1
|
Zhang W, Li K, Jian A, Zhang G, Zhang X. Prospects for potential therapy targeting immune‑associated factors in endometriosis (Review). Mol Med Rep 2025; 31:57. [PMID: 39717957 PMCID: PMC11715623 DOI: 10.3892/mmr.2024.13422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 12/03/2024] [Indexed: 12/25/2024] Open
Abstract
Endometriosis (EM) is a chronic inflammatory disease that is one of the most common causes of gynecological systemic lesions in women before menopause. The most representative histological feature of EM is that the endometrium appears outside of the uterine cavity, often in the ovary. Although it is generally accepted that the epithelial and stromal cells of the ectopic endometrium are not malignant, they still have numerous similarities to malignant tumors, including considerable changes to the immune microenvironment (immune monitoring disorder), the creation of a specific hormone environment, high levels of oxidative stress, chronic inflammation and abnormal immune cell regulation. The pathogenesis of EM is not fully understood, which makes it difficult to identify specific biomarkers and potential therapeutic targets for early disease diagnosis and effective treatment. However, considerable progress has been made in this field over the past few decades. The purpose of the present review is to summarize the confirmed and potential biomarkers for EM, and to identify potential therapeutic targets based on changes in immunological factors (including natural killer cells, macrophages, the complement system, miRNA and P‑selectin) in the ectopic endometrial tissue. It is hoped that this work can be used as the basis for identifying accurate diagnostic markers for EM and developing personalized immune‑targeted therapy.
Collapse
Affiliation(s)
- Wenwen Zhang
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Histology and Embryology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Kang Li
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Histology and Embryology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Aiwen Jian
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Histology and Embryology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Guanran Zhang
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Histology and Embryology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xiaoli Zhang
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Histology and Embryology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
2
|
Rakhmilevich AL, Tsarovsky NW, Felder M, Zaborek J, Moram S, Erbe AK, Pieper AA, Spiegelman DV, Cheng EM, Witt CM, Overwijk WW, Morris ZS, Sondel PM. A combined radio-immunotherapy regimen eradicates late-stage tumors in mice. Front Immunol 2024; 15:1419773. [PMID: 39076988 PMCID: PMC11284032 DOI: 10.3389/fimmu.2024.1419773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/02/2024] [Indexed: 07/31/2024] Open
Abstract
Background The majority of experimental approaches for cancer immunotherapy are tested against relatively small tumors in tumor-bearing mice, because in most cases advanced cancers are resistant to the treatments. In this study, we asked if even late-stage mouse tumors can be eradicated by a rationally designed combined radio-immunotherapy (CRI) regimen. Methods CRI consisted of local radiotherapy, intratumoral IL-12, slow-release systemic IL-2 and anti- CTLA-4 antibody. Therapeutic effects of CRI against several weakly immunogenic and immunogenic mouse tumors including B78 melanoma, MC38 and CT26 colon carcinomas and 9464D neuroblastoma were evaluated. Immune cell depletion and flow cytometric analysis were performed to determine the mechanisms of the antitumor effects. Results Tumors with volumes of 2,000 mm3 or larger were eradicated by CRI. Flow analyses of the tumors revealed reduction of T regulatory (Treg) cells and increase of CD8/Treg ratios following CRI. Rapid shrinkage of the treated tumors did not require T cells, whereas T cells were involved in the systemic effect against the distant tumors. Cured mice developed immunological memory. Conclusions These findings underscore that rationally designed combination immunotherapy regimens can be effective even against large, late-stage tumors.
Collapse
Affiliation(s)
| | - Noah W. Tsarovsky
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI, United States
| | - Mildred Felder
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI, United States
| | - Jen Zaborek
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, United States
| | - Sritha Moram
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI, United States
| | - Amy K. Erbe
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI, United States
| | - Alexander A. Pieper
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI, United States
| | - Dan V. Spiegelman
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI, United States
| | - Emily M. Cheng
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI, United States
| | - Cole M. Witt
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI, United States
| | | | - Zachary S. Morris
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI, United States
| | - Paul M. Sondel
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI, United States
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
3
|
Liu J, Qi B, Ye Y, Shen Y, Lin Y, Chen Y, Ding S, Ma J, Chen S. Low-dose IL-2 treatment confers anti-inflammatory effect against subarachnoid hemorrhage in mice. Heliyon 2024; 10:e30013. [PMID: 38742061 PMCID: PMC11089327 DOI: 10.1016/j.heliyon.2024.e30013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/07/2024] [Accepted: 04/18/2024] [Indexed: 05/16/2024] Open
Abstract
Objective Subarachnoid hemorrhage (SAH) was a stroke with high occurrence and mortality. At the early stage, SAH patients have severe cerebral injury which is contributed by inflammation. In this study, we aimed to explore the anti-inflammation effect of low-dose IL-2 in SAH mice. Methods The 12-week-old C57BL/6J male mice were conducted with SAH surgery (Internal carotid artery puncture method). Different dose of IL-2 was injected intraperitoneally for 1 h, 1 day, and 2 days after SAH. Single-cell suspension and flow cytometry were used for the test of regulatory T (Treg) cells. Immunofluorescence staining was used to investigate the phenotypic polarization of microglia and inflammation response around neurons. Enzyme-Linked Immuno-sorbent Assay (ELISA) was applied to detect the level of pro-inflammatory factors. Results Low-dose IL-2 could enrich the Treg cells and drive the microglia polarizing to M2. The level of pro-inflammatory factors, IL-1α, IL-6, and TNF-α decreased in the low-dose IL-2 group. The inflammation response around neurons was attenuated. Low-dose IL-2 could increase the number of Treg cells, which could exert a neuroprotective effect against inflammation after SAH. Conclusion Low-dose IL-2 had the potential to be an effective clinical method to inhibit inflammation after SAH.
Collapse
Affiliation(s)
- Jia Liu
- Department of Integrated Traditional Chinese and Western Medicine, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, 361015, China
| | - Biao Qi
- Department of Neurosurgery, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, 361015, China
| | - Yanrong Ye
- Department of Pharmacy, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, 361015, China
| | - Yun Shen
- Department of Pharmacy, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, 361015, China
| | - Yufu Lin
- Department of Oncology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, 361015, China
| | - Yabo Chen
- Department of General Practice, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, 361015, China
| | - Shan Ding
- Department of Pharmacy, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, 361015, China
| | - Jun Ma
- Department of Integrated Traditional Chinese and Western Medicine, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, 361015, China
| | - Shaozhuang Chen
- Department of Pharmacy, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, 361015, China
| |
Collapse
|
4
|
Sharma N, Fan X, Atolagbe OT, Ge Z, Dao KN, Sharma P, Allison JP. ICOS costimulation in combination with CTLA-4 blockade remodels tumor-associated macrophages toward an antitumor phenotype. J Exp Med 2024; 221:e20231263. [PMID: 38517331 PMCID: PMC10959121 DOI: 10.1084/jem.20231263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 01/19/2024] [Accepted: 02/27/2024] [Indexed: 03/23/2024] Open
Abstract
We have previously demonstrated synergy between ICOS costimulation (IVAX; ICOSL-transduced B16-F10 cellular vaccine) and CTLA-4 blockade in antitumor therapy. In this study, we employed CyTOF and single-cell RNA sequencing and observed significant remodeling of the lymphoid and myeloid compartments in combination therapy. Compared with anti-CTLA-4 monotherapy, the combination therapy enriched Th1 CD4 T cells, effector CD8 T cells, and M1-like antitumor proinflammatory macrophages. These macrophages were critical to the therapeutic efficacy of anti-CTLA-4 combined with IVAX or anti-PD-1. Macrophage depletion with clodronate reduced the tumor-infiltrating effector CD4 and CD8 T cells, impairing their antitumor functions. Furthermore, the recruitment and polarization of M1-like macrophages required IFN-γ. Therefore, in this study, we show that there is a positive feedback loop between intratumoral effector T cells and tumor-associated macrophages (TAMs), in which the IFN-γ produced by the T cells polarizes the TAMs into M1-like phenotype, and the TAMs, in turn, reshape the tumor microenvironment to facilitate T cell infiltration, immune function, and tumor rejection.
Collapse
Affiliation(s)
- Naveen Sharma
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaozhou Fan
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Zhongqi Ge
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kelly N. Dao
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Padmanee Sharma
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- James P. Allison Institute, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Immunotherapy Platform, James P. Allison Institute, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Parker Institute for Cancer Immunotherapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - James P. Allison
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- James P. Allison Institute, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Parker Institute for Cancer Immunotherapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
5
|
IL-2 Modulates TAMs Derived Exosomal MiRNAs to Ameliorate Hepatocellular Carcinoma Development and Progression. JOURNAL OF ONCOLOGY 2022; 2022:3445350. [PMID: 36284632 PMCID: PMC9588329 DOI: 10.1155/2022/3445350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 12/20/2021] [Indexed: 11/18/2022]
Abstract
Background. Interleukin-2 (IL-2) is proved to play an irreplaceable role in antitumor regulation in numerous experimental and clinical trials. Tumor-associated macrophages (TAMs) are able to release exosomes to promote the development and progression of hepatocellular carcinoma (HCC) as essential component of microenvironment. In this study, our intention is to explore the effects of the exosomes from TAMs with IL-2 treatment on HCC development. TAMs were collected and cultured from HCC tissues. The exosomes from the TAMs treated with IL-2 (ExoIL2-TAM) or not (ExoTAM) were identified and used to treat HCC cells in vivo and in vitro. The proliferation, apoptosis, and metastasis of HCC cells were measured. The changes of miRNAs in exosomes were explored to clarify the possible mechanisms. Both decrease of cell proliferation and metastasis and increase of apoptosis were observed with ExoIL2-TAM treatment compared with ExoTAMin vivo and in vitro. miR-375 was obviously augmented in ExoIL2-TAM and HCC cells treated with ExoIL2-TAM. Taken together, IL-2 may modulate exosomal miRNAs from TAMs to ameliorate hepatocellular carcinoma development. This study provides a new perspective to explain the mechanism by which IL-2 inhibits hepatocellular carcinoma and implies the potential clinical value of exosomal miRNAs released by TAMs.
Collapse
|
6
|
Ryan GM, Kaminskas LM, Porter CJ. Nano-chemotherapeutics: Maximising lymphatic drug exposure to improve the treatment of lymph-metastatic cancers. J Control Release 2014; 193:241-56. [DOI: 10.1016/j.jconrel.2014.04.051] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 04/21/2014] [Accepted: 04/23/2014] [Indexed: 01/17/2023]
|
7
|
Cancer Immunotherapy by Retargeting of Immune Effector Cells via Recombinant Bispecific Antibody Constructs. Antibodies (Basel) 2012. [DOI: 10.3390/antib1020172] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
8
|
Labbe A, Nelles M, Walia J, Jia L, Furlonger C, Nonaka T, Medin JA, Paige CJ. IL-12 immunotherapy of murine leukaemia: comparison of systemic versus gene modified cell therapy. J Cell Mol Med 2010; 13:1962-1976. [PMID: 18624776 DOI: 10.1111/j.1582-4934.2008.00412.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The ability of IL-12 to initiate anti-leukaemia immune responses has been well established; however clinical outcomes fail to recapitulate the therapeutic benefits observed in the laboratory. To address this, we compared two systems of IL-12 therapy that elicit protective immune responses against the murine acute lymphoblastic leukaemia (ALL) cell line, 70Z/3. These systems differ in the method of IL-12 administration and ultimately result in leukaemia clearance by distinct mechanisms, emphasizing the importance of treatment vehicle. Injecting low-dose IL-12 was sufficient to elicit long-term protective immunity against an established leukaemia burden, mediated by both CD4(+) and CD8(+) T cells. These findings agree with the standard model of IL-12 activity. We compared this protocol to a cell-based approach in which a novel lentiviral vector (LV) expressing murine IL-12 was created, 70Z/3 cells transduced, and clones selected that stably secrete different amounts of IL-12. We found that only a small proportion (1%) of IL-12 secreting cells were required for rejection but that the amount of IL-12 produced per cell was critical for successful therapy. Importantly, the levels of IL-12 required were found to be higher than the levels reported to date in the human clinical trial literature. We found that the cell-based approach led to protective immunity that was both long-term and specific but dependent primarily on a CD4(+) cellular subset alone. Our results highlight that the mode of IL-12 delivery has a distinct impact on the immune response initiated, leading to leukaemia clearance by disparate mechanisms. We also establish a new and critical parameter, IL-12 production/cell, which may have significant implications for future therapeutic design.
Collapse
Affiliation(s)
- Alain Labbe
- Ontario Cancer Institute, Princess Margaret Hospital, University Health Network, Toronto, ON, Canada.,Departments of Immunology
| | - Megan Nelles
- Ontario Cancer Institute, Princess Margaret Hospital, University Health Network, Toronto, ON, Canada.,Medical Biophysics
| | - Jagdeep Walia
- Ontario Cancer Institute, Princess Margaret Hospital, University Health Network, Toronto, ON, Canada
| | - Lintao Jia
- Ontario Cancer Institute, Princess Margaret Hospital, University Health Network, Toronto, ON, Canada
| | - Caren Furlonger
- Ontario Cancer Institute, Princess Margaret Hospital, University Health Network, Toronto, ON, Canada
| | - Takahiro Nonaka
- Ontario Cancer Institute, Princess Margaret Hospital, University Health Network, Toronto, ON, Canada
| | - Jeffrey A Medin
- Ontario Cancer Institute, Princess Margaret Hospital, University Health Network, Toronto, ON, Canada.,Medical Biophysics.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Christopher J Paige
- Ontario Cancer Institute, Princess Margaret Hospital, University Health Network, Toronto, ON, Canada.,Departments of Immunology.,Medical Biophysics
| |
Collapse
|
9
|
Wagner K, Schulz P, Scholz A, Wiedenmann B, Menrad A. The targeted immunocytokine L19-IL2 efficiently inhibits the growth of orthotopic pancreatic cancer. Clin Cancer Res 2008; 14:4951-60. [PMID: 18676770 DOI: 10.1158/1078-0432.ccr-08-0157] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Effective control of pancreatic cancer has been hampered primarily by the lack of tumor specificity of current treatment modalities. The highly specific antibody-mediated delivery of therapeutic agents to the tumor microenvironment might overcome this problem. We therefore investigated the therapeutic efficacy of the targeted immunocytokine L19-Interleukin-2 (L19-IL2), consisting of the human single-chain Fv antibody L19, which is highly specific for the extradomain B (ED-B) of fibronectin, and the human cytokine IL-2, in pancreatic cancer. EXPERIMENTAL DESIGN Therapeutic effects of L19-IL-2, IL-2, and gemcitabine on tumor growth and metastasis were evaluated in orthotopic mouse models for pancreatic cancer. Immunohistochemistry was done to define ED-B expression, tumor necrosis, apoptosis, proliferation, and invasion of macrophages and natural killer (NK) cells. NK cells were depleted by i.v. injection of an anti-asialo-GM-1 antibody. RESULTS ED-B is selectively expressed in human pancreatic cancer and in primary tumors and metastases of the mouse models. L19-IL-2 therapy was clearly superior to untargeted IL-2 or gemcitabine and inhibited tumor growth and metastasis with remarkable long-term tumor control. Therapeutic effects were associated with the induction of extensive tumor necrosis and inhibition of tumor cell proliferation. Immunohistochemistry revealed an increase of macrophages and NK cells in the tumor tissue, suggesting immune-mediated mechanisms. The functional relevance of NK cells for the therapeutic effect of the targeted immunocytokine L19-IL-2 was confirmed by NK cell depletion, which completely abolished its antitumor efficacy. CONCLUSIONS These preclinical results strongly encourage the initiation of clinical studies using L19-IL-2 in pancreatic cancer.
Collapse
Affiliation(s)
- Karola Wagner
- Department of Hepatology and Gastroenterology, Charité, Campus Virchow-Klinikum, Humboldt-University, Berlin, Germany
| | | | | | | | | |
Collapse
|
10
|
Ortiz-Sánchez E, Helguera G, Daniels TR, Penichet ML. Antibody-cytokine fusion proteins: applications in cancer therapy. Expert Opin Biol Ther 2008; 8:609-632. [PMID: 18407765 PMCID: PMC4535341 DOI: 10.1517/14712598.8.5.609] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Antibody-cytokine fusion proteins consist of cytokines fused to an antibody to improve antibody-targeted cancer immunotherapy. These molecules have the capacity to enhance the tumoricidal activity of the antibodies and/or activate a secondary antitumor immune response. OBJECTIVE To review the strategies used to develop antibody-cytokine fusion proteins and their in vitro and in vivo properties, including preclinical and clinical studies focusing on IL-2, IL-12 and GM-CSF. METHODS Articles were found by searching databases such as PubMed and Clinical Trials of the US National Institutes of Health. RESULTS/CONCLUSION Multiple antibody-cytokine fusion proteins have demonstrated significant antitumor activity as direct therapeutics or as adjuvants of cancer vaccines in preclinical studies, paving the way for their clinical evaluation.
Collapse
Affiliation(s)
- Elizabeth Ortiz-Sánchez
- Postdoctoral Fellow, University of California, Division of Surgical Oncology, Department of Surgery, David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Gustavo Helguera
- Assistant Researcher, University of California, Division of Surgical Oncology, Department of Surgery, David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Tracy R Daniels
- Postdoctoral Fellow, University of California, Division of Surgical Oncology, Department of Surgery, David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Manuel L Penichet
- Assistant Professor, UCLA, Division of Surgical Oncology, Department of Surgery, 10833 Le Conte Avenue, CHS 54-140, Box 951782, Los Angeles, CA 90095-1782, USA
- Assistant Professor, University of California, Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, Los Angeles, CA 90095, USA
- Assistant Professor, University of California, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA
| |
Collapse
|
11
|
Tang Y, Lou J, Alpaugh RK, Robinson MK, Marks JD, Weiner LM. Regulation of antibody-dependent cellular cytotoxicity by IgG intrinsic and apparent affinity for target antigen. THE JOURNAL OF IMMUNOLOGY 2007; 179:2815-23. [PMID: 17709495 DOI: 10.4049/jimmunol.179.5.2815] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Unconjugated mAbs have emerged as useful cancer therapeutics. Ab-dependent cellular cytotoxicity (ADCC) is believed to be a major antitumor mechanism of some anticancer Abs. However, the factors that regulate the magnitude of ADCC are incompletely understood. In this study, we described the relationship between Ab affinity and ADCC. A series of human IgG1 isotype Abs was created from the anti-HER2/neu (also named c-erbB2) C6.5 single-chain Fv (scFv) and its affinity mutants. The scFv affinities range from 10(-7) to 10(-11) M, and the IgG Abs retain the affinities of the scFv from which they were derived. The apparent affinity of the Abs ranged from nearly 10(-10) M (the lowest affinity variant) to almost 10(-11) M (the other variants). The IgG molecules were tested for their ability to elicit ADCC in vitro against three tumor cell lines with differing levels of HER2/neu expression using unactivated human PBMC from healthy donors as the effector cells. The results demonstrated that both the apparent affinity and intrinsic affinity of the Abs studied regulate ADCC. High-affinity tumor Ag binding by the IgGs led to the most efficient and powerful ADCC. Tumor cells expressing high levels of HER2/neu are more susceptible to the ADCC triggered by Abs than the cells expressing lower amounts of HER2/neu. These findings justify the examination of high affinity Abs for ADCC promotion. Because high affinity may impair in vivo tumor targeting, a careful examination of Ab structure to function relationships is required to develop optimized therapeutic unconjugated Abs.
Collapse
Affiliation(s)
- Yong Tang
- Department of Medical Oncology, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | | | | | | | | | | |
Collapse
|
12
|
Lopes de Menezes DE, Denis-Mize K, Tang Y, Ye H, Kunich JC, Garrett EN, Peng J, Cousens LS, Gelb AB, Heise C, Wilson SE, Jallal B, Aukerman SL. Recombinant interleukin-2 significantly augments activity of rituximab in human tumor xenograft models of B-cell non-Hodgkin lymphoma. J Immunother 2007; 30:64-74. [PMID: 17198084 DOI: 10.1097/01.cji.0000211315.21116.07] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Recombinant interleukin-2 (rIL-2) is a pleiotropic cytokine that activates select immune effector cell responses associated with antitumor activity, including antibody-dependent cellular cytotoxicity (ADCC). Rituximab is an anti-CD20 monoclonal antibody that activates ADCC in non-Hodgkin lymphoma (NHL). The ability of rIL-2 to augment rituximab-dependent tumor responses was investigated. The efficacy of rIL-2 in combination with rituximab was evaluated in 2 NHL tumor xenograft models: the CD20hi, rituximab-sensitive, low-grade Daudi model and the CD20lo, aggressive, rituximab-resistant Namalwa model. Combination of rIL-2 plus rituximab was synergistic in a rituximab-sensitive Daudi tumor model, as evidenced by significant tumor regressions and increased time to tumor progression, compared with rIL-2 and rituximab single agents. In contrast, rituximab-resistant Namalwa tumors were responsive to single-agent rIL-2 and showed an increased response when combined with rituximab. Using in vitro killing assays, rIL-2 was shown to enhance activity of rituximab by activating ADCC and lymphokine-activated killer activity. Additionally, the activity of rIL-2 plus rituximab F(ab')2 was similar to that of rIL-2 alone, indicating a critical role for immunoglobulin G1 Fc-FcgammaR-effector responses in mediating ADCC. Antiproliferative and apoptotic tumor responses, along with an influx of immune effector cells, were observed by immunohistochemistry. Collectively, the data suggest that rIL-2 mediates potent tumoricidal activity against NHL tumors, in part, through activation and trafficking of monocytes and natural killer cells to tumors. These data support the mechanistic and therapeutic rationale for combination of rIL-2 with rituximab in NHL clinical trials and for single-agent rIL-2 in rituximab-resistant NHL patients.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal, Murine-Derived
- Antibody-Dependent Cell Cytotoxicity/immunology
- Antigens, CD20/immunology
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Drug Synergism
- Female
- Humans
- Immunoglobulin Fc Fragments/immunology
- Interleukin-2/administration & dosage
- Interleukin-2/immunology
- Interleukin-2/pharmacology
- Killer Cells, Lymphokine-Activated/immunology
- Killer Cells, Natural/immunology
- Lymphoma, B-Cell/immunology
- Lymphoma, B-Cell/therapy
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Monocytes/immunology
- Rituximab
- Xenograft Model Antitumor Assays
Collapse
|
13
|
Buhtoiarov IN, Lum HD, Berke G, Sondel PM, Rakhmilevich AL. Synergistic activation of macrophages via CD40 and TLR9 results in T cell independent antitumor effects. THE JOURNAL OF IMMUNOLOGY 2006; 176:309-18. [PMID: 16365423 DOI: 10.4049/jimmunol.176.1.309] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have previously shown that macrophages (Mphi) can be activated by CD40 ligation to become cytotoxic against tumor cells in vitro. Here we show that treatment of mice with agonistic anti-CD40 mAb (anti-CD40) induced up-regulation of intracellular TLR9 in Mphi and primed them to respond to CpG-containing oligodeoxynucleotides (CpG), resulting in synergistic activation. The synergy between anti-CD40 and CpG was evidenced by increased production of IFN-gamma, IL-12, TNF-alpha, and NO by Mphi, as well as by augmented apoptogenic effects of Mphi against tumor cells in vitro. The activation of cytotoxic Mphi after anti-CD40 plus CpG treatment was dependent on IFN-gamma but not TNF-alpha or NO, and did not require T cells and NK cells. Anti-CD40 and CpG also synergized in vivo in retardation of tumor growth in both immunocompetent and immunodeficient mice. Inactivation of Mphi in SCID/beige mice by silica treatment abrogated the antitumor effect. Taken together, our results show that Mphi can be activated via CD40/TLR9 ligation to kill tumor cells in vitro and inhibit tumor growth in vivo even in immunocompromised tumor-bearing hosts, indicating that this Mphi-based immunotherapeutic strategy may be appropriate for clinical testing.
Collapse
Affiliation(s)
- Ilia N Buhtoiarov
- Department of Human Oncology and Comprehensive Cancer Center, University of Wisconsin, Madison, WI 53792, USA.
| | | | | | | | | |
Collapse
|
14
|
Fan K, Zhou M, Pathak MK, Lindner DJ, Altuntas CZ, Tuohy VK, Borden EC, Yi T. Sodium Stibogluconate Interacts with IL-2 in Anti-Renca Tumor Action via a T Cell-Dependent Mechanism in Connection with Induction of Tumor-Infiltrating Macrophages. THE JOURNAL OF IMMUNOLOGY 2005; 175:7003-8. [PMID: 16272361 DOI: 10.4049/jimmunol.175.10.7003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
IL-2 therapy results in 10-20% response rates in advanced renal cell carcinoma (RCC) via activating immune cells, in which the protein tyrosine phosphatase Src homology 2 domain-containing phosphatase 1 (SHP-1) is a key negative regulator. Based on finding that sodium stibogluconate (SSG) inhibited SHP-1, the anti-RCC potential and action mechanism of SSG and SSG/IL-2 in combination were investigated in a murine renal cancer model (Renca). Despite its failure to inhibit Renca cell proliferation in cultures, SSG induced 61% growth inhibition of Renca tumors in BALB/c mice coincident with an increase (2-fold) in tumor-infiltrating macrophages (Mphi). A combination of SSG and IL-2 was more effective in inhibiting tumor growth (91%) and inducing tumor-infiltrating Mphi (4-fold), whereas IL-2 alone had little effect. Mphi increases were also detected in the spleens of mice treated with SSG (3-fold) or SSG/IL-2 in combination (6-fold), suggesting a systemic Mphi expansion similar to those in SHP-deficient mice. T cell involvement in the anti-Renca tumor action of the combination was suggested by the observations that the treatment induced spleen IFN-gamma T cells in BALB/c mice, but failed to inhibit Renca tumor growth in athymic nude mice and that SSG treatment of T cells in vitro increased production of IFN-gamma capable of activating tumoricidal Mphi. The SSG and SSG/IL-2 combination treatments were tolerated in the mice. These results together demonstrate an anti-Renca tumor activity of SSG that was enhanced in combination with IL-2 and functions via a T cell-dependent mechanism with increased IFN-gamma production and expansion/activation of Mphi. Our findings suggest that SSG might improve anti-RCC efficacy of IL-2 therapy by enhancing antitumor immunity.
Collapse
Affiliation(s)
- Keke Fan
- Department of Cancer Biology, The Cleveland Clinic Foundation, OH 44195, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Jacobs JJL, Sparendam D, Den Otter W. Local interleukin 2 therapy is most effective against cancer when injected intratumourally. Cancer Immunol Immunother 2005; 54:647-54. [PMID: 15685449 PMCID: PMC11033014 DOI: 10.1007/s00262-004-0627-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2004] [Accepted: 09/21/2004] [Indexed: 10/25/2022]
Abstract
Local interleukin 2 (IL-2) therapy is more effective against systemic tumours than systemic IL-2 therapy, but it remains unclear whether IL-2 should be injected intratumourally or peritumourally. To investigate this question, we treated DBA/2 mice bearing a large subcutaneous syngeneic SL2 lymphoma with either intra or peritumoural IL-2 therapy. Both applications enhanced survival, but intratumourally injected IL-2 was more effective than peritumourally injected IL-2. Tumours started to regress 4 days after IL-2 injection. Tumour cells died at the IL-2 injection site, although IL-2 is not directly cytotoxic for SL2 cells in vitro. Tumour cell death correlated well with oedema and extravascular erythrocytes, but less with leukocyte infiltrates. In mice bearing two s.c. tumours, intratumoural application therapy of IL-2 in one tumour caused decrease in size of both tumours in 4-9 days after therapy. However, the IL-2 treated tumours regressed more strongly than the untreated tumours. We conclude that vascular leakage and/or tissue destruction inside the tumour may contribute to the enhanced effect of intratumoural IL-2 therapy compared to peritumoural IL-2 therapy. Hence, we recommend applying of intratumoural rather than peritumoural IL-2 therapy.
Collapse
Affiliation(s)
- John J L Jacobs
- Department of Pathobiology, Faculty of Veterinary Medicine, P.O. Box 80.158, 3508 TD Utrecht, the Netherlands.
| | | | | |
Collapse
|
16
|
Stewart RJE, Masztalerz A, Jacobs JJL, Den Otter W. Local interleukin-2 and interleukin-12 therapy of bovine ocular squamous cell carcinomas. Vet Immunol Immunopathol 2005; 106:277-84. [PMID: 15963825 DOI: 10.1016/j.vetimm.2005.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2003] [Revised: 03/09/2005] [Accepted: 03/10/2005] [Indexed: 11/17/2022]
Abstract
Interleukin-2 and interleukin-12 have been used independently to successfully treat the induced and the spontaneous tumours in animals. This trial was done to determine if a combination of IL-2 and IL-12 in the treatment of spontaneous bovine ocular squamous cell carcinomas (BOSCC) would be more successful than IL-2 or IL-12 therapy by themselves. For this trial, we selected 25 BOSCC tumours seen on Holstein Fresian cows in Beatrice, Zimbabwe. The cows were randomly assigned to a treatment group of 5 days of IL-2 (200,000 U/day), 5 days of IL-12 (0.5 microg/day) or 5 days of IL-2 (200,000 U/day) and IL-12 (0.5 microg/day). At 20 months after treatment, the IL-2 therapy group had 63% complete regressions; the combination group had 38% complete regressions, which were significantly higher than the IL-12 group, which had 0% complete regressions at 20 months, despite having 29% complete regressions at 6 months. These results show that IL-2 therapy by itself and in combination with IL-12 is more successful than IL-12 by itself. However, combination therapy does not improve the outcome in comparison to IL-2 as a single therapy. It also proves that IL-2 is consistently successful in the therapy of BOSCC with over 60% complete regression, which corresponds to a number of other studies we have done on IL-2 therapy of BOSCC [Rutten, V.P.M.G., Klein, W.R., De Jong, W.A., Misdorp, W., Den Otter, W., Steerenberg, P.A., De Jong, W.H., Ruitenberg, E.J., 1989. Local interleukin-2 therapy in bovine ocular squamous cell carcinoma. A pilot study. Cancer Immunol. Immunother. 30, 165--169; Stewart, R.J.E., Hill, F.W.G., Masztalerz, A., Jacobs, J.J.L., Koten, J.W., Den Otter, W., 2003. Local low dose interleukin-2 therapy of bovine ocular squamous cell carcinomas in cattle in Zimbabwe, submitted for publication; Den Otter, W., Hill, F.W.G., Klein, W.R., Koten, J.W., Steerenberg, P.A., De Mulder, P.H.M., Rutten, V.P.M.G., Ruitenberg, E.J., 1993. Low doses of interleukin-2 can cure large bovine ocular squamous cell carcinoma. Anticancer Res. 13, 2453-2455; Den Otter, W., Hill, F.W.G., Klein, W.R., Koten, J.W., Steerenberg, P.A., De Mulder, P.H., Rhode, C., Stewart, R., Faber, J.A., Ruitenberg, E.J., 1995. Therapy of bovine ocular squamous cell carcinoma with local doses of interleukin-2: 67% complete regressions after 20 months of follow-up. Cancer Immunol. Immunother. 41, 10-14].
Collapse
Affiliation(s)
- Rachel J E Stewart
- Department of Clinical Veterinary Studies, University of Zimbabwe, Mount Pleasant, Harare, Zimbabwe.
| | | | | | | |
Collapse
|
17
|
Panelli MC, Martin B, Nagorsen D, Wang E, Smith K, Monsurro V, Marincola FM. A genomic- and proteomic-based hypothesis on the eclectic effects of systemic interleukin-2 administration in the context of melanoma-specific immunization. Cells Tissues Organs 2005; 177:124-31. [PMID: 15388986 DOI: 10.1159/000079986] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Among human cancers, melanoma is characterized by an almost unique predisposition to regress in response to immune therapy. Recent clinical studies suggest that the frequency of this favorable event is enhanced by combining T-cell-directed active specific immunization with the systemic administration of interleukin (IL)-2. While waiting for additional clinical experience to confirm this observation, we embraced the working hypothesis that this combination provides superior response rates than either treatment alone. In particular, we have focused our interest on the paradoxical observation that active specific immunization consistently induces circulating CD8+ T cells capable of recognizing in ex vivo assays tumor cells, but cannot induce tumor regression alone. In these settings, it appears that combining the systemic administration of IL-2 is almost an absolute requirement for the induction of clinical responses. Here, we will expand on previous speculations on the postulated mechanism(s) of action of systemic IL-2 administration and, based on original data recently derived through high-throughput transcriptional and post-translational analysis, we will suggest an explanation for the eclectic effects of IL-2 administration in the context of active specific immunization.
Collapse
Affiliation(s)
- Monica C Panelli
- Immunogenetics Section, Department of Transfusion Medicine, Clinical Center, Bethesda, MD 20892-1502, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Panelli MC, White R, Foster M, Martin B, Wang E, Smith K, Marincola FM. Forecasting the cytokine storm following systemic interleukin (IL)-2 administration. J Transl Med 2004; 2:17. [PMID: 15175100 PMCID: PMC434535 DOI: 10.1186/1479-5876-2-17] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2004] [Accepted: 06/02/2004] [Indexed: 11/12/2022] Open
Abstract
Extensive clinical experience has shown that systemic interleukin (IL)-2 administration can induce complete or partial regression of renal cell cancer (RCC) metastases in 15 to 20 % of patients. Since IL-2 has no direct anti-cancer effects, it is believed that cancer regression is mediated either by a direct modulation of immune cell effector functions or through the mediation of soluble factors released as a result of IL-2 administration. We previously observed that transcriptional and protein changes induced by systemic IL-2 administration affect predominantly mononuclear phagocytes with little effect, particularly within the tumor microenvironment, on T cell activation, localization and proliferation. It further appeared that mononuclear phagocyte activation could be best explained by the indirect mediation of a secondary release of cytokines by IL-2 responsive cells either in the circulation or in peripheral tissues. To better characterize the cytokine outburst that follows systemic IL-2 administration we followed the serum levels of 68 soluble factors in ten patients with RCC undergoing high dose (720,000 IU/kg intravenously every 8 hours) IL-2 therapy. Serum was collected before therapy, 3 hours after the 1st and 4th dose and assayed on a multiplexed protein array platform. This study demonstrated that 1) the serum concentration of more than half the soluble factors studied changed significantly during therapy; 2) changes became more dramatic with increasing doses; 3) subclasses of soluble factors displayed different kinetics and 4) cytokine patterns varied quantitatively among patients. This study shows that the cytokine storm that follows systemic IL-2 administration is complex and far-reaching inclusive of soluble factors with disparate, partly redundant and partly contrasting effects on immune function. Therefore comparing in parallel large number of soluble factors, it sets a comprehensive foundation for further elucidation of "cytokine storm" in larger patient pools. Based on this analysis, we propose a prospective collection of serum samples in a larger cohort of patients undergoing IL-2 administration with the purpose of discerning patterns predictive of clinical outcome and toxicity.
Collapse
Affiliation(s)
- Monica C Panelli
- Immunogenetics Section, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, MD USA
| | | | | | - Brian Martin
- Unit of Molecular Structure National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Ena Wang
- Immunogenetics Section, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, MD USA
| | - Kina Smith
- Immunogenetics Section, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, MD USA
| | - Francesco M Marincola
- Immunogenetics Section, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, MD USA
| |
Collapse
|
19
|
Masztalerz A, Everse LA, Otter WD. Presence of Cytotoxic B220+CD3+CD4−CD8− Cells Correlates with the Therapeutic Efficacy of Lymphoma Treatment with IL-2 and/or IL-12. J Immunother 2004; 27:107-15. [PMID: 14770082 DOI: 10.1097/00002371-200403000-00004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Cancer treatment with IL-2 and IL-12 is thought to work via enhancement of proliferation and activity of T cells and NK cells. Incubation of cytotoxic T lymphocytes (CTLs) and NK cells with IL-2 and/or IL-12 results in propagation of a distinct cell type called lymphokine-activated killers (LAK) characterized by increased lytic activity against many tumor types. Here we address the question whether cytokine therapy may be efficient in treatment of a LAK-insensitive tumor and, if so, which cell type, other than classic LAK cells, is responsible for tumor cell killing. We used DBA/2 mice bearing metastasized SL2 lymphoma and treated them with locally applied IL-2 and /or IL-12 injections. We showed that IL-12 treatment is efficient, though there is a rather narrow range of effective doses because of toxicity. This toxicity may be alleviated by a single injection of IL-12 before treatment. Next, we showed that IL-12 synergistically enhances the efficacy of local IL-2 treatment. Moreover, our results indicate that the IL-2/IL-12-mediated therapeutic effect is greatest when it is given after establishment of an immune response to a tumor. Finally, we showed the existence of a unique population of lymphoid cells, namely B220+CD3+CD4-CD8-, at the site of tumor growth. These cells become highly cytotoxic to SL2 cells in mice treated with cytokines late (day 10-14) in the course of the immune response, but not in mice treated early (day 3-7), and cytotoxicity of this unique cell population correlates with the success of therapy.
Collapse
Affiliation(s)
- Agnieszka Masztalerz
- Department of Biochemistry and Cell Biology, University of Utrecht, The Netherlands.
| | | | | |
Collapse
|