1
|
Mao W, Zhang H, Wang K, Geng J, Wu J. Research progress of MUC1 in genitourinary cancers. Cell Mol Biol Lett 2024; 29:135. [PMID: 39491020 PMCID: PMC11533421 DOI: 10.1186/s11658-024-00654-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024] Open
Abstract
MUC1 is a highly glycosylated transmembrane protein with a high molecular weight. It plays a role in lubricating and protecting mucosal epithelium, participates in epithelial cell renewal and differentiation, and regulates cell adhesion, signal transduction, and immune response. MUC1 is expressed in both normal and malignant epithelial cells, and plays an important role in the diagnosis, prognosis prediction and clinical monitoring of a variety of tumors and is expected to be a new therapeutic target. This article reviews the structural features, expression regulation mechanism, and research progress of MUC1 in the development of genitourinary cancers and its clinical applications.
Collapse
Affiliation(s)
- Weipu Mao
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, No. 87 Dingjiaqiao, Gulou District, Nanjing, 210009, Jiangsu, China.
| | - Houliang Zhang
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, No. 87 Dingjiaqiao, Gulou District, Nanjing, 210009, Jiangsu, China
| | - Keyi Wang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China.
| | - Jiang Geng
- Department of Urology, Bengbu First People's Hospital, Bengbu, People's Republic of China.
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, People's Republic of China.
| | - Jianping Wu
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, No. 87 Dingjiaqiao, Gulou District, Nanjing, 210009, Jiangsu, China.
| |
Collapse
|
2
|
Yang D, Li X, Li J, Liu Z, Li T, Liao P, Luo X, Liu Z, Ming W, Liao G. Fully Synthetic TF-Based Self-Adjuvanting Vaccine Simultaneously Triggers iNKT Cells and Mincle and Protects Mice against Tumor Development. J Med Chem 2024; 67:17640-17656. [PMID: 39302195 DOI: 10.1021/acs.jmedchem.4c01631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
The Thomsen-Friedenreich (TF) antigen has proven to be a promising target for developing novel therapeutic cancer vaccines. Here, a new strategy that TF antigen covalently coupled with KRN7000 and vizantin was developed. The resulting three-component vaccine KRN7000-TF-vizantin simultaneously triggers invariant natural killer T (iNKT) cells and macrophage-inducible C-type lectin (Mincle) signaling pathways, eliciting much stronger TF-specific immune responses than glycoprotein vaccine TF-KLH/alum and the corresponding two-component conjugate vaccines TF-KRN7000 and TF-vizantin. The analysis of IgG isotypes and the secretion of cytokines revealed that KRN7000-TF-vizantin induced Th1/Th2 mixed immune responses, where Th1 was dominant. In vivo experiments demonstrated that KRN7000-TF-vizantin increased the survival rate and survival time of tumor-challenged mice, and surviving mice rejected further tumor attacks without any additional treatment. This work demonstrates that covalently coupled KRN7000 and vizantin could serve as a promising TF-based vaccine carrier for antitumor immune therapy, and KRN7000-TF-vizantin features great potential to be a vaccine candidate.
Collapse
MESH Headings
- Animals
- Cancer Vaccines/immunology
- Mice
- Lectins, C-Type/metabolism
- Lectins, C-Type/immunology
- Natural Killer T-Cells/immunology
- Antigens, Tumor-Associated, Carbohydrate/immunology
- Antigens, Tumor-Associated, Carbohydrate/chemistry
- Mice, Inbred C57BL
- Female
- Membrane Proteins/immunology
- Adjuvants, Immunologic/pharmacology
- Adjuvants, Vaccine/chemistry
- Vaccines, Synthetic/immunology
- Cell Line, Tumor
Collapse
Affiliation(s)
- Deying Yang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
- Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Xiaohui Li
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Jinmei Li
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Zichun Liu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Tongtong Li
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Pan Liao
- Guangzhou Yuemei Pharmaceutical Technology Co., Ltd., Guangzhou 510535, China
| | - Xiang Luo
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Zhongqiu Liu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Wenbo Ming
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Guochao Liao
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| |
Collapse
|
3
|
Abstract
Prostate cancer is a leading cause of death in men worldwide. For over 30 years, growing interest has focused on the development of vaccines as treatments for prostate cancer, with the goal of using vaccines to activate immune cells capable of targeting prostate cancer to either eradicate recurrent disease or at least delay disease progression. This interest has been prompted by the prevalence and long natural history of the disease and by the fact that the prostate is an expendable organ. Thus, an immune response elicited by vaccination might not need to target the tumour uniquely but could theoretically target any prostate tissue. To date, different vaccine approaches and targets for prostate cancer have been evaluated in clinical trials. Overall, five approaches have been assessed in randomized phase III trials and sipuleucel-T was approved as a treatment for metastatic castration-resistant prostate cancer, being the only vaccine approved to date by the FDA as a treatment for cancer. Most vaccine approaches showed safety and some evidence of immunological activity but had poor clinical activity when used as monotherapies. However, increased activity has been observed when these vaccines were used in combination with other immune-modulating therapies. This evidence suggests that, in the future, prostate cancer vaccines might be used to activate and expand tumour-specific T cells as part of combination approaches with agents that target tumour-associated immune mechanisms of resistance.
Collapse
Affiliation(s)
- Ichwaku Rastogi
- University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
| | - Anusha Muralidhar
- University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
| | - Douglas G McNeel
- University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
4
|
Dong S, Guo X, Han F, He Z, Wang Y. Emerging role of natural products in cancer immunotherapy. Acta Pharm Sin B 2022; 12:1163-1185. [PMID: 35530162 PMCID: PMC9069318 DOI: 10.1016/j.apsb.2021.08.020] [Citation(s) in RCA: 146] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/05/2021] [Accepted: 08/17/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer immunotherapy has become a new generation of anti-tumor treatment, but its indications still focus on several types of tumors that are sensitive to the immune system. Therefore, effective strategies that can expand its indications and enhance its efficiency become the key element for the further development of cancer immunotherapy. Natural products are reported to have this effect on cancer immunotherapy, including cancer vaccines, immune-check points inhibitors, and adoptive immune-cells therapy. And the mechanism of that is mainly attributed to the remodeling of the tumor-immunosuppressive microenvironment, which is the key factor that assists tumor to avoid the recognition and attack from immune system and cancer immunotherapy. Therefore, this review summarizes and concludes the natural products that reportedly improve cancer immunotherapy and investigates the mechanism. And we found that saponins, polysaccharides, and flavonoids are mainly three categories of natural products, which reflected significant effects combined with cancer immunotherapy through reversing the tumor-immunosuppressive microenvironment. Besides, this review also collected the studies about nano-technology used to improve the disadvantages of natural products. All of these studies showed the great potential of natural products in cancer immunotherapy.
Collapse
Key Words
- AKT, alpha-serine/threonine-specific protein kinase
- Adoptive immune-cells transfer immunotherapy
- B2M, beta-2-microglobulin
- BMDCs, bone marrow dendritic cells
- BPS, basil polysaccharide
- BTLA, B- and T-lymphocyte attenuator
- CAFs, cancer-associated fibroblasts
- CCL22, C–C motif chemokine 22
- CIKs, cytokine-induced killer cells
- COX-2, cyclooxygenase-2
- CRC, colorectal cancer
- CTL, cytotoxic T cell
- CTLA-4, cytotoxic T lymphocyte antigen-4
- Cancer immunotherapy
- Cancer vaccines
- DAMPs, damage-associated molecular patterns
- DCs, dendritic cells
- FDA, US Food and Drug Administration
- HCC, hepatocellular carcinoma
- HER-2, human epidermal growth factor receptor-2
- HIF-1α, hypoxia-inducible factor-1α
- HMGB1, high-mobility group box 1
- HSPs, heat shock proteins
- ICD, Immunogenic cell death
- ICTs, immunological checkpoints
- IFN-γ, interferon γ
- IL-10, interleukin-10
- Immuno-check points
- Immunosuppressive microenvironment
- LLC, Lewis lung cancer
- MDSCs, myeloid-derived suppressor cells
- MHC, major histocompatibility complex class
- MITF, melanogenesis associated transcription factor
- MMP-9, matrix metalloprotein-9
- Mcl-1, myeloid leukemia cell differentiation protein 1
- NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells
- NKTs, natural killer T cells
- NSCLC, non-small cell lung cancer
- Natural products
- OVA, ovalbumin
- PD-1, programmed death-1
- PD-L1, programmed death receptor ligand 1
- PGE-2, prostaglandin E2
- PI3K, phosphoinositide 3-kinase
- ROS, reactive oxygen species
- STAT3, signal transducer and activator of transcription 3
- TAMs, tumor-associated macrophages
- TAP, transporters related with antigen processing
- TGF-β, transforming growth factor-β
- TILs, tumor infiltration lymphocytes
- TLR, Toll-like receptor
- TNF-α, tumor necrosis factor α
- TSA, tumor specific antigens
- Teffs, effective T cells
- Th1, T helper type 1
- Tregs, regulatory T cells
- VEGF, vascular endothelial growth factor
- bFGF, basic fibroblast growth factor
- mTOR, mechanistic target of rapamycin
Collapse
Affiliation(s)
- Songtao Dong
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiangnan Guo
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Fei Han
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhonggui He
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yongjun Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
5
|
Berois N, Pittini A, Osinaga E. Targeting Tumor Glycans for Cancer Therapy: Successes, Limitations, and Perspectives. Cancers (Basel) 2022; 14:cancers14030645. [PMID: 35158915 PMCID: PMC8833780 DOI: 10.3390/cancers14030645] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Aberrant glycosylation is a common feature of many cancers, and it plays crucial roles in tumor development and biology. Cancer progression can be regulated by several physiopathological processes controlled by glycosylation, such as cell–cell adhesion, cell–matrix interaction, epithelial-to-mesenchymal transition, tumor proliferation, invasion, and metastasis. Different mechanisms of aberrant glycosylation lead to the formation of tumor-associated carbohydrate antigens (TACAs), which are suitable for selective cancer targeting, as well as novel antitumor immunotherapy approaches. This review summarizes the strategies developed in cancer immunotherapy targeting TACAs, analyzing molecular and cellular mechanisms and state-of-the-art methods in clinical oncology. Abstract Aberrant glycosylation is a hallmark of cancer and can lead to changes that influence tumor behavior. Glycans can serve as a source of novel clinical biomarker developments, providing a set of specific targets for therapeutic intervention. Different mechanisms of aberrant glycosylation lead to the formation of tumor-associated carbohydrate antigens (TACAs) suitable for selective cancer-targeting therapy. The best characterized TACAs are truncated O-glycans (Tn, TF, and sialyl-Tn antigens), gangliosides (GD2, GD3, GM2, GM3, fucosyl-GM1), globo-serie glycans (Globo-H, SSEA-3, SSEA-4), Lewis antigens, and polysialic acid. In this review, we analyze strategies for cancer immunotherapy targeting TACAs, including different antibody developments, the production of vaccines, and the generation of CAR-T cells. Some approaches have been approved for clinical use, such as anti-GD2 antibodies. Moreover, in terms of the antitumor mechanisms against different TACAs, we show results of selected clinical trials, considering the horizons that have opened up as a result of recent developments in technologies used for cancer control.
Collapse
Affiliation(s)
- Nora Berois
- Laboratorio de Glicobiología e Inmunología Tumoral, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay;
- Correspondence: (N.B.); (E.O.)
| | - Alvaro Pittini
- Laboratorio de Glicobiología e Inmunología Tumoral, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay;
- Departamento de Inmunobiología, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Eduardo Osinaga
- Laboratorio de Glicobiología e Inmunología Tumoral, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay;
- Departamento de Inmunobiología, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
- Correspondence: (N.B.); (E.O.)
| |
Collapse
|
6
|
Chen CY, Lin YW, Wang SW, Lin YC, Cheng YY, Ren CT, Wong CH, Wu CY. Synthesis of Azido-Globo H Analogs for Immunogenicity Evaluation. ACS CENTRAL SCIENCE 2022; 8:77-85. [PMID: 35106375 PMCID: PMC8796297 DOI: 10.1021/acscentsci.1c01277] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Indexed: 06/14/2023]
Abstract
Globo H (GH) is a tumor-associated carbohydrate antigen (TACA), and GH conjugations have been evaluated as potential cancer vaccines. However, like all carbohydrate-based vaccines, low immunogenicity is a major issue. Modifications of the TACA increase its immunogenicity, but the systemic modification on GH is challenging and the synthesis is cumbersome. In this study, we synthesized several azido-GH analogs for evaluation, using galactose oxidase to selectively oxidize C6-OH of the terminal galactose or N-acetylgalactosamine on lactose, Gb3, Gb4, and SSEA3 into C6 aldehyde, which was then transformed chemically to the azido group. The azido-derivatives were further glycosylated to azido-GH analogs by glycosyltransferases coupled with sugar nucleotide regeneration. These azido-GH analogs and native GH were conjugated to diphtheria toxoid cross-reactive material CRM197 for vaccination with C34 adjuvant in mice. Glycan array analysis of antisera indicated that the azido-GH glycoconjugate with azide at Gal-C6 of Lac (1-CRM197) elicited the highest antibody response not only to GH, SSEA3, and SSEA4, which share the common SSEA3 epitope, but also to MCF-7 cancer cells, which express these Globo-series glycans.
Collapse
Affiliation(s)
- Chiang-Yun Chen
- Genomics
Research Center, Academia Sinica, Taipei 115, Taiwan
- Chemical
Biology and Molecular Biophysics, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan
- Department
of Chemistry, National Taiwan University, Taipei, 106, Taiwan
| | - Yu-Wei Lin
- Genomics
Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Szu-Wen Wang
- Genomics
Research Center, Academia Sinica, Taipei 115, Taiwan
- Institute
of Biochemical Sciences, National Taiwan
University, Taipei 106, Taiwan
| | - Yung-Chu Lin
- Genomics
Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Yang-Yu Cheng
- Genomics
Research Center, Academia Sinica, Taipei 115, Taiwan
- Institute
of Biochemistry and Molecular Biology, National
Yang-Ming University, Taipei 112, Taiwan
| | - Chien-Tai Ren
- Genomics
Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Chi-Huey Wong
- Genomics
Research Center, Academia Sinica, Taipei 115, Taiwan
- Chemical
Biology and Molecular Biophysics, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan
- Institute
of Biochemical Sciences, National Taiwan
University, Taipei 106, Taiwan
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Chung-Yi Wu
- Genomics
Research Center, Academia Sinica, Taipei 115, Taiwan
- Chemical
Biology and Molecular Biophysics, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
7
|
Anderluh M, Berti F, Bzducha-Wróbel A, Chiodo F, Colombo C, Compostella F, Durlik K, Ferhati X, Holmdahl R, Jovanovic D, Kaca W, Lay L, Marinovic-Cincovic M, Marradi M, Ozil M, Polito L, Reina JJ, Reis CA, Sackstein R, Silipo A, Švajger U, Vaněk O, Yamamoto F, Richichi B, van Vliet SJ. Recent advances on smart glycoconjugate vaccines in infections and cancer. FEBS J 2021; 289:4251-4303. [PMID: 33934527 PMCID: PMC9542079 DOI: 10.1111/febs.15909] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/09/2021] [Accepted: 04/30/2021] [Indexed: 01/01/2023]
Abstract
Vaccination is one of the greatest achievements in biomedical research preventing death and morbidity in many infectious diseases through the induction of pathogen-specific humoral and cellular immune responses. Currently, no effective vaccines are available for pathogens with a highly variable antigenic load, such as the human immunodeficiency virus or to induce cellular T-cell immunity in the fight against cancer. The recent SARS-CoV-2 outbreak has reinforced the relevance of designing smart therapeutic vaccine modalities to ensure public health. Indeed, academic and private companies have ongoing joint efforts to develop novel vaccine prototypes for this virus. Many pathogens are covered by a dense glycan-coat, which form an attractive target for vaccine development. Moreover, many tumor types are characterized by altered glycosylation profiles that are known as "tumor-associated carbohydrate antigens". Unfortunately, glycans do not provoke a vigorous immune response and generally serve as T-cell-independent antigens, not eliciting protective immunoglobulin G responses nor inducing immunological memory. A close and continuous crosstalk between glycochemists and glycoimmunologists is essential for the successful development of efficient immune modulators. It is clear that this is a key point for the discovery of novel approaches, which could significantly improve our understanding of the immune system. In this review, we discuss the latest advancements in development of vaccines against glycan epitopes to gain selective immune responses and to provide an overview on the role of different immunogenic constructs in improving glycovaccine efficacy.
Collapse
Affiliation(s)
- Marko Anderluh
- Faculty of Pharmacy, Faculty of Pharmacy, Chair of Pharmaceutical Chemistry, University of Ljubljana, Slovenia
| | | | - Anna Bzducha-Wróbel
- Department of Biotechnology and Food Microbiology, Warsaw University of Life Sciences-SGGW, Warszawa, Poland
| | - Fabrizio Chiodo
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, The Netherlands.,Institute of Biomolecular Chemistry (ICB), Italian National Research Council (CNR), Pozzuoli, Italy
| | - Cinzia Colombo
- Department of Chemistry and CRC Materiali Polimerici (LaMPo), University of Milan, Italy
| | - Federica Compostella
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milano, Italy
| | - Katarzyna Durlik
- Department of Microbiology and Parasitology, Jan Kochanowski University, Kielce, Poland
| | - Xhenti Ferhati
- Department of Chemistry 'Ugo Schiff', University of Florence, Sesto Fiorentino, Italy
| | - Rikard Holmdahl
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Dragana Jovanovic
- Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Serbia
| | - Wieslaw Kaca
- Department of Microbiology and Parasitology, Jan Kochanowski University, Kielce, Poland
| | - Luigi Lay
- Department of Chemistry and CRC Materiali Polimerici (LaMPo), University of Milan, Italy
| | - Milena Marinovic-Cincovic
- Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Serbia
| | - Marco Marradi
- Department of Chemistry 'Ugo Schiff', University of Florence, Sesto Fiorentino, Italy
| | - Musa Ozil
- Faculty of Arts and Sciences, Department of Chemistry, Recep Tayyip Erdogan University, Rize, Turkey
| | - Laura Polito
- National Research Council, CNR-SCITEC, Milan, Italy
| | - Josè Juan Reina
- Departamento de Química Orgánica, Universidad de Málaga-IBIMA, Spain.,Andalusian Centre for Nanomedicine and Biotechnology-BIONAND, Parque Tecnológico de Andalucía, Málaga, Spain
| | - Celso A Reis
- I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal.,IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Portugal
| | - Robert Sackstein
- Department of Translational Medicine, Translational Glycobiology Institute, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Alba Silipo
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte Sant'Angelo, Napoli, Italy
| | - Urban Švajger
- Blood Transfusion Center of Slovenia, Ljubljana, Slovenia
| | - Ondřej Vaněk
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Fumiichiro Yamamoto
- Immunohematology & Glycobiology Laboratory, Josep Carreras Leukaemia Research Institute, Badalona, Spain
| | - Barbara Richichi
- Department of Chemistry 'Ugo Schiff', University of Florence, Sesto Fiorentino, Italy
| | - Sandra J van Vliet
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, The Netherlands
| |
Collapse
|
8
|
Brockhausen I, Melamed J. Mucins as anti-cancer targets: perspectives of the glycobiologist. Glycoconj J 2021; 38:459-474. [PMID: 33704667 DOI: 10.1007/s10719-021-09986-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/22/2021] [Accepted: 02/26/2021] [Indexed: 12/11/2022]
Abstract
Mucins are highly O-glycosylated glycoproteins that carry a heterogenous variety of O-glycan structures. Tumor cells tend to overexpress specific mucins, such as the cell surface mucins MUC1 and MUC4 that are engaged in signaling and cell growth, and exhibit abnormal glycosylation. In particular, the Tn and T antigens and their sialylated forms are common in cancer mucins. We review herein methods chosen to use cancer-associated glycans and mucins as targets for the design of anti-cancer immunotherapies. Mucin peptides from the glycosylated and transmembrane domains have been combined with immune-stimulating adjuvants in a wide variety of approaches to produce anti-tumor antibodies and vaccines. These mucin conjugates have been tested on cancer cells in vitro and in mice with significant successes in stimulating anti-tumor responses. The clinical trials in humans, however, have shown limited success in extending survival. It seems critical that the individual-specific epitope expression of cancer mucins is considered in future therapies to result in lasting anti-tumor responses.
Collapse
Affiliation(s)
- Inka Brockhausen
- Biomedical and Molecular Sciences, Queen's University, 18 Stuart St, Kingston, ON, K7L 3N6, Canada.
| | - Jacob Melamed
- Biomedical and Molecular Sciences, Queen's University, 18 Stuart St, Kingston, ON, K7L 3N6, Canada
| |
Collapse
|
9
|
Abstract
Personalized cancer vaccines (PCVs) are reinvigorating vaccine strategies in cancer immunotherapy. In contrast to adoptive T-cell therapy and checkpoint blockade, the PCV strategy modulates the innate and adaptive immune systems with broader activation to redeploy antitumor immunity with individualized tumor-specific antigens (neoantigens). Following a sequential scheme of tumor biopsy, mutation analysis, and epitope prediction, the administration of neoantigens with synthetic long peptide (SLP) or mRNA formulations dramatically improves the population and activity of antigen-specific CD4+ and CD8+ T cells. Despite the promising prospect of PCVs, there is still great potential for optimizing prevaccination procedures and vaccine potency. In particular, the arduous development of tumor-associated antigen (TAA)-based vaccines provides valuable experience and rational principles for augmenting vaccine potency which is expected to advance PCV through the design of adjuvants, delivery systems, and immunosuppressive tumor microenvironment (TME) reversion since current personalized vaccination simply admixes antigens with adjuvants. Considering the broader application of TAA-based vaccine design, these two strategies complement each other and can lead to both personalized and universal therapeutic methods. Chemical strategies provide vast opportunities for (1) exploring novel adjuvants, including synthetic molecules and materials with optimizable activity, (2) constructing efficient and precise delivery systems to avoid systemic diffusion, improve biosafety, target secondary lymphoid organs, and enhance antigen presentation, and (3) combining bioengineering methods to innovate improvements in conventional vaccination, "smartly" re-educate the TME, and modulate antitumor immunity. As chemical strategies have proven versatility, reliability, and universality in the design of T cell- and B cell-based antitumor vaccines, the union of such numerous chemical methods in vaccine construction is expected to provide new vigor and vitality in cancer treatment.
Collapse
Affiliation(s)
- Wen-Hao Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, 100084 Beijing, China
| | - Yan-Mei Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, 100084 Beijing, China.,Beijing Institute for Brain Disorders, 100069 Beijing, China.,Center for Synthetic and Systems Biology, Tsinghua University, 100084 Beijing, China
| |
Collapse
|
10
|
Kightlinger W, Warfel KF, DeLisa MP, Jewett MC. Synthetic Glycobiology: Parts, Systems, and Applications. ACS Synth Biol 2020; 9:1534-1562. [PMID: 32526139 PMCID: PMC7372563 DOI: 10.1021/acssynbio.0c00210] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Indexed: 12/11/2022]
Abstract
Protein glycosylation, the attachment of sugars to amino acid side chains, can endow proteins with a wide variety of properties of great interest to the engineering biology community. However, natural glycosylation systems are limited in the diversity of glycoproteins they can synthesize, the scale at which they can be harnessed for biotechnology, and the homogeneity of glycoprotein structures they can produce. Here we provide an overview of the emerging field of synthetic glycobiology, the application of synthetic biology tools and design principles to better understand and engineer glycosylation. Specifically, we focus on how the biosynthetic and analytical tools of synthetic biology have been used to redesign glycosylation systems to obtain defined glycosylation structures on proteins for diverse applications in medicine, materials, and diagnostics. We review the key biological parts available to synthetic biologists interested in engineering glycoproteins to solve compelling problems in glycoscience, describe recent efforts to construct synthetic glycoprotein synthesis systems, and outline exemplary applications as well as new opportunities in this emerging space.
Collapse
Affiliation(s)
- Weston Kightlinger
- Department
of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Tech E136, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Tech B486, Evanston, Illinois 60208, United States
| | - Katherine F. Warfel
- Department
of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Tech E136, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Tech B486, Evanston, Illinois 60208, United States
| | - Matthew P. DeLisa
- Department
of Microbiology, Cornell University, 123 Wing Drive, Ithaca, New York 14853, United States
- Robert
Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, 120 Olin Hall, Ithaca, New York 14853, United States
- Nancy
E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Weill Hall, Ithaca, New York 14853, United States
| | - Michael C. Jewett
- Department
of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Tech E136, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Tech B486, Evanston, Illinois 60208, United States
| |
Collapse
|
11
|
Kleski KA, Trabbic KR, Shi M, Bourgault JP, Andreana PR. Enhanced Immune Response Against the Thomsen-Friedenreich Tumor Antigen Using a Bivalent Entirely Carbohydrate Conjugate. Molecules 2020; 25:E1319. [PMID: 32183149 PMCID: PMC7144725 DOI: 10.3390/molecules25061319] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 12/23/2022] Open
Abstract
The Thomsen-Friedenreich (TF) antigen is a key target for the development of anticancer vaccines, and this ongoing challenge remains relevant due to the poor immunogenicity of the TF antigen. To overcome this challenge, we adopted a bivalent conjugate design which introduced both the TF antigen and the Thomsen-nouveau (Tn) antigen onto the immunologically relevant polysaccharide A1 (PS A1). The immunological results in C57BL/6 mice revealed that the bivalent, Tn-TF-PS A1 conjugate increased the immune response towards the TF antigen as compared to the monovalent TF-PS A1. This phenomenon was first observed with enzyme-linked immunosorbent assay (ELISA) where the bivalent conjugate generated high titers of IgG antibodies where the monovalent conjugate generated an exclusive IgM response. Fluorescence-activated cell sorting (FACS) analysis also revealed increased binding events to the tumor cell lines MCF-7 and OVCAR-5, which are consistent with the enhanced tumor cell lysis observed in a complement dependent cytotoxicity (CDC) assay. The cytokine profile generated by the bivalent construct revealed increased pro-inflammatory cytokines IL-17 and IFN-γ. This increase in cytokine concentration was matched with an increase in cytokine producing cells as observed by ELISpot. We hypothesized the mechanisms for this phenomenon to involve the macrophage galactose N-acetylgalactosamine specific lectin 2 (MGL2). This hypothesis was supported by using biotinylated probes and recombinant MGL2 to measure carbohydrate-protein interactions.
Collapse
Affiliation(s)
| | | | | | | | - Peter R. Andreana
- 2801 West Bancroft Street, Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, Toledo, OH 43606, USA; (K.A.K.); (K.R.T.); (M.S.); (J.-P.B.)
| |
Collapse
|
12
|
The fully synthetic glycopeptide MAG-Tn3 therapeutic vaccine induces tumor-specific cytotoxic antibodies in breast cancer patients. Cancer Immunol Immunother 2020; 69:703-716. [DOI: 10.1007/s00262-020-02503-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/23/2020] [Indexed: 01/25/2023]
|
13
|
Abstract
Carbohydrates or glycans and their conjugates are involved in a wide range of biological processes and play an important role in various diseases, including inflammation, viral and bacterial infections, and tumor progression and metastasis. Studying the biological significances of carbohydrates has been challenging due in part to their structural diversity and the limited access to complex carbohydrate-containing molecules. Conventional methods such as isothermal titration calorimetry and enzyme-linked lectin assay can be laborious and require significant amounts of time and materials. The emerging of glycan microarrays as high-throughput technology for studying carbohydrate interactions has overcome some of these challenges, and has greatly contributed to our understanding of the biological roles of carbohydrates and their glycoconjugates. In addition, glycan microarrays offer new applications in biomedical research, drug discovery and development. This chapter will focus on the biomedical applications of glycan microarrays and their potential role in drug discovery and development.
Collapse
|
14
|
Hossain F, Andreana PR. Developments in Carbohydrate-Based Cancer Therapeutics. Pharmaceuticals (Basel) 2019; 12:ph12020084. [PMID: 31167407 PMCID: PMC6631729 DOI: 10.3390/ph12020084] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 05/24/2019] [Accepted: 05/29/2019] [Indexed: 12/11/2022] Open
Abstract
Cancer cells of diverse origins express extracellular tumor-specific carbohydrate antigens (TACAs) because of aberrant glycosylation. Overexpressed TACAs on the surface of tumor cells are considered biomarkers for cancer detection and have always been prioritized for the development of novel carbohydrate-based anti-cancer vaccines. In recent years, progress has been made in developing synthetic, carbohydrate-based antitumor vaccines to improve immune responses associated with targeting these specific antigens. Tumor cells also exhaust more energy for proliferation than normal cells, by consuming excessive amounts of glucose via overexpressed sugar binding or transporting receptors located in the cellular membrane. Furthermore, inspired by the Warburg effect, glycoconjugation strategies of anticancer drugs have gained considerable attention from the scientific community. This review highlights a small cohort of recent efforts which have been made in carbohydrate-based cancer treatments, including vaccine design and the development of glycoconjugate prodrugs, glycosidase inhibiting iminosugars, and early cancer diagnosis.
Collapse
Affiliation(s)
- Farzana Hossain
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606, USA.
| | - Peter R Andreana
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606, USA.
| |
Collapse
|
15
|
Chen CM, Hwang J, Chou HC, Shiah HS. Tn (N-acetyl-d-galactosamine-O-serine/threonine) immunization protects against hyperoxia-induced lung injury in adult mice through inhibition of the nuclear factor kappa B activity. Int Immunopharmacol 2018; 59:261-268. [DOI: 10.1016/j.intimp.2018.04.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/29/2018] [Accepted: 04/11/2018] [Indexed: 11/27/2022]
|
16
|
Wei MM, Wang YS, Ye XS. Carbohydrate-based vaccines for oncotherapy. Med Res Rev 2018; 38:1003-1026. [PMID: 29512174 DOI: 10.1002/med.21493] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 01/18/2018] [Accepted: 01/31/2018] [Indexed: 01/02/2023]
Abstract
Cancer is still one of the most serious threats to human worldwide. Aberrant patterns of glycosylation on the surface of cancer cells, which are correlated with various cancer development stages, can differentiate the abnormal tissues from the healthy ones. Therefore, tumor-associated carbohydrate antigens (TACAs) represent the desired targets for cancer immunotherapy. However, these carbohydrate antigens may not able to evoke powerful immune response to combat with cancer for their poor immunogenicity and immunotolerance. Different approaches have been developed to address these problems. In this review, we want to summarize the latest advances in TACAs based anticancer vaccines.
Collapse
Affiliation(s)
- Meng-Man Wei
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yong-Shi Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Xin-Shan Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| |
Collapse
|
17
|
Gracia R, Marradi M, Salerno G, Pérez-Nicado R, Pérez-San Vicente A, Dupin D, Rodriguez J, Loinaz I, Chiodo F, Nativi C. Biocompatible single-chain polymer nanoparticles loaded with an antigen mimetic as potential anticancer vaccine. ACS Macro Lett 2018; 7:196-200. [PMID: 35610892 DOI: 10.1021/acsmacrolett.8b00052] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The "pancarcinoma" Tn antigen (αGalNAc-O-Ser/Thr) is a tumor-associated carbohydrate antigen (TACA) overexpressed on the surface of cancer cells and suitable target for anticancer vaccines. However, TACAs commonly show weak immunogenicity, low in vivo stability, and poor bioavailability. To address these issues, the development of physiologically stable TACA synthetic mimetics and novel nanocarriers for multivalent display are object of intense research. Nanomaterials represent suitable scaffolds to multimerize antigens, but absence of toxicity, easy functionalization and capability to incorporate biomolecules are compulsory characteristics for vaccine nanocarriers. Here, we report on the conjugation of a synthetic Tn-antigen mimetic to biocompatible and water-dispersible dextran-based single-chain nanoparticles (DXT-SCPNs). In vitro stimulation of PBMCs and analysis of interleukins production indicated a specific innate immune modulation mediated by the multivalent presentation of the Tn mimetic at the nanoparticle surface. These preliminary results pave the way for the development of Tn-mimetic clusters on biocompatible DXT-SCPN for TACA-based vaccines.
Collapse
Affiliation(s)
- Raquel Gracia
- CIDETEC Nanomedicine, Parque Cientı́fico y Tecnológico de Guipúzcoa, P° Miramón, 196, 20014 Donostia-San Sebastián, Spain
| | - Marco Marradi
- CIDETEC Nanomedicine, Parque Cientı́fico y Tecnológico de Guipúzcoa, P° Miramón, 196, 20014 Donostia-San Sebastián, Spain
| | - Gianluca Salerno
- Department
of Chemistry, University of Florence, via della Lastruccia, 13, I-50019 Sesto F.no (FI), Italy
| | | | - Adrián Pérez-San Vicente
- CIDETEC Nanomedicine, Parque Cientı́fico y Tecnológico de Guipúzcoa, P° Miramón, 196, 20014 Donostia-San Sebastián, Spain
| | - Damien Dupin
- CIDETEC Nanomedicine, Parque Cientı́fico y Tecnológico de Guipúzcoa, P° Miramón, 196, 20014 Donostia-San Sebastián, Spain
| | - Javier Rodriguez
- CIDETEC Nanomedicine, Parque Cientı́fico y Tecnológico de Guipúzcoa, P° Miramón, 196, 20014 Donostia-San Sebastián, Spain
| | - Iraida Loinaz
- CIDETEC Nanomedicine, Parque Cientı́fico y Tecnológico de Guipúzcoa, P° Miramón, 196, 20014 Donostia-San Sebastián, Spain
| | - Fabrizio Chiodo
- Department
of Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, 2333 CC, The Netherlands
- Department
of Parasiolgy, Leiden University Medical Center, Leiden, 2333 ZA, The Netherlands
| | - Cristina Nativi
- Department
of Chemistry, University of Florence, via della Lastruccia, 13, I-50019 Sesto F.no (FI), Italy
| |
Collapse
|
18
|
Yu H, Li Y, Zeng J, Thon V, Nguyen DM, Ly T, Kuang HY, Ngo A, Chen X. Sequential One-Pot Multienzyme Chemoenzymatic Synthesis of Glycosphingolipid Glycans. J Org Chem 2016; 81:10809-10824. [PMID: 27736072 DOI: 10.1021/acs.joc.6b01905] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Glycosphingolipids are a diverse family of biologically important glycolipids. In addition to variations on the lipid component, more than 300 glycosphingolipid glycans have been characterized. These glycans are directly involved in various molecular recognition events. Several naturally occurring sialic acid forms have been found in sialic acid-containing glycosphingolipids, namely gangliosides. However, ganglioside glycans containing less common sialic acid forms are currently not available. Herein, highly effective one-pot multienzyme (OPME) systems are used in sequential for high-yield and cost-effective production of glycosphingolipid glycans, including those containing different sialic acid forms such as N-acetylneuraminic acid (Neu5Ac), N-glycolylneuraminic acid (Neu5Gc), 2-keto-3-deoxy-d-glycero-d-galacto-nononic acid (Kdn), and 8-O-methyl-N-acetylneuraminic acid (Neu5Ac8OMe). A library of 64 structurally distinct glycosphingolipid glycans belonging to ganglio-series, lacto-/neolacto-series, and globo-/isoglobo-series glycosphingolipid glycans is constructed. These glycans are essential standards and invaluable probes for bioassays and biomedical studies.
Collapse
Affiliation(s)
- Hai Yu
- Glycohub, Inc. , 4070 Truxel Road, Sacramento, California 95834, United States.,Department of Chemistry, University of California , One Shields Avenue, Davis, California 95616, United States
| | - Yanhong Li
- Glycohub, Inc. , 4070 Truxel Road, Sacramento, California 95834, United States.,Department of Chemistry, University of California , One Shields Avenue, Davis, California 95616, United States
| | - Jie Zeng
- Department of Chemistry, University of California , One Shields Avenue, Davis, California 95616, United States.,School of Food Science, Henan Institute of Science and Technology , Xinxiang, Henan 453003, China
| | - Vireak Thon
- Department of Chemistry, University of California , One Shields Avenue, Davis, California 95616, United States
| | - Dung M Nguyen
- Department of Chemistry, University of California , One Shields Avenue, Davis, California 95616, United States
| | - Thao Ly
- Department of Chemistry, University of California , One Shields Avenue, Davis, California 95616, United States
| | - Hui Yu Kuang
- Department of Chemistry, University of California , One Shields Avenue, Davis, California 95616, United States
| | - Alice Ngo
- Department of Chemistry, University of California , One Shields Avenue, Davis, California 95616, United States
| | - Xi Chen
- Department of Chemistry, University of California , One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
19
|
Sun S, Zheng XJ, Huo CX, Song C, Li Q, Ye XS. Synthesis and Evaluation of Glycoconjugates ComprisingN-Acyl-Modified Thomsen-Friedenreich Antigens as Anticancer Vaccines. ChemMedChem 2016; 11:1090-6. [DOI: 10.1002/cmdc.201600094] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 03/17/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Shuang Sun
- State Key Laboratory of Natural and Biomimetic Drugs; School of Pharmaceutical Sciences; Peking University; Xue Yuan Road No. 38 Beijing 100191 China
| | - Xiu-Jing Zheng
- State Key Laboratory of Natural and Biomimetic Drugs; School of Pharmaceutical Sciences; Peking University; Xue Yuan Road No. 38 Beijing 100191 China
| | - Chang-Xin Huo
- State Key Laboratory of Natural and Biomimetic Drugs; School of Pharmaceutical Sciences; Peking University; Xue Yuan Road No. 38 Beijing 100191 China
| | - Chengcheng Song
- State Key Laboratory of Natural and Biomimetic Drugs; School of Pharmaceutical Sciences; Peking University; Xue Yuan Road No. 38 Beijing 100191 China
| | - Qin Li
- State Key Laboratory of Natural and Biomimetic Drugs; School of Pharmaceutical Sciences; Peking University; Xue Yuan Road No. 38 Beijing 100191 China
| | - Xin-Shan Ye
- State Key Laboratory of Natural and Biomimetic Drugs; School of Pharmaceutical Sciences; Peking University; Xue Yuan Road No. 38 Beijing 100191 China
| |
Collapse
|
20
|
Rivalland G, Loveland B, Mitchell P. Update on Mucin-1 immunotherapy in cancer: a clinical perspective. Expert Opin Biol Ther 2015; 15:1773-87. [PMID: 26453294 DOI: 10.1517/14712598.2015.1088519] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
INTRODUCTION Mucin 1 (MUC1) is particularly well suited as a cancer immunotherapy target due to the elevated protein expression and aberrant forms associated with malignancy. A variety of therapeutic strategies have been explored, including antibodies intended to induce cancer cell destruction, and vaccinations with peptides, tumor extracts, and gene expression systems. AREAS COVERED MUC1 immunotherapeutic strategies have included vaccination with peptide sequences, glycan molecules, viruses, and dendritic cells, monoclonal antibodies and monoclonal antibody conjugates. Here we review the relevant clinical trials in each field of immunotherapy with particular focus on large and recently published trials. EXPERT OPINION Long clinical experience in the trial setting has reduced concerns of immunotherapy associated toxicities and inappropriate immune responses, with the main limitation (common to many experimental approaches) being a lack of clinical efficacy. However, there have been sufficient treatment-associated responses to justify continued pursuit of MUC1 targeted immunotherapies. The focus now should be on application to the relevant cancers under appropriate circumstances and combination with the emerging non-specific immunotherapy approaches such as the PD-1 pathway inhibitors.
Collapse
Affiliation(s)
- Gareth Rivalland
- a 1 Austin Health, Olivia Newton-John Cancer and Wellness Centre , Studley Rd, Heidelberg VIC 3084, Australia
| | - Bruce Loveland
- b 2 Burnet Institute, Centre for Biomedical Research , Melbourne VIC 3004, Australia
| | - Paul Mitchell
- c 3 Austin Health, Level 4, Olivia Newton-John Cancer and Wellness Centre , Studley Rd, Heidelberg VIC 3084, Australia +613 94 96 57 63 ; +613 94 57 66 98 ;
| |
Collapse
|
21
|
Hu J, Qiu L, Wang X, Zou X, Lu M, Yin J. Carbohydrate-based vaccine adjuvants - discovery and development. Expert Opin Drug Discov 2015; 10:1133-44. [PMID: 26372693 DOI: 10.1517/17460441.2015.1067198] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
INTRODUCTION The addition of a suitable adjuvant to a vaccine can generate significant effective adaptive immune responses. There is an urgent need for the development of novel po7tent and safe adjuvants for human vaccines. Carbohydrate molecules are promising adjuvants for human vaccines due to their high biocompatibility and good tolerability in vivo. AREAS COVERED The present review covers a few promising carbohydrate-based adjuvants, lipopolysaccharide, trehalose-6,6'-dibehenate, QS-21 and inulin as examples, which have been extensively studied in human vaccines in a number of preclinical and clinical studies. The authors discuss the current status, applications and strategies of development of each adjuvant and different adjuvant formulation systems. This information gives insight regarding the exciting prospect in the field of carbohydrate-based adjuvant research. EXPERT OPINION Carbohydrate-based adjuvants are promising candidates as an alternative to the Alum salts for human vaccines development. Furthermore, combining two or more adjuvants in one formulation is one of the effective strategies in adjuvant development. However, further research efforts are needed to study and develop novel adjuvants systems, which can be more stable, potent and safe. The development of synthetic carbohydrate chemistry can improve the study of carbohydrate-based adjuvants.
Collapse
Affiliation(s)
- Jing Hu
- a 1 Jiangnan University, Wuxi Medical School , Lihu Avenue 1800, 214122, Wuxi, China
| | - Liying Qiu
- a 1 Jiangnan University, Wuxi Medical School , Lihu Avenue 1800, 214122, Wuxi, China
| | - Xiaoli Wang
- b 2 Jiangnan University, The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology , Lihu Avenue 1800, 214122, Wuxi, China +86 51 085 328 229 ; +86 51 085 328 229 ;
| | - Xiaopeng Zou
- b 2 Jiangnan University, The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology , Lihu Avenue 1800, 214122, Wuxi, China +86 51 085 328 229 ; +86 51 085 328 229 ;
| | - Mengji Lu
- c 3 University Hospital Essen, Institute of Virology , Hufelandstr, 55, 45122 Essen, Germany +49 2 017 233 530 ; +49 2 017 235 929 ;
| | - Jian Yin
- b 2 Jiangnan University, The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology , Lihu Avenue 1800, 214122, Wuxi, China +86 51 085 328 229 ; +86 51 085 328 229 ;
| |
Collapse
|
22
|
Hofmann BT, Schlüter L, Lange P, Mercanoglu B, Ewald F, Fölster A, Picksak AS, Harder S, El Gammal AT, Grupp K, Güngör C, Drenckhan A, Schlüter H, Wagener C, Izbicki JR, Jücker M, Bockhorn M, Wolters-Eisfeld G. COSMC knockdown mediated aberrant O-glycosylation promotes oncogenic properties in pancreatic cancer. Mol Cancer 2015; 14:109. [PMID: 26021314 PMCID: PMC4447007 DOI: 10.1186/s12943-015-0386-1] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Accepted: 05/12/2015] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Human pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive and lethal malignancies in the world and despite great efforts in research types of treatment remain limited. A frequently detected alteration in PDACs is a truncated O-linked N-acetylgalactosamine (GalNAc) glycosylation with expression of the Tn antigen. Changes in O-glycosylation affect posttranslationally modified O-GalNAc proteins resulting in profound cellular alterations. Tn antigen is a tumor associated glycan detected in 75-90 % of PDACs and up to 67 % in its precursor lesions. Since the role of Tn antigen expression in PDAC is insufficiently understood we analyzed the impact of COSMC mediated Tn antigen expression in two human PDAC cell lines on cellular oncogenic properties. METHODS Forced expression of Tn antigen on O-glycosylated proteins in pancreatic cancer cells was induced by lentiviral-mediated knockdown of the COSMC chaperone, which prevented O-glycan elongation beyond the initial GalNAcα1- residue on O-linked glycoproteins. Altered O-GalNAc glycosylation was analyzed in human pancreatic cancer cell lines Panc-1 and L3.6pl using Western and Far-Western blot as well as immunocytochemical techniques. To assess the biological implications of COSMC function on oncogenic properties, cell viability assays, scratch assays combined with live cell imaging, migration and apoptosis assays were performed. Lectin based glycoprotein enrichment with subsequent mass spectrometric analysis identified new cancer O-GalNAc modified proteins. Expression of Tn antigen bearing Nucleolin in patient derived PDAC tumor specimens was evaluated and correlated with clinicopathological data. RESULTS Tn antigen expression was induced on various O-GalNAc glycoproteins in COSMC deficient cell lines compared to the control. Proliferation was reduced (p < 0.001) in COSMC knockdown cells, whereas migration was increased (p < 0.001) and apoptosis was decreased (p = 0.03), highlighting the importance of Tn antigen expression on metastatic and anti-apoptotic behavior of PDAC derived cells. Nucleolin was identified as O-GalNAc modified protein in COSMC deficient PDAC cell lines. Interestingly, immunohistochemical staining and co-localization studies of patient derived PDACs revealed poor survival for patients with strong co-localization of Tn antigen and Nucleolin (p = 0.037). CONCLUSION This study substantiates the influence of altered O-glycan (Tn/STn) expression on oncogenic properties in pancreatic cancer and identifies O-GalNAc modified Nucleolin as novel prognostic marker.
Collapse
Affiliation(s)
- Bianca T Hofmann
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
- Department of Anatomy and Experimental Morphology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| | - Laura Schlüter
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| | - Philip Lange
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| | - Baris Mercanoglu
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| | - Florian Ewald
- Department of Hepatobiliary and Transplant Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| | - Aljonna Fölster
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| | - Aeint-Steffen Picksak
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| | - Sönke Harder
- Department of Clinical Chemistry, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| | - Alexander T El Gammal
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| | - Katharina Grupp
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| | - Cenap Güngör
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| | - Astrid Drenckhan
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| | - Hartmut Schlüter
- Department of Clinical Chemistry, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| | - Christoph Wagener
- Department of Clinical Chemistry, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| | - Jakob R Izbicki
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| | - Manfred Jücker
- Institute for Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| | - Maximilian Bockhorn
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| | - Gerrit Wolters-Eisfeld
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| |
Collapse
|
23
|
Yu F, McConnell MS, Nguyen HM. Scalable synthesis of Fmoc-protected GalNAc-threonine amino acid and T(N) antigen via nickel catalysis. Org Lett 2015; 17:2018-21. [PMID: 25853273 PMCID: PMC4752204 DOI: 10.1021/acs.orglett.5b00780] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The highly α-selective and scalable synthesis of the Fmoc-protected GalNAc-threonine amino acid and TN antigen in gram scale (0.5-1 g) is described. The challenging 1,2-cis-2-amino glycosidic bond is addressed through a coupling of threonine residues with C(2)-N-ortho-(trifluoromethyl)benzylidenamino trihaloacetimidate donors mediated by Ni(4-F-PhCN)4(OTf)2. The desired 1,2-cis-2-amino glycoside was obtained in 66% yield (3.77 g) with α-only selectivity and subsequently transformed into the Fmoc-protected GalNAc-threonine and TN antigen. This operationally simple procedure no longer requires utilization of the commonly used C(2)-azido donors and overcomes many of the limitations associated with the synthesis of 1,2-cis linkage.
Collapse
Affiliation(s)
| | | | - Hien M. Nguyen
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
24
|
Ju T, Aryal RP, Kudelka MR, Wang Y, Cummings RD. The Cosmc connection to the Tn antigen in cancer. Cancer Biomark 2015; 14:63-81. [PMID: 24643043 DOI: 10.3233/cbm-130375] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The Tn antigen is a tumor-associated carbohydrate antigen that is not normally expressed in peripheral tissues or blood cells. Expression of this antigen, which is found in a majority of human carcinomas of all types, arises from a blockage in the normal O-glycosylation pathway in which glycans are extended from the common precursor GalNAcα1-O-Ser/Thr (Tn antigen). This precursor is generated in the Golgi apparatus on newly synthesized glycoproteins by a family of polypeptide α-N-acetylgalactosaminyltransferases (ppGalNAcTs) and then extended to the common core 1 O-glycan Galβ1-3GalNAcα1-O-Ser/Thr (T antigen) by a single enzyme termed the T-synthase (core 1 β3-galactosyltransferase or C1GalT). Formation of the active form of the T-synthase requires a unique molecular chaperone termed Cosmc, encoded by Cosmc on the X-chromosome (Xq24 in humans, Xc3 in mice). Cosmc resides in the endoplasmic reticulum (ER) and prevents misfolding, aggregation, and proteasome-dependent degradation of newly synthesized T-synthase. Loss of expression of active T-synthase or Cosmc can lead to expression of the Tn antigen, along with its sialylated version Sialyl Tn antigen as observed in several cancers. Both genetic and epigenetic pathways, in addition to potential metabolic regulation, can result in abnormal expression of the Tn antigen. Engineered expression of the Tn antigen by disruption of either C1GalT (T-syn) or Cosmc in mice is associated with a tremendous range of pathologies and engineered expression of the Tn antigen in mouse embryos leads to embryonic death. Studies indicate that many membrane glycoproteins expressing the Tn antigen and/or truncated O-glycans may be dysfunctional, due to degradation and/or misfolding. Thus, expression of normal O-glycans is associated with health and homeostasis whereas truncation of O-glycans, e.g. the Tn and/or Sialyl Tn antigens is associated with cancer and other pathologies.
Collapse
Affiliation(s)
- Tongzhong Ju
- Department of Biochemistry and the Emory Glycomics Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Rajindra P Aryal
- Department of Biochemistry and the Emory Glycomics Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Matthew R Kudelka
- Department of Biochemistry and the Emory Glycomics Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Yingchun Wang
- Department of Biochemistry and the Emory Glycomics Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Richard D Cummings
- Department of Biochemistry and the Emory Glycomics Center, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
25
|
Zhuang H, Hu Z, Tan M, Zhu L, Liu J, Liu D, Yan L, Lin B. Overexpression of Lewis y antigen promotes human epididymis protein 4-mediated invasion and metastasis of ovarian cancer cells. Biochimie 2014; 105:91-8. [PMID: 24998328 DOI: 10.1016/j.biochi.2014.06.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 06/25/2014] [Indexed: 11/30/2022]
Abstract
To study Human epididymis protein 4 (HE4) surface fucosylation and to determine the effects and significance of Lewis y antigen on HE4-mediated invasion and metastasis of ovarian cancer cells, we investigated four types of ovarian cancer cells and found that six fucosylated antigens (Lewis y, Lewis x, Lewis a, Lewis b, sLewis a, and sLewis x) were identified on HE4 in ovarian cancer cells. Moreover, modification of the type II sugar chain (Lewis y, Lewis x, and sLewis x) was significantly higher than the type I sugar chain (Lewis a, Lewis b, sLewis a) of the lactose series. To confirm the effects of Lewis y antigen on HE4-mediated invasion and metastasis of ovarian cancer cells, the CaoV-3 cells with high Lewis y antigen on the HE4 surface and ES-2 cells, with high Lewis x antigen but low Lewis y antigen, were investigated. We found that the expression levels of HE4 and Lewis y increased in both cell lines while the level of Lewis x didn't have any change after transfection. Furthermore, the high expression of Lewis y antigen significantly enhanced the HE4-mediated invasion and metastasis of ovarian cancer cells. The invasion and metastasis capacities were significantly decreased after Lewis y antibody blocking. This study demonstrates that overexpression of the Lewis y antigen on HE4 promotes ovarian cancer cell invasion and metastasis, which is likely to be used as a target for the clinical treatment of ovarian cancer.
Collapse
Affiliation(s)
- Huiyu Zhuang
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, 110004 Liaoning Province, China
| | - Zhenhua Hu
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, 110004 Liaoning Province, China
| | - Mingzi Tan
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, 110004 Liaoning Province, China
| | - Liancheng Zhu
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, 110004 Liaoning Province, China
| | - Juanjuan Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, 110004 Liaoning Province, China
| | - Dawo Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, 110004 Liaoning Province, China
| | - Limei Yan
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, 110004 Liaoning Province, China
| | - Bei Lin
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, 110004 Liaoning Province, China.
| |
Collapse
|
26
|
Bhatia S, Dimde M, Haag R. Multivalent glycoconjugates as vaccines and potential drug candidates. MEDCHEMCOMM 2014. [DOI: 10.1039/c4md00143e] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
27
|
Westdorp H, Sköld AE, Snijer BA, Franik S, Mulder SF, Major PP, Foley R, Gerritsen WR, de Vries IJM. Immunotherapy for prostate cancer: lessons from responses to tumor-associated antigens. Front Immunol 2014; 5:191. [PMID: 24834066 PMCID: PMC4018526 DOI: 10.3389/fimmu.2014.00191] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 04/17/2014] [Indexed: 12/15/2022] Open
Abstract
Prostate cancer (PCa) is the most common cancer in men and the second most common cause of cancer-related death in men. In recent years, novel therapeutic options for PCa have been developed and studied extensively in clinical trials. Sipuleucel-T is the first cell-based immunotherapeutic vaccine for treatment of cancer. This vaccine consists of autologous mononuclear cells stimulated and loaded with an immunostimulatory fusion protein containing the prostate tumor antigen prostate acid posphatase. The choice of antigen might be key for the efficiency of cell-based immunotherapy. Depending on the treatment strategy, target antigens should be immunogenic, abundantly expressed by tumor cells, and preferably functionally important for the tumor to prevent loss of antigen expression. Autoimmune responses have been reported against several antigens expressed in the prostate, indicating that PCa is a suitable target for immunotherapy. In this review, we will discuss PCa antigens that exhibit immunogenic features and/or have been targeted in immunotherapeutic settings with promising results, and we highlight the hurdles and opportunities for cancer immunotherapy.
Collapse
Affiliation(s)
- Harm Westdorp
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , Netherlands ; Department of Medical Oncology, Radboud University Medical Center , Nijmegen , Netherlands
| | - Annette E Sköld
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , Netherlands
| | - Berit A Snijer
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , Netherlands
| | - Sebastian Franik
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , Netherlands
| | - Sasja F Mulder
- Department of Medical Oncology, Radboud University Medical Center , Nijmegen , Netherlands
| | - Pierre P Major
- Juravinski Hospital and Cancer Centre , Hamilton, ON , Canada
| | - Ronan Foley
- Juravinski Hospital and Cancer Centre , Hamilton, ON , Canada
| | - Winald R Gerritsen
- Department of Medical Oncology, Radboud University Medical Center , Nijmegen , Netherlands
| | - I Jolanda M de Vries
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , Netherlands ; Department of Medical Oncology, Radboud University Medical Center , Nijmegen , Netherlands
| |
Collapse
|
28
|
Carrascal MA, Severino PF, Guadalupe Cabral M, Silva M, Ferreira JA, Calais F, Quinto H, Pen C, Ligeiro D, Santos LL, Dall'Olio F, Videira PA. Sialyl Tn-expressing bladder cancer cells induce a tolerogenic phenotype in innate and adaptive immune cells. Mol Oncol 2014; 8:753-65. [PMID: 24656965 DOI: 10.1016/j.molonc.2014.02.008] [Citation(s) in RCA: 276] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 02/20/2014] [Accepted: 02/21/2014] [Indexed: 11/15/2022] Open
Abstract
Despite the wide acceptance that glycans are centrally implicated in immunity, exactly how they contribute to the tilt immune response remains poorly defined. In this study, we sought to evaluate the impact of the malignant phenotype-associated glycan, sialyl-Tn (STn) in the function of the key orchestrators of the immune response, the dendritic cells (DCs). In high grade bladder cancer tissue, the STn antigen is significantly overexpressed and correlated with the increased expression of ST6GALNAC1 sialyltransferase. Bladder cancer tissue presenting elevated expression of ST6GALNAC1 showed a correlation with increased expression of CD1a, a marker for bladder immature DCs and showed concomitant low levels of Th1-inducing cytokines IL-12 and TNF-α. In vitro, human DCs co-incubated with STn(+) bladder cancer cells, had an immature phenotype (MHC-II(low), CD80(low) and CD86(low)) and were unresponsive to further maturation stimuli. When contacting with STn(+) cancer cells, DCs expressed significantly less IL-12 and TNF-α. Consistent with a tolerogenic DC profile, T cells that were primed by DCs pulsed with antigens derived from STn(+) cancer cells were not activated and showed a FoxP3(high) IFN-γ(low) phenotype. Blockade of STn antigens and of STn(+) glycoprotein, CD44 and MUC1, in STn(+) cancer cells was able to lower the induction of tolerance and DCs become more mature. Overall, our data suggest that STn-expressing cancer cells impair DC maturation and endow DCs with a tolerogenic function, limiting their capacity to trigger protective anti-tumour T cell responses. STn antigens and, in particular, STn(+) glycoproteins are potential targets for circumventing tumour-induced tolerogenic mechanisms.
Collapse
Affiliation(s)
- Mylène A Carrascal
- CEDOC, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Paulo F Severino
- CEDOC, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal; Department of Experimental, Clinical and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - M Guadalupe Cabral
- CEDOC, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal; Faculdade de Engenharia, Universidade Lusófona de Humanidades e Tecnologias, Lisbon, Portugal
| | - Mariana Silva
- CEDOC, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - José Alexandre Ferreira
- QOPNA, Mass Spectrometry Center, Department of Chemistry, University of Aveiro, Aveiro, Portugal; Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal
| | - Fernando Calais
- Centro Hospitalar de Lisboa Central, EPE - Serviço de Anatomia Patológica, Lisbon, Portugal
| | - Hermínia Quinto
- Centro Hospitalar de Lisboa Central, EPE - Serviço de Anatomia Patológica, Lisbon, Portugal
| | - Cláudia Pen
- Centro Hospitalar de Lisboa Central, EPE - Serviço de Anatomia Patológica, Lisbon, Portugal
| | - Dário Ligeiro
- Centro de Histocompatibilidade do Sul, Lisboa, Portugal
| | - Lúcio Lara Santos
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal; Department of Surgical Oncology, Portuguese Institute of Oncology, Porto, Portugal
| | - Fabio Dall'Olio
- Department of Experimental, Clinical and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Paula A Videira
- CEDOC, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal.
| |
Collapse
|
29
|
Huang YL, Wu CY. Carbohydrate-based vaccines: challenges and opportunities. Expert Rev Vaccines 2014; 9:1257-74. [DOI: 10.1586/erv.10.120] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
30
|
Tang CK, Katsara M, Apostolopoulos V. Strategies used for MUC1 immunotherapy: human clinical studies. Expert Rev Vaccines 2014; 7:963-75. [DOI: 10.1586/14760584.7.7.963] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
31
|
Adamo R, Nilo A, Castagner B, Boutureira O, Berti F, Bernardes GJL. Synthetically defined glycoprotein vaccines: current status and future directions. Chem Sci 2013; 4:2995-3008. [PMID: 25893089 PMCID: PMC4396375 DOI: 10.1039/c3sc50862e] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Accepted: 05/03/2013] [Indexed: 12/19/2022] Open
Abstract
Primary examples in vaccine design have shown good levels of carbohydrate-specific antibody generation when raised using extracted or fully synthetic capsular polysaccharide glycans covalently coupled to a protein carrier. Herein, we cover recent clinical developments of carbohydrate-based vaccines and describe how novel cutting-edge methodology for the total synthesis of oligosaccharides and for the precise placement of carbohydrates at pre-determined sites within a protein may be used to further improve the safety and efficacy of glycovaccines.
Collapse
Affiliation(s)
- Roberto Adamo
- Research Center , Novartis Vaccines and Diagnostics , Via Fiorentina 1 , 53100 Siena , Italy .
| | - Alberto Nilo
- Research Center , Novartis Vaccines and Diagnostics , Via Fiorentina 1 , 53100 Siena , Italy .
| | - Bastien Castagner
- Department of Chemistry and Applied Biosciences , ETH Zürich , Wolfgang-Pauli-Str. 10 , 8093 Zürich , Switzerland
| | - Omar Boutureira
- Departament de Química Analítica i Química Orgànica , Universitat Rovira i Virgili , C/Marcel·lí Domingo s/n , 43007 Tarragona , Spain
| | - Francesco Berti
- Research Center , Novartis Vaccines and Diagnostics , Via Fiorentina 1 , 53100 Siena , Italy .
| | - Gonçalo J L Bernardes
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , CB2 1EW , UK . ; Instituto de Medicina Molecular , Faculdade de Medicina da Universidade de Lisboa , Av. Prof. Egas Moniz , 1649-028 Lisboa , Portugal .
| |
Collapse
|
32
|
Abstract
In the process of tumorigenesis, normal cells are remodeled to cancer cells and protein expression patterns are changed to those of tumor cells. A newly formed tumor microenvironment elicits the immune system and, as a result, a humoral immune response takes place. Although the tumor antigens are undetectable in sera at the early stage of tumorigenesis, the nature of an antibody amplification response to antigens makes tumor-associated autoantibodies as promising early biomarkers in cancer diagnosis. Moreover, the recent development of proteomic techniques that make neo-epitopes of tumor-associated autoantigens discovered concomitantly has opened a new area of ‘immuno-proteomics’, which presents tumor-associated autoantibody signatures and confers information to redefine the process of tumorigenesis. In this article, the strategies recently used to identify and validate serum autoantibodies are outlined and tumor-associated antigens suggested until now as diagnostic/prognostic biomarkers in various tumor types are reviewed. Also, the meaning of autoantibody signatures and their clinical utility in personalized medicine are discussed. [BMB Reports 2012; 45(12): 677-685]
Collapse
Affiliation(s)
- Chang-Kyu Heo
- Cancer Biomarkers Development Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 305-806, Korea
| | | | | |
Collapse
|
33
|
Julien S, Videira PA, Delannoy P. Sialyl-tn in cancer: (how) did we miss the target? Biomolecules 2012; 2:435-66. [PMID: 24970145 PMCID: PMC4030860 DOI: 10.3390/biom2040435] [Citation(s) in RCA: 310] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 09/27/2012] [Accepted: 09/30/2012] [Indexed: 11/16/2022] Open
Abstract
Sialyl-Tn antigen (STn) is a short O-glycan containing a sialic acid residue α2,6-linked to GalNAcα-O-Ser/Thr. The biosynthesis of STn is mediated by a specific sialyltransferase termed ST6GalNAc I, which competes with O-glycans elongating glycosyltransferases and prevents cancer cells from exhibiting longer O-glycans. While weakly expressed by fetal and normal adult tissues, STn is expressed by more than 80% of human carcinomas and in all cases, STn detection is associated with adverse outcome and decreased overall survival for the patients. Because of its pan-carcinoma expression associated with an adverse outcome, an anti-cancer vaccine, named Theratope, has been designed towards the STn epitope. In spite of the great enthusiasm around this immunotherapy, Theratope failed on Phase III clinical trial. However, in lieu of missing this target, one should consider to revise the Theratope design and the actual facts. In this review, we highlight the many lessons that can be learned from this failure from the immunological standpoint, as well as from the drug design and formulation and patient selection. Moreover, an irrefutable knowledge is arising from novel immunotherapies targeting other carbohydrate antigens and STn carrier proteins, such as MUC1, that will warrantee the future development of more successful anti-STn immunotherapy strategies.
Collapse
Affiliation(s)
- Sylvain Julien
- Structural and Functional Glycobiology Unit, UMR CNRS 8576, University of Sciences and Technologies of Lille, 59655 Villeneuve d'Ascq, France.
| | - Paula A Videira
- CEDOC, Departamento de Imunologia, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal.
| | - Philippe Delannoy
- Structural and Functional Glycobiology Unit, UMR CNRS 8576, University of Sciences and Technologies of Lille, 59655 Villeneuve d'Ascq, France.
| |
Collapse
|
34
|
Abstract
INTRODUCTION Success of HBV vaccines in reducing the incidence of liver cancer, and HPV vaccines in reducing preneoplastic cervical lesions, demonstrate the potential of cancer reduction by harnessing the immune system. For most human cancers, infectious etiology is not known but other tumor antigens, candidates for vaccines, have been identified. AREAS COVERED The authors discuss knowledge accumulated the last two decades on the tumor antigen MUC1 that has put it at the top of the list as an immunotherapy reagent. They examine evidence that anti-MUC1 immunity affects tumor development and prognosis. Finally, they review two decades of immunotherapy trials targeting MUC1, focusing primarily on vaccines but also adoptive antibody and T-cell therapies. EXPERT OPINION Most approaches targeting MUC1 have been immunotherapies administered to date to more than 1200 patients in clinical trials. Even though these trials focused on advanced cancer, encouraging results were reported particularly for less immunosuppressed patients. Furthermore, spontaneous anti-MUC1 immune responses are associated with better prognosis or with a reduced lifetime risk of developing MUC1+ cancers. MUC1 is abnormally expressed in over 80% of all cancers. Successfully targeting this molecule could benefit over a million patients diagnosed yearly with MUC1+ tumors just in the USA.
Collapse
Affiliation(s)
- Takashi Kimura
- University of Pittsburgh School of Medicine, Department of Immunology, Pittsburgh, PA 15261 , USA
| | | |
Collapse
|
35
|
Recent advances in developing synthetic carbohydrate-based vaccines for cancer immunotherapies. Future Med Chem 2012; 4:545-84. [DOI: 10.4155/fmc.11.193] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Cancer cells can often be distinguished from healthy cells by the expression of unique carbohydrate sequences decorating the cell surface as a result of aberrant glycosyltransferase activity occurring within the cell; these unusual carbohydrates can be used as valuable immunological targets in modern vaccine designs to raise carbohydrate-specific antibodies. Many tumor antigens (e.g., GM2, Ley, globo H, sialyl Tn and TF) have been identified to date in a variety of cancers. Unfortunately, carbohydrates alone evoke poor immunogenicity, owing to their lack of ability in inducing T-cell-dependent immune responses. In order to enhance their immunogenicity and promote long-lasting immune responses, carbohydrates are often chemically modified to link to an immunogenic protein or peptide fragment for eliciting T-cell-dependent responses. This review will present a summary of efforts and advancements made to date on creating carbohydrate-based anticancer vaccines, and will include novel approaches to overcoming the poor immunogenicity of carbohydrate-based vaccines.
Collapse
|
36
|
Repertoire of human natural anti-glycan immunoglobulins. Do we have auto-antibodies? Biochim Biophys Acta Gen Subj 2012; 1820:1373-82. [PMID: 22365885 DOI: 10.1016/j.bbagen.2012.02.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 02/07/2012] [Accepted: 02/09/2012] [Indexed: 12/12/2022]
Abstract
BACKGROUND Profiling of donor's antibodies using glycan arrays demonstrated presence of antibodies capable of binding to >100 mammalian glycans or their fragments. For example, relatively high binding to Galα1-4Galβ1-4GlcNAc (P(1)), Galα1-4Galβ1-4Glc (P(k)), Galβ1-3GlcNAc (Le(c)), 4-O-SuGalβ1-4GlcNAc, and GalNAcα1-3GalNAc (Fs) was found in all tested individuals. Affinity isolation using hapten-specific chromatography in combination with epitope mapping revealed their glycotopes. Notably, a significant part of the antibodies was capable of recognizing a fragment of larger glycans, for example, -Galβ1-4Glc of glycolipids, or Fucα1-3GlcNAc motif of Le(X)/Le(Y) antigens. Their epitope specificity did not vary between different healthy individuals. Nominally, all the mentioned immunoglobulins could be classified as auto-antibodies. METHODS In this work we re-evaluated results published earlier and analyzed new data to address the question why autologous antibodies found in healthy individuals do not cause severe auto-immune reactions. RESULTS In all cases the presumably "auto" antibodies were found to bind short fragments "subtracted" from larger glycans whereas recognition of the same fragment in the context of the whole natural chain was completely abolished. Thus, in spite of numerous formally positive signals observed on the printed glycan array, we are yet unable to identify in blood serum of healthy individuals true auto-antibodies capable of binding carbohydrate chains in their naturally occurring form. GENERAL SIGNIFICANCE The identified natural anti-glycan antibodies were found to be specific, high-titer and population conservative immunoglobulins - all of this suggesting as yet unknown biological role(s) of the studied proteins. This article is part of a Special Issue entitled Glycoproteomics.
Collapse
|
37
|
Hsu CH, Hung SC, Wu CY, Wong CH. Toward automated oligosaccharide synthesis. Angew Chem Int Ed Engl 2011; 50:11872-923. [PMID: 22127846 DOI: 10.1002/anie.201100125] [Citation(s) in RCA: 209] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Indexed: 12/16/2022]
Abstract
Carbohydrates have been shown to play important roles in biological processes. The pace of development in carbohydrate research is, however, relatively slow due to the problems associated with the complexity of carbohydrate structures and the lack of general synthetic methods and tools available for the study of this class of biomolecules. Recent advances in synthesis have demonstrated that many of these problems can be circumvented. In this Review, we describe the methods developed to tackle the problems of carbohydrate-mediated biological processes, with particular focus on the issue related to the development of the automated synthesis of oligosaccharides. Further applications of carbohydrate microarrays and vaccines to human diseases are also highlighted.
Collapse
Affiliation(s)
- Che-Hsiung Hsu
- The Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | | | | | | |
Collapse
|
38
|
Hsu CH, Hung SC, Wu CY, Wong CH. Auf dem Weg zur automatisierten Oligosaccharid- Synthese. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201100125] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
39
|
Heimburg-Molinaro J, Lum M, Vijay G, Jain M, Almogren A, Rittenhouse-Olson K. Cancer vaccines and carbohydrate epitopes. Vaccine 2011; 29:8802-26. [PMID: 21964054 PMCID: PMC3208265 DOI: 10.1016/j.vaccine.2011.09.009] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 08/18/2011] [Accepted: 09/06/2011] [Indexed: 12/17/2022]
Abstract
Tumor-associated carbohydrate antigens (TACA) result from the aberrant glycosylation that is seen with transformation to a tumor cell. The carbohydrate antigens that have been found to be tumor-associated include the mucin related Tn, Sialyl Tn, and Thomsen-Friedenreich antigens, the blood group Lewis related Lewis(Y), Sialyl Lewis(X) and Sialyl Lewis(A), and Lewis(X) (also known as stage-specific embryonic antigen-1, SSEA-1), the glycosphingolipids Globo H and stage-specific embryonic antigen-3 (SSEA-3), the sialic acid containing glycosphingolipids, the gangliosides GD2, GD3, GM2, fucosyl GM1, and Neu5GcGM3, and polysialic acid. Recent developments have furthered our understanding of the T-independent type II response that is seen in response to carbohydrate antigens. The selection of a vaccine target antigen is based on not only the presence of the antigen in a variety of tumor tissues but also on the role this antigen plays in tumor growth and metastasis. These roles for TACAs are being elucidated. Newly acquired knowledge in understanding the T-independent immune response and in understanding the key roles that carbohydrates play in metastasis are being applied in attempts to develop an effective vaccine response to TACAs. The role of each of the above mentioned carbohydrate antigens in cancer growth and metastasis and vaccine attempts using these antigens will be described.
Collapse
Affiliation(s)
| | - Michelle Lum
- Department of Cellular and Molecular Biology, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Geraldine Vijay
- University of Texas, MD Anderson Cancer Center, Houston, Texas 77030
| | - Miten Jain
- Department of Biomolecular Engineering, University of California Santa Cruz, CA 95064
| | - Adel Almogren
- Department Of Pathology, College of Medicine, King Saud University, Riyadh, 11461 Saudi Arabia
| | - Kate Rittenhouse-Olson
- Department Of Pathology, College of Medicine, King Saud University, Riyadh, 11461 Saudi Arabia
- Department of Biotechnical and Clinical Laboratory Sciences, University at Buffalo, Buffalo, NY 14214
- Department of Microbiology and Immunology, University at Buffalo, Buffalo, NY 14214
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263
| |
Collapse
|
40
|
von Mensdorff-Pouilly S, Moreno M, Verheijen RHM. Natural and Induced Humoral Responses to MUC1. Cancers (Basel) 2011; 3:3073-103. [PMID: 24212946 PMCID: PMC3759187 DOI: 10.3390/cancers3033073] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 07/25/2011] [Accepted: 07/26/2011] [Indexed: 01/29/2023] Open
Abstract
MUC1 is a membrane-tethered mucin expressed on the ductal cell surface of glandular epithelial cells. Loss of polarization, overexpression and aberrant glycosylation of MUC1 in mucosal inflammation and in adenocarcinomas induces humoral immune responses to the mucin. MUC1 IgG responses have been associated with a benefit in survival in patients with breast, lung, pancreatic, ovarian and gastric carcinomas. Antibodies bound to the mucin may curb tumor progression by restoring cell-cell interactions altered by tumor-associated MUC1, thus preventing metastatic dissemination, as well as counteracting the immune suppression exerted by the molecule. Furthermore, anti-MUC1 antibodies are capable of effecting tumor cell killing by antibody-dependent cell-mediated cytotoxicity. Although cytotoxic T cells are indispensable to achieve anti-tumor responses in advanced disease, abs to tumor-associated antigens are ideally suited to address minimal residual disease and may be sufficient to exert adequate immune surveillance in an adjuvant setting, destroying tumor cells as they arise or maintaining occult disease in an equilibrium state. Initial evaluation of MUC1 peptide/glycopeptide mono and polyvalent vaccines has shown them to be immunogenic and safe; anti-tumor responses are scarce. Progress in carbohydrate synthesis has yielded a number of sophisticated substrates that include MUC1 glycopeptide epitopes that are at present in preclinical testing. Adjuvant vaccination with MUC1 glycopeptide polyvalent vaccines that induce strong humoral responses may prevent recurrence of disease in patients with early stage carcinomas. Furthermore, prophylactic immunotherapy targeting MUC1 may be a strategy to strengthen immune surveillance and prevent disease in subjects at hereditary high risk of breast, ovarian and colon cancer.
Collapse
Affiliation(s)
- Silvia von Mensdorff-Pouilly
- Department of Obstetrics and Gynecology, VU University Medical Center, De Boelelaan 1117, Amsterdam 1081 HV, The Netherlands; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +3170-325-9603; Fax: +3120-444-3114
| | - Maria Moreno
- Department of Obstetrics and Gynecology, VU University Medical Center, De Boelelaan 1117, Amsterdam 1081 HV, The Netherlands; E-Mail:
| | - René H. M. Verheijen
- Department of Woman & Baby, Division of Surgical & Oncological Gynaecology, University Medical Center Utrecht, Heidelberglaan 100, Utrecht 3508 GA, The Netherlands; E-Mail:
| |
Collapse
|
41
|
Di Lorenzo G, Buonerba C, Kantoff PW. Immunotherapy for the treatment of prostate cancer. Nat Rev Clin Oncol 2011; 8:551-61. [DOI: 10.1038/nrclinonc.2011.72] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
42
|
Ragupathi G, Gardner JR, Livingston PO, Gin DY. Natural and synthetic saponin adjuvant QS-21 for vaccines against cancer. Expert Rev Vaccines 2011; 10:463-70. [PMID: 21506644 PMCID: PMC3658151 DOI: 10.1586/erv.11.18] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
One of the most widely used and potent immunological adjuvants is a mixture of soluble triterpene glycosides purified from the soap bark tree (Quillaja saponaria). Despite challenges in production, quality control, stability and toxicity, the QS-21 fraction from this extract has exhibited exceptional adjuvant properties for a range of antigens. It possesses an ability to augment clinically significant antibody and T-cell responses to vaccine antigens against a variety of infectious diseases, degenerative disorders and cancers. The recent synthesis of active molecules of QS-21 has provided a robust method to produce this leading vaccine adjuvant in high purity as well as to produce novel synthetic QS-21 congeners designed to induce increased immune responsiveness and decreased toxicity.
Collapse
Affiliation(s)
- Govind Ragupathi
- Laboratory of Tumor Vaccinology, Melanoma and Sarcoma Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA.
| | | | | | | |
Collapse
|
43
|
Abstract
The overexpression and aberrant glycosylation of MUC1 is associated with a wide variety of cancers, making it an ideal target for immunotherapeutic strategies. This review highlights the main avenues of research in this field, focusing on adenocarcinomas, from the preclinical to clinical; the problems and possible solutions associated with each approach; and speculates on the direction of MUC1 immunotherapeutic research over the next 5-10 years.
Collapse
Affiliation(s)
- Richard E Beatson
- Breast Cancer Biology Group, King's College London, Guy's Hospital, London SE1 9RT, UK
| | | | | |
Collapse
|
44
|
Li Q, Rodriguez LG, Farnsworth DF, Gildersleeve JC. Effects of hapten density on the induced antibody repertoire. Chembiochem 2010; 11:1686-91. [PMID: 20602400 PMCID: PMC3462448 DOI: 10.1002/cbic.201000235] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Indexed: 11/10/2022]
Abstract
Small peptides and oligosaccharides are important antigens for the development of vaccines and the production of monoclonal antibodies. Because of their small size, peptides and oligosaccharides are non-immunogenic on their own and typically must be conjugated to a larger carrier protein to elicit an immune response. Selection of a suitable carrier protein, conjugation method, and hapten density are critical for generating an optimal immune response. We used a glycan array to compare the repertoire of antibodies induced after immunizing with either low or high-density conjugates of the tumor-associated Tn antigen. At high hapten density, a broader range of antibodies was induced, and reactivity to the clustered Tn antigen was observed. In contrast, antibodies induced by the low-density conjugate had narrower reactivity and did not bind the clustered Tn antigen.
Collapse
Affiliation(s)
- Qian Li
- Chemical Biology Laboratory, Bldg 376, National Cancer Institute, NIH, Frederick, MD 21702, Fax: (+) 1-301-846-6033
| | - Luis G. Rodriguez
- Optical Microscopy and Analysis Laboratory, SAIC-Frederick, Inc., Advanced Technology Program, NCI-Frederick, Frederick, MD 21702
| | - David F. Farnsworth
- Chemical Biology Laboratory, Bldg 376, National Cancer Institute, NIH, Frederick, MD 21702, Fax: (+) 1-301-846-6033
| | - Jeffrey C. Gildersleeve
- Chemical Biology Laboratory, Bldg 376, National Cancer Institute, NIH, Frederick, MD 21702, Fax: (+) 1-301-846-6033
| |
Collapse
|
45
|
Abstract
Recent technological advances in glycobiology and glycochemistry are paving the way for a new era in carbohydrate vaccine design. This is enabling greater efficiency in the identification, synthesis and evaluation of unique glycan epitopes found on a plethora of pathogens and malignant cells. Here, we review the progress being made in addressing challenges posed by targeting the surface carbohydrates of bacteria, protozoa, helminths, viruses, fungi and cancer cells for vaccine purposes.
Collapse
|
46
|
Cazet A, Julien S, Bobowski M, Burchell J, Delannoy P. Tumour-associated carbohydrate antigens in breast cancer. Breast Cancer Res 2010; 12:204. [PMID: 20550729 PMCID: PMC2917018 DOI: 10.1186/bcr2577] [Citation(s) in RCA: 186] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Glycosylation changes that occur in cancer often lead to the expression of tumour-associated carbohydrate antigens. In breast cancer, these antigens are usually associated with a poor prognosis and a reduced overall survival. Cellular models have shown the implication of these antigens in cell adhesion, migration, proliferation and tumour growth. The present review summarizes our current knowledge of glycosylation changes (structures, biosynthesis and occurrence) in breast cancer cell lines and primary tumours, and the consequences on disease progression and aggressiveness. The therapeutic strategies attempted to target tumour-associated carbohydrate antigens in breast cancer are also discussed.
Collapse
Affiliation(s)
- Aurélie Cazet
- Structural and Functional Glycobiology Unit, UMR CNRS 8576, University of Sciences and Technologies of Lille, Villeneuve d'Ascq, France.
| | | | | | | | | |
Collapse
|
47
|
Zhu J, Warren JD, Danishefsky SJ. Synthetic carbohydrate-based anticancer vaccines: the Memorial Sloan-Kettering experience. Expert Rev Vaccines 2009; 8:1399-413. [PMID: 19803761 DOI: 10.1586/erv.09.95] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Malignantly transformed cells can express aberrant cell surface glycosylation patterns, which serve to distinguish them from normal cells. This phenotype provides an opportunity for the development of carbohydrate-based vaccines for cancer immunotherapy. Synthetic carbohydrate-based vaccines, properly introduced through vaccination of a subject with a suitable construct, should be recognized by the immune system. Antibodies induced against these carbohydrate antigens could then participate in the eradication of carbohydrate-displaying tumor cells. Advances in carbohydrate synthetic capabilities have allowed us to efficiently prepare a range of complex, synthetic anticancer vaccine candidates. We describe herein the progression of our longstanding carbohydrate-based anticancer vaccine program, which is now at the threshold of clinical evaluation in several contexts. Our carbohydrate-based anticancer vaccine program has evolved through a number of stages: monomeric vaccines, monomeric clustered vaccines, unimolecular multi-antigenic vaccines and dual-acting vaccines. This account will focus on our recently developed unimolecular multi-antigenic constructs and potential dual-acting constructs, which contain clusters of both carbohydrate and peptide epitopes.
Collapse
Affiliation(s)
- Jianglong Zhu
- Research Fellow, Bioorganic Chemistry Laboratory, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| | | | | |
Collapse
|
48
|
Tan HT, Low J, Lim SG, Chung MCM. Serum autoantibodies as biomarkers for early cancer detection. FEBS J 2009; 276:6880-904. [DOI: 10.1111/j.1742-4658.2009.07396.x] [Citation(s) in RCA: 243] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
49
|
Oyelaran O, Li Q, Farnsworth D, Gildersleeve JC. Microarrays with varying carbohydrate density reveal distinct subpopulations of serum antibodies. J Proteome Res 2009; 8:3529-38. [PMID: 19366269 PMCID: PMC2730745 DOI: 10.1021/pr9002245] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Antigen arrays have become important tools for profiling complex mixtures of proteins such as serum antibodies. These arrays can be used to better understand immune responses, discover new biomarkers, and guide the development of vaccines. Nevertheless, they are not perfect and improved array designs would enhance the information derived from this technology. In this study, we describe and evaluate a strategy for varying antigen density on an array and then use the array to study binding of lectins, monoclonal antibodies, and serum antibodies. To vary density, neoglycoproteins containing differing amounts of carbohydrate were synthesized and used to make a carbohydrate microarray with variations in both structure and density. We demonstrate that this method provides variations in density on the array surface within a range that is relevant for biological recognition events. The array was used to evaluate density dependent binding properties of three lectins (Vicia villosa lectin B4, Helix pomatia agglutinin, and soybean agglutinin) and three monoclonal antibodies (HBTn-1, B1.1, and Bric111) that bind the tumor-associated Tn antigen. In addition, serum antibodies were profiled from 30 healthy donors. The results show that variations in antigen density are required to detect the full spectrum of antibodies that bind a particular antigen and can be used to reveal differences in antibody populations between individuals that are not detectable using a single antigen density.
Collapse
Affiliation(s)
- Oyindasola Oyelaran
- Laboratory of Medicinal Chemistry, National Cancer Institute, 376 Boyles St., Building 376, Frederick, MD 21702
| | - Qian Li
- Laboratory of Medicinal Chemistry, National Cancer Institute, 376 Boyles St., Building 376, Frederick, MD 21702
| | - David Farnsworth
- Laboratory of Medicinal Chemistry, National Cancer Institute, 376 Boyles St., Building 376, Frederick, MD 21702
| | - Jeffrey C. Gildersleeve
- Laboratory of Medicinal Chemistry, National Cancer Institute, 376 Boyles St., Building 376, Frederick, MD 21702
| |
Collapse
|
50
|
Wuttke M, Papewalis C, Jacobs B, Schott M. Identifying tumor antigens in endocrine malignancies. Trends Endocrinol Metab 2009; 20:122-9. [PMID: 19269848 DOI: 10.1016/j.tem.2008.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Revised: 11/25/2008] [Accepted: 12/02/2008] [Indexed: 11/27/2022]
Abstract
Tumor antigens are surface molecules that are mostly cancer specific, often overexpressed and recognized by the immune system. Therefore, identifying tumor antigens is of key importance for developing new immunotherapies for incurable cancers. For endocrine malignancies, several different tumor-associated antigens have been described, including polypeptide hormones and/or vesicle-associated antigens in Th1-mediated autoimmune diseases. Other antigens have been identified by screening tumor DNA libraries. Furthermore, vaccination studies in humans and animal models have revealed a tumor-antigen-specific immunity and clinical responses with reduced tumor size. Here, we provide an overview of the recent progress achieved in identifying tumor antigens and predict how this knowledge can be used in the future for developing anti-tumor vaccinations.
Collapse
Affiliation(s)
- Margret Wuttke
- Endocrine Cancer Center, Department of Endocrinology, Diabetology and Rheumatology, University Hospital Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany.
| | | | | | | |
Collapse
|