) was 2.08±0.33 at 6 h, and reached the highest level of 3.83±0.18 at 72 h after injection. SPECT imaging studies revealed that 131I‑anti‑NRP‑2 mAb could clearly identify A549 tumors with good contrast, especially at 48‑72 h after injection. In conclusion, this study demonstrates that 131I‑anti‑NRP‑2 mAb exhibited highly selective uptake in NRP‑2‑expressing tumors, and may provide a promising SPECT probe for imaging NRP‑2 positive tumors.
Collapse
|
24
|
Tabrizi L, Fooladivanda M, Chiniforoshan H. Copper(II), cobalt(II) and nickel(II) complexes of juglone: synthesis, structure, DNA interaction and enhanced cytotoxicity. Biometals 2016; 29:981-993. [DOI: 10.1007/s10534-016-9970-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 08/31/2016] [Indexed: 12/27/2022]
|
25
|
Kraeber-Bodere F, Bailly C, Chérel M, Chatal JF. ImmunoPET to help stratify patients for targeted therapies and to improve drug development. Eur J Nucl Med Mol Imaging 2016; 43:2166-2168. [PMID: 27539021 PMCID: PMC5047921 DOI: 10.1007/s00259-016-3458-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 07/04/2016] [Indexed: 11/26/2022]
Affiliation(s)
| | - Clément Bailly
- Inserm U892, CNRS UMR 6299, University Hospital-ICO-CRCNA, Nantes-Saint-Herblain, France
| | - Michel Chérel
- Inserm U892, CNRS UMR 6299, University Hospital-ICO-CRCNA, Nantes-Saint-Herblain, France
- Groupement d'Intérêt Public Arronax, University of Nantes, Nantes, France
| | | |
Collapse
|