1
|
Rausch L, Kallies A. Molecular Mechanisms Governing CD8 T Cell Differentiation and Checkpoint Inhibitor Response in Cancer. Annu Rev Immunol 2025; 43:515-543. [PMID: 40279308 DOI: 10.1146/annurev-immunol-082223-044122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2025]
Abstract
CD8 T cells play a critical role in antitumor immunity. However, over time, they often become dysfunctional or exhausted and ultimately fail to control tumor growth. To effectively harness CD8 T cells for cancer immunotherapy, a detailed understanding of the mechanisms that govern their differentiation and function is crucial. This review summarizes our current knowledge of the molecular pathways that regulate CD8 T cell heterogeneity and function in chronic infection and cancer and outlines how T cells respond to therapeutic checkpoint blockade. We explore how T cell-intrinsic and -extrinsic factors influence CD8 T cell differentiation, fate choices, and functional states and ultimately dictate their response to therapy. Identifying cells that orchestrate long-term antitumor immunity and understanding the mechanisms that govern their development and persistence are critical steps toward improving cancer immunotherapy.
Collapse
Affiliation(s)
- Lisa Rausch
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia;
| | - Axel Kallies
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia;
| |
Collapse
|
2
|
Bracken OV, De Maeyer RPH, Akbar AN. Enhancing immunity during ageing by targeting interactions within the tissue environment. Nat Rev Drug Discov 2025; 24:300-315. [PMID: 39875569 DOI: 10.1038/s41573-024-01126-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2024] [Indexed: 01/30/2025]
Abstract
Immunity declines with age. This results in a higher risk of age-related diseases, diminished ability to respond to new infections and reduced response to vaccines. The causes of this immune dysfunction are cellular senescence, which occurs in both lymphoid and non-lymphoid tissue, and chronic, low-grade inflammation known as 'inflammageing'. In this Review article, we highlight how the processes of inflammation and senescence drive each other, leading to loss of immune function. To break this cycle, therapies are needed that target the interactions between the altered tissue environment and the immune system instead of targeting each component alone. We discuss the relative merits and drawbacks of therapies that are directed at eliminating senescent cells (senolytics) and those that inhibit inflammation (senomorphics) in the context of tissue niches. Furthermore, we discuss therapeutic strategies designed to directly boost immune cell function and improve immune surveillance in tissues.
Collapse
Affiliation(s)
| | - Roel P H De Maeyer
- Division of Medicine, University College London, London, UK
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Arne N Akbar
- Division of Medicine, University College London, London, UK.
| |
Collapse
|
3
|
Li M, Li P, Wang X, Wang L, Gao G, Jiang G, Liu T, Lin W. Abnormal glucose and lipid metabolism promotes disrupted differentiation of T and B cell subsets in Behçet's disease. IMMUNOTHERAPY ADVANCES 2025; 5:ltaf010. [PMID: 40297266 PMCID: PMC12036013 DOI: 10.1093/immadv/ltaf010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 03/19/2025] [Indexed: 04/30/2025] Open
Abstract
Introduction Behçet's disease (BD) is a chronic, systemic inflammatory condition characterized by recurrent immune dysregulation. Materials & Methods This study conducted a comprehensive analysis of immune cell subsets, metabolic markers, and their interplay in BD patients. Using multiparametric flow cytometry, we identified elevated Th1 cells, senescent CD8+ T cells, and abnormal B cell activation as hallmarks of the chronic inflammatory state in BD. Results Despite immunotherapy, innate immune activation persisted, with increased mature NK cells, γδT1 cells, and conventional dendritic cells (cDCs), alongside reduced plasmacytoid dendritic cells (pDCs). Elevated glucose (GLU) and triacylglycerol (TAG) levels in BD patients correlated with increased Th1 cells, functional CD8+ T cells, and B cell activation. In vitro experiments demonstrated that GLU and TAG promote Th1 differentiation, CD8+ T cell activation, and B cell antibody production, revealing their role as drivers of immune dysregulation. Conclusion These findings underscore the intricate relationship between metabolic dysregulation and immune dysfunction in BD, highlighting potential diagnostic and therapeutic targets. Our study provides critical insights into BD pathogenesis, offering a foundation for optimizing disease management and monitoring immune and metabolic markers for improved patient outcomes.
Collapse
Affiliation(s)
- Minghao Li
- Department of Rheumatology and Autoimmunology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- School of Clinical and Basic Medicine, Shandong First Medical University &Shandong Academy of Medical Sciences, Jinan, China
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Medicine and Health Key Laboratory of Rheumatism, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
- Department of Critical-care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ping Li
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
- Shandong Engineering Research Center of Biomarker and artificial Intelligence Application, Jinan, China
| | - Xin Wang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
| | - Lijie Wang
- Department of Rheumatology and Autoimmunology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- School of Clinical and Basic Medicine, Shandong First Medical University &Shandong Academy of Medical Sciences, Jinan, China
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Medicine and Health Key Laboratory of Rheumatism, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
- Department of Critical-care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Guanmin Gao
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Zhengzhou University, #1 Jianshe East Road, Zhengzhou, China
| | | | - Tingting Liu
- Shandong Eye Hospital, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Wei Lin
- Department of Rheumatology and Autoimmunology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- School of Clinical and Basic Medicine, Shandong First Medical University &Shandong Academy of Medical Sciences, Jinan, China
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Medicine and Health Key Laboratory of Rheumatism, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
- Department of Critical-care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
4
|
Maurer K, Park CY, Mani S, Borji M, Raths F, Gouin KH, Penter L, Jin Y, Zhang JY, Shin C, Brenner JR, Southard J, Krishna S, Lu W, Lyu H, Abbondanza D, Mangum C, Olsen LR, Lawson MJ, Fabani M, Neuberg DS, Bachireddy P, Glezer EN, Farhi SL, Li S, Livak KJ, Ritz J, Soiffer RJ, Wu CJ, Azizi E. Coordinated immune networks in leukemia bone marrow microenvironments distinguish response to cellular therapy. Sci Immunol 2025; 10:eadr0782. [PMID: 39854478 DOI: 10.1126/sciimmunol.adr0782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 12/18/2024] [Indexed: 01/26/2025]
Abstract
Understanding how intratumoral immune populations coordinate antitumor responses after therapy can guide treatment prioritization. We systematically analyzed an established immunotherapy, donor lymphocyte infusion (DLI), by assessing 348,905 single-cell transcriptomes from 74 longitudinal bone marrow samples of 25 patients with relapsed leukemia; a subset was evaluated by both protein- and transcriptome-based spatial analysis. In acute myeloid leukemia (AML) DLI responders, we identified clonally expanded ZNF683+ CD8+ cytotoxic T lymphocytes with in vitro specificity for patient-matched AML. These cells originated primarily from the DLI product and appeared to coordinate antitumor immune responses through interaction with diverse immune cell types within the marrow microenvironment. Nonresponders lacked this cross-talk and had cytotoxic T lymphocytes with elevated TIGIT expression. Our study identifies recipient bone marrow microenvironment differences as a determinant of an effective antileukemia response and opens opportunities to modulate cellular therapy.
Collapse
Affiliation(s)
- Katie Maurer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Cameron Y Park
- Irving Institute for Cancer Dynamics, Columbia University, New York, NY 10027, USA
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Shouvik Mani
- Irving Institute for Cancer Dynamics, Columbia University, New York, NY 10027, USA
- Department of Computer Science, Columbia University, New York, NY 10027, USA
| | - Mehdi Borji
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | | | - Livius Penter
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Hematology, Oncology, and Tumorimmunology, Campus Virchow Klinikum, Berlin, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
| | - Yinuo Jin
- Irving Institute for Cancer Dynamics, Columbia University, New York, NY 10027, USA
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Jia Yi Zhang
- Irving Institute for Cancer Dynamics, Columbia University, New York, NY 10027, USA
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Crystal Shin
- Irving Institute for Cancer Dynamics, Columbia University, New York, NY 10027, USA
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - James R Brenner
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Jackson Southard
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Sachi Krishna
- Spatial Technology Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Wesley Lu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Haoxiang Lyu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Domenic Abbondanza
- Spatial Technology Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Medicine, Section of Rheumatology, University of Chicago, Chicago, IL 60637, USA
| | - Chanell Mangum
- Spatial Technology Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Lars Rønn Olsen
- Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | | | | | - Donna S Neuberg
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Pavan Bachireddy
- Department of Hematopoietic Biology & Malignancy, MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Samouil L Farhi
- Spatial Technology Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Shuqiang Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Kenneth J Livak
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Jerome Ritz
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Robert J Soiffer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Catherine J Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Elham Azizi
- Irving Institute for Cancer Dynamics, Columbia University, New York, NY 10027, USA
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
- Department of Computer Science, Columbia University, New York, NY 10027, USA
| |
Collapse
|
5
|
Wang Q, Chen S, Guo Z, Xia S, Zhang M. NK-like CD8 T cell: one potential evolutionary continuum between adaptive memory and innate immunity. Clin Exp Immunol 2024; 217:136-150. [PMID: 38651831 PMCID: PMC11239564 DOI: 10.1093/cei/uxae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/06/2024] [Accepted: 04/22/2024] [Indexed: 04/25/2024] Open
Abstract
CD8 T cells are crucial adaptive immune cells with cytotoxicity to fight against pathogens or abnormal self-cells via major histocompatibility complex class I-dependent priming pathways. The composition of the memory CD8 T-cell pool is influenced by various factors. Physiological aging, chronic viral infection, and autoimmune diseases promote the accumulation of CD8 T cells with highly differentiated memory phenotypes. Accumulating studies have shown that some of these memory CD8 T cells also exhibit innate-like cytotoxicity and upregulate the expression of receptors associated with natural killer (NK) cells. Further analysis shows that these NK-like CD8 T cells have transcriptional profiles of both NK and CD8 T cells, suggesting the transformation of CD8 T cells into NK cells. However, the specific induction mechanism underlying NK-like transformation and the implications of this process for CD8 T cells are still unclear. This review aimed to deduce the possible differentiation model of NK-like CD8 T cells, summarize the functions of major NK-cell receptors expressed on these cells, and provide a new perspective for exploring the role of these CD8 T cells in health and disease.
Collapse
Affiliation(s)
- Qiulei Wang
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Shaodan Chen
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Zhenhong Guo
- National Key Laboratory of Medical Immunology, Institute of Immunology, Second Military Medical University, Shanghai, China
| | - Sheng Xia
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Minghui Zhang
- School of Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
6
|
Liu X, Cheng X, Xie F, Li K, Shi Y, Shao B, Liang X, Wan F, Jia S, Zhang Y, Liu Y, Li H. Persistence of peripheral CD8 + CD28- T cells indicates a favourable outcome and tumour immunity in first-line HER2-positive metastatic breast cancer. Br J Cancer 2024; 130:1599-1608. [PMID: 38519706 PMCID: PMC11091143 DOI: 10.1038/s41416-024-02610-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND The contradictory role of CD8 + CD28- T cells in tumour immunity has been reported, while their biological and clinical significance in HER2-positive metastatic breast cancer (MBC) is still unknown. METHODS HER2-positive MBC patients with no prior therapy in the metastatic setting were retrospectively recruited at two medical centres. Peripheral CD8 + CD28- T cells (pTCD8+CD28-) were detected at baseline and following therapeutic intervals. Progression-free survival (PFS) was compared according to pTCD8+CD28- levels. The molecular features of pTCD8+CD28- and its correlation with tumour immunity were also investigated. RESULTS A total of 252 patients were enrolled, and the median follow-up time was 29.6 months. pTCD8+CD28- high at baseline has prolonged PFS compared to pTCD8+CD28- low (P = 0.001). Patients who maintained pTCD8+CD28- high had a longer PFS than those who kept pTCD8+CD28- low (P < 0.001). The enhanced pTCD8+CD28- level also indicates a longer PFS compared to pTCD8+CD28- low (P = 0.025). Here, pTCD8+CD28- was demonstrated as an antigen-experienced effector T cell. Higher IL-2 level (P = 0.034) and lower TGF-β level (P = 0.016) in the serum and highly infiltrated CD8 + CD28- T cells (P = 0.037) were also connected to pTCD8+CD28- high. CONCLUSIONS High pTCD8+CD28- level is associated with a favourable tumour immunity and a better PFS of HER2-targeting therapy in MBC patients.
Collapse
Affiliation(s)
- Xiaoran Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Breast Oncology, Peking University Cancer Hospital & Institute, Fu-Cheng road No. 52, Hai-Dian District, Beijing, China
| | - Xiangming Cheng
- Jin Xiang People's Hospital, Department of Hematologic Oncology, Jining, Shandong, China
| | - Feng Xie
- Huidu (Shanghai) Medical Sciences, Ltd., Shanghai, China
| | - Kun Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Breast Oncology, Peking University Cancer Hospital & Institute, Fu-Cheng road No. 52, Hai-Dian District, Beijing, China
| | - Yongcan Shi
- Jin Xiang People's Hospital, Department of Hematologic Oncology, Jining, Shandong, China
| | - Bin Shao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Breast Oncology, Peking University Cancer Hospital & Institute, Fu-Cheng road No. 52, Hai-Dian District, Beijing, China
| | - Xu Liang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Breast Oncology, Peking University Cancer Hospital & Institute, Fu-Cheng road No. 52, Hai-Dian District, Beijing, China
| | - Fengling Wan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Breast Oncology, Peking University Cancer Hospital & Institute, Fu-Cheng road No. 52, Hai-Dian District, Beijing, China
| | - Shidong Jia
- Huidu (Shanghai) Medical Sciences, Ltd., Shanghai, China
| | - Yue Zhang
- Huidu (Shanghai) Medical Sciences, Ltd., Shanghai, China
| | - Yiqiang Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Breast Oncology, Peking University Cancer Hospital & Institute, Fu-Cheng road No. 52, Hai-Dian District, Beijing, China.
| | - Huiping Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Breast Oncology, Peking University Cancer Hospital & Institute, Fu-Cheng road No. 52, Hai-Dian District, Beijing, China.
| |
Collapse
|
7
|
Giles JR, Globig AM, Kaech SM, Wherry EJ. CD8 + T cells in the cancer-immunity cycle. Immunity 2023; 56:2231-2253. [PMID: 37820583 PMCID: PMC11237652 DOI: 10.1016/j.immuni.2023.09.005] [Citation(s) in RCA: 134] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/12/2023] [Accepted: 09/12/2023] [Indexed: 10/13/2023]
Abstract
CD8+ T cells are end effectors of cancer immunity. Most forms of effective cancer immunotherapy involve CD8+ T cell effector function. Here, we review the current understanding of T cell function in cancer, focusing on key CD8+ T cell subtypes and states. We discuss factors that influence CD8+ T cell differentiation and function in cancer through a framework that incorporates the classic three-signal model and a fourth signal-metabolism-and also consider the impact of the tumor microenvironment from a T cell perspective. We argue for the notion of immunotherapies as "pro-drugs" that act to augment or modulate T cells, which ultimately serve as the drug in vivo, and for the importance of overall immune health in cancer treatment and prevention. The progress in understanding T cell function in cancer has and will continue to improve harnessing of the immune system across broader tumor types to benefit more patients.
Collapse
Affiliation(s)
- Josephine R Giles
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Anna-Maria Globig
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Susan M Kaech
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| | - E John Wherry
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
8
|
Lee SH, Kim SH, Nam TM, Jang JH, Kim KH, Lee YS, Kim MS, Kim MS, Jin SY, Lee M, Lee SH, Kim YZ. Epigenetic Regulation of the Expression of T Cell Stimulatory and Inhibitory Factors by Histone H3 Lysine Modification Enzymes and Its Prognostic Roles in Glioblastoma. J Korean Med Sci 2023; 38:e258. [PMID: 37605497 PMCID: PMC10442499 DOI: 10.3346/jkms.2023.38.e258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 06/11/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND This study aimed to identify the specific T cell co-stimulatory and co-inhibitory factors that play prognostic roles in patients with glioblastoma. Additionally, the unique histone H3 modification enzymes that regulate the expression levels of these specific co-stimulatory and co-inhibitory factors were investigated. METHODS The medical records of 84 patients newly diagnosed with glioblastoma at our institution from January 2006 to December 2020 were retrospectively reviewed. Immunohistochemical (IHC) staining for T cell co-stimulatory factors (CD27, CD28, CD137, OX40, and ICOS), T cell co-inhibitory factors (CTLA4, PD1, PD-L1, TIM3, and CD200R), and histone H3 lysine modification enzymes (MLL4, RIZ, EZH1, NSD2, KDM5c, JMJD1a, UTX, and JMJD5) was performed on archived paraffin-embedded tissues obtained by biopsy or resection. Quantitative real time-polymerase chain reaction (qRT-PCR) was performed for specific factors, which demonstrated causal relationships, in order to validate the findings of the IHC examinations. RESULTS The mean follow-up duration was 27.5 months (range, 4.1-43.5 months). During this period, 76 patients (90.5%) died, and the mean OS was 19.4 months (95% confidence interval, 16.3-20.9 months). Linear positive correlations were observed between the expression levels of CD28 and JMJD1a (R2 linear = 0.982) and those of CD137 and UTX (R2 linear = 1.528). Alternatively, significant negative correlations were observed between the expression levels of CTLA4 and RIZ (R2 linear = -1.746) and those of PD-L1 and EZH1 (R2 linear = -2.118); these relationships were confirmed by qRT-PCR. In the multivariate analysis, increased expression levels of CD28 (P = 0.042), and CD137 (P = 0.009), and decreased expression levels of CTLA4 (P = 0.003), PD-L1 (P = 0.020), and EZH1 (P = 0.040) were significantly associated with longer survival. CONCLUSION These findings suggest that the expression of certain T cell co-stimulatory factors, such as CD28 and CD 137, and co-inhibitory factors, such as CTLA4 and PD-L1 are associated with prognosis of glioblastoma patients.
Collapse
Affiliation(s)
- Sang Hyuk Lee
- Department of Neurosurgery, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
| | - Seung Hwan Kim
- Department of Neurosurgery, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
| | - Taek Min Nam
- Department of Neurosurgery, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
| | - Ji Hwan Jang
- Department of Neurosurgery, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
| | - Kyu Hong Kim
- Department of Neurosurgery, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
| | - Young-Sam Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Korea
- Well Aging Research Center, Division of Biotechnology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Korea
| | - Minseok S Kim
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Korea
- Translational Responsive Medicine Center, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Korea
| | - Mee-Seon Kim
- Department of Pathology, School of Dentistry, Kyungpook National University, Kyungpook National University Hospital, Daegu, Korea
| | - Sung Yup Jin
- Department of Anesthesiology and Pain Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
| | - Moonok Lee
- Department of Anesthesiology and Pain Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
| | - Sung-Hun Lee
- Cancer Research Institute, Clinomics Inc., Suwon, Korea
| | - Young Zoon Kim
- Department of Neurosurgery, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea.
| |
Collapse
|
9
|
Laphanuwat P, Gomes DCO, Akbar AN. Senescent T cells: Beneficial and detrimental roles. Immunol Rev 2023; 316:160-175. [PMID: 37098109 PMCID: PMC10952287 DOI: 10.1111/imr.13206] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/20/2023] [Accepted: 04/01/2023] [Indexed: 04/27/2023]
Abstract
As the thymus involutes during aging, the T-cell pool has to be maintained by the periodic expansion of preexisting T cells during adulthood. A conundrum is that repeated episodes of activation and proliferation drive the differentiation of T cells toward replicative senescence, due to telomere erosion. This review discusses mechanisms that regulate the end-stage differentiation (senescence) of T cells. Although these cells, within both CD4 and CD8 compartments, lose proliferative activity after antigen-specific challenge, they acquire innate-like immune function. While this may confer broad immune protection during aging, these senescent T cells may also cause immunopathology, especially in the context of excessive inflammation in tissue microenvironments.
Collapse
Affiliation(s)
- Phatthamon Laphanuwat
- Division of MedicineUniversity College LondonLondonUK
- Department of PharmacologyFaculty of Medicine, Khon Kaen UniversityKhon KaenThailand
| | - Daniel Claudio Oliveira Gomes
- Division of MedicineUniversity College LondonLondonUK
- Núcleo de Doenças InfecciosasUniversidade Federal do Espírito SantoVitoriaBrazil
- Núcleo de BiotecnologiaUniversidade Federal do Espírito SantoVitoriaBrazil
| | - Arne N. Akbar
- Division of MedicineUniversity College LondonLondonUK
| |
Collapse
|
10
|
Fan F, Dong G, Han C, Ding W, Li X, Dong X, Wang Z, Liang P, Yu J. Peripheral immune factors aiding clinical parameter for better early recurrence prediction of hepatocellular carcinoma after thermal ablation. Int J Hyperthermia 2023; 40:2172219. [PMID: 36775652 DOI: 10.1080/02656736.2023.2172219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023] Open
Abstract
OBJECTIVES Current predictors are largely unsatisfied for early recurrence (ER) of hepatocellular carcinoma (HCC) after thermal ablation. We aimed to explore the prognostic value of peripheral immune factors (PIFs) for better ER prediction of HCC after thermal ablation. METHODS Patients who received peripheral blood mononuclear cells (PBMCs) tests before thermal ablation were included. Clinical parameters and 18 PIFs were selected to construct ModelClin, ModelPIFs and the hybrid ModelPIFs-Clin. Model performances were evaluated using area under the curve (AUC), and recurrence-free survival (RFS) were analyzed by Kaplan-Meier analysis and log-rank tests. RESULTS 244 patients were included and were randomly divided in 3:1 ratio to discovery and validation cohorts. Clinical parameters including tumor size and AFP, and PIFs including neutrophils, platelets, CD3+CD16+CD56+ NKT and CD8+CD28- T lymphocytes were selected. The ModelPIFs-Clin showed increase in predictive performance compared with ModelClin, with the AUC improved from 0.664 (95%CI:0.588-0.740) to 0.801 (95%CI:0.734-0.867) in discovery cohort (p < 0.0001), and from 0.645 (95%CI:0.510-0.781) to 0.737(95%CI:0.608-0.865) in validation cohort (p = 0.1006). ModelPIFs-Clin enabled ER risk stratification of patients. Patients predicted in ModelPIFs-Clin high-risk subgroup had a poor RFS compared with those predicted as ModelPIFs-Clin low-risk subgroup, with the median RFS was 18.00 month versus 100.78 month in discovery cohort (p < 0.0001); and 24.00 month versus 60.35 month in validation cohort (p = 0.288). Patients in different risk subgroups exhibited distinct peripheral immune contexture. CONCLUSIONS Peripheral immune cells aiding clinical parameters boosted the prediction ability for ER of HCC after thermal ablation, which be helpful for pre-ablation ER risk stratification.
Collapse
Affiliation(s)
- Fangying Fan
- Fifth Medical Center of Chinese, PLA General Hospital, Beijing, China.,Chinese PLA Medical School, Beijing, China
| | - Guoping Dong
- Fifth Medical Center of Chinese, PLA General Hospital, Beijing, China
| | - Chuanhui Han
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing, China.,Peking University Cancer Hospital & Institute, Beijing, China
| | - Wenzhen Ding
- Fifth Medical Center of Chinese, PLA General Hospital, Beijing, China
| | - Xin Li
- Fifth Medical Center of Chinese, PLA General Hospital, Beijing, China
| | - Xuejuan Dong
- Fifth Medical Center of Chinese, PLA General Hospital, Beijing, China
| | - Zhen Wang
- Fifth Medical Center of Chinese, PLA General Hospital, Beijing, China
| | - Ping Liang
- Fifth Medical Center of Chinese, PLA General Hospital, Beijing, China.,Chinese PLA Medical School, Beijing, China
| | - Jie Yu
- Fifth Medical Center of Chinese, PLA General Hospital, Beijing, China.,Chinese PLA Medical School, Beijing, China
| |
Collapse
|
11
|
He J, Li Y, Chen J, Wu Q, Shan H, Wang X, Zhang M, Nie L, Wang Q. The relationships of CD8+ T cell subsets in RA patients with disease activity and clinical parameters. Int Immunopharmacol 2023; 114:109399. [PMID: 36442285 DOI: 10.1016/j.intimp.2022.109399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/12/2022] [Accepted: 10/26/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND CD8+ T cells are plentiful in rheumatoid arthritis (RA) and have a important role in it's pathogenesis. Many subsets have been identified in CD8+ T cells, however, the relationship between CD8+ T subpopulations and disease activity of RA is poorly defined. Here we detected different CD8+ T cell subsets in peripheral blood and examined their relationships with clinical features and serological parameters in RA. METHODS CD8+ T cell phenotypes and percentages in peripheral blood were determined by flow cytometry in 39 patients with RA. The clinical characteristics and serological parameters of RA patients were collected and DAS28-ESR was measured as indicator of disease activity. Linear regression was performed to assess the correlation of CD8+ T cell subsets with RA clinical variables. RESULTS Naive CD8+ T cells were significantly and negatively correlated with RA disease activity indicator DAS28-ESR(r2 = 0.1027, p = 0.0468), erythrocyte sedimentation rate (ESR)(r2 = 0.1891, p = 0.0057), clinical disease activity index(CDAI)(r2 = 0.1474, p = 0.0158), simplified disease activity index(SDAI)(r2 = 0.1465, p = 0.0255), and duration(r2 = 0.1247, p = 0.0274). And the percent of naive CD8+ T cells were obviously decreased in RA with high disease activity when compared with RA in low disease activity(p < 0.01). In addition, Our results indicated significant positive correlations between CD8+ CD28- T cells and DAS28-ESR(r2 = 0.1881, p = 0.0058), ESR(r2 = 0.2279, p = 0.0021), c reaction protein (CRP)(r2 = 0.2203, p = 0.0051), CDAI (r2 = 0.1778, p = 0.0075), SDAI (r2 = 0.2618, p = 0.0020), rheumatoid factor(RF)(r2 = 0.1823, p = 0.0067), age(r2 = 0.1968, p = 0.0047), as well as similar positive correlations between CD8+ CD27- T cells and DAS28-ESR(r2 = 0.1661, p = 0.01), ESR(r2 = 0.1586, p = 0.012), CRP(r2 = 0.1778, p = 0.013), CDAI (r2 = 0.1622, p = 0.0110), SDAI(r2 = 0.2316, p = 0.0040), RF(r2 = 0.2097, p = 0.0034), age(r2 = 0.1932, p = 0.0051). Furthermore, interesting results showed observable positive correlations between activated CD8+ T cells and total cholesterol(TC)(r2 = 0.2757, p = 0.0007), triglyceride(TG)(r2 = 0.2886, p = 0.0005), low density lipoprotein(LDL-C)(r2 = 0.09643, p = 0.0264) and Krebs yon denlungen-6(KL-6)(r2 = 0.4171, p = 0.0002). And TCRγδ + CD8+ T cells were also found positively related with total cholesterol(TC)(r2 = 0.5015, p < 0.0001), triglyceride(TG)(r2 = 0.2031, p = 0.0045), and KL-6(r2 = 0.2122, p = 0.0136). CONCLUSIONS Our results suggest that naive CD8+ T cells, CD8+ CD28- T cells, and CD8+ CD27- T cells are obviously correlated with inflammation and disease activity of RA. While activated CD8+ T cells and TCRγδ + CD8+ T cells may involve in lipidmetabolism and lung fibrosis of RA. These CD8+ T cell subsets may be new biomarkers and targets for RA disease evaluation, therapeutic target-selecting, curative effects and prognoses assessment.
Collapse
Affiliation(s)
- Juan He
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, China; The Key Laboratory of Inflammatory and Immunology Diseases, Shenzhen, China
| | - Yu Li
- Department of Laboratory Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - Jian Chen
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, China; The Key Laboratory of Inflammatory and Immunology Diseases, Shenzhen, China
| | - Qi Wu
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, China; The Key Laboratory of Inflammatory and Immunology Diseases, Shenzhen, China
| | - Hongying Shan
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, China; The Key Laboratory of Inflammatory and Immunology Diseases, Shenzhen, China
| | - Xiaocheng Wang
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, China; The Key Laboratory of Inflammatory and Immunology Diseases, Shenzhen, China
| | - Miaomiao Zhang
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, China; The Key Laboratory of Inflammatory and Immunology Diseases, Shenzhen, China
| | - Liping Nie
- Department of Laboratory Medicine, Peking University Shenzhen Hospital, Shenzhen, China.
| | - Qingwen Wang
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, China; The Key Laboratory of Inflammatory and Immunology Diseases, Shenzhen, China.
| |
Collapse
|
12
|
Li H, Zhou K, Wang K, Cao H, Wu W, Wang Z, Dai Z, Chen S, Peng Y, Xiao G, Luo P, Zhang J, Liu Z, Cheng Q, Zhang H. A pan-cancer and single-cell sequencing analysis of CD161, a promising onco-immunological biomarker in tumor microenvironment and immunotherapy. Front Immunol 2022; 13:1040289. [PMID: 36660546 PMCID: PMC9844218 DOI: 10.3389/fimmu.2022.1040289] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/19/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND CD161 has been linked to the appearance and development of various cancers. METHODS The mutation map and the variation of CNVs and SNVs of CD161 were displayed according to cBioportal and GSCALite. We also evaluated the pathway enrichment and drug sensitivity of CD161 according to GSCALite. We performed a single-cell sequencing analysis of cancer cells and T cells in melanoma. The cell communication patterns related to CD161 were further explored. Multiplex immunofluorescence staining of tissue microarrays was used to detect the association between CD161 expression and macrophages and T cells. RESULTS A high CD161 level was related to neoantigens expression, pathway enrichment, and drug sensitivity. In addition, single-cell sequencing analysis showed that CD161 was mainly expressed in T cells, M1 and M2 Macrophages, neoplastic, microglial cells, neurons, and cancer cells in many tumor types. Further study on pseudotime trajectories and functional annotation of CD161 proved the critical role of CD161 in tumor progression and T cell immunity in melanoma. Multiplex immunofluorescence revealed that CD161 is closely correlated with the immune infiltration of T cells and macrophages in multiple cancers. In addition, high CD161 expression predicted a favorable immunotherapy response. CONCLUSION CD161 is involved in the immune infiltration of T cells and macrophages and might be a promising target for tumor immunotherapy.
Collapse
Affiliation(s)
- He Li
- The Animal Laboratory Center, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Ke Zhou
- School of Medicine, Hunan Normal University, Changsha, China
| | - Kaiyue Wang
- The Animal Laboratory Center, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hui Cao
- Brain Hospital of Hunan Province, The Second People’s Hospital of Hunan Province, Changsha, China
- The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Wantao Wu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zeyu Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ziyu Dai
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shi Chen
- School of Medicine, Hunan Normal University, Changsha, China
| | - Yun Peng
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Teaching and Research Section of Clinical Nursing, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Gelei Xiao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou, Zhengzhou, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hao Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
13
|
Zhu Q, Qiao G, Huang L, Xu C, Guo D, Wang S, Zhao J, Song Y, Liu B, Chen Z, Yang Z, Yuan Y. Restored CD8+PD-1+ T Cells Facilitate the Response to Anti-PD-1 for Patients With Pancreatic Ductal Adenocarcinoma. Front Oncol 2022; 12:837560. [PMID: 35480107 PMCID: PMC9035626 DOI: 10.3389/fonc.2022.837560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/04/2022] [Indexed: 11/25/2022] Open
Abstract
Purpose We aimed to investigate the restoration of CD8+PD-1+ T cells through adoptive T-cell therapy (ACT) in relation to the prognosis and the therapeutic response to anti-PD-1 in patients with advanced pancreatic cancer (APC). Methods A total of 177 adult patients who underwent tumor resection as initial treatment for pancreatic ductal adenocarcinoma (PDAC) from February 2013 to July 2019 at Zhongnan Hospital of Wuhan University were enrolled in this study. Another cohort of 32 patients with APC was prospectively enrolled from Capital Medical University Cancer Center between June 1, 2013, and May 30, 2019. Results Of the 177 patients who received tumor resection, 67 tumor samples showed overexpression of PD-L1 and 110 patients with low expression of PD-L1. We found that overexpressed PD-L1 was a significant prognostic factor related to overall survival (OS). Furthermore, we tested the percentage of peripheral CD8+PD-1+ T cells in all patients and found that it was significantly correlated with the PD-L1 expression and the prognosis of patients with PDAC. The peripheral blood T lymphocyte subtypes were tracked for 30 months, and CD8+PD-1+ cells were shown to decrease. After that, we performed ACT for patients with APC in another cancer center. We found that the ratios of posttreatment of ACT/pre-ACT CD8+PD-1+ T cells were significantly related to the prognosis of patients with APC. Moreover, patients with combined treatment of ACT with anti-PD-1 had significantly favorable OS. Conclusions This study showed that the CD8+PD-1+ T-cell level was related to the expression of PD-L1. Restoring CD8+PD-1+ T cells in patients with APC by treatment of ACT significantly benefits the prognosis and facilitates the response to anti-PD-1.
Collapse
Affiliation(s)
- Qian Zhu
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Guoliang Qiao
- Department of Surgical Oncology, Massachusetts General Hospital, Boston, MA, United States
- *Correspondence: Guoliang Qiao, ; Yufeng Yuan,
| | - Lefu Huang
- Department of Medical Oncology, Beijing Key Laboratory for Therapeutic Cancer Vaccines, Capital Medical University Cancer Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Chang Xu
- First Department of Biliary Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Military Medical University, Shanghai, China
| | - Deliang Guo
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shuo Wang
- Department of Medical Oncology, Beijing Key Laboratory for Therapeutic Cancer Vaccines, Capital Medical University Cancer Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of General Surgery, Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Jing Zhao
- Department of Dermatology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuguang Song
- Department of Medical Oncology, Beijing Key Laboratory for Therapeutic Cancer Vaccines, Capital Medical University Cancer Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Bing Liu
- Department of General Surgery, Huo Jianjun General Hospital, Beijing, China
| | - Zheng Chen
- Department of General Surgery, Capital Institute of Pediatrics, Beijing, China
| | - Zhiyong Yang
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yufeng Yuan
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- *Correspondence: Guoliang Qiao, ; Yufeng Yuan,
| |
Collapse
|
14
|
CD8 + T Cell Senescence: Lights and Shadows in Viral Infections, Autoimmune Disorders and Cancer. Int J Mol Sci 2022; 23:ijms23063374. [PMID: 35328795 PMCID: PMC8955595 DOI: 10.3390/ijms23063374] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/14/2022] [Accepted: 03/18/2022] [Indexed: 12/15/2022] Open
Abstract
CD8+ T lymphocytes are a heterogeneous class of cells that play a crucial role in the adaptive immune response against pathogens and cancer. During their lifetime, they acquire cytotoxic functions to ensure the clearance of infected or transformed cells and, in addition, they turn into memory lymphocytes, thus providing a long-term protection. During ageing, the thymic involution causes a reduction of circulating T cells and an enrichment of memory cells, partially explaining the lowering of the response towards novel antigens with implications in vaccine efficacy. Moreover, the persistent stimulation by several antigens throughout life favors the switching of CD8+ T cells towards a senescent phenotype contributing to a low-grade inflammation that is a major component of several ageing-related diseases. In genetically predisposed young people, an immunological stress caused by viral infections (e.g., HIV, CMV, SARS-CoV-2), autoimmune disorders or tumor microenvironment (TME) could mimic the ageing status with the consequent acceleration of T cell senescence. This, in turn, exacerbates the inflamed conditions with dramatic effects on the clinical progression of the disease. A better characterization of the phenotype as well as the functions of senescent CD8+ T cells can be pivotal to prevent age-related diseases, to improve vaccine strategies and, possibly, immunotherapies in autoimmune diseases and cancer.
Collapse
|
15
|
Li Y, An H, Shen C, Wang B, Zhang T, Hong Y, Jiang H, Zhou P, Ding X. Deep phenotyping of T cell populations under long-term treatment of tacrolimus and rapamycin in patients receiving renal transplantations by mass cytometry. Clin Transl Med 2021; 11:e629. [PMID: 34841735 PMCID: PMC8574956 DOI: 10.1002/ctm2.629] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/04/2021] [Accepted: 10/08/2021] [Indexed: 12/14/2022] Open
Abstract
Tacrolimus (FK506) and rapamycin (RAPA) are widely used to maintain long-term immunosuppression after organ transplantation. However, the impact of accumulative drug administration on the recipients' immune systems remains unclear. We investigated the impact of 3-year FK506 or RAPA treatment after renal transplantation on the human immune systems. A discovery cohort of 30 patients was first recruited, and we discovered two distinctive T lineage suppressive regulatory patterns induced by chronic treatment of FK506 and RAPA. The increased percentage of senescent CD8+ CD57+ T lineages and less responsive T cell receptor (TCR) pathway in the FK506 group indicate better graft acceptance. Meanwhile, percentages of regulatory T cells (Tregs) and expression of CTLA-4 were both up to two-fold higher in the RAPA group, suggesting the inconsistent reactivation potential of the FK506 and RAPA groups when an anti-tumour or anti-infection immune response is concerned. Additionally, up-regulation of phosphorylated signaling proteins in T lineages after in vitro CD3/CD28 stimulation suggested more sensitive TCR-signaling pathways reserved in the RAPA group. An independent validation cohort of 100 renal transplantation patients was further investigated for the hypothesis that long-term RAPA administration mitigates the development of tumours and infections during long-term intake of immunosuppressants. Our results indicate that RAPA administration indeed results in less clinical oncogenesis and infection. The deep phenotyping of T-cell lineages, as educated by the long-term treatment of different immunosuppressants, provides new evidence for personalized precision medicine after renal transplantations.
Collapse
Affiliation(s)
- Yiyang Li
- State Key Laboratory of Oncogenes and Related GenesSchool of Biomedical EngineeringInstitute for Personalized MedicineShanghai Jiao Tong UniversityShanghaiPeople's Republic of China
| | - Huimin An
- Division of Kidney TransplantDepartment of UrologyRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiPeople's Republic of China
| | - Chuan Shen
- Department of Liver SurgeryRenji HospitalShanghai Jiao Tong University School of MedicineShanghaiPeople's Republic of China
| | - Boqian Wang
- State Key Laboratory of Oncogenes and Related GenesSchool of Biomedical EngineeringInstitute for Personalized MedicineShanghai Jiao Tong UniversityShanghaiPeople's Republic of China
| | - Ting Zhang
- State Key Laboratory of Oncogenes and Related GenesSchool of Biomedical EngineeringInstitute for Personalized MedicineShanghai Jiao Tong UniversityShanghaiPeople's Republic of China
| | - Yifan Hong
- State Key Laboratory of Oncogenes and Related GenesSchool of Biomedical EngineeringInstitute for Personalized MedicineShanghai Jiao Tong UniversityShanghaiPeople's Republic of China
| | - Hui Jiang
- State Key Laboratory of Oncogenes and Related GenesSchool of Biomedical EngineeringInstitute for Personalized MedicineShanghai Jiao Tong UniversityShanghaiPeople's Republic of China
| | - Peijun Zhou
- Division of Kidney TransplantDepartment of UrologyRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiPeople's Republic of China
| | - Xianting Ding
- State Key Laboratory of Oncogenes and Related GenesSchool of Biomedical EngineeringInstitute for Personalized MedicineShanghai Jiao Tong UniversityShanghaiPeople's Republic of China
| |
Collapse
|
16
|
Coleman MJ, Zimmerly KM, Yang XO. Accumulation of CD28 null Senescent T-Cells Is Associated with Poorer Outcomes in COVID19 Patients. Biomolecules 2021; 11:1425. [PMID: 34680058 PMCID: PMC8533086 DOI: 10.3390/biom11101425] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/15/2021] [Accepted: 09/25/2021] [Indexed: 12/11/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes infectious disease, and manifests in a wide range of symptoms from asymptomatic to severe illness and even death. Severity of infection is related to many risk factors, including aging and an array of underlying conditions, such as diabetes, hypertension, chronic obstructive pulmonary disease (COPD), and cancer. It remains poorly understood how these conditions influence the severity of COVID-19. Expansion of the CD28null senescent T-cell populations, a common phenomenon in aging and several chronic inflammatory conditions, is associated with higher morbidity and mortality rates in COVID-19. Here, we summarize the potential mechanisms whereby CD28null cells drive adverse outcomes in disease and predispose patients to devastating COVID-19, and discuss possible treatments for individuals with high counts of CD28null senescent T-cells.
Collapse
Affiliation(s)
- Mia J. Coleman
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (M.J.C.); (K.M.Z.)
- Class of 2023, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Kourtney M. Zimmerly
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (M.J.C.); (K.M.Z.)
| | - Xuexian O. Yang
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (M.J.C.); (K.M.Z.)
| |
Collapse
|
17
|
Niederlova V, Tsyklauri O, Chadimova T, Stepanek O. CD8 + Tregs revisited: A heterogeneous population with different phenotypes and properties. Eur J Immunol 2021; 51:512-530. [PMID: 33501647 DOI: 10.1002/eji.202048614] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/31/2020] [Accepted: 01/21/2021] [Indexed: 12/20/2022]
Abstract
Regulatory T cells (Tregs) play a key role in the peripheral self-tolerance and preventing autoimmunity. While classical CD4+ Foxp3+ Tregs are well established, their CD8+ counterparts are still controversial in many aspects including their phenotypic identity and their mechanisms of suppression. Because of these controversies and because of only a limited number of studies documenting the immunoregulatory function of CD8+ Tregs in vivo, the concept of CD8+ Tregs is still not unanimously accepted. We propose that any T-cell subset considered as true regulatory must be distinguishable from other cell types and must suppress in vivo immune responses via a known mechanism. In this article, we revisit the concept of CD8+ Tregs by focusing on the characterization of individual CD8+ T-cell subsets with proposed regulatory capacity separately. Therefore, we review the phenotype and function of CD8+ FOXP3+ T cells, CD8+ CD122+ T cells, CD8+ CD28low/- T cells, CD8+ CD45RClow T cells, T cells expressing CD8αα homodimer and Qa-1-restricted CD8+ T cells to show whether there is sufficient evidence to establish these subsets as bona fide Tregs. Based on the intrinsic ability of CD8+ Treg subsets to promote immune tolerance in animal models, we elaborate on their potential use in clinics.
Collapse
Affiliation(s)
- Veronika Niederlova
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Oksana Tsyklauri
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.,Faculty of Science, Charles University, Prague, Czech Republic
| | - Tereza Chadimova
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.,Institute of Experimental Neuroimmunology, Technical University of Munich, Munich, Germany
| | - Ondrej Stepanek
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
18
|
Donia M, Ellebaek E, Andersen MH, Straten PT, Svane IM. Analysis of Vδ1 T cells in clinical grade melanoma-infiltrating lymphocytes. Oncoimmunology 2021; 1:1297-1304. [PMID: 23243593 PMCID: PMC3518502 DOI: 10.4161/onci.21659] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
γδ T cells, including Vδ1 and Vδ2 T cells, can recognize tumor-associated ligands neglected by conventional αβ T cells in a MHC-independent manner. Little is known regarding the anticancer potential and the possibility to isolate and expand Vδ1 T cells to therapeutically relevant numbers. In this study, we have detected low frequencies of Vδ1 T cells among tumor-infiltrating lymphocyte (TIL) products for adoptive cell transfer generated from melanoma metastases. An increased frequency of Vδ1 T cells was found among the cell products from patients with an advanced disease stage. Vδ1 T cells displayed in vitro antitumor activities and sufficient proliferative potential to generate over 1 × 109 cells using current protocols for T cell transfer. Infusion of Vδ1 T cells together with high numbers of αβ TILs in a clinical trial was safe and well tolerated. These data suggest that Vδ1 T cells should be further scrutinized as a potentially useful tool for the treatment of patients with metastatic melanoma.
Collapse
Affiliation(s)
- Marco Donia
- Center for Cancer Immune Therapy; Department of Haematology; Copenhagen University Hospital at Herlev; Herlev, Denmark ; Department of Biomedical Sciences; University of Catania; Catania, Italy
| | | | | | | | | |
Collapse
|
19
|
Awwad MHS, Mahmoud A, Bruns H, Echchannaoui H, Kriegsmann K, Lutz R, Raab MS, Bertsch U, Munder M, Jauch A, Weisel K, Maier B, Weinhold N, Salwender HJ, Eckstein V, Hänel M, Fenk R, Dürig J, Brors B, Benner A, Müller-Tidow C, Goldschmidt H, Hundemer M. Selective elimination of immunosuppressive T cells in patients with multiple myeloma. Leukemia 2021; 35:2602-2615. [PMID: 33597728 PMCID: PMC8410603 DOI: 10.1038/s41375-021-01172-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/13/2021] [Accepted: 01/28/2021] [Indexed: 01/31/2023]
Abstract
Elimination of suppressive T cells may enable and enhance cancer immunotherapy. Here, we demonstrate that the cell membrane protein SLAMF7 was highly expressed on immunosuppressive CD8+CD28-CD57+ Tregs in multiple myeloma (MM). SLAMF7 expression associated with T cell exhaustion surface markers and exhaustion-related transcription factor signatures. T cells from patients with a high frequency of SLAMF7+CD8+ T cells exhibited decreased immunoreactivity towards the MART-1aa26-35*A27L antigen. A monoclonal anti-SLAMF7 antibody (elotuzumab) specifically depleted SLAMF7+CD8+ T cells in vitro and in vivo via macrophage-mediated antibody-dependent cellular phagocytosis (ADCP). Anti-SLAMF7 treatment of MM patients depleted suppressive T cells in peripheral blood. These data highlight SLAMF7 as a marker for suppressive CD8+ Treg and suggest that anti-SLAMF7 antibodies can be used to boost anti-tumoral immune responses in cancer patients.
Collapse
Affiliation(s)
- Mohamed H. S. Awwad
- grid.5253.10000 0001 0328 4908Department of Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Abdelrahman Mahmoud
- grid.7497.d0000 0004 0492 0584Division of Applied Bioinformatics, German Cancer Research Center, Heidelberg, Germany ,grid.7700.00000 0001 2190 4373Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Heiko Bruns
- grid.411668.c0000 0000 9935 6525Department of Hematology and Oncology, Erlangen University Hospital, Erlangen, Germany
| | - Hakim Echchannaoui
- grid.5802.f0000 0001 1941 7111Third Department of Medicine, University Cancer Center (UCT), University Medical Center (UMC) of the Johannes Gutenberg University, Erlangen, Germany ,German Cancer Consortium (Dktk), Partner Site Frankfurt/Mainz, Mainz, Germany
| | - Katharina Kriegsmann
- grid.5253.10000 0001 0328 4908Department of Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Raphael Lutz
- grid.5253.10000 0001 0328 4908Department of Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Marc S. Raab
- grid.5253.10000 0001 0328 4908Department of Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany ,grid.7700.00000 0001 2190 4373Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center and Department of Internal Medicine V, University of Heidelberg, 69120 Heidelberg, Germany
| | - Uta Bertsch
- grid.5253.10000 0001 0328 4908Department of Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany ,grid.7700.00000 0001 2190 4373National Center for Tumor Diseases, Heidelberg University, Heidelberg, Germany
| | - Markus Munder
- grid.5802.f0000 0001 1941 7111Third Department of Medicine, University Cancer Center (UCT), University Medical Center (UMC) of the Johannes Gutenberg University, Erlangen, Germany
| | - Anna Jauch
- grid.5253.10000 0001 0328 4908Institute of Human Genetics, Heidelberg University Hospital, Heidelberg, Germany
| | - Katja Weisel
- grid.13648.380000 0001 2180 3484Department of Oncology, Hematology and BMT, University Medical Center of Hamburg-Eppendorf, Hamburg, Germany
| | - Bettina Maier
- grid.5253.10000 0001 0328 4908Department of Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Niels Weinhold
- grid.5253.10000 0001 0328 4908Department of Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Volker Eckstein
- grid.5253.10000 0001 0328 4908Department of Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Mathias Hänel
- grid.459629.50000 0004 0389 4214Department of Internal Medicine III, Klinikum Chemnitz, Chemnitz, Germany
| | - Roland Fenk
- Department of Hematology, Oncology and Clinical Immunology, Düsseldorf University, Hamburg, Germany
| | - Jan Dürig
- grid.5718.b0000 0001 2187 5445Department of Hematology, Essen University, Hamburg, Germany
| | - Benedikt Brors
- grid.7497.d0000 0004 0492 0584Division of Applied Bioinformatics, German Cancer Research Center, Heidelberg, Germany ,grid.7700.00000 0001 2190 4373National Center for Tumor Diseases, Heidelberg University, Heidelberg, Germany
| | - Axel Benner
- grid.7497.d0000 0004 0492 0584Division of Biostatistics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Carsten Müller-Tidow
- grid.5253.10000 0001 0328 4908Department of Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany ,grid.7700.00000 0001 2190 4373National Center for Tumor Diseases, Heidelberg University, Heidelberg, Germany ,Molecular Medicine Partnership Unit, Heidelberg University Hospital, EMBL, Heidelberg, Germany
| | - Hartmut Goldschmidt
- grid.5253.10000 0001 0328 4908Department of Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany ,grid.7700.00000 0001 2190 4373National Center for Tumor Diseases, Heidelberg University, Heidelberg, Germany
| | - Michael Hundemer
- grid.5253.10000 0001 0328 4908Department of Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
20
|
Liu X, Hoft DF, Peng G. Senescent T cells within suppressive tumor microenvironments: emerging target for tumor immunotherapy. J Clin Invest 2020; 130:1073-1083. [PMID: 32118585 DOI: 10.1172/jci133679] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The functional state of the preexisting T cells in the tumor microenvironment is a key determinant for effective antitumor immunity and immunotherapy. Increasing evidence suggests that immunosenescence is an important state of T cell dysfunction that is distinct from exhaustion, a key strategy used by malignant tumors to evade immune surveillance and sustain the suppressive tumor microenvironment. Here, we discuss the phenotypic and functional characteristics of senescent T cells and their role in human cancers. We also explore the possible mechanisms and signaling pathways responsible for induction of T cell senescence by malignant tumors, and then discuss potential strategies to prevent and/or reverse senescence in tumor-specific T cells. A better understanding of these critical issues should provide novel strategies to enhance cancer immunotherapy.
Collapse
|
21
|
Qiao G, Wang X, Zhou X, Morse MA, Wu J, Wang S, Song Y, Jiang N, Zhao Y, Zhou L, Zhao J, Di Y, Zhu L, Hobeika A, Ren J, Lyerly HK. Immune correlates of clinical benefit in a phase I study of hyperthermia with adoptive T cell immunotherapy in patients with solid tumors. Int J Hyperthermia 2020; 36:74-82. [PMID: 31795830 DOI: 10.1080/02656736.2019.1647350] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Purpose: To characterize the T cell receptor (TCR) repertoire, serum cytokine levels, peripheral blood T lymphocyte populations, safety, and clinical efficacy of hyperthermia (HT) combined with autologous adoptive cell therapy (ACT) and either salvage chemotherapy (CT) or anti-PD-1 antibody in patients with previously treated advanced solid tumors.Materials and methods: Thirty-three (33) patients with ovarian, pancreatic, gastric, colorectal, cervical, or endometrial cancer were recruited into the following therapeutic groups: HT + ACT (n = 10), HT + ACT + anti-PD-1 inhibitor (pembrolizumab) (n = 11) and HT + ACT + CT (n = 12). Peripheral blood was collected to analyze TCR repertoire, measurements of cytokines levels and lymphocyte sub-populations before and after treatment.Results: The objective response rate (ORR) was 30% (10/33), including three complete responses (CR) (9.1%) and seven partial responses (PR) (21.2%) and a disease control rate (DCR = CR + PR + SD) of 66.7% (22 of 33). The most common adverse reactions, blistering, subcutaneous fat induration, local heat-related pain, vomiting and sinus tachycardia, were observed in association with HT. IL-2, IL-4, TNF-α, and IFN-γ levels in peripheral blood were significantly increased among the clinical responders (p < 0.05) while IL-6 and IL-10 were elevated among those with progressive disease (p < 0.05). Peripheral blood CD8+/CD28+ T cells increased (p = 0.002), while the CD4+/CD25+/CD127+Treg cells decreased after therapy (p = 0.012). TCR diversity was substantially increased among the clinical responders.Conclusions: Combining HT with ACT plus either CT or anti-PD-1 antibody was safe, generated clinical responses in previously treated advanced cancers, and promoted TCR repertoire diversity and favorable changes in serum IL-2, IL-4, TNF-α, and IFN-γ levels in clinical responders.
Collapse
Affiliation(s)
- Guoliang Qiao
- Department of Medical Oncology, Beijing Key Laboratory for Therapeutic Cancer Vaccines, Capital Medical University Cancer Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Xiaoli Wang
- Department of Medical Oncology, Beijing Key Laboratory for Therapeutic Cancer Vaccines, Capital Medical University Cancer Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Xinna Zhou
- Department of Medical Oncology, Beijing Key Laboratory for Therapeutic Cancer Vaccines, Capital Medical University Cancer Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Michael A Morse
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Jiangping Wu
- Department of Medical Oncology, Beijing Key Laboratory for Therapeutic Cancer Vaccines, Capital Medical University Cancer Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Shuo Wang
- Department of Medical Oncology, Beijing Key Laboratory for Therapeutic Cancer Vaccines, Capital Medical University Cancer Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Yuguang Song
- Department of Medical Oncology, Beijing Key Laboratory for Therapeutic Cancer Vaccines, Capital Medical University Cancer Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Ni Jiang
- Department of Medical Oncology, Beijing Key Laboratory for Therapeutic Cancer Vaccines, Capital Medical University Cancer Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Yanjie Zhao
- Department of Medical Oncology, Beijing Key Laboratory for Therapeutic Cancer Vaccines, Capital Medical University Cancer Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Lei Zhou
- Department of Medical Oncology, Beijing Key Laboratory for Therapeutic Cancer Vaccines, Capital Medical University Cancer Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Jing Zhao
- Department of Medical Oncology, Beijing Key Laboratory for Therapeutic Cancer Vaccines, Capital Medical University Cancer Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Yan Di
- Department of Medical Oncology, Beijing Key Laboratory for Therapeutic Cancer Vaccines, Capital Medical University Cancer Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Lihong Zhu
- Department of Gynecological Oncology, Beijing Gynecology Hospital, Capital Medical University, Beijing, China
| | - Amy Hobeika
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Jun Ren
- Department of Medical Oncology, Beijing Key Laboratory for Therapeutic Cancer Vaccines, Capital Medical University Cancer Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.,Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | | |
Collapse
|
22
|
Jeong S, Park SH. Co-Stimulatory Receptors in Cancers and Their Implications for Cancer Immunotherapy. Immune Netw 2020; 20:e3. [PMID: 32158591 PMCID: PMC7049585 DOI: 10.4110/in.2020.20.e3] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 01/27/2020] [Accepted: 01/27/2020] [Indexed: 12/12/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs), including anti-PD-1 and anti-CTLA-4 therapeutic agents, are now approved by the Food and Drug Administration for treatment of various types of cancer. However, the therapeutic efficacy of ICIs varies among patients and cancer types. Moreover, most patients do not develop durable antitumor responses after ICI therapy due to an ephemeral reversal of T-cell dysfunction. As co-stimulatory receptors play key roles in regulating the effector functions of T cells, activating co-stimulatory pathways may improve checkpoint inhibition efficacy, and lead to durable antitumor responses. Here, we review recent advances in our understating of co-stimulatory receptors in cancers, providing the necessary groundwork for the rational design of cancer immunotherapy.
Collapse
Affiliation(s)
- Seongju Jeong
- Biomedical Science and Engineering Interdisciplinary Program, KAIST, Daejeon 34141, Korea
| | - Su-Hyung Park
- Biomedical Science and Engineering Interdisciplinary Program, KAIST, Daejeon 34141, Korea.,Laboratory of Translational Immunology and Vaccinology, Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Korea
| |
Collapse
|
23
|
Huang L, Qiao G, Morse MA, Wang X, Zhou X, Wu J, Hobeika A, Ren J, Lyerly HK. Predictive significance of T cell subset changes during ex vivo generation of adoptive cellular therapy products for the treatment of advanced non-small cell lung cancer. Oncol Lett 2019; 18:5717-5724. [PMID: 31788044 PMCID: PMC6865835 DOI: 10.3892/ol.2019.10964] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 06/06/2019] [Indexed: 12/24/2022] Open
Abstract
Adoptive T cell immunotherapy with cytokine-induced killer cells (CIKs) has been demonstrated to prolong the survival of patients with advanced non-small cell lung cancer (NSCLC). The aim of the present study was to evaluate whether the expansion of effector T cells and the decrease of regulatory T cells (Tregs) that occurred during the ex vivo generation of DC-CIKs were associated with improved clinical outcome in patients who received treatment. CIKs were generated ex vivo over a 28-day period from the peripheral blood apheresis product of 163 patients with advanced cancer (including 30 with NSCLC). CIKs were also generated from an additional cohort of 65 patients with NSCLC over a 15-day period. The progression-free survival (PFS) and overall survival (OS) time of patients treated with CIKs was determined by reviewing the patients' medical records. The number of CIKs gradually increased during the culture period and peaked at day 15, followed by a slight decline until day 28. Similarly, the percentages of T cell subtypes associated with anti-tumor activity (CD3+, CD3+CD4+, CD3+CD8+ and CD8+CD28+) peaked at day 15. Although the percentage of CD4+CD25+CD127+ Tregs increased by day 7, a decrease was subsequently observed. Among the 95 patients with NSCLC, those with a post/pre-culture ratio of CD8+CD28+ T lymphocytes >2.2 had significantly better PFS and OS compared with those with ratios ≤2.2. Those with a post/pre-culture CD4+CD25+CD127+ Treg ratio ≤0.6 had significantly better OS and PFS compared with those with ratios >0.6. The peak expansion of CIKs from peripheral blood mononuclear cells occurred at day 15 of ex vivo culture. PFS and OS were associated with post/pre-culture CD8+CD28+ T lymphocyte ratio >2.2 and post/pre-culture CD4+CD25+CD127+ Treg ratio <0.6 in the CIKs of patients with advanced NSCLC treated with adoptive T cell immunotherapy. Further efforts are underway to optimize the DC-CIK infusion for cancer immunotherapy.
Collapse
Affiliation(s)
- Lefu Huang
- Department of Medical Oncology, Beijing Key Laboratory for Therapeutic Cancer Vaccines, Capital Medical University Cancer Center, Beijing Shijitan Hospital, Beijing 100038, P.R. China
| | - Guoliang Qiao
- Department of Medical Oncology, Beijing Key Laboratory for Therapeutic Cancer Vaccines, Capital Medical University Cancer Center, Beijing Shijitan Hospital, Beijing 100038, P.R. China
| | - Michael A Morse
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA.,Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Xiaoli Wang
- Department of Medical Oncology, Beijing Key Laboratory for Therapeutic Cancer Vaccines, Capital Medical University Cancer Center, Beijing Shijitan Hospital, Beijing 100038, P.R. China
| | - Xinna Zhou
- Department of Medical Oncology, Beijing Key Laboratory for Therapeutic Cancer Vaccines, Capital Medical University Cancer Center, Beijing Shijitan Hospital, Beijing 100038, P.R. China
| | - Jiangping Wu
- Department of Medical Oncology, Beijing Key Laboratory for Therapeutic Cancer Vaccines, Capital Medical University Cancer Center, Beijing Shijitan Hospital, Beijing 100038, P.R. China
| | - Amy Hobeika
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Jun Ren
- Department of Medical Oncology, Beijing Key Laboratory for Therapeutic Cancer Vaccines, Capital Medical University Cancer Center, Beijing Shijitan Hospital, Beijing 100038, P.R. China.,Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Herbert K Lyerly
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
24
|
Kim A, Han CJ, Driver I, Olow A, Sewell AK, Zhang Z, Ouyang W, Egen JG, Yu X. LILRB1 Blockade Enhances Bispecific T Cell Engager Antibody-Induced Tumor Cell Killing by Effector CD8 + T Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 203:1076-1087. [PMID: 31253728 PMCID: PMC6680066 DOI: 10.4049/jimmunol.1801472] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 06/10/2019] [Indexed: 12/20/2022]
Abstract
Elicitation of tumor cell killing by CD8+ T cells is an effective therapeutic approach for cancer. In addition to using immune checkpoint blockade to reinvigorate existing but unresponsive tumor-specific T cells, alternative therapeutic approaches have been developed, including stimulation of polyclonal T cell cytolytic activity against tumors using bispecific T cell engager (BiTE) molecules that simultaneously engage the TCR complex and a tumor-associated Ag. BiTE molecules are efficacious against hematologic tumors and are currently being explored as an immunotherapy for solid tumors. To understand mechanisms regulating BiTE molecule--mediated CD8+ T cell activity against solid tumors, we sought to define human CD8+ T cell populations that efficiently respond to BiTE molecule stimulation and identify factors regulating their cytolytic activity. We find that human CD45RA+CCR7- CD8+ T cells are highly responsive to BiTE molecule stimulation, are enriched in genes associated with cytolytic effector function, and express multiple unique inhibitory receptors, including leukocyte Ig-like receptor B1 (LILRB1). LILRB1 and programmed cell death protein 1 (PD1) were found to be expressed by distinct CD8+ T cell populations, suggesting different roles in regulating the antitumor response. Engaging LILRB1 with its ligand HLA-G on tumor cells significantly inhibited BiTE molecule-induced CD8+ T cell activation. Blockades of LILRB1 and PD1 induced greater CD8+ T cell activation than either treatment alone. Together, our data suggest that LILRB1 functions as a negative regulator of human CD8+ effector T cells and that blocking LILRB1 represents a unique strategy to enhance BiTE molecule therapeutic activity against solid tumors.
Collapse
Affiliation(s)
- Aeryon Kim
- Department of Inflammation and Oncology, Amgen Research, Amgen Inc., South San Francisco, CA 94080
| | - Chia-Jung Han
- Department of Inflammation and Oncology, Amgen Research, Amgen Inc., South San Francisco, CA 94080
| | - Ian Driver
- Genome Analysis Unit, Amgen Research, Amgen Inc., South San Francisco, CA 94080
| | - Aleksandra Olow
- Research Informatics, Amgen Research, Amgen Inc., South San Francisco, CA 94080
| | - Andrew K Sewell
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| | - Zemin Zhang
- Biomedical Pioneering Innovation Center, Peking University, Beijing 100871, China; and
- Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Peking University, Beijing 100871, China
| | - Wenjun Ouyang
- Department of Inflammation and Oncology, Amgen Research, Amgen Inc., South San Francisco, CA 94080
| | - Jackson G Egen
- Department of Inflammation and Oncology, Amgen Research, Amgen Inc., South San Francisco, CA 94080
| | - Xin Yu
- Department of Inflammation and Oncology, Amgen Research, Amgen Inc., South San Francisco, CA 94080;
| |
Collapse
|
25
|
Huff WX, Kwon JH, Henriquez M, Fetcko K, Dey M. The Evolving Role of CD8 +CD28 - Immunosenescent T Cells in Cancer Immunology. Int J Mol Sci 2019; 20:ijms20112810. [PMID: 31181772 PMCID: PMC6600236 DOI: 10.3390/ijms20112810] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/05/2019] [Accepted: 06/06/2019] [Indexed: 12/18/2022] Open
Abstract
Functional, tumor-specific CD8+ cytotoxic T lymphocytes drive the adaptive immune response to cancer. Thus, induction of their activity is the ultimate aim of all immunotherapies. Success of anti-tumor immunotherapy is precluded by marked immunosuppression in the tumor microenvironment (TME) leading to CD8+ effector T cell dysfunction. Among the many facets of CD8+ T cell dysfunction that have been recognized—tolerance, anergy, exhaustion, and senescence—CD8+ T cell senescence is incompletely understood. Naïve CD8+ T cells require three essential signals for activation, differentiation, and survival through T-cell receptor, costimulatory receptors, and cytokine receptors. Downregulation of costimulatory molecule CD28 is a hallmark of senescent T cells and increased CD8+CD28− senescent populations with heterogeneous roles have been observed in multiple solid and hematogenous tumors. T cell senescence can be induced by several factors including aging, telomere damage, tumor-associated stress, and regulatory T (Treg) cells. Tumor-induced T cell senescence is yet another mechanism that enables tumor cell resistance to immunotherapy. In this paper, we provide a comprehensive overview of CD8+CD28− senescent T cell population, their origin, their function in immunology and pathologic conditions, including TME and their implication for immunotherapy. Further characterization and investigation into this subset of CD8+ T cells could improve the efficacy of future anti-tumor immunotherapy.
Collapse
Affiliation(s)
- Wei X Huff
- Department of Neurosurgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Jae Hyun Kwon
- Department of Neurosurgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Mario Henriquez
- Department of Neurosurgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Kaleigh Fetcko
- Department of Neurology, University of Illinois at Chicago School of Medicine, Chicago, IL 60612, USA.
| | - Mahua Dey
- Department of Neurosurgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
26
|
CD28neg. T lymphocytes of a melanoma patient harbor tumor immunity and a high frequency of germline-encoded and public TCRs. Immunol Res 2017; 66:79-86. [DOI: 10.1007/s12026-017-8976-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
27
|
Mondello P, Cuzzocrea S, Navarra M, Mian M. Bone marrow micro-environment is a crucial player for myelomagenesis and disease progression. Oncotarget 2017; 8:20394-20409. [PMID: 28099912 PMCID: PMC5386771 DOI: 10.18632/oncotarget.14610] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 01/05/2017] [Indexed: 01/06/2023] Open
Abstract
Despite the advent of many therapeutic agents, such as bortezomib and lenalidomide that have significantly improved the overall survival, multiple myeloma remains an incurable disease. Failure to cure is multifactorial and can be attributed to the underlying genetic heterogeneity of the cancer and to the surrounding micro-environment. Understanding the mutual interaction between myeloma cells and micro-environment may lead to the development of novel treatment strategies able to eradicate this disease. In this review we discuss the principal molecules involved in the micro-environment network in multiple myeloma and the currently available therapies targeting them.
Collapse
Affiliation(s)
- Patrizia Mondello
- Department of Human Pathology, University of Messina, Messina, Italy.,Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.,Lymphoma Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Michele Navarra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Michael Mian
- Department of Hematology and Center of Bone Marrow Transplantation, Hospital of Bolzano, Bolzano/Bozen, Italy.,Department of Internal Medicine V, Hematology & Oncology, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
28
|
Cao Dinh H, Beyer I, Mets T, Onyema OO, Njemini R, Renmans W, De Waele M, Jochmans K, Vander Meeren S, Bautmans I. Effects of Physical Exercise on Markers of Cellular Immunosenescence: A Systematic Review. Calcif Tissue Int 2017; 100:193-215. [PMID: 27866236 DOI: 10.1007/s00223-016-0212-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 11/07/2016] [Indexed: 12/31/2022]
Abstract
Aging affects negatively the immune system, defined as immunosenescence, which increases the susceptibility of elderly persons to infection, autoimmune disease, and cancer. There are strong indications that physical exercise in elderly persons may prevent the age-related decline in immune response without significant side effects. Consequently, exercise is being considered as a safe mode of intervention to reduce immunosenescence. The aim of this review was to appraise the existing evidence regarding the impact of exercise on surface markers of cellular immunosenescence in either young and old humans or animals. PubMed and Web of Science were systematically screened, and 28 relevant articles in humans or animals were retrieved. Most of the intervention studies demonstrated that an acute bout of exercise induced increases in senescent, naïve, memory CD4+ and CD8+ T-lymphocytes and significantly elevated apoptotic lymphocytes in peripheral blood. As regards long-term effects, exercise induced increased levels of T-lymphocytes expressing CD28+ in both young and elderly subjects. Few studies found an increase in natural killer cell activity following a period of training. We can conclude that exercise has considerable effects on markers of cellular aspects of the immune system. However, very few studies have been conducted so far to investigate the effects of exercise on markers of cellular immunosenescence in elderly persons. Implications for immunosenescence need further investigation.
Collapse
Affiliation(s)
- H Cao Dinh
- Frailty in Ageing Research Group, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
- Gerontology Department, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - I Beyer
- Frailty in Ageing Research Group, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
- Geriatrics Department, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090, Brussels, Belgium
| | - T Mets
- Frailty in Ageing Research Group, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
- Gerontology Department, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
- Geriatrics Department, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090, Brussels, Belgium
| | - O O Onyema
- Frailty in Ageing Research Group, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
- Gerontology Department, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - R Njemini
- Frailty in Ageing Research Group, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
- Gerontology Department, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - W Renmans
- Laboratory of Hematology, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090, Brussels, Belgium
| | - M De Waele
- Laboratory of Hematology, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090, Brussels, Belgium
| | - K Jochmans
- Laboratory of Hematology, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090, Brussels, Belgium
| | - S Vander Meeren
- Laboratory of Hematology, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090, Brussels, Belgium
| | - I Bautmans
- Frailty in Ageing Research Group, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium.
- Gerontology Department, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium.
- Geriatrics Department, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090, Brussels, Belgium.
| |
Collapse
|
29
|
Catakovic K, Klieser E, Neureiter D, Geisberger R. T cell exhaustion: from pathophysiological basics to tumor immunotherapy. Cell Commun Signal 2017; 15:1. [PMID: 28073373 PMCID: PMC5225559 DOI: 10.1186/s12964-016-0160-z] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 12/22/2016] [Indexed: 12/13/2022] Open
Abstract
The immune system is capable of distinguishing between danger- and non-danger signals, thus inducing either an appropriate immune response against pathogens and cancer or inducing self-tolerance to avoid autoimmunity and immunopathology. One of the mechanisms that have evolved to prevent destruction by the immune system, is to functionally silence effector T cells, termed T cell exhaustion, which is also exploited by viruses and cancers for immune escape In this review, we discuss some of the phenotypic markers associated with T cell exhaustion and we summarize current strategies to reinvigorate exhausted T cells by blocking these surface marker using monoclonal antibodies.
Collapse
Affiliation(s)
- Kemal Catakovic
- Laboratory for Immunological and Molecular Cancer Research, Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University, Müllner Hauptstrasse 48, Salzburg, 5020, Austria.,Salzburg Cancer Research Institute, Salzburg, Austria
| | - Eckhard Klieser
- Salzburg Cancer Research Institute, Salzburg, Austria.,Department of Pathology, Paracelsus Medical University, Müllner Hauptstrasse 48, Salzburg, 5020, Austria
| | - Daniel Neureiter
- Salzburg Cancer Research Institute, Salzburg, Austria.,Department of Pathology, Paracelsus Medical University, Müllner Hauptstrasse 48, Salzburg, 5020, Austria
| | - Roland Geisberger
- Laboratory for Immunological and Molecular Cancer Research, Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University, Müllner Hauptstrasse 48, Salzburg, 5020, Austria. .,Salzburg Cancer Research Institute, Salzburg, Austria.
| |
Collapse
|
30
|
Pereira BI, Akbar AN. Convergence of Innate and Adaptive Immunity during Human Aging. Front Immunol 2016; 7:445. [PMID: 27867379 PMCID: PMC5095488 DOI: 10.3389/fimmu.2016.00445] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 10/07/2016] [Indexed: 01/06/2023] Open
Abstract
Aging is associated with profound changes in the human immune system, a phenomenon referred to as immunosenescence. This complex immune remodeling affects the adaptive immune system and the CD8+ T cell compartment in particular, leading to the accumulation of terminally differentiated T cells, which can rapidly exert their effector functions at the expenses of a limited proliferative potential. In this review, we will discuss evidence suggesting that senescent αβCD8+ T cells acquire the hallmarks of innate-like T cells and use recently acquired NK cell receptors as an alternative mechanism to mediate rapid effector functions. These cells concomitantly lose expression of co-stimulatory receptors and exhibit decreased T cell receptor signaling, suggesting a functional shift away from antigen-specific activation. The convergence of innate and adaptive features in senescent T cells challenges the classic division between innate and adaptive immune systems. Innate-like T cells are particularly important for stress and tumor surveillance, and we propose a new role for these cells in aging, where the acquisition of innate-like functions may represent a beneficial adaptation to an increased burden of malignancy with age, although it may also pose a higher risk of autoimmune disorders.
Collapse
Affiliation(s)
- Branca I Pereira
- Division of Infection and Immunity, University College London , London , UK
| | - Arne N Akbar
- Division of Infection and Immunity, University College London , London , UK
| |
Collapse
|
31
|
Seyda M, Elkhal A, Quante M, Falk CS, Tullius SG. T Cells Going Innate. Trends Immunol 2016; 37:546-556. [PMID: 27402226 DOI: 10.1016/j.it.2016.06.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/06/2016] [Accepted: 06/08/2016] [Indexed: 02/07/2023]
Abstract
Natural killer (NK) cell receptors (NKRs) play a crucial role in the homeostasis of antigen-experienced T cells. Indeed, prolonged antigen stimulation may induce changes in the receptor repertoire of T cells to a profile that features NKRs. Chronic antigen exposure, at the same time, has been shown to trigger the loss of costimulatory CD28 molecules with recently reported intensified antigen thresholds of antigen-experienced CD8(+) T cells. In transplantation, NKRs have been shown to assist allograft rejection in a CD28-independent fashion. We discuss here a role for CD28-negative T cells that have acquired the competency of the NKR machinery, potentially promoting allorecognition either through T cell receptor (TCR) crossreactivity or independently from TCR recognition. Collectively, NKRs can bring about innate-like T cells by providing alternative costimulatory pathways that gain relevance in chronic inflammation, potentially leading to resistance to CD28-targeting immunosuppressants.
Collapse
Affiliation(s)
- Midas Seyda
- Division of Transplant Surgery and Transplant Surgery Research Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Institute of Transplant Immunology, IFB-Tx, Hannover Medical School, Hannover, Germany
| | - Abdallah Elkhal
- Division of Transplant Surgery and Transplant Surgery Research Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Markus Quante
- Division of Transplant Surgery and Transplant Surgery Research Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Christine S Falk
- Institute of Transplant Immunology, IFB-Tx, Hannover Medical School, Hannover, Germany; German Center for Infection Research (DZIF), Hannover, Germany
| | - Stefan G Tullius
- Division of Transplant Surgery and Transplant Surgery Research Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
32
|
Mou D, Espinosa J, Lo DJ, Kirk AD. CD28 negative T cells: is their loss our gain? Am J Transplant 2014; 14:2460-6. [PMID: 25323029 PMCID: PMC4886707 DOI: 10.1111/ajt.12937] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 06/15/2014] [Accepted: 07/16/2014] [Indexed: 01/25/2023]
Abstract
CD28 is a primary costimulation molecule for T cell activation. However, during the course of activation some T cells lose this molecule and assume a CD28-independent existence. These CD28- T cells are generally antigen-experienced and highly differentiated. CD28- T cells are functionally heterogeneous. Their characteristics vary largely on the context in which they are found and range from having enhanced cytotoxic abilities to promoting immune regulation. Thus, CD28 loss appears to be more of a marker for advanced differentiation regardless of the cytotoxic or regulatory function being conducted by the T cell. CD28- T cells are now being recognized as playing significant roles in several human diseases. Various functional CD28- populations have been characterized in inflammatory conditions, infections and cancers. Of note, the recent introduction of costimulation blockade-based therapies, particularly those that inhibit CD28-B7 interactions, has made CD28 loss particularly relevant for solid organ transplantation. Certain CD28- T cell populations seem to promote allograft tolerance whereas others contribute to alloreactivity and costimulation blockade resistant rejection. Elucidating the interplay between these populations and characterizing the determinants of their ultimate function may have relevance for clinical risk stratification and personal determination of optimal posttransplant immune management.
Collapse
|
33
|
Bigley AB, Spielmann G, LaVoy ECP, Simpson RJ. Can exercise-related improvements in immunity influence cancer prevention and prognosis in the elderly? Maturitas 2013; 76:51-6. [PMID: 23870832 DOI: 10.1016/j.maturitas.2013.06.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 06/10/2013] [Indexed: 12/31/2022]
Abstract
Cancer incidence increases with advancing age. Over 60% of new cancers and 70% of cancer deaths occur in individuals aged 65 years or older. One factor that may contribute to this is immunosenescence - a canopy term that is used to describe age-related declines in the normal functioning of the immune system. There are multiple age-related deficits in both the innate and adaptive systems that may play a role in the increased incidence of cancer. These include decreased NK-cell function, impaired antigen uptake and presentation by monocytes and dendritic cells, an increase in 'inflammaging', a decline in the number of naïve T-cells able to respond to evolving tumor cells, and an increase in functionally exhausted senescent cells. There is consensus that habitual physical exercise can offer protection against certain types of cancer; however the evidence linking immunological mechanisms, exercise, and reduced cancer risk remain tentative. Multiple studies published over the last two decades suggest that exercise can mitigate the deleterious effects of age on immune function, thus increasing anti-cancer immunity. The potential ameliorative effect of exercise on these mechanisms include evidence that physical activity is able to stimulate greater NK-cell activity, enhance antigen-presentation, reduce inflammation, and prevent senescent cell accumulation in the elderly. Here we discuss the role played by the immune system in preventing and controlling cancer and how aging may retard these anti-cancer mechanisms. We also propose a pathway by which exercise-induced alterations in immunosenescence may decrease the incidence of cancer and help improve prognosis in cancer patients.
Collapse
Affiliation(s)
- Austin B Bigley
- Laboratory of Integrated Physiology, Department of Health and Human Performance, University of Houston, 3855 Holman Street, Houston, TX 77204, USA.
| | | | | | | |
Collapse
|
34
|
Expression profiling of TCR-engineered T cells demonstrates overexpression of multiple inhibitory receptors in persisting lymphocytes. Blood 2013; 122:1399-410. [PMID: 23861247 DOI: 10.1182/blood-2013-04-495531] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Despite significant progress in the development of adoptive cell-transfer therapies (ACTs) using gene-engineered T cells, little is known about the fate of cells following infusion. To address that, we performed a comparative analysis of gene expression between T-cell receptor-engineered lymphocytes persisting in the circulation 1 month after administration and the product that was infused. We observed that 156 genes related to immune function were differentially expressed, including underexpression of stimulators of lymphocyte function and overexpression of inhibitory genes in postinfusion cells. Of genes overexpressed postinfusion, the product of programmed cell death 1 (PDCD1), coinhibitory receptor PD-1, was expressed at a higher percentage in postinfusion lymphocytes than in the infusion product. This was associated with a higher sensitivity to inhibition of cytokine production by interaction with its ligand PD-L1. Coinhibitory receptor CD160 was also overexpressed in persisting cells, and its expression was associated with decreased reactivity, which surprisingly was found to be ligand-independent. These results contribute to a deeper understanding of the properties of transgenic lymphocytes used to treat human malignancies and may provide a rationale for the development of combination therapies as a method to improve ACT.
Collapse
|
35
|
Campillo JA, Legaz I, López-Álvarez MR, Bolarín JM, Las Heras B, Muro M, Minguela A, Moya-Quiles MR, Blanco-García R, Martínez-Banaclocha H, García-Alonso AM, Alvarez-López MR, Martínez-Escribano JA. KIR gene variability in cutaneous malignant melanoma: influence of KIR2D/HLA-C pairings on disease susceptibility and prognosis. Immunogenetics 2013; 65:333-43. [PMID: 23370861 DOI: 10.1007/s00251-013-0682-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 01/18/2013] [Indexed: 01/19/2023]
Abstract
Natural killer and CD8(+) T cells are believed to be involved in the immune protection against melanoma. Their function may be regulated by a group of receptors defined as killer immunoglobulin-like receptors (KIRs) and their cognate HLA class I ligands. In this study, we analyzed the influence of KIR genes and KIR/HLA-I combinations on melanoma susceptibility and/or prognosis in a Spanish Caucasian population. For this purpose, KIR genotyping by PCR-SSP and HLA-C genotyping by reverse PCR-SSO were performed in 187 melanoma patients and 200 matched controls. We found a significantly low frequency of KIR2DL3 in nodular melanoma (NM) patients (P = 0.001) and in ulcerated melanoma patients (P < 0.0001). Similarly, the KIR2DL3/C1 combination was significantly decreased in melanoma patients (Pc = 0.008) and in patients with sentinel lymph node (SLN) melanoma metastasis (Pc = 0.002). Multivariate logistic regression models showed that KIR2DL3 behaves as a protective marker for NM and ulcerated melanoma (P = 0.02, odds ratio (OR) = 0.14 and P = 0.04, OR = 0.28, respectively), whereas the KIR2DL3/C1 pair acts as a protective marker for melanoma (P = 0.017, OR = 0.54), particularly superficial spreading melanoma (P = 0.02, OR = 0.52), and SLN metastasis (P = 0.0004, OR = 0.14). In contrast, the KIR2DL3(-)/C1C2 genotype seems to be correlated with NM and ulceration. We also report that the KIR2DL1(+)/S1(-)/C2C2 genotype is associated with susceptibility to melanoma and SLN metastasis. Altogether, the study of KIR2D genes and HLA-C ligands may help in assessing cutaneous melanoma risk and prognosis.
Collapse
Affiliation(s)
- José A Campillo
- Immunology Department, Virgen de la Arrixaca University Hospital, El Palmar, Murcia, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
This chapter describes how skin immune system (SIS) is specifically involved in the development of cutaneous melanoma. Local immune surveillance is presented as a complex process that comprises markers to be monitored in disease's evolution and in therapy. The ranking of tissue or soluble immune markers in a future panel of diagnostic/prognostic panel are evaluated. Taking into account the difficulties of cutaneous melanoma patients' management, this chapter shows the immune surveillance at the skin level, the conditions that favor the tumor escape from the immunological arm, the immune pattern of skin melanoma with diagnostic/prognostic relevance, the circulatory immune markers, and, last but not least, how immune markers are used in immune-therapy monitoring. The chapter cannot be exhaustive but will give the reader a glimpse of the complex immune network that lies within tumor escape and where to search for immune-therapeutical targets in skin melanoma.
Collapse
Affiliation(s)
- Monica Neagu
- Immunobiology Laboratory, "Victor Babes" National Institute of Pathology, Bucharest, Romania.
| |
Collapse
|
37
|
Cantisán S, Torre-Cisneros J, Lara R, Zarraga S, Montejo M, Solana R. Impact of cytomegalovirus on early immunosenescence of CD8+ T lymphocytes after solid organ transplantation. J Gerontol A Biol Sci Med Sci 2012; 68:1-5. [PMID: 22552369 DOI: 10.1093/gerona/gls130] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The increasing number of elderly people eligible for solid organ transplants has made it necessary to reevaluate how the decline in immune function associated to ageing (immunosenescence) affects solid organ transplants. Some immunosenescence biomarkers, such as the expansion of CD28(-)CD8+ T lymphocytes, have been associated to cytomegalovirus infection and are related to a form of accelerated immune senescence in transplant recipients. However, the impact of cytomegalovirus replication on downregulation of CD28 on total CD8+ T cells is independent of patients' age, whereas downregulation on cytomegalovirus-specific CD8+ T cells depends on patients' age, inducing early immunosenescence of cytomegalovirus-specific CD8+ T cells in young but not elderly solid organ transplants recipients. Although immunosenescence in transplant recipients should be considered a two-edged sword as it is a risk factor for the development of tumors after transplantation, it has a beneficial effect in attenuating acute allograft rejection and correlates with better clinical outcomes.
Collapse
Affiliation(s)
- Sara Cantisán
- BSc, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain.
| | | | | | | | | | | |
Collapse
|
38
|
Qin G, Liu Y, Zheng J, Xiang Z, Ng IHY, Malik Peiris JS, Lau YL, Tu W. Phenotypic and functional characterization of human γδ T-cell subsets in response to influenza A viruses. J Infect Dis 2012; 205:1646-53. [PMID: 22457284 DOI: 10.1093/infdis/jis253] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Like αβ T cells, human γδ T cells also have different subsets with distinct characteristics. Whether human Vγ9Vδ2 T cells have functionally different subsets in response to influenza A (fluA) viruses remains unknown. In this study, we show for the first time that both central (CD45RA(-)CD27(+)) and effector (CD45RA(-)CD27(-)) memory Vγ9Vδ2 T cells have similar levels of immediate interferon (IFN) γ and cytotoxic responses to human and avian fluA virus-infected cells. In contrast, CD56(+) Vγ9Vδ2 T cells have significantly higher cytotoxicity against fluA virus-infected cells compared with their CD56(-) counterparts, whereas both subsets have similar IFN-γ responses. We further demonstrate that the CD16-dependent degranulation pathway, but not antibody-dependent cell-mediated cytotoxicity, contribute to the superior cytotoxicity of CD56(+) Vγ9Vδ2 T cells. Our study provides further evidence for the phenotypic and functional characterization of human Vγ9Vδ2 T-cell subsets during fluA virus infection and may help improve the γδ T-cell-based immunotherapy for viral infection.
Collapse
Affiliation(s)
- Gang Qin
- Department of Paediatrics and Adolescent Medicine, University of Hong Kong, Hong Kong
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Wu RC, Liu S, Chacon JA, Wu S, Li Y, Sukhumalchandra P, Murray JL, Molldrem JJ, Hwu P, Pircher H, Lizée G, Radvanyi LG. Detection and characterization of a novel subset of CD8⁺CD57⁺ T cells in metastatic melanoma with an incompletely differentiated phenotype. Clin Cancer Res 2012; 18:2465-77. [PMID: 22307139 DOI: 10.1158/1078-0432.ccr-11-2034] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE Tumor-specific T cells are frequently induced naturally in melanoma patients and infiltrate tumors. It is enigmatic why these patients fail to experience tumor regression. Given that CD8(+) T cells mediate antigen-specific killing of tumor cells, the focus of this study was to identify alterations in the differentiation of CD8(+) residing at the tumor site, with emphasis on a population expressing CD57, a marker for terminal differentiation. EXPERIMENTAL DESIGN We conducted flow cytometric analysis of CD8(+) tumor-infiltrating lymphocytes (TIL) isolated from 44 resected melanoma metastases with known T-cell differentiation markers. For comparison, peripheral blood mononuclear cells were isolated from matched melanoma patients. We sorted different CD8(+) subsets found in TIL and determined their effector functions. In addition, we carried out Vβ clonotype expression analysis of T-cell receptors to determine lineage relationship between the CD8(+) TIL subsets. RESULTS The majority of CD8(+) TIL was in the early-effector memory stage of differentiation. A significant population consisted of an oligoclonal subset of cells coexpressing CD27, CD28, CD57, and Granzyme B, with little or no perforin. These cells could be induced to proliferate, produce a high level of IFN-γ, and differentiate into CD27(-)CD57(+), perforin(high) mature CTL in vitro. Addition of TGF-β1 prevented further differentiation. CONCLUSIONS Our studies identified a novel subset of incompletely differentiated CD8(+) CTL coexpressing early effector memory and late CTL markers. This population resembles that found in patients with uncontrolled chronic viral infections. TGF-β1, frequently produced by melanoma tumors, may be a key cytokine inhibiting further maturation of this subset.
Collapse
Affiliation(s)
- Richard C Wu
- Department of Melanoma Medical Oncology, University of Texas, MD Anderson Cancer Center, Houston, Texas, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Sasada T, Suekane S. Variation of tumor-infiltrating lymphocytes in human cancers: controversy on clinical significance. Immunotherapy 2012; 3:1235-51. [PMID: 21995574 DOI: 10.2217/imt.11.106] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Tumors develop and progress under the influence of a microenvironment comprising a variety of immune cell subsets and their products. Recent studies have shown that tumor-infiltrating lymphocytes (TILs) are not randomly distributed, but organized to accumulate more or less densely in different regions within tumors, and interact with each other. Substantial evidence has suggested that not only CD8(+) and/or CD4(+) αβ T cells but also other lymphocyte subsets, including γδ T cells, B cells, NK cells, and NKT cells, infiltrate tumor tissues in variable quantities and play a key role in the regulation of antitumor immunity. In this article, we summarize available information regarding the diversity and composition of TILs, which may positively or negatively affect tumor growth and patient clinical outcomes. The clinical significance of TILs in human cancers remains unclear and is a subject of considerable controversy; largely due to the lack of functional data for TILs, as well as due to enormous variability of TILs in different tumors. A great deal more functional data about TILs needs to be obtained for individual tumors before TILs can be considered as a prognostic parameter in human cancers.
Collapse
Affiliation(s)
- Tetsuro Sasada
- Department of Immunology & Immunotherapy, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka 830-0011, Japan.
| | | |
Collapse
|
41
|
Petrini I, Pacini S, Galimberti S, Taddei MR, Romanini A, Petrini M. Impaired function of gamma-delta lymphocytes in melanoma patients. Eur J Clin Invest 2011; 41:1186-94. [PMID: 22775565 DOI: 10.1111/j.1365-2362.2011.02524.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Melanoma is an immunogenic tumour but, despite the wide range of immunotherapies tested, only few promising results have been reported to date. Both in vitro and in xenograft models, γδ lymphocyte-mediated cytotoxicity against melanoma cells has been reported. IL-2/zoledronate treatment can expand γδ cells in vitro and in animal models. This could represent an immunotherapeutic strategy against melanoma. To evaluate the feasibility of this approach, we studied γδ lymphocyte phenotype from patients with melanoma, their ability to be expanded by IL-2/zoledronate and their cytotoxic activity against SK-MEL-30 cell line. MATERIALS AND METHODS Peripheral blood samples were collected from 30 patients with melanoma and 10 healthy donors. Percentage of γδ lymphocytes and CD45RO+CD27+, CD45RA+CD27-, CD57+, Vγ9Vδ2 subpopulations were evaluated by flow cytometry. IL-2/zoledronate γδ cell expansion rate and their cytotoxicity against SK-MEL-30 cell line were studied. RESULTS A percentage decrease in circulating Vγ9Vδ2 and an increase in CD45RA+CD27- and CD57+ γδ lymphocytes were observed in melanoma. IL-2/zoledronate expansion rate did not differ between controls and patients with melanoma but cytotoxicity against SK-MEL-30 appeared reduced. CONCLUSIONS Our results show that γδ cell function is impaired in patients with advanced melanoma and suggest a possible role in tumour progression.
Collapse
Affiliation(s)
- Iacopo Petrini
- Department of Oncology, Transplant and New Advances in Medicine, BIOS, Pisa University, Pisa, Italy.
| | | | | | | | | | | |
Collapse
|
42
|
West EE, Youngblood B, Tan WG, Jin HT, Araki K, Alexe G, Konieczny BT, Calpe S, Freeman GJ, Terhorst C, Haining WN, Ahmed R. Tight regulation of memory CD8(+) T cells limits their effectiveness during sustained high viral load. Immunity 2011; 35:285-98. [PMID: 21856186 PMCID: PMC3241982 DOI: 10.1016/j.immuni.2011.05.017] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 04/08/2011] [Accepted: 05/06/2011] [Indexed: 01/19/2023]
Abstract
To design successful vaccines for chronic diseases, an understanding of memory CD8(+) T cell responses to persistent antigen restimulation is critical. However, most studies comparing memory and naive cell responses have been performed only in rapidly cleared acute infections. Herein, by comparing the responses of memory and naive CD8(+) T cells to acute and chronic lymphocytic choriomeningitis virus infection, we show that memory cells dominated over naive cells and were protective when present in sufficient numbers to quickly reduce infection. In contrast, when infection was not rapidly reduced, because of high antigen load or persistence, memory cells were quickly lost, unlike naive cells. This loss of memory cells was due to a block in sustaining cell proliferation, selective regulation by the inhibitory receptor 2B4, and increased reliance on CD4(+) T cell help. Thus, emphasizing the importance of designing vaccines that elicit effective CD4(+) T cell help and rapidly control infection.
Collapse
MESH Headings
- Acute Disease
- Adoptive Transfer
- Animals
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Arenaviridae Infections/immunology
- Arenaviridae Infections/virology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/pathology
- CD8-Positive T-Lymphocytes/virology
- Cell Proliferation
- Cells, Cultured
- Chronic Disease
- Cytokines/immunology
- Cytokines/metabolism
- Immunologic Memory
- Lymphocytic choriomeningitis virus/pathogenicity
- Lymphocytic choriomeningitis virus/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Paracrine Communication
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Immunologic/immunology
- Receptors, Immunologic/metabolism
- Signaling Lymphocytic Activation Molecule Family
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocyte Subsets/pathology
- T-Lymphocyte Subsets/virology
- Viral Load
- Viral Vaccines
Collapse
Affiliation(s)
- Erin E West
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Strioga M, Pasukoniene V, Characiejus D. CD8+ CD28- and CD8+ CD57+ T cells and their role in health and disease. Immunology 2011; 134:17-32. [PMID: 21711350 DOI: 10.1111/j.1365-2567.2011.03470.x] [Citation(s) in RCA: 367] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Chronic antigenic stimulation leads to gradual accumulation of late-differentiated, antigen-specific, oligoclonal T cells, particularly within the CD8(+) T-cell compartment. They are characterized by critically shortened telomeres, loss of CD28 and/or gain of CD57 expression and are defined as either CD8(+) CD28(-) or CD8(+) CD57(+) T lymphocytes. There is growing evidence that the CD8(+) CD28(-) (CD8(+) CD57(+)) T-cell population plays a significant role in various diseases or conditions, associated with chronic immune activation such as cancer, chronic intracellular infections, chronic alcoholism, some chronic pulmonary diseases, autoimmune diseases, allogeneic transplantation, as well as has a great influence on age-related changes in the immune system status. CD8(+) CD28(-) (CD8(+) CD57(+)) T-cell population is heterogeneous and composed of various functionally competing (cytotoxic and immunosuppressive) subsets thus the overall effect of CD8(+) CD28(-) (CD8(+) CD57(+)) T-cell-mediated immunity depends on the predominance of a particular subset. Many articles claim that CD8(+) CD28(-) (CD8(+) CD57(+)) T cells have lost their proliferative capacity during process of replicative senescence triggered by repeated antigenic stimulation. However recent data indicate that CD8(+) CD28(-) (CD8(+) CD57(+)) T cells can transiently up-regulate telomerase activity and proliferate under certain stimulation conditions. Similarly, conflicting data is provided regarding CD8(+) CD28(-) (CD8(+) CD57(+)) T-cell sensitivity to apoptosis, finally leading to the conclusion that this T-cell population is also heterogeneous in terms of its apoptotic potential. This review provides a comprehensive approach to the CD8(+) CD28(-) (CD8(+) CD57(+)) T-cell population: we describe in detail its origins, molecular and functional characteristics, subsets, role in various diseases or conditions, associated with persistent antigenic stimulation.
Collapse
Affiliation(s)
- Marius Strioga
- Laboratory of Immunology, Institute of Oncology, Vilnius University, Vilnius Faculty of Medicine, Vilnius University, Vilnius, Lithuania.
| | | | | |
Collapse
|
44
|
McKay K, Moore PC, Smoller BR, Hiatt KM. Association between natural killer cells and regression in melanocytic lesions. Hum Pathol 2011; 42:1960-4. [PMID: 21676435 DOI: 10.1016/j.humpath.2011.02.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 02/17/2011] [Accepted: 02/22/2011] [Indexed: 01/01/2023]
Abstract
Mortality from melanoma, the deadliest of skin cancers, continues to increase in all age groups. A small number of melanomas spontaneously regress. In vitro studies suggest a role for the natural killer cell in effecting regression. In this study, the goal was to determine if natural killer cells are preferentially involved in the cytotoxic response in regressing lesions. Forty-two cases were selected: nevi with regression, nonregressing melanoma with brisk inflammation, and regressing melanoma. Sections were stained with hematoxylin and eosin and immunostained for CD8, CD56, and T-cell intracytoplasmic antigen 1. Numbers of total lymphocytes, CD8-positive lymphocytes, and T-cell intracytoplasmic antigen 1-positive lymphocytes did not differ among the 3 populations or based on location. CD56 positivity was significantly different among the 3 populations. Regressing melanomas showed the greatest CD56 activity, followed by regressing nevi, whereas inflamed, nonregressing melanomas showed the least. CD56(+) lymphocytes were mostly counted in areas of early regression. The natural killer cell could plausibly play a role in the occurrence of regression as a cytotoxic effector cell or as a mediator of the cytotoxic mechanism.
Collapse
Affiliation(s)
- Kristopher McKay
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | | | | | | |
Collapse
|
45
|
Neagu M, Constantin C, Tanase C. Immune-related biomarkers for diagnosis/prognosis and therapy monitoring of cutaneous melanoma. Expert Rev Mol Diagn 2011; 10:897-919. [PMID: 20964610 DOI: 10.1586/erm.10.81] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Skin melanoma, a life-threatening disease, has a recently reported worldwide increase in incidence, despite primary prevention. Skin melanoma statistics emphasize the need for finding markers related to the immune response of the host. The mechanisms that are able to over-power the local immune surveillance comprise molecules that can be valuable markers for diagnosis and prognosis. This article summarizes the immune markers that can monitor the disease stage and evaluate the efficacy of therapeutic interventions. Recent data regarding immunotherapy are presented in the context of tumor escape from immune surveillance and the immune molecules that are both targets and a means of monitoring. Perspectives for developing immune interventions for skin melanoma management and the position of tissue or soluble immune markers as a diagnostic/prognostic panel are evaluated. State-of-the-art technology is emphasized for developing immune molecular signatures for a complex characterization of the patient's immunological status.
Collapse
Affiliation(s)
- Monica Neagu
- Victor Babes' National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest, Romania.
| | | | | |
Collapse
|
46
|
Quantitative changes of functionally different CD8<sup>h</sup>CD57<sup>+</sup> T-cell subsets in the peripheral blood of advanced renal cell carcinoma or high-risk melanoma patients. Acta Med Litu 2009. [DOI: 10.2478/v10140-009-0015-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
47
|
Casado JG, Pawelec G, Morgado S, Sanchez-Correa B, Delgado E, Gayoso I, Duran E, Solana R, Tarazona R. Expression of adhesion molecules and ligands for activating and costimulatory receptors involved in cell-mediated cytotoxicity in a large panel of human melanoma cell lines. Cancer Immunol Immunother 2009; 58:1517-26. [PMID: 19259667 PMCID: PMC11030684 DOI: 10.1007/s00262-009-0682-y] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Accepted: 02/05/2009] [Indexed: 10/21/2022]
Abstract
Knowledge of the interactions between MHC-unrestricted cytotoxic effector cells and solid tumour cells is essential for introducing more effective NK cell-based immunotherapy protocols into clinical practise. Here, to begin to obtain an overview of the possible universe of molecules that could be involved in the interactions between immune effector cells and melanoma, we analyse the surface expression of adhesion and costimulatory molecules and of ligands for NK-activating receptors on a large panel of cell lines from the "European Searchable Tumour Cell Line and Data Bank" (ESTDAB, http://www.ebi.ac.uk/ipd/estdab/ ) and discuss their potential role in the immune response against this tumour. We show that most melanoma cell lines express not only adhesion molecules that are likely to favour their interaction with cells of the immune system, but also their interaction with endothelial cells potentially increasing their invasiveness and metastatic capacity. A high percentage of melanoma cell lines also express ligands for the NK-activating receptor NKG2D; whereas, the majority express MICA/B molecules, ULBP expression, however, was rarely found. In addition to these molecules, we also found that CD155 (poliovirus receptor, PVR) is expressed by the majority of melanoma cell lines, whereas CD112 (Nectin-2) expression was rare. These molecules are DNAM-1 ligands, a costimulatory molecule involved in NK cell-mediated cytotoxicity and cytokine production that also mediates costimulatory signals for triggering naïve T cell differentiation. The phenotypical characterisation of adhesion molecules and ligands for receptors involved in cell cytotoxicity on a large series of melanoma cell lines will contribute to the identification of markers useful for the development of new immunotherapy strategies.
Collapse
Affiliation(s)
- Javier G. Casado
- Immunology Unit, Department of Physiology, University of Extremadura, Cáceres, Spain
| | - Graham Pawelec
- Center for Medical Research, University of Tübingen, Tübingen, Germany
| | - Sara Morgado
- Immunology Unit, Department of Physiology, University of Extremadura, Cáceres, Spain
| | | | - Elena Delgado
- Immunology Unit, Department of Physiology, University of Extremadura, Cáceres, Spain
| | - Inmaculada Gayoso
- Immunology Unit, Department of Cellular Biology, Physiology and Immunology, Faculty of Medicine, University of Córdoba, Avenida de Menendez Pidal s/n, 14004 Cordoba, Spain
| | - Esther Duran
- Department of Comparative Pathology, University of Extremadura, Cáceres, Spain
| | - Rafael Solana
- Immunology Unit, Department of Cellular Biology, Physiology and Immunology, Faculty of Medicine, University of Córdoba, Avenida de Menendez Pidal s/n, 14004 Cordoba, Spain
| | - Raquel Tarazona
- Immunology Unit, Department of Physiology, University of Extremadura, Cáceres, Spain
| |
Collapse
|
48
|
Pita-Lopez ML, Gayoso I, DelaRosa O, Casado JG, Alonso C, Muñoz-Gomariz E, Tarazona R, Solana R. Effect of ageing on CMV-specific CD8 T cells from CMV seropositive healthy donors. IMMUNITY & AGEING 2009; 6:11. [PMID: 19715573 PMCID: PMC2741428 DOI: 10.1186/1742-4933-6-11] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2009] [Accepted: 08/28/2009] [Indexed: 01/09/2023]
Abstract
BACKGROUND Ageing is associated with changes in the immune system with substantial alterations in T-lymphocyte subsets. Cytomegalovirus (CMV) is one of the factors that affect functionality of T cells and the differentiation and large expansions of CMV pp65-specific T cells have been associated with impaired responses to other immune challenges. Moreover, the presence of clonal expansions of CMV-specific T cells may shrink the available repertoire for other antigens and contribute to the increased incidence of infectious diseases in the elderly. In this study, we analyse the effect of ageing on the phenotype and frequency of CMV pp65-specific CD8 T cell subsets according to the expression of CCR7, CD45RA, CD27, CD28, CD244 and CD85j. RESULTS Peripheral blood from HLA-A2 healthy young, middle-aged and elderly donors was analysed by multiparametric flow cytometry using the HLA-A*0201/CMV pp65(495-504) (NLVPMVATV) pentamer and mAbs specific for the molecules analysed. The frequency of CMV pp65-specific CD8 T cells was increased in the elderly compared with young and middle-aged donors. The proportion of naïve cells was reduced in the elderly, whereas an age-associated increase of the CCR7(null) effector-memory subset, in particular those with a CD45RA(dim) phenotype, was observed, both in the pentamer-positive and pentamer-negative CD8 T cells. The results also showed that most CMV pp65-specific CD8 T cells in elderly individuals were CD27/CD28 negative and expressed CD85j and CD244. CONCLUSION The finding that the phenotype of CMV pp65-specific CD8 T cells in elderly individuals is similar to the predominant phenotype of CD8 T cells as a whole, suggests that CMV persistent infections contributes to the age-related changes observed in the CD8 T cell compartment, and that chronic stimulation by other persistent antigens also play a role in T cell immunosenescence. Differences in subset distribution in elderly individuals showing a decrease in naive and an increase in effector-memory CD8 T cells may be relevant in the age-associated defective immune response.
Collapse
Affiliation(s)
- María Luisa Pita-Lopez
- University of Cordoba, Department of Cellular Biology, Physiology and Immunology, Faculty of Medicine, Cordoba, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Age-dependent association between low frequency of CD27/CD28 expression on pp65 CD8+ T cells and cytomegalovirus replication after transplantation. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2009; 16:1429-38. [PMID: 19656991 DOI: 10.1128/cvi.00214-09] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In this cross-sectional study of 42 solid organ transplant recipients, the association of human cytomegalovirus (HCMV) replication and age with the phenotype of the HCMV-specific CD8(+) T cells was analyzed by using the CMV pp65 HLA-A*0201 pentamer. A correlation between the proportion of CD28(-) HCMV-specific CD8(+) T cells and age was observed in patients without HCMV replication (r = 0.50; P = 0.02) but not in patients with HCMV replication (r = -0.05; P = 0.83), a finding which differs from that observed for total CD8(+) T cells. Within the group of patients younger than 50 years of age, patients with HCVM replication after transplantation had higher percentages of CD28(-) HCMV-specific CD8(+) T cells (85.6 compared with 58.7% for patients without HCMV replication; P = 0.004) and CD27(-) HCMV-specific CD8(+) T cells (90.7 compared with 68.8% for patients without HCMV replication; P = 0.03). However, in patients older than age 50 years, a high frequency of these two subpopulations was observed in patients both with and without previous HCMV replication (for CD28(-) HCMV-specific CD8(+) T cells, 84.4 and 80.9%, respectively [P = 0.39]; for CD27(-) HCMV-specific CD8(+) T cells 86.6 and 81.5%, respectively [P = 0.16]). In conclusion, the present study shows that in the group of recipients younger than age 50 years, HCMV replication after transplantation is associated with a high percentage of CD27(-) and CD28(-) HCMV-specific CD8(+) T cells. These results suggest that the increased percentage of CD27(-) or CD28(-) HCMV-specific subsets can be considered a biomarker of HCMV replication in solid organ transplant recipients younger than age 50 years but not in older patients. Further studies are necessary to define the significance of these changes in HCMV-associated clinical complications posttransplantation.
Collapse
|
50
|
Chen X, Bai F, Sokol L, Zhou J, Ren A, Painter JS, Liu J, Sallman DA, Chen YA, Yoder JA, Djeu JY, Loughran TP, Epling-Burnette PK, Wei S. A critical role for DAP10 and DAP12 in CD8+ T cell-mediated tissue damage in large granular lymphocyte leukemia. Blood 2009; 113:3226-34. [PMID: 19075187 PMCID: PMC2665892 DOI: 10.1182/blood-2008-07-168245] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Accepted: 11/23/2008] [Indexed: 01/02/2023] Open
Abstract
Large granular lymphocyte (LGL) leukemia, or LGLL, is characterized by increased numbers of circulating clonal LGL cells in association with neutropenia, anemia, rheumatoid arthritis, and pulmonary artery hypertension (PAH). Emerging evidence suggests that LGLL cells with a CD8(+)CD28(null) phenotype induce these clinical manifestations through direct destruction of normal tissue. Compared with CD8(+)CD28(null) T cells from healthy controls, CD8(+)CD28(null) T cells from LGLL patients have acquired the ability to directly lyse pulmonary artery endothelial cells and human synovial cells. Here, we show that LGLL cells from patients possess enhanced cytotoxic characteristics and express elevated levels of activating natural killer receptors as well as their signaling partners, DAP10 and DAP12. Moreover, downstream targets of DAP10 and DAP12 are constitutively activated in LGLL cells, and expression of dominant-negative DAP10 and DAP12 dramatically reduces their lytic capacity. These are the first results to show that activating NKR-ligand interactions play a critical role in initiating the DAP10 and DAP12 signaling events that lead to enhanced lytic potential of LGLL cells. Results shown suggest that inhibitors of DAP10 and DAP12 or other proteins involved in this signaling pathway will be attractive therapeutic targets for the treatment of LGLL and other autoimmune diseases and syndromes.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Adaptor Proteins, Signal Transducing/physiology
- CD28 Antigens/metabolism
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/pathology
- Cytotoxicity, Immunologic/genetics
- Endothelial Cells/immunology
- Endothelial Cells/pathology
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Humans
- K562 Cells
- Leukemia, Large Granular Lymphocytic/genetics
- Leukemia, Large Granular Lymphocytic/immunology
- Leukemia, Large Granular Lymphocytic/metabolism
- Leukemia, Large Granular Lymphocytic/pathology
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Membrane Proteins/physiology
- Phosphatidylinositol 3-Kinases/metabolism
- Pulmonary Artery/immunology
- Pulmonary Artery/pathology
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Receptors, Immunologic/physiology
- Receptors, Natural Killer Cell/metabolism
- Signal Transduction/genetics
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Xianghong Chen
- Immunology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|