1
|
Velikova T, Vasilev GV, Linkwinstar D, Siliogka E, Kokudeva M, Miteva D, Vasilev GH, Gulinac M, Atliev K, Shumnalieva R. Regulatory T cell-based therapies for type 1 diabetes: a narrative review. METABOLISM AND TARGET ORGAN DAMAGE 2025; 5. [DOI: 10.20517/mtod.2024.52] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease caused by the destruction of pancreatic insulin-secreting beta cells, resulting in hyperglycemia and a lifelong need for exogenous insulin therapy. Regulatory T cells (Tregs) are essential for maintaining immune tolerance and preventing autoimmune reactions. It has been shown that dysfunctional Tregs participate in the pathophysiology of T1D. Therapeutic approaches designed to enhance Treg stability, survival, and function have progressively emerged as a promising treatment strategy for T1D. This narrative review explores the potential of Treg cell-based therapy as a therapeutic tool to alter the natural history of T1D. It discusses different pharmacological strategies to enhance Treg stability and function, as well as the latest advances in Treg cell-based therapies, including adoptive Treg cell therapy and genetic engineering of Tregs. It also outlines current challenges and future research directions for integrating Treg cell-based therapy into clinical practice, aiming to provide a comprehensive overview of its potential benefits and limitations as an innovative therapeutic intervention for T1D.
Collapse
|
2
|
Sekulic A, Wildner G, Skerka C, Strauß O. Immunogenic Switch of RPE Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1468:369-373. [PMID: 39930224 DOI: 10.1007/978-3-031-76550-6_61] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
The barrier function of the retinal pigment epithelium (RPE) secures a highly selective exchange of molecules between the blood stream of the choroid and retina but also maintenance of the immune privilege of the retina. The latter function includes a mechanical barrier through the tight junctions and immune barrier of either membrane bound or secreted immune-suppressive factors in response to increasing inflammatory activities in the outer retina. However, in disease, both physical and immune barriers are compromised to allow accumulation of immune cells in the subretinal space or even to pass across the RPE into the retinal space. The ability of the RPE to secrete immune stimulatory factors such as MCP-1, as a response to the increased inflammation, suggests that disease goes along with an immunogenic switch. We recently found that stressed RPE cells express the transcription factor FoxP3 and its activation leads to secretion of pro-inflammatory factors. Indeed, RPE cells in either mouse models with age-related macular degeneration (AMD) relevance or in retinas from AMD patients, express FoxP3 in the RPE, which was not observed in healthy donors. FoxP3 appears first as a rescue factor for the RPE in the increasing presence of pro-inflammatory proteins such as IL1β or active complement that eventually changes the immunogenic phenotype from anti-inflammatory to pro-inflammatory.
Collapse
Affiliation(s)
- Andjela Sekulic
- Experimental Ophthalmology, Department of Ophthalmology, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität, Berlin Institute of Health, Humboldt-Universität, Berlin, Germany.
| | - Gerhild Wildner
- Section of Immunobiology, Department of Ophthalmology, University Hospital, LMU Munich, Munich, Germany
| | - Christine Skerka
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knoell-Institute, Jena, Germany
| | - Olaf Strauß
- Experimental Ophthalmology, Department of Ophthalmology, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität, Berlin Institute of Health, Humboldt-Universität, Berlin, Germany
| |
Collapse
|
3
|
Yin B, Cai Y, Chen L, Li Z, Li X. Immunosuppressive MDSC and Treg signatures predict prognosis and therapeutic response in glioma. Int Immunopharmacol 2024; 141:112922. [PMID: 39137632 DOI: 10.1016/j.intimp.2024.112922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024]
Abstract
Glioma, a complex and aggressive brain tumor, is characterized by dysregulated immune responses within the tumor microenvironment (TME). We conducted a comprehensive analysis to elucidate the roles of myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs) in glioma progression and their impact on the immune landscape. Using transcriptome data, we stratified glioma samples based on MDSC and Treg levels, revealing significant differences in patient survival probabilities. LASSO regression identified a gene panel associated with glioma prognosis, yielding a patient-specific risk score. Multivariate Cox regression confirmed the risk score's correlation with overall survival. An ISS (immune suppressive score) system assessed the immune landscape's impact on glioma progression and therapeutic response. Functional validation showed MDSC and Treg infiltration's relevance in glioma progression and immune modulation. Hub genes in the black module, including CCL2, LINC01503, CXCL8, CLEC2B, TIMP1, and RGS2, were identified through MCODE analysis. RGS2 expression correlated with immune cell populations and varied in glioma cells. This study sheds light on MDSCs' and Tregs' roles in glioma pathogenesis, suggesting their potential as prognostic biomarkers and therapeutic targets for personalized immunotherapeutic strategies in glioma treatment.
Collapse
Affiliation(s)
- Bowen Yin
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China; Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yiheng Cai
- Shanghai Institute of Medical Imaging, Fudan University, Shanghai, China; Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lingxia Chen
- Department of Pathogenic Biology, School of Basic Medical Sciences, Gannan Medical University, Ganzhou, China
| | | | - Xiaofei Li
- Department of Science and Technology, Yunnan University of Chinese Medicine, Kunming, China.
| |
Collapse
|
4
|
Liu HL, Weng SW, Chou CC, You HL, Wang MC, Ma MC, Huang WT. Correlation of low numbers of intratumoral FOXP3+ cells with worse progression-free survival in angioimmunoblastic T cell lymphoma. J Clin Pathol 2024; 77:743-750. [PMID: 37620127 DOI: 10.1136/jcp-2023-208932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023]
Abstract
AIMS Angioimmunoblastic T cell lymphoma (AITL) is a T cell lymphoma with aberrant immune activity. It is characterised by inflammatory and immune reactions. However, the impact of regulatory T (Treg) cells on AITL remains unclear. METHODS We retrospectively collected 46 AITL cases and performed immunohistochemical analysis of forkhead box P3 (FOXP3) expression. The number of immunostained FOXP3 cells was determined using a digital pathology system with whole-slide imaging. The average number of FOXP3+ cells per high-power field (HPF) was determined by randomly counting 20 HPFs. AITL cases were categorised into high-expression and low-expression groups based on the median count of FOXP3+ cells in all analysed samples. The relationship between FOXP3 expression and clinicopathological features was assessed. RESULTS Among the studied patients, 14 (30.4%) were females and 32 (69.6%) were males, and the median age at diagnosis was 64.1 years. The median expression of FOXP3 was 84.9 positive cells/HPF. FOXP3 expression negatively correlated with Epstein-Barr virus-encoded small RNA positivity in tumour (p=0.041). The patients with low FOXP3 expression presented with aggressive clinical behaviour, including advance-staged diseases (p=0.043), splenomegaly (p=0.008), B symptoms (p=0.019) and extranodal involvement (p=0.019). The neutrophil-to-lymphocyte ratio was higher in the patients with low FOXP3 expression, compared with those with high FOXP3 expression. Low FOXP3 expression had an adverse effect on progression-free survival (PFS, p=0.033), and increased the risk of recurrence 2.320-fold (HR 2.320 (95% CI 1.109 to 4.856); p=0.025). CONCLUSIONS Patients with AITL with low FOXP3 expression tend to have aggressive clinical presentation and shortened PFS. These findings may help with risk stratification and determination of new treatment strategy.
Collapse
Affiliation(s)
- Hung-Lin Liu
- Department of Internal Medicine, Hematology-Oncology Division, Chang Gung Memorial Hospital Kaohsiung Branch, Kaohsiung, Taiwan
| | - Shao-Wen Weng
- Department of Internal Medicine, Chang Gung Memorial Hospital Kaohsiung Branch, Kaohsiung, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chih-Chi Chou
- Department of Pathology, Chang Gung Memorial Hospital Kaohsiung Branch, Kaohsiung, Taiwan
| | - Huey-Ling You
- Department of Laboratory Medicine, Chang Gung Memorial Hospital Kaohsiung Branch, Kaohsiung, Taiwan
- Department of Medical Laboratory Sciences and Biotechnology, Fooyin University, Kaohsiung, Taiwan
| | - Ming-Chung Wang
- Department of Internal Medicine, Hematology-Oncology Division, Chang Gung Memorial Hospital Kaohsiung Branch, Kaohsiung, Taiwan
| | - Ming-Chun Ma
- Department of Internal Medicine, Hematology-Oncology Division, Chang Gung Memorial Hospital Kaohsiung Branch, Kaohsiung, Taiwan
| | - Wan-Ting Huang
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Pathology, Chang Gung Memorial Hospital Kaohsiung Branch, Kaohsiung, Taiwan
- Department of Laboratory Medicine, Chang Gung Memorial Hospital Kaohsiung Branch, Kaohsiung, Taiwan
- Department of Medical Laboratory Sciences and Biotechnology, Fooyin University, Kaohsiung, Taiwan
| |
Collapse
|
5
|
Martín-Sierra C, Martins R, Coucelo M, Abrantes AM, Caetano Oliveira R, Tralhão JG, Botelho MF, Furtado E, Domingues MR, Paiva A, Laranjeira P. Tumor Resection in Hepatic Carcinomas Restores Circulating T Regulatory Cells. J Clin Med 2024; 13:6011. [PMID: 39408071 PMCID: PMC11478317 DOI: 10.3390/jcm13196011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/07/2024] [Accepted: 10/07/2024] [Indexed: 10/20/2024] Open
Abstract
Background/Objectives: Cholangiocarcinoma (CCA) and hepatocellular carcinoma (HCC) represent major primary liver cancers, affecting one of the most vital organs in the human body. T regulatory (Treg) cells play an important role in liver cancers through the immunosuppression of antitumor immune responses. The current study focuses on the characterization of circulating natural killer (NK) cells and T cell subsets, including Treg cells, in CCA and HCC patients, before and after surgical tumor resection, in order to understand the effect of tumor resection on the homeostasis of peripheral blood NK cells and T cells. Methods: Whole blood assays were performed to monitor immune alterations and the functional competence of circulating lymphocytes in a group of ten healthy individuals, eight CCA patients, and twenty HCC patients, before and one month after the surgical procedure, using flow cytometry, cell sorting, and qRT-PCR. Results: Before tumor resection, both HCC and CCA patients display increased percentages of CD8+ Treg cells and decreased frequencies of circulating CD4+ Treg cells. Notwithstanding, no functional impairment was detected on circulating CD4+ Treg cells, neither in CCA nor in HCC patients. Interestingly, the frequency of peripheral CD4+ Treg cells increased from 0.55% ± 0.49 and 0.71% ± 0.54 (in CCA and HCC, respectively) at T0 to 0.99% ± 0.91 and 1.17% ± 0.33 (in CCA and HCC, respectively) at T1, following tumor resection. Conclusions: Our results suggest mechanisms of immune modulation induced by tumor resection.
Collapse
Affiliation(s)
- Carmen Martín-Sierra
- Flow Cytometry Unit, Department of Clinical Pathology, Hospitais da Universidade de Coimbra, Unidade Local de Saúde de Coimbra, 3000-076 Coimbra, Portugal;
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Center of Environmental Genetics of Oncobiology (CIMAGO), Faculty of Medicine (FMUC), University of Coimbra, 3000-548 Coimbra, Portugal; (R.M.); (M.C.); (A.M.A.); (R.C.O.); (J.G.T.); (M.F.B.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-061 Coimbra, Portugal
| | - Ricardo Martins
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Center of Environmental Genetics of Oncobiology (CIMAGO), Faculty of Medicine (FMUC), University of Coimbra, 3000-548 Coimbra, Portugal; (R.M.); (M.C.); (A.M.A.); (R.C.O.); (J.G.T.); (M.F.B.)
- Unidade Transplantação Hepática Pediátrica e de Adultos, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal;
- Serviço de Cirurgia Geral, Unidade HBP, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal
- University of Coimbra, Faculty of Medicine, Biophysics Institute, 3000-548 Coimbra, Portugal
| | - Margarida Coucelo
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Center of Environmental Genetics of Oncobiology (CIMAGO), Faculty of Medicine (FMUC), University of Coimbra, 3000-548 Coimbra, Portugal; (R.M.); (M.C.); (A.M.A.); (R.C.O.); (J.G.T.); (M.F.B.)
- Unidade Funcional de Hematologia Molecular, Serviço de Hematologia Clínica, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal
| | - Ana Margarida Abrantes
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Center of Environmental Genetics of Oncobiology (CIMAGO), Faculty of Medicine (FMUC), University of Coimbra, 3000-548 Coimbra, Portugal; (R.M.); (M.C.); (A.M.A.); (R.C.O.); (J.G.T.); (M.F.B.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-061 Coimbra, Portugal
- University of Coimbra, Faculty of Medicine, Biophysics Institute, 3000-548 Coimbra, Portugal
| | - Rui Caetano Oliveira
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Center of Environmental Genetics of Oncobiology (CIMAGO), Faculty of Medicine (FMUC), University of Coimbra, 3000-548 Coimbra, Portugal; (R.M.); (M.C.); (A.M.A.); (R.C.O.); (J.G.T.); (M.F.B.)
- University of Coimbra, Faculty of Medicine, Biophysics Institute, 3000-548 Coimbra, Portugal
- Serviço de Anatomia Patológica, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal
| | - José Guilherme Tralhão
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Center of Environmental Genetics of Oncobiology (CIMAGO), Faculty of Medicine (FMUC), University of Coimbra, 3000-548 Coimbra, Portugal; (R.M.); (M.C.); (A.M.A.); (R.C.O.); (J.G.T.); (M.F.B.)
- Clinical Academic Center of Coimbra (CACC), 3000-061 Coimbra, Portugal
- Unidade Transplantação Hepática Pediátrica e de Adultos, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal;
- Serviço de Cirurgia Geral, Unidade HBP, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal
- University of Coimbra, Faculty of Medicine, Biophysics Institute, 3000-548 Coimbra, Portugal
| | - Maria Filomena Botelho
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Center of Environmental Genetics of Oncobiology (CIMAGO), Faculty of Medicine (FMUC), University of Coimbra, 3000-548 Coimbra, Portugal; (R.M.); (M.C.); (A.M.A.); (R.C.O.); (J.G.T.); (M.F.B.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-061 Coimbra, Portugal
- University of Coimbra, Faculty of Medicine, Biophysics Institute, 3000-548 Coimbra, Portugal
| | - Emanuel Furtado
- Unidade Transplantação Hepática Pediátrica e de Adultos, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal;
| | - Maria Rosário Domingues
- CESAM—Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
- Mass Spectrometry Center, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Artur Paiva
- Flow Cytometry Unit, Department of Clinical Pathology, Hospitais da Universidade de Coimbra, Unidade Local de Saúde de Coimbra, 3000-076 Coimbra, Portugal;
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Center of Environmental Genetics of Oncobiology (CIMAGO), Faculty of Medicine (FMUC), University of Coimbra, 3000-548 Coimbra, Portugal; (R.M.); (M.C.); (A.M.A.); (R.C.O.); (J.G.T.); (M.F.B.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-061 Coimbra, Portugal
- Instituto Politécnico de Coimbra, ESTESC-Coimbra Health School, Ciências Biomédicas Laboratoriais, 3046-854 Coimbra, Portugal
| | - Paula Laranjeira
- Flow Cytometry Unit, Department of Clinical Pathology, Hospitais da Universidade de Coimbra, Unidade Local de Saúde de Coimbra, 3000-076 Coimbra, Portugal;
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Center of Environmental Genetics of Oncobiology (CIMAGO), Faculty of Medicine (FMUC), University of Coimbra, 3000-548 Coimbra, Portugal; (R.M.); (M.C.); (A.M.A.); (R.C.O.); (J.G.T.); (M.F.B.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-061 Coimbra, Portugal
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
| |
Collapse
|
6
|
Chen H, Molberg K, Carrick K, Niu S, Rivera Colon G, Gwin K, Lewis C, Lea J, Panwar V, Zheng W, Castrillon DH, Lucas E. Expression and Prognostic Significance of LAG-3, TIGIT, VISTA, and IDO1 in Endometrial Serous Carcinoma. Mod Pathol 2024; 37:100532. [PMID: 38848896 DOI: 10.1016/j.modpat.2024.100532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/27/2024] [Accepted: 05/29/2024] [Indexed: 06/09/2024]
Abstract
Endometrial serous carcinoma (ESC) is an uncommon, aggressive type of endometrial cancer. While immune checkpoint blockade has emerged as a promising treatment option for endometrial carcinomas, research on the expression of immune checkpoints that could serve as prospective immunotherapy targets in ESC is limited. We examined the prevalence and prognostic value of lymphocyte-activation gene 3 (LAG-3), T-cell immunoglobulin and ITIM domain (TIGIT), V-domain immunoglobulin (Ig) suppressor of T-cell activation (VISTA), and indoleamine 2,3-dioxygenase 1 (IOD1) in 94 cases of ESC and correlated their expression with CD8+ and FOXP3+ tumor-infiltrating lymphocytes (TILs). We observed a positive correlation among LAG-3, TIGIT, and VISTA expressed on immune cells, and among these markers and CD8+ and FOXP3+ TIL densities. In Kaplan-Meier survival analysis, tumors with high levels of LAG-3 and TIGIT expression had better progression-free survival (PFS) and overall survival (OS) than those with lower levels of expression (LAG-3: PFS, P = .03, OS, P = .04; TIGIT: PFS, P = .01, OS, P = .009). In multivariate analysis, only high TIGIT expression was of independent prognostic value for better OS. VISTA expression in immune or tumor cells, and IDO1 expression in tumor cells, did not show a significant association with survival. Our data indicate that LAG-3, TIGIT, and VISTA immune checkpoints have roles in the microenvironment of ESC, and their expression patterns highlight the complex interactions among the different components of this system. High levels of these markers, together with high CD8+ TIL, suggest the potential immunogenicity of a subset of these tumors. Further studies are needed to elucidate the roles of various immune components in the ESC microenvironment and their association with intrinsic tumor properties.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Female
- Humans
- Middle Aged
- Antigens, CD/metabolism
- B7 Antigens/metabolism
- Biomarkers, Tumor/analysis
- Cystadenocarcinoma, Serous/pathology
- Cystadenocarcinoma, Serous/mortality
- Cystadenocarcinoma, Serous/immunology
- Endometrial Neoplasms/pathology
- Endometrial Neoplasms/immunology
- Endometrial Neoplasms/mortality
- Endometrial Neoplasms/genetics
- Indoleamine-Pyrrole 2,3,-Dioxygenase/biosynthesis
- Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism
- Indoleamine-Pyrrole 2,3,-Dioxygenase/analysis
- Lymphocyte Activation Gene 3 Protein
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/pathology
- Prognosis
- Receptors, Immunologic/metabolism
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Hao Chen
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas; Department of Pathology, Parkland Hospital, Dallas, Texas
| | - Kyle Molberg
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas; Department of Pathology, Parkland Hospital, Dallas, Texas
| | - Kelley Carrick
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas; Department of Pathology, Parkland Hospital, Dallas, Texas
| | - Shuang Niu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas; Department of Pathology, Parkland Hospital, Dallas, Texas
| | - Glorimar Rivera Colon
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas; Department of Pathology, Parkland Hospital, Dallas, Texas
| | - Katja Gwin
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas; Department of Pathology, Parkland Hospital, Dallas, Texas
| | - Cheryl Lewis
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jayanthi Lea
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas; Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Vandana Panwar
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas; Department of Pathology, Parkland Hospital, Dallas, Texas
| | - Wenxin Zheng
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas; Department of Pathology, Parkland Hospital, Dallas, Texas; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas; Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Diego H Castrillon
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas; Department of Pathology, Parkland Hospital, Dallas, Texas; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas; Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Elena Lucas
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas; Department of Pathology, Parkland Hospital, Dallas, Texas.
| |
Collapse
|
7
|
Blinova VG, Zhdanov DD. Many Faces of Regulatory T Cells: Heterogeneity or Plasticity? Cells 2024; 13:959. [PMID: 38891091 PMCID: PMC11171907 DOI: 10.3390/cells13110959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Regulatory T cells (Tregs) are essential for maintaining the immune balance in normal and pathological conditions. In autoimmune diseases and transplantation, they restrain the loss of self-tolerance and promote engraftment, whereas in cancer, an increase in Treg numbers is mostly associated with tumor growth and poor prognosis. Numerous markers and their combinations have been used to identify Treg subsets, demonstrating the phenotypic diversity of Tregs. The complexity of Treg identification can be hampered by the unstable expression of some markers, the decrease in the expression of a specific marker over time or the emergence of a new marker. It remains unclear whether such phenotypic shifts are due to new conditions or whether the observed changes are due to initially different populations. In the first case, cellular plasticity is observed, whereas in the second, cellular heterogeneity is observed. The difference between these terms in relation to Tregs is rather blurred. Considering the promising perspectives of Tregs in regenerative cell-based therapy, the existing confusing data on Treg phenotypes require further investigation and analysis. In our review, we introduce criteria that allow us to distinguish between the heterogeneity and plasticity of Tregs normally and pathologically, taking a closer look at their diversity and drawing the line between two terms.
Collapse
Affiliation(s)
- Varvara G. Blinova
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya st. 10/8, 119121 Moscow, Russia;
| | - Dmitry D. Zhdanov
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya st. 10/8, 119121 Moscow, Russia;
- Department of Biochemistry, People’s Friendship University of Russia Named after Patrice Lumumba (RUDN University), Miklukho-Maklaya st. 6, 117198 Moscow, Russia
| |
Collapse
|
8
|
Achiron A, Falb R, Menascu S, Magalashvili D, Mandel M, Sonis P, Gurevich M. Deciphering the shift from benign to active relapsing-remitting multiple sclerosis: Insights into T regulatory cell dysfunction and apoptosis regulation. Neurobiol Dis 2024; 194:106475. [PMID: 38521093 DOI: 10.1016/j.nbd.2024.106475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/05/2024] [Accepted: 03/17/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND Relapsing-remitting multiple sclerosis (RRMS), a common demyelinating disease among young adults, follows a benign course in 10-15% of cases, where patients experience minimal neurological disability for a decade following disease onset. However, there is potential for these benign cases to transition into a clinically active, relapsing state. OBJECTIVE To elucidate the biological mechanisms underlying the transition from benign to active RRMS using gene expression analysis. METHODS We employed complementary-DNA microarrays to examine peripheral-blood gene expression patterns in patients with benign MS, defined as having a disease duration exceeding 10 years and an Expanded Disability Status Scale (EDSS) score of ≤3.0. We compared the gene expression pattern between patients who switched to active disease (Switching BMS) with those who maintained a benign state (Permanent-BMS) during an additional 5-year follow-up. RESULTS We identified two primary mechanisms linked to the transition from benign MS to clinically active disease. The first involves the suppression of regulatory T cell activity, and the second pertains to the dysfunction of nuclear receptor 4 A family-dependent apoptosis. These mechanisms collectively contribute to an augmented autoimmune response and increased disease activity. CONCLUSIONS The intricate gene regulatory networks that operate in switching-BMS are related to suppression of immune tolerance and aberrant apoptosis. These findings may lead to new therapeutic targets to prevent the escalation to active disease.
Collapse
Affiliation(s)
- Anat Achiron
- Multiple Sclerosis Center, Sheba Medical Center, Ramat-Gan, Israel; Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
| | - Rina Falb
- Multiple Sclerosis Center, Sheba Medical Center, Ramat-Gan, Israel
| | - Shay Menascu
- Multiple Sclerosis Center, Sheba Medical Center, Ramat-Gan, Israel; Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | | | - Mathilda Mandel
- Multiple Sclerosis Center, Sheba Medical Center, Ramat-Gan, Israel
| | - Polina Sonis
- Multiple Sclerosis Center, Sheba Medical Center, Ramat-Gan, Israel
| | - Michael Gurevich
- Multiple Sclerosis Center, Sheba Medical Center, Ramat-Gan, Israel; Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
9
|
Cournoyer A, Amerman H, Assenmacher CA, Durham A, Perry JA, Gedney A, Keuler N, Atherton MJ, Lenz JA. Quantification of CD3, FoxP3, and granzyme B immunostaining in canine renal cell carcinoma. Vet Immunol Immunopathol 2024; 271:110741. [PMID: 38520894 PMCID: PMC11056291 DOI: 10.1016/j.vetimm.2024.110741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/21/2024] [Accepted: 03/05/2024] [Indexed: 03/25/2024]
Abstract
Tumor-infiltrating lymphocyte (TIL) density plays an important role in anti-tumor immunity and is associated with patient outcome in various human and canine malignancies. As a first assessment of the immune landscape of the tumor microenvironment in canine renal cell carcinoma (RCC), we retrospectively analyzed clinical data and quantified CD3, FoxP3, and granzyme B immunostaining in formalin-fixed paraffin-embedded tumor samples from 16 dogs diagnosed with renal cell carcinoma treated with ureteronephrectomy. Cell density was low for all markers evaluated. Increased numbers of intratumoral FoxP3 labelled (+) cells, as well as decreased granzyme B+: FoxP3+ TIL ratio, were associated with poor patient outcomes. Our initial study of canine RCC reveals that these tumors are immunologically cold and Tregs may play an important role in immune evasion.
Collapse
Affiliation(s)
- Ashleigh Cournoyer
- Department of Clinical Studies and Advanced Medicine, University of Pennsylvania, School of Veterinary Medicine, 3900 Spruce Street, Philadelphia, PA 19104, USA
| | - Hayley Amerman
- Department of Pathobiology, University of Pennsylvania, School of Veterinary Medicine, 3900 Spruce Street, Philadelphia, PA 19104, USA
| | - Charles-Antoine Assenmacher
- Department of Pathobiology, University of Pennsylvania, School of Veterinary Medicine, 3900 Spruce Street, Philadelphia, PA 19104, USA
| | - Amy Durham
- Department of Pathobiology, University of Pennsylvania, School of Veterinary Medicine, 3900 Spruce Street, Philadelphia, PA 19104, USA
| | - James A Perry
- Department of Clinical Studies and Advanced Medicine, University of Pennsylvania, School of Veterinary Medicine, 3900 Spruce Street, Philadelphia, PA 19104, USA
| | - Allison Gedney
- Department of Clinical Studies and Advanced Medicine, University of Pennsylvania, School of Veterinary Medicine, 3900 Spruce Street, Philadelphia, PA 19104, USA
| | - Nicholas Keuler
- Department of Statistics, University of Wisconsin-Madison, 1300 University Ave, Madison, WI 53706, USA
| | - Matthew J Atherton
- Department of Clinical Studies and Advanced Medicine, University of Pennsylvania, School of Veterinary Medicine, 3900 Spruce Street, Philadelphia, PA 19104, USA; Department of Biomedical Sciences, University of Pennsylvania, School of Veterinary Medicine, 3900 Spruce Street, Philadelphia, PA 19104, USA
| | - Jennifer A Lenz
- Department of Clinical Studies and Advanced Medicine, University of Pennsylvania, School of Veterinary Medicine, 3900 Spruce Street, Philadelphia, PA 19104, USA.
| |
Collapse
|
10
|
Ma J, Tong P, Chen Q, Liu J, Li H, Long F. Covalent conjugation with polyphenol reduced the sensitization of walnut and ameliorated allergy by enhancing intestinal epithelial barrier in mice. Food Chem 2024; 439:138191. [PMID: 38091784 DOI: 10.1016/j.foodchem.2023.138191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/22/2023] [Accepted: 12/08/2023] [Indexed: 01/10/2024]
Abstract
In order to reduce the sensitization of walnut protein (WP), the effects of the interaction between WP and (-)-Epigallocatechin gallate (EGCG), quercetin, trans-ferulic acid, and resveratrol were investigated. Covalent and non-covalent conjugations were compared. The results suggested that covalent conjugation reduced the free amino acid content, sulfhydryl content, and surface hydrophobicity. When compared to non-covalent conjugation, covalent modification showed a lower IgE binding capacity, accompanied by changes in protein conformation. Moreover, animal experiments revealed that there were up-regulation of transforming growth factor-β, T-box expressed in t cells, and forkhead transcription factor Foxp3 mRNA expression, and down-regulation of IL-4, IL-17, GATA binding protein 3 and retinoid-related orphan nuclear receptor γt mRNA expression in the conjugate groups. These results suggested that covalent conjugation of polyphenols, especially EGCG, likely ameliorated allergy by promoting Th1/Th2 and Treg/Th17 balance and alleviating allergy-induced intestinal barrier damage, which might be a support in reducing the allergenicity of WP.
Collapse
Affiliation(s)
- Jing Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Pengyan Tong
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Qiwen Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Jing Liu
- Institute of Animal Husbandry and Veterinary Medicine, Guizhou Academy of Agricultural Sciences, Guiyang 550005, China
| | - Huzhong Li
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, China
| | - Fangyu Long
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
11
|
Ram S, Mojtahedzadeh S, Aguilar JK, Coskran T, Powell EL, O'Neil SP. Quantitative performance assessment of Ultivue multiplex panels in formalin-fixed, paraffin-embedded human and murine tumor specimens. Sci Rep 2024; 14:8496. [PMID: 38605049 PMCID: PMC11009312 DOI: 10.1038/s41598-024-58372-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/28/2024] [Indexed: 04/13/2024] Open
Abstract
We present a rigorous validation strategy to evaluate the performance of Ultivue multiplex immunofluorescence panels. We have quantified the accuracy and precision of four different multiplex panels (three human and one mouse) in tumor specimens with varying levels of T cell density. Our results show that Ultivue panels are typically accurate wherein the relative difference in cell proportion between a multiplex image and a 1-plex image is less than 20% for a given biomarker. Ultivue panels exhibited relatively high intra-run precision (CV ≤ 25%) and relatively low inter-run precision (CV >> 25%) which can be remedied by using local intensity thresholding to gate biomarker positivity. We also evaluated the reproducibility of cell-cell distance estimates measured from multiplex images which show high intra- and inter-run precision. We introduce a new metric, multiplex labeling efficiency, which can be used to benchmark the overall fidelity of the multiplex data across multiple batch runs. Taken together our results provide a comprehensive characterization of Ultivue panels and offer practical guidelines for analyzing multiplex images.
Collapse
Affiliation(s)
- Sripad Ram
- Drug Safety Research and Development, Pfizer Inc., Groton, CT, USA.
| | | | | | - Timothy Coskran
- Drug Safety Research and Development, Pfizer Inc., Groton, CT, USA
| | - Eric L Powell
- Oncology Research and Development, Pfizer Inc., San Diego, CA, USA
| | - Shawn P O'Neil
- Drug Safety Research and Development, Pfizer Inc., Groton, CT, USA
| |
Collapse
|
12
|
Lowe KO, Tanase CE, Maghami S, Fisher LE, Ghaemmaghami AM. Inflammatory Network of Liver Fibrosis and How It Can Be Targeted Therapeutically. IMMUNO 2023; 3:375-408. [DOI: 10.3390/immuno3040023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Liver fibrosis is a complex, dynamic process associated with a broad spectrum of chronic liver diseases and acute liver failure, characterised by the dysregulated intrahepatic production of extracellular matrix proteins replacing functional liver cells with scar tissue. Fibrosis progresses due to an interrelated cycle of hepatocellular injury, triggering a persistent wound-healing response. The accumulation of scar tissue and chronic inflammation can eventually lead to cirrhosis and hepatocellular carcinoma. Currently, no therapies exist to directly treat or reverse liver fibrosis; hence, it remains a substantial global disease burden. A better understanding of the intricate inflammatory network that drives the initiation and maintenance of liver fibrosis to enable the rationale design of new intervention strategies is required. This review clarifies the most current understanding of the hepatic fibrosis cellular network with a focus on the role of regulatory T cells, and a possible trajectory for T cell immunotherapy in fibrosis treatment. Despite good progress in elucidating the role of the immune system in liver fibrosis, future work to better define the function of different immune cells and their mediators at different fibrotic stages is needed, which will enhance the development of new therapies.
Collapse
Affiliation(s)
- Kirstin O. Lowe
- School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | | | - Susan Maghami
- Hull York Medical School, University of York, York YO10 5DD, UK
| | - Leanne E. Fisher
- School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | | |
Collapse
|
13
|
Woodward B, Hillyer LM, Monk JM. The Tolerance Model of Non-Inflammatory Immune Competence in Acute Pediatric Malnutrition: Origins, Evidence, Test of Fitness and Growth Potential. Nutrients 2023; 15:4922. [PMID: 38068780 PMCID: PMC10707886 DOI: 10.3390/nu15234922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
The tolerance model rests on the thesis of a physiologically regulated, albeit unsustainable, systemic attempt to adapt to the catabolic challenge posed by acute prepubescent malnutrition even in its severe forms. The model centers on the immunological component of the attempt, positing reorientation toward a non-inflammatory form of competence in place of the classic paradigm of immunological attrition and exhaustion. The foundation of the model was laid in 1990, and sixteen years later it was articulated formally on the basis of a body of evidence centered on T cell cytokines and interventions with cytokine and hormonal mediators. The benefit originally suggested was a reduced risk of autoimmune pathologies consequent to the catabolic release of self-antigens, hence the designation highlighting immune tolerance. Herein, the emergence of the tolerance model is traced from its roots in the recognition that acute malnutrition elicits an endocrine-based systemic adaptive attempt. Thereafter, the growth of the evidence base supporting the model is outlined, and its potential to shed new light on existing information is tested by application to the findings of a published clinical study of acutely malnourished children. Finally, some knowledge gaps pertinent to the model are identified and its potential for growth consonant with evolving perceptions of immunobiology is illustrated.
Collapse
Affiliation(s)
- Bill Woodward
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (L.M.H.); (J.M.M.)
| | | | | |
Collapse
|
14
|
Bei KF, Moshkelgosha S, Liu BJ, Juvet S. Intragraft regulatory T cells in the modern era: what can high-dimensional methods tell us about pathways to allograft acceptance? Front Immunol 2023; 14:1291649. [PMID: 38077395 PMCID: PMC10701590 DOI: 10.3389/fimmu.2023.1291649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 10/31/2023] [Indexed: 12/18/2023] Open
Abstract
Replacement of diseased organs with transplanted healthy donor ones remains the best and often only treatment option for end-stage organ disease. Immunosuppressants have decreased the incidence of acute rejection, but long-term survival remains limited. The broad action of current immunosuppressive drugs results in global immune impairment, increasing the risk of cancer and infections. Hence, achievement of allograft tolerance, in which graft function is maintained in the absence of global immunosuppression, has long been the aim of transplant clinicians and scientists. Regulatory T cells (Treg) are a specialized subset of immune cells that control a diverse array of immune responses, can prevent allograft rejection in animals, and have recently been explored in early phase clinical trials as an adoptive cellular therapy in transplant recipients. It has been established that allograft residency by Tregs can promote graft acceptance, but whether intragraft Treg functional diversification and spatial organization contribute to this process is largely unknown. In this review, we will explore what is known regarding the properties of intragraft Tregs during allograft acceptance and rejection. We will summarize recent advances in understanding Treg tissue residency through spatial, transcriptomic and high-dimensional cytometric methods in both animal and human studies. Our discussion will explore properties of intragraft Tregs in mediating operational tolerance to commonly transplanted solid organs. Finally, given recent developments in Treg cellular therapy, we will review emerging knowledge of whether and how these adoptively transferred cells enter allografts in humans. An understanding of the properties of intragraft Tregs will help lay the foundation for future therapies that will promote immune tolerance.
Collapse
Affiliation(s)
- Ke Fan Bei
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Sajad Moshkelgosha
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Bo Jie Liu
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Stephen Juvet
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Toronto Lung Transplant Program, Ajmera Transplant Centre, University Health Network, Toronto, ON, Canada
| |
Collapse
|
15
|
Aggarwal N, Manley AL, Chen J, Groarke EM, Feng X, Young NS. Effects of ruxolitinib on murine regulatory T cells are immune-context dependent. Exp Hematol 2023; 125-126:16-19. [PMID: 37468118 PMCID: PMC10528974 DOI: 10.1016/j.exphem.2023.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023]
Abstract
Aplastic anemia is a bone marrow failure (BMF) disorder characterized by pancytopenia and hypocellular marrow from an immune-mediated etiology. Regulatory T cells (Tregs) prevent autoimmunity by suppressing autoreactive T cells. We recently demonstrated the efficacy of ruxolitinib (RUX), a JAK 1/2 inhibitor, in attenuating murine BMF. Herein, we investigated the changes of Tregs in the context of RUX treatment for murine BMF. Tregs are conventionally identified by surface expression of CD4 and CD25, in addition to intracellular transcription factor FoxP3. RUX promoted the expansion of Tregs in BMF mice defined by increased expression of FoxP3 in CD4 T cells but suppressed expression of activation marker CD25 in CD4 and CD8 T cells. In this context, CD25 is no longer a reliable surface marker for Tregs. We observed strong co-expression of FoxP3 with surface marker GITR instead of CD25 in RUX-treated BMF mice. Fluorescence-activated cell sorting (FACS)-sorted CD4+GITRhi cells showed high FoxP3 expression and intact suppressive function in vitro, suggesting GITR to be a surrogate marker for Tregs. In contrast to its expansive effect on Tregs in BMF, RUX suppressed Tregs in normal and sublethal irradiation conditions, indicating that the effects of RUX on Tregs are immune-context dependent.
Collapse
Affiliation(s)
- Nidhi Aggarwal
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, NIH Clinical Center, Bethesda, Maryland
| | - Ash Lee Manley
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, NIH Clinical Center, Bethesda, Maryland
| | - Jichun Chen
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, NIH Clinical Center, Bethesda, Maryland
| | - Emma M Groarke
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, NIH Clinical Center, Bethesda, Maryland
| | - Xingmin Feng
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, NIH Clinical Center, Bethesda, Maryland.
| | - Neal S Young
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, NIH Clinical Center, Bethesda, Maryland
| |
Collapse
|
16
|
Murphy JD, Shiomitsu K, Milner RJ, Lejeune A, Ossiboff RJ, Gell JC, Axiak-Bechtel S. Characterization of expression and prognostic implications of transforming growth factor beta, programmed death-ligand 1, and T regulatory cells in canine histiocytic sarcoma. Vet Immunol Immunopathol 2023; 257:110560. [PMID: 36804838 DOI: 10.1016/j.vetimm.2023.110560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/03/2023] [Accepted: 02/05/2023] [Indexed: 02/15/2023]
Abstract
Histiocytic sarcoma (HS) is an aggressive malignant neoplasm in dogs. Expression and prognostic significance of transforming growth factor beta (TGF-β), programmed death-ligand 1 (PD-L1), and T regulatory cells (Tregs) in HS is unknown. The goal of this study was to investigate the expression and prognostic significance of TGF-β, PD-L1, and FoxP3/CD25 in canine HS utilizing RNA in situ hybridization (RNAscope®). After validation was performed, RNAscope® on formalin-fixed paraffin-embedded (FFPE) patient HS tissue samples was performed for all targets and expression quantified with HALO® software image analysis. Cox proportional hazard model was conducted to investigate the association between survival time and each variable. Additionally, for categorical data, the Kaplan-Meier product-limit method was used to generate survival curves. TGF-β and PD-L1 mRNA expression was confirmed in the DH82 cell line by reverse transcription polymerase chain reaction (RT-PCR) and CD25 + FoxP3 + cells were detected by flow cytometry in peripheral blood. Once the RNAscope® method was validated, TGF-β H-score and dots/cell and FoxP3 dots/cell were assessed in HS samples and found to be significantly correlated with survival. Moderate positive correlations were found between FoxP3 and PD-L1 H-score, percent staining area, and dots/cell, and FoxP3 and TGF-β dots/cell. In summary, RNAscope® is a valid technique to detect TGF-β and PD-L1 expression and identify Tregs in canine HS FFPE tissues. Furthermore, canine HS expresses TGF-β and PD-L1. Increased TGF-β and FoxP3 correlated with worse prognosis. Prospective studies are warranted to further investigate TGF-β, PD-L1, and Tregs effect on prognosis.
Collapse
Affiliation(s)
- Jacqueline D Murphy
- Department of Small Animal Clinical Sciences, University of Florida College of Veterinary Medicine, 2015 SW 16th Ave, Gainesville, FL 32608, United States
| | - Keijiro Shiomitsu
- Department of Small Animal Clinical Sciences, University of Florida College of Veterinary Medicine, 2015 SW 16th Ave, Gainesville, FL 32608, United States
| | - Rowan J Milner
- Department of Small Animal Clinical Sciences, University of Florida College of Veterinary Medicine, 2015 SW 16th Ave, Gainesville, FL 32608, United States
| | - Amandine Lejeune
- Department of Small Animal Clinical Sciences, University of Florida College of Veterinary Medicine, 2015 SW 16th Ave, Gainesville, FL 32608, United States
| | - Robert J Ossiboff
- Department of Comparative, Diagnostic, and Population Medicine, University of Florida College of Veterinary Medicine, 2015 SW 16th Ave, Gainesville, FL 32608, United States
| | - Jessy Castellanos Gell
- Department of Small Animal Clinical Sciences, University of Florida College of Veterinary Medicine, 2015 SW 16th Ave, Gainesville, FL 32608, United States
| | - Sandra Axiak-Bechtel
- Department of Small Animal Clinical Sciences, University of Florida College of Veterinary Medicine, 2015 SW 16th Ave, Gainesville, FL 32608, United States.
| |
Collapse
|
17
|
Erlandsson A, Lundholm M, Watz J, Bergh A, Petrova E, Alamdari F, Helleday T, Davidsson S, Andren O, Tarish F. Infiltrating immune cells in prostate cancer tissue after androgen deprivation and radiotherapy. Int J Immunopathol Pharmacol 2023; 37:3946320231158025. [PMID: 36880147 PMCID: PMC9996739 DOI: 10.1177/03946320231158025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
Abstract
OBJECTIVES Androgen deprivation therapy (ADT) has long been a cornerstone in treatment of advanced prostate cancer (PCa), and is known to improve the results of radiotherapy (RT) for high-risk disease. The purpose of our study was to use a multiplexed immunohistochemical (mIHC) approach to investigate the infiltration of immune cells in PCa tissue after eight weeks of ADT and/or RT with 10 Gy. METHODS From a cohort of 48 patients divided into two treatment arms, we obtained biopsies before and after treatment and used a mIHC method with multispectral imaging to analyze the infiltration of immune cells in tumor stroma and tumor epithelium, focusing on areas with high infiltration. RESULTS Tumor stroma showed a significantly higher infiltration of immune cells compared to tumor epithelium. The most prominent immune cells were CD20+ B-lymphocytes, followed by CD68+ macrophages, CD8+ cytotoxic T-cells, FOXP3+ regulatory T-cells (Tregs), and T-bet+ Th1-cells. Neoadjuvant ADT followed by RT significantly increased the infiltration of all five immune cells. Numbers of Th1-cells and Tregs significantly increased after single treatment with ADT or RT. In addition, ADT alone increased the number of cytotoxic T-cells and RT increased the number of B-cells. CONCLUSIONS Neoadjuvant ADT in combination with RT results in a higher inflammatory response compared to RT or ADT alone. The mIHC method may be a useful tool for investigating infiltrating immune cells in PCa biopsies to understand how immunotherapeutic approaches can be combined with current PCa therapies.
Collapse
Affiliation(s)
- Ann Erlandsson
- Department of Urology, Faculty of Medicine and Health, 59566Örebro University, Örebro, Sweden.,Department of Environmental and Life Sciences/Biology, 101086Karlstad University, Karlstad, Sweden
| | - Marie Lundholm
- Department of Medical Biosciences, 377074Umeå University, Umeå, Sweden
| | - Johan Watz
- Department of Environmental and Life Sciences/Biology, 101086Karlstad University, Karlstad, Sweden
| | - Anders Bergh
- Department of Medical Biosciences, 377074Umeå University, Umeå, Sweden
| | - Elitsa Petrova
- Department of Clinical Pathology and Cytology, 59594Central Hospital Karlstad, Karlstad, Sweden
| | - Farhood Alamdari
- Department of Urology, 370894Västmanlands Hospital, Västerås, Sweden
| | - Thomas Helleday
- Department of Oncology-Pathology, Karolinska Institutet, 463758Science for Life Laboratory, Stockholm, Sweden
| | - Sabina Davidsson
- Department of Urology, Faculty of Medicine and Health, 59566Örebro University, Örebro, Sweden
| | - Ove Andren
- Department of Urology, Faculty of Medicine and Health, 59566Örebro University, Örebro, Sweden
| | - Firas Tarish
- Department of Oncology-Pathology, Karolinska Institutet, 463758Science for Life Laboratory, Stockholm, Sweden
| |
Collapse
|
18
|
Inhibition of FOXP3 by stapled alpha-helical peptides dampens regulatory T cell function. Proc Natl Acad Sci U S A 2022; 119:e2209044119. [PMID: 36227917 PMCID: PMC9586281 DOI: 10.1073/pnas.2209044119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Therapies and preclinical probes designed to drug and better understand the specific functions of intracellular protein–protein interactions (PPIs) remain an area of unmet need. This study describes the development of prototype therapeutics against the FOXP3 homodimer, a PPI essential for regulatory T cell suppressive capacity. We demonstrate that hydrocarbon stapled peptides designed to block this interaction can dampen regulatory T cell (Treg cell) suppressive function and lead to genetic signatures of immune reactivation. This work provides strong scientific justification for continued development of FOXP3-specific peptide-based inhibitors and provides mechanistic insights into the design and delivery of specific inhibitors of the coiled-coil region of FOXP3. These studies ultimately could lead to new immunotherapeutic strategies to amplify immune responsiveness in a number of settings. Despite continuing advances in the development of novel cellular-, antibody-, and chemotherapeutic-based strategies to enhance immune reactivity, the presence of regulatory T cells (Treg cells) remains a complicating factor for their clinical efficacy. To overcome dosing limitations and off-target effects from antibody-based Treg cell deletional strategies or small molecule drugging, we investigated the ability of hydrocarbon stapled alpha-helical (SAH) peptides to target FOXP3, the master transcription factor regulator of Treg cell development, maintenance, and suppressive function. Using the crystal structure of the FOXP3 homodimer as a guide, we developed SAHs in the likeness of a portion of the native FOXP3 antiparallel coiled-coil homodimerization domain (SAH-FOXP3) to block this key FOXP3 protein-protein interaction (PPI) through molecular mimicry. We describe the design, synthesis, and biochemical evaluation of single- and double-stapled SAHs covering the entire coiled-coil expanse. We show that lead SAH-FOXP3s bind FOXP3, are cell permeable and nontoxic to T cells, induce dose-dependent transcript and protein level alterations of FOXP3 target genes, impede Treg cell function, and lead to Treg cell gene expression changes in vivo consistent with FOXP3 dysfunction. These results demonstrate a proof of concept for rationally designed FOXP3-directed peptide therapeutics that could be used as approaches to amplify endogenous immune responsiveness.
Collapse
|
19
|
Hajam EY, Panikulam P, Chu CC, Jayaprakash H, Majumdar A, Jamora C. The expanding impact of T-regs in the skin. Front Immunol 2022; 13:983700. [PMID: 36189219 PMCID: PMC9521603 DOI: 10.3389/fimmu.2022.983700] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/26/2022] [Indexed: 11/29/2022] Open
Abstract
As the interface between the body and the environment, the skin functions as the physical barrier against external pathogens and toxic agents. In addition, the skin is an immunologically active organ with a plethora of resident adaptive and innate immune cells, as well as effector molecules that provide another layer of protection in the form of an immune barrier. A major subpopulation of these immune cells are the Foxp3 expressing CD4 T cells or regulatory T cells (T-regs). The canonical function of T-regs is to keep other immune cells in check during homeostasis or to dissipate a robust inflammatory response following pathogen clearance or wound healing. Interestingly, recent data has uncovered unconventional roles that vary between different tissues and we will highlight the emerging non-lymphoid functions of cutaneous T-regs. In light of the novel functions of other immune cells that are routinely being discovered in the skin, their regulation by T-regs implies that T-regs have executive control over a broad swath of biological activities in both homeostasis and disease. The blossoming list of non-inflammatory functions, whether direct or indirect, suggests that the role of T-regs in a regenerative organ such as the skin will be a field ripe for discovery for decades to come.
Collapse
Affiliation(s)
- Edries Yousaf Hajam
- IFOM ETS- The AIRC Institute of Molecular Oncology Joint Research Laboratory, Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, Karnataka, India
- School of Chemical and Biotechnology, Shanmugha Arts, Science, Technology and Research Academy (SASTRA) University, Thanjavur, Tamil Nadu, India
| | - Patricia Panikulam
- IFOM ETS- The AIRC Institute of Molecular Oncology Joint Research Laboratory, Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, Karnataka, India
| | | | - Haarshadri Jayaprakash
- IFOM ETS- The AIRC Institute of Molecular Oncology Joint Research Laboratory, Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, Karnataka, India
| | | | - Colin Jamora
- IFOM ETS- The AIRC Institute of Molecular Oncology Joint Research Laboratory, Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, Karnataka, India
| |
Collapse
|
20
|
Intrauterine infusion of human chorionic gonadotropin improves the endometrial FoxP3+ Tregs level and pregnancy outcomes in patients with lower endometrial FoxP3+ Tregs. J Reprod Immunol 2022; 153:103678. [DOI: 10.1016/j.jri.2022.103678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/08/2022] [Accepted: 07/26/2022] [Indexed: 11/23/2022]
|
21
|
Peres LC, Colin-Leitzinger C, Sinha S, Marks JR, Conejo-Garcia JR, Alberg AJ, Bandera EV, Berchuck A, Bondy ML, Christensen BC, Cote ML, Doherty JA, Moorman PG, Peters ES, Segura CM, Nguyen JV, Schwartz AG, Terry PD, Wilson CM, Fridley BL, Schildkraut JM. Racial Differences in the Tumor Immune Landscape and Survival of Women with High-Grade Serous Ovarian Carcinoma. Cancer Epidemiol Biomarkers Prev 2022; 31:1006-1016. [PMID: 35244678 PMCID: PMC9081269 DOI: 10.1158/1055-9965.epi-21-1334] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/24/2022] [Accepted: 02/22/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Tumor-infiltrating lymphocytes (TIL) confer a survival benefit among patients with ovarian cancer; however, little work has been conducted in racially diverse cohorts. METHODS The current study investigated racial differences in the tumor immune landscape and survival of age- and stage-matched non-Hispanic Black and non-Hispanic White women with high-grade serous ovarian carcinoma (HGSOC) enrolled in two population-based studies (n = 121 in each racial group). We measured TILs (CD3+), cytotoxic T cells (CD3+CD8+), regulatory T cells (CD3+FoxP3+), myeloid cells (CD11b+), and neutrophils (CD11b+CD15+) via multiplex immunofluorescence. Multivariable Cox proportional hazard regression was used to estimate the association between immune cell abundance and survival overall and by race. RESULTS Overall, higher levels of TILs, cytotoxic T cells, myeloid cells, and neutrophils were associated with better survival in the intratumoral and peritumoral region, irrespective of tissue compartment (tumor, stroma). Improved survival was noted for T-regulatory cells in the peritumoral region and in the stroma of the intratumoral region, but no association for intratumoral T-regulatory cells. Despite similar abundance of immune cells across racial groups, associations with survival among non-Hispanic White women were consistent with the overall findings, but among non-Hispanic Black women, most associations were attenuated and not statistically significant. CONCLUSIONS Our results add to the existing evidence that a robust immune infiltrate confers a survival advantage among women with HGSOC; however, non-Hispanic Black women may not experience the same survival benefit as non-Hispanic White women with HGSOC. IMPACT This study contributes to our understanding of the immunoepidemiology of HGSOC in diverse populations.
Collapse
Affiliation(s)
- Lauren C. Peres
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | | | - Sweta Sinha
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Jeffrey R. Marks
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina
| | - Jose R. Conejo-Garcia
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Anthony J. Alberg
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina
| | - Elisa V. Bandera
- Department of Population Science, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| | - Andrew Berchuck
- Department of Gynecologic Oncology, Duke University School of Medicine, Durham, North Carolina
| | - Melissa L. Bondy
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, California
| | - Brock C. Christensen
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, New Hampshire
- Department of Community and Family Medicine, Geisel School of Medicine, Dartmouth College, Lebanon, New Hampshire
- Department of Molecular and Systems Biology, Geisel School of Medicine, Dartmouth College, Lebanon, New Hampshire
| | - Michele L. Cote
- Population Studies and Disparities Research Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
| | - Jennifer Anne Doherty
- Department of Population Health Sciences, University of Utah, Salt Lake City, Utah
- Huntsman Cancer Institute, Salt Lake City, Utah
| | - Patricia G. Moorman
- Department of Community and Family Medicine, Duke University Medical Center, Durham, North Carolina
| | - Edward S. Peters
- Department of Epidemiology, College of Public Health, University of Nebraska Medical Center, Omaha, Nebraska
| | - Carlos Moran Segura
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Jonathan V. Nguyen
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Ann G. Schwartz
- Population Studies and Disparities Research Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
| | - Paul D. Terry
- Department of Medicine, University of Tennessee Medical Center – Knoxville, Knoxville, Tennessee
| | - Christopher M. Wilson
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Brooke L. Fridley
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Joellen M. Schildkraut
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
| |
Collapse
|
22
|
Zinovkin DA, Lyzikova YA, Nadyrov EA, Petrenyov DR, Yuzugulen J, Pranjol MZI. Gamma-ray irradiation modulates PGRMC1 expression and the number of CD56+ and FoxP3+ cells in the tumor microenvironment of endometrial endometrioid adenocarcinoma. Radiat Oncol J 2022; 39:324-333. [PMID: 34986554 PMCID: PMC8743460 DOI: 10.3857/roj.2021.00472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/17/2021] [Indexed: 11/18/2022] Open
Abstract
Purpose Although the conventional gamma ray brachytherapy has been successful in treating endometrioid endometrial adenocarcinoma (EC), the molecular and cellular mechanisms of this anti-tumorigenic response remain unclear. Therefore, we investigated whether gamma ray irradiation induces changes in the number of FoxP3+ T-regulatory lymphocytes (Tregs), CD56+ natural killer cells (NK), and the expression of progesterone receptor membrane component 1 (PGRMC1) in the tumor microenvironment (TME). Materials and Methods According to the inclusion criteria, 127 cases were selected and grouped into irradiation-treated (Rad+) and control (underwent surgery) groups and analyzed using immunohistochemistry. Predictive prognostic values were analyzed using Mann-Whitney U test, ROC analysis, relative risk, log-rank, Spearman rank tests and multivariate Cox’s regression. Results We observed significant differences (p < 0.001) between the radiation-treated patients and the control groups in FoxP3+ Tregs numbers, CD56+ NK cells and PGRMC1 expression. Gamma ray induced a 3.71- and 3.39-fold increase in the infiltration of FoxP3+ cells, CD56+ NK cells, respectively and 0.0034-fold change in PGRMC1 expression. Univariate and multivariate analyses revealed predictive role of the parameters. In the irradiated patients’ group, inverted correlations between clinical unfavorable outcome, FoxP3+ Tregs and CD56+ NK cells were observed. Conclusion Our results suggest an immune-modulating role, specifically by increasing immune cell infiltration, of gamma radiation in the TME which may potentially be utilized as biomarkers in prognostic values.
Collapse
Affiliation(s)
| | | | | | | | - Jale Yuzugulen
- Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, North Cyprus
| | | |
Collapse
|
23
|
Granne I, Shen M, Rodriguez-Caro H, Chadha G, O’Donnell E, Brosens JJ, Quenby S, Child T, Southcombe JH. Characterisation of peri-implantation endometrial Treg and identification of an altered phenotype in recurrent pregnancy loss. Mucosal Immunol 2022; 15:120-129. [PMID: 34552206 PMCID: PMC8732268 DOI: 10.1038/s41385-021-00451-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/31/2021] [Accepted: 08/31/2021] [Indexed: 02/04/2023]
Abstract
Recurrent Pregnancy Loss (RPL) affects 2-4% of couples, and with increasing numbers of pregnancy losses the risk of miscarrying a euploid pregnancy is increased, suggesting RPL is a pathology distinct from sporadic miscarriage that is due largely to lethal embryonic aneuploidy. There are a number of conditions associated with RPL including unspecified "immune" pathologies; one of the strongest candidates for dysregulation remains T regulatory cells as depletion in the very early stages of pregnancy in mice leads to pregnancy loss. Human endometrial Treg and conventional CD4T cells were isolated during the peri-implantation period of the menstrual cycle in normal women. We identified an endometrial Treg transcriptomic signature and validated an enhanced regulatory phenotype compared to peripheral blood Treg. Parous women had an altered endometrial Treg transcriptome compared to nulliparity, indicating acquired immune memory of pregnancy within the Treg population, by comparison endometrial conventional CD4T cells were not altered. We compared primary and secondary RPL to nulliparous or parous controls respectively. Both RPL subgroups displayed differentially expressed Treg gene transcriptomes compared to controls. We found increased cell surface S1PR1 and decreased TIGIT protein expression by Treg in primary RPL, confirming the presence of altered Treg in the peri-implantation RPL endometrium.
Collapse
Affiliation(s)
- Ingrid Granne
- grid.4991.50000 0004 1936 8948Nuffield Department of Women’s and Reproductive Health, L3 Women’s Centre, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Mengni Shen
- grid.4991.50000 0004 1936 8948Nuffield Department of Women’s and Reproductive Health, L3 Women’s Centre, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Helena Rodriguez-Caro
- grid.4991.50000 0004 1936 8948Nuffield Department of Women’s and Reproductive Health, L3 Women’s Centre, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Gurmeher Chadha
- grid.4991.50000 0004 1936 8948Nuffield Department of Women’s and Reproductive Health, L3 Women’s Centre, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Elizabeth O’Donnell
- grid.4991.50000 0004 1936 8948Nuffield Department of Women’s and Reproductive Health, L3 Women’s Centre, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Jan J. Brosens
- grid.7372.10000 0000 8809 1613Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV2 2DX UK ,grid.15628.380000 0004 0393 1193Tommy’s National Centre for Miscarriage Research, University Hospitals Coventry & Warwickshire NHS Trust, Coventry, CV2 2DX UK
| | - Siobhan Quenby
- grid.7372.10000 0000 8809 1613Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV2 2DX UK ,grid.15628.380000 0004 0393 1193Tommy’s National Centre for Miscarriage Research, University Hospitals Coventry & Warwickshire NHS Trust, Coventry, CV2 2DX UK
| | - Tim Child
- grid.4991.50000 0004 1936 8948Nuffield Department of Women’s and Reproductive Health, L3 Women’s Centre, John Radcliffe Hospital, University of Oxford, Oxford, UK ,grid.477692.90000 0004 0379 0597Oxford Fertility, The Fertility Partnership, Oxford, OX4 2HW UK
| | - Jennifer H. Southcombe
- grid.4991.50000 0004 1936 8948Nuffield Department of Women’s and Reproductive Health, L3 Women’s Centre, John Radcliffe Hospital, University of Oxford, Oxford, UK
| |
Collapse
|
24
|
Zhang Z, Tang Y, Li L, Yang W, Xu Y, Zhou J, Ma K, Zhang K, Zhuang H, Gong Y, Gong K. Downregulation of FXYD2 Is Associated with Poor Prognosis and Increased Regulatory T Cell Infiltration in Clear Cell Renal Cell Carcinoma. J Immunol Res 2022; 2022:4946197. [PMID: 36313180 PMCID: PMC9606837 DOI: 10.1155/2022/4946197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 09/15/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND FXYD2, a gene coding for the γ subunit of Na+/K+-ATPase, was demonstrated to involve in carcinogenesis recently. However, the specific role of FXYD2 in clear cell renal cell carcinoma (ccRCC) remains unknown. The current study was conducted to investigate the expression, biological function, and potentially immune-related mechanisms of FXYD2 in ccRCC. Materials and methods. The data from TCGA-KIRC, ICGC, GEO, Oncomine, ArrayExpress, TIMER, HPA datasets, and our clinical samples were used to determine and validate the expression level, prognostic roles, and potentially immune-related mechanisms in ccRCC. Cell function assays were performed to investigate the biological role of FXYD2 in vitro. RESULTS FXYD2 was identified to be downregulated in ccRCC tissue compared to normal tissue, which was confirmed by our RT-PCR, WB, and IHC analyses. Kaplan-Meier survival analysis and Cox regression analysis suggested that downregulated FXYD2 could independently predict poor survival of ccRCC patients. Through the ESTIMATE algorithm, ssGSEA algorithm, CIBERSORT algorithm, TIMER database, and our laboratory experiment, FXYD2 was found to correlate with the immune landscape, especially regulatory T cells (Treg), in ccRCC. Gain-of-function experiment revealed that FXYD2 could restrain cell proliferation, migration, and invasion in vitro. Functional enrichment analysis illustrated that TGF-β-SMAD2/3, Notch, and PI3K-Akt-mTOR signaling pathways may be potential signaling pathways of FXYD2 in ccRCC. CONCLUSIONS Downregulation of FXYD2 is associated with ccRCC tumorigenesis, poor prognosis, and increased Treg infiltration in ccRCC, which may be related to TGF-β-SMAD2/3, Notch, and PI3K-Akt-mTOR signaling pathways. This will probably provide a novel prognostic marker and potential therapeutic target for ccRCC.
Collapse
Affiliation(s)
- Zedan Zhang
- Department of Urology, Peking University First Hospital, Beijing, China
- Hereditary Kidney Cancer Research Center, Peking University First Hospital, Beijing, China
- Institute of Urology, Peking University, Beijing, China
- National Urological Cancer Center, Beijing, China
| | - Yanlin Tang
- Shantou University Medical College, Shantou, China
| | - Lei Li
- Department of Urology, Peking University First Hospital, Beijing, China
- Hereditary Kidney Cancer Research Center, Peking University First Hospital, Beijing, China
- Institute of Urology, Peking University, Beijing, China
- National Urological Cancer Center, Beijing, China
| | - Wuping Yang
- Department of Urology, Peking University First Hospital, Beijing, China
- Hereditary Kidney Cancer Research Center, Peking University First Hospital, Beijing, China
- Institute of Urology, Peking University, Beijing, China
- National Urological Cancer Center, Beijing, China
| | - Yawei Xu
- Department of Urology, Peking University First Hospital, Beijing, China
- Hereditary Kidney Cancer Research Center, Peking University First Hospital, Beijing, China
- Institute of Urology, Peking University, Beijing, China
- National Urological Cancer Center, Beijing, China
| | - Jingcheng Zhou
- Department of Urology, Peking University First Hospital, Beijing, China
- Hereditary Kidney Cancer Research Center, Peking University First Hospital, Beijing, China
- Institute of Urology, Peking University, Beijing, China
- National Urological Cancer Center, Beijing, China
| | - Kaifang Ma
- Department of Urology, Peking University First Hospital, Beijing, China
- Hereditary Kidney Cancer Research Center, Peking University First Hospital, Beijing, China
- Institute of Urology, Peking University, Beijing, China
- National Urological Cancer Center, Beijing, China
| | - Kenan Zhang
- Department of Urology, Peking University First Hospital, Beijing, China
- Hereditary Kidney Cancer Research Center, Peking University First Hospital, Beijing, China
- Institute of Urology, Peking University, Beijing, China
- National Urological Cancer Center, Beijing, China
| | - Hongkai Zhuang
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yanqing Gong
- Department of Urology, Peking University First Hospital, Beijing, China
- Hereditary Kidney Cancer Research Center, Peking University First Hospital, Beijing, China
- Institute of Urology, Peking University, Beijing, China
- National Urological Cancer Center, Beijing, China
| | - Kan Gong
- Department of Urology, Peking University First Hospital, Beijing, China
- Hereditary Kidney Cancer Research Center, Peking University First Hospital, Beijing, China
- Institute of Urology, Peking University, Beijing, China
- National Urological Cancer Center, Beijing, China
| |
Collapse
|
25
|
Jarosch S, Köhlen J, Sarker RS, Steiger K, Janssen KP, Christians A, Hennig C, Holler E, D'Ippolito E, Busch DH. Multiplexed imaging and automated signal quantification in formalin-fixed paraffin-embedded tissues by ChipCytometry. CELL REPORTS METHODS 2021; 1:100104. [PMID: 35475000 PMCID: PMC9017205 DOI: 10.1016/j.crmeth.2021.100104] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/30/2021] [Accepted: 10/06/2021] [Indexed: 12/17/2022]
Abstract
Deciphering the spatial composition of cells in tissues is essential for detailed understanding of biological processes in health and disease. Recent technological advances enabled the assessment of the enormous complexity of tissue-derived parameters by highly multiplexed tissue imaging (HMTI), but elaborate machinery and data analyses are required. This severely limits broad applicability of HMTI. Here we demonstrate for the first time the application of ChipCytometry technology, which has unique features for widespread use, on formalin-fixed paraffin-embedded samples, the most commonly used storage technique of clinically relevant patient specimens worldwide. The excellent staining quality permits workflows for automated quantification of signal intensities, which we further optimized to compensate signal spillover from neighboring cells. In combination with the high number of validated markers, the reported platform can be used from unbiased analyses of tissue composition to detection of phenotypically complex rare cells, and can be easily implemented in both routine research and clinical pathology.
Collapse
Affiliation(s)
- Sebastian Jarosch
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Jan Köhlen
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Rim S.J. Sarker
- Comparative Experimental Pathology, Institute for Pathology, Technical University of Munich, 81675 Munich, Germany
| | - Katja Steiger
- Comparative Experimental Pathology, Institute for Pathology, Technical University of Munich, 81675 Munich, Germany
| | - Klaus-Peter Janssen
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | | | | | - Ernst Holler
- Department of Hematology/Oncology, University Medical Center, 93053 Regensburg, Germany
| | - Elvira D'Ippolito
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Dirk H. Busch
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich (TUM), 81675 Munich, Germany
- German Center for Infection Research (DZIF), partner site Munich, 81675 Munich, Germany
| |
Collapse
|
26
|
Gultekin O, Gonzalez-Molina J, Hardell E, Moyano-Galceran L, Mitsios N, Mulder J, Kokaraki G, Isaksson A, Sarhan D, Lehti K, Carlson JW. FOXP3+ T cells in uterine sarcomas are associated with favorable prognosis, low extracellular matrix expression and reduced YAP activation. NPJ Precis Oncol 2021; 5:97. [PMID: 34799669 PMCID: PMC8604926 DOI: 10.1038/s41698-021-00236-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 09/22/2021] [Indexed: 02/03/2023] Open
Abstract
Uterine sarcomas are rare but deadly malignancies without effective treatment. Immunotherapy is a promising new approach to treat these tumors but has shown heterogeneous effects in sarcoma patients. With the goal of identifying key factors for improved patient treatment, we characterized the tumor immune landscape in 58 uterine sarcoma cases with full clinicopathological annotation. Immune cell characterization revealed the overall prevalence of FOXP3+ cells and pro-tumor M2-like macrophages. Hierarchical clustering of patients showed four tumor type-independent immune signatures, where infiltration of FOXP3+ cells and M1-like macrophages associated with favorable prognosis. High CD8+/FOXP3+ ratio in UUS and ESS correlated with poor survival, upregulation of immunosuppressive markers, extracellular matrix (ECM)-related genes and proteins, and YAP activation. This study shows that uterine sarcomas present distinct immune signatures with prognostic value, independent of tumor type, and suggests that targeting the ECM could be beneficial for future treatments.
Collapse
Affiliation(s)
- Okan Gultekin
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.,Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Jordi Gonzalez-Molina
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.,Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Elin Hardell
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.,Department of Pathology and Cytology, Karolinska University Hospital, Stockholm, Sweden
| | - Lidia Moyano-Galceran
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Nicholas Mitsios
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Jan Mulder
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Georgia Kokaraki
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.,Department of Pathology and Cytology, Karolinska University Hospital, Stockholm, Sweden
| | - Anders Isaksson
- Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Dhifaf Sarhan
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Kaisa Lehti
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,Department of Biomedical Laboratory Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Joseph W Carlson
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden. .,Department of Pathology and Cytology, Karolinska University Hospital, Stockholm, Sweden. .,Department of Pathology and Laboratory Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
27
|
Simonett SP, Shin S, Herring JA, Bacher R, Smith LA, Dong C, Rabaglia ME, Stapleton DS, Schueler KL, Choi J, Bernstein MN, Turkewitz DR, Perez-Cervantes C, Spaeth J, Stein R, Tessem JS, Kendziorski C, Keleş S, Moskowitz IP, Keller MP, Attie AD. Identification of direct transcriptional targets of NFATC2 that promote β cell proliferation. J Clin Invest 2021; 131:e144833. [PMID: 34491912 PMCID: PMC8553569 DOI: 10.1172/jci144833] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 09/02/2021] [Indexed: 12/13/2022] Open
Abstract
The transcription factor NFATC2 induces β cell proliferation in mouse and human islets. However, the genomic targets that mediate these effects have not been identified. We expressed active forms of Nfatc2 and Nfatc1 in human islets. By integrating changes in gene expression with genomic binding sites for NFATC2, we identified approximately 2200 transcriptional targets of NFATC2. Genes induced by NFATC2 were enriched for transcripts that regulate the cell cycle and for DNA motifs associated with the transcription factor FOXP. Islets from an endocrine-specific Foxp1, Foxp2, and Foxp4 triple-knockout mouse were less responsive to NFATC2-induced β cell proliferation, suggesting the FOXP family works to regulate β cell proliferation in concert with NFATC2. NFATC2 induced β cell proliferation in both mouse and human islets, whereas NFATC1 did so only in human islets. Exploiting this species difference, we identified approximately 250 direct transcriptional targets of NFAT in human islets. This gene set enriches for cell cycle-associated transcripts and includes Nr4a1. Deletion of Nr4a1 reduced the capacity of NFATC2 to induce β cell proliferation, suggesting that much of the effect of NFATC2 occurs through its induction of Nr4a1. Integration of noncoding RNA expression, chromatin accessibility, and NFATC2 binding sites enabled us to identify NFATC2-dependent enhancer loci that mediate β cell proliferation.
Collapse
Affiliation(s)
- Shane P. Simonett
- Biochemistry Department, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Sunyoung Shin
- Department of Mathematical Sciences, University of Texas at Dallas, Richardson, Texas, USA
| | - Jacob A. Herring
- Nutrition, Dietetics and Food Science Department, Brigham Young University, Provo, Utah, USA
| | - Rhonda Bacher
- Department of Biostatistics, University of Florida, Gainesville, Florida, USA
| | - Linsin A. Smith
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, Illinois, USA
| | - Chenyang Dong
- Department of Biostatistics and Medical Informatics, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Mary E. Rabaglia
- Biochemistry Department, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Donnie S. Stapleton
- Biochemistry Department, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Kathryn L. Schueler
- Biochemistry Department, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Jeea Choi
- Department of Biostatistics and Medical Informatics, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | | | - Daniel R. Turkewitz
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Carlos Perez-Cervantes
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, Illinois, USA
| | - Jason Spaeth
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Roland Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Jeffery S. Tessem
- Nutrition, Dietetics and Food Science Department, Brigham Young University, Provo, Utah, USA
| | - Christina Kendziorski
- Department of Biostatistics and Medical Informatics, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Sündüz Keleş
- Department of Biostatistics and Medical Informatics, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Ivan P. Moskowitz
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, Illinois, USA
| | - Mark P. Keller
- Biochemistry Department, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Alan D. Attie
- Biochemistry Department, University of Wisconsin–Madison, Madison, Wisconsin, USA
| |
Collapse
|
28
|
Yaegashi LB, Baldavira CM, Prieto TG, Machado-Rugolo J, Velosa APP, da Silveira LKR, Assato A, Ab'Saber AM, Falzoni R, Takagaki T, Silva PL, Teodoro WR, Capelozzi VL. In Situ Overexpression of Matricellular Mechanical Proteins Demands Functional Immune Signature and Mitigates Non-Small Cell Lung Cancer Progression. Front Immunol 2021; 12:714230. [PMID: 34484217 PMCID: PMC8415570 DOI: 10.3389/fimmu.2021.714230] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/26/2021] [Indexed: 12/19/2022] Open
Abstract
Non-small cell lung carcinoma (NSCLC) is a complex cancer biome composed of malignant cells embedded in a sophisticated tumor microenvironment (TME) combined with different initiating cell types, including immune cells and cancer-associated fibroblasts (CAFs), and extracellular matrix (ECM) proteins. However, little is known about these tumors’ immune-matricellular relationship as functional and mechanical barriers. This study investigated 120 patients with NSCLC to describe the immune-matricellular phenotypes of their TME and their relationship with malignant cells. Immunohistochemistry (IHC) was performed to characterize immune checkpoints (PD-L1, LAG-3, CTLA-4+, VISTA 1), T cells (CD3+), cytotoxic T cells (CD8+, Granzyme B), macrophages (CD68+), regulatory T cells (FOXP3+, CD4+), natural killer cells (CD57+), and B lymphocytes (CD20+), whereas CAFs and collagen types I, III, and V were characterized by immunofluorescence (IF). We observed two distinct functional immune-cellular barriers—the first of which showed proximity between malignant cells and cytotoxic T cells, and the second of which showed distant proximity between non-cohesive nests of malignant cells and regulatory T cells. We also identified three tumor-associated matricellular barriers: the first, with a localized increase in CAFs and a low deposition of Col V, the second with increased CAFs, Col III and Col I fibers, and the third with a high amount of Col fibers and CAFs bundled and aligned perpendicularly to the tumor border. The Cox regression analysis was designed in two steps. First, we investigated the relationship between the immune-matricellular components and tumor pathological stage (I, II, and IIIA), and better survival rates were seen in patients whose tumors expressed collagen type III > 24.89 fibers/mm². Then, we included patients who had progressed to pathological stage IV and found an association between poor survival and tumor VISTA 1 expression > 52.86 cells/mm² and CD3+ ≤ 278.5 cells/mm². We thus concluded that differential patterns in the distribution of immune-matricellular phenotypes in the TME of NSCLC patients could be used in translational studies to predict new treatment strategies and improve patient outcome. These data raise the possibility that proteins with mechanical barrier function in NSCLC may be used by cancer cells to protect them from immune cell infiltration and immune-mediated destruction, which can otherwise be targeted effectively with immunotherapy or collagen therapy.
Collapse
Affiliation(s)
| | | | | | - Juliana Machado-Rugolo
- Department of Pathology, University of São Paulo Medical School, São Paulo, Brazil.,Health Technology Assessment Center (NATS), Clinical Hospital (HCFMB), Medical School of São Paulo State University (UNESP), Botucatu, Brazil
| | - Ana Paula Pereira Velosa
- Rheumatology Division of the Hospital das Clinicas, University of São Paulo Medical School, São Paulo, Brazil
| | | | - Aline Assato
- Department of Pathology, University of São Paulo Medical School, São Paulo, Brazil
| | | | - Roberto Falzoni
- Department of Pathology, University of São Paulo Medical School, São Paulo, Brazil
| | - Teresa Takagaki
- Division of Pneumology, Instituto do Coração (Incor), University of São Paulo Medical School (USP), São Paulo, Brazil
| | - Pedro Leme Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Rio de Janeiro, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| | - Walcy Rosolia Teodoro
- Rheumatology Division of the Hospital das Clinicas, University of São Paulo Medical School, São Paulo, Brazil
| | - Vera Luiza Capelozzi
- Department of Pathology, University of São Paulo Medical School, São Paulo, Brazil
| |
Collapse
|
29
|
Vitanza NA, Johnson AJ, Wilson AL, Brown C, Yokoyama JK, Künkele A, Chang CA, Rawlings-Rhea S, Huang W, Seidel K, Albert CM, Pinto N, Gust J, Finn LS, Ojemann JG, Wright J, Orentas RJ, Baldwin M, Gardner RA, Jensen MC, Park JR. Locoregional infusion of HER2-specific CAR T cells in children and young adults with recurrent or refractory CNS tumors: an interim analysis. Nat Med 2021; 27:1544-1552. [PMID: 34253928 DOI: 10.1038/s41591-021-01404-8] [Citation(s) in RCA: 183] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 05/25/2021] [Indexed: 12/13/2022]
Abstract
Locoregional delivery of chimeric antigen receptor (CAR) T cells has resulted in objective responses in adults with glioblastoma, but the feasibility and tolerability of this approach is yet to be evaluated for pediatric central nervous system (CNS) tumors. Here we show that engineering of a medium-length CAR spacer enhances the therapeutic efficacy of human erb-b2 receptor tyrosine kinase 2 (HER2)-specific CAR T cells in an orthotopic xenograft medulloblastoma model. We translated these findings into BrainChild-01 ( NCT03500991 ), an ongoing phase 1 clinical trial at Seattle Children's evaluating repetitive locoregional dosing of these HER2-specific CAR T cells to children and young adults with recurrent/refractory CNS tumors, including diffuse midline glioma. Primary objectives are assessing feasibility, safety and tolerability; secondary objectives include assessing CAR T cell distribution and disease response. In the outpatient setting, patients receive infusions via CNS catheter into either the tumor cavity or the ventricular system. The initial three patients experienced no dose-limiting toxicity and exhibited clinical, as well as correlative laboratory, evidence of local CNS immune activation, including high concentrations of CXCL10 and CCL2 in the cerebrospinal fluid. This interim report supports the feasibility of generating HER2-specific CAR T cells for repeated dosing regimens and suggests that their repeated intra-CNS delivery might be well tolerated and activate a localized immune response in pediatric and young adult patients.
Collapse
Affiliation(s)
- Nicholas A Vitanza
- The Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, USA. .,Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Washington, Seattle, WA, USA.
| | - Adam J Johnson
- The Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, USA.,Seattle Children's Therapeutics, Seattle, WA, USA
| | - Ashley L Wilson
- The Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, USA.,Seattle Children's Therapeutics, Seattle, WA, USA
| | - Christopher Brown
- Seattle Children's Therapeutics, Seattle, WA, USA.,Therapeutic Cell Production Core, Seattle Children's Research Institute, Seattle, WA, USA
| | - Jason K Yokoyama
- The Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, USA.,Seattle Children's Therapeutics, Seattle, WA, USA
| | - Annette Künkele
- Department of Pediatric Oncology and Hematology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,Center for Clinical and Translational Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Cindy A Chang
- Office of Animal Care, Seattle Children's Research Institute, Seattle, WA, USA
| | - Stephanie Rawlings-Rhea
- The Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, USA.,Seattle Children's Therapeutics, Seattle, WA, USA
| | - Wenjun Huang
- The Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, USA.,Seattle Children's Therapeutics, Seattle, WA, USA
| | | | - Catherine M Albert
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Washington, Seattle, WA, USA.,Center for Clinical and Translational Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Navin Pinto
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Washington, Seattle, WA, USA.,Center for Clinical and Translational Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Juliane Gust
- Department of Neurology, University of Washington, Seattle, WA, USA.,Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Laura S Finn
- Department of Laboratories, Seattle Children's Hospital, Seattle, WA, USA.,Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Jeffrey G Ojemann
- Division of Neurosurgery, Department of Neurological Surgery, Seattle Children's Hospital, Seattle, WA, USA
| | - Jason Wright
- Department of Radiology, Seattle Children's Hospital, Seattle, WA, USA
| | - Rimas J Orentas
- The Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, USA.,Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Michael Baldwin
- The Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Rebecca A Gardner
- The Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, USA.,Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Washington, Seattle, WA, USA.,Seattle Children's Therapeutics, Seattle, WA, USA
| | - Michael C Jensen
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Washington, Seattle, WA, USA.,Seattle Children's Therapeutics, Seattle, WA, USA.,Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Julie R Park
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Washington, Seattle, WA, USA.,Seattle Children's Therapeutics, Seattle, WA, USA.,Center for Clinical and Translational Research, Seattle Children's Research Institute, Seattle, WA, USA
| |
Collapse
|
30
|
Combination immunotherapy with two attenuated Listeria strains carrying shuffled HPV-16 E6E7 protein causes tumor regression in a mouse tumor model. Sci Rep 2021; 11:13404. [PMID: 34183739 PMCID: PMC8238941 DOI: 10.1038/s41598-021-92875-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 06/16/2021] [Indexed: 02/06/2023] Open
Abstract
Cervical cancer continues to impose a heavy burden worldwide, and human papilloma virus (HPV) infection, especially persistent infection with type 16 (HPV-16), is known to be the primary etiological factor. Therapeutic vaccines are urgently needed because prophylactic vaccines are ineffective at clearing pre-existing HPV infection. Here, two recombinant Listeria strains (LMΔ-E6E7 & LIΔ-E6E7) with deletions of the actA and plcB genes, expressing the shuffled HPV-16 E6E7 protein were constructed. The strains were delivered into the spleen and liver by intravenous inoculation, induced antigen-specific cellular immunity and were eliminated completely from the internal organs several days later. Intravenously treating with single strain for three times, or with both strains alternately for three times significantly reduced the tumor size and prolonged the survival time of model mice. Combination immunotherapy with two strains seemed more effective than immunotherapy with single strain in that it enhanced the survival of the mice, and the LMΔ-E6E7-prime-LIΔ-E6E7-boost strategy showed significant stronger efficacy than single treatment with the LIΔ-E6E7 strain. The antitumor effect of this treatment might due to its ability to increase the proportion of CD8+ T cells and reduce the proportion of T regulatory cells (Tregs) in the intratumoral milieu. This is the first report regarding Listeria ivanovii-based therapeutic vaccine candidate against cervical cancer. Most importantly we are the first to confirm that combination therapy with two different recombinant Listeria strains has a more satisfactory antitumor effect than administration of a single strain. Thus, we propose a novel prime-boost treatment strategy.
Collapse
|
31
|
Salmi S, Lin A, Hirschovits-Gerz B, Valkonen M, Aaltonen N, Sironen R, Siiskonen H, Pasonen-Seppänen S. The role of FoxP3+ regulatory T cells and IDO+ immune and tumor cells in malignant melanoma - an immunohistochemical study. BMC Cancer 2021; 21:641. [PMID: 34051744 PMCID: PMC8164759 DOI: 10.1186/s12885-021-08385-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 05/20/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND FoxP3+ Regulatory T cells (Tregs) and indoleamine-2,3-dioxygenase (IDO) participate in the formation of an immunosuppressive tumor microenvironment (TME) in malignant cutaneous melanoma (CM). Recent studies have reported that IDO expression correlates with poor prognosis and greater Breslow's depth, but results concerning the role of FoxP3+ Tregs in CM have been controversial. Furthermore, the correlation between IDO and Tregs has not been substantially studied in CM, although IDO is known to be an important regulator of Tregs activity. METHODS We investigated the associations of FoxP3+ Tregs, IDO+ tumor cells and IDO+ stromal immune cells with tumor stage, prognostic factors and survival in CM. FoxP3 and IDO were immunohistochemically stained from 29 benign and 29 dysplastic nevi, 18 in situ -melanomas, 48 superficial and 62 deep melanomas and 67 lymph node metastases (LNMs) of CM. The number of FoxP3+ Tregs and IDO+ stromal immune cells, and the coverage and intensity of IDO+ tumor cells were analysed. RESULTS The number of FoxP3+ Tregs and IDO+ stromal immune cells were significantly higher in malignant melanomas compared with benign lesions. The increased expression of IDO in melanoma cells was associated with poor prognostic factors, such as recurrence, nodular growth pattern and increased mitotic count. Furthermore, the expression of IDO in melanoma cells was associated with reduced recurrence-free survival. We further showed that there was a positive correlation between IDO+ tumor cells and FoxP3+ Tregs. CONCLUSIONS These results indicate that IDO is strongly involved in melanoma progression. FoxP3+ Tregs also seems to contribute to the immunosuppressive TME in CM, but their significance in melanoma progression remains unclear. The positive association of FoxP3+ Tregs with IDO+ melanoma cells, but not with IDO+ stromal immune cells, indicates a complex interaction between IDO and Tregs in CM, which demands further studies.
Collapse
Affiliation(s)
- Satu Salmi
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627 70211, Kuopio campus, Kuopio, Finland.
| | - Anton Lin
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627 70211, Kuopio campus, Kuopio, Finland
| | - Benjamin Hirschovits-Gerz
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627 70211, Kuopio campus, Kuopio, Finland
| | - Mari Valkonen
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627 70211, Kuopio campus, Kuopio, Finland
| | - Niina Aaltonen
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627 70211, Kuopio campus, Kuopio, Finland
| | - Reijo Sironen
- Institute of Clinical Medicine/ Clinical Pathology, University of Eastern Finland, 70029, Kuopio, Finland
- Department of Clinical Pathology, Kuopio University Hospital, 70029, Kuopio, Finland
| | - Hanna Siiskonen
- Department of Dermatology, Kuopio University Hospital and University of Eastern Finland, 70029, Kuopio, Finland
| | - Sanna Pasonen-Seppänen
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627 70211, Kuopio campus, Kuopio, Finland
| |
Collapse
|
32
|
Morales-Lange B, Nombela I, Ortega-Villaizán MDM, Imarai M, Schmitt P, Mercado L. Induction of foxp3 during the Crosstalk between Antigen Presenting Like-Cells MHCII +CD83 + and Splenocytes CD4 +IgM - in Rainbow Trout. BIOLOGY 2021; 10:biology10040324. [PMID: 33924548 PMCID: PMC8069158 DOI: 10.3390/biology10040324] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 12/14/2022]
Abstract
Simple Summary In aquatic biological models, the communication between cells from the immune system remains poorly characterized. In this work, to determine the gene expression of master transcriptional factors that coordinate the polarization of T cells, co-cultures of rainbow trout splenocytes are analyzed after stimulation with Interferon-gamma and/or Piscirickettsia salmonis. The results showed an upregulation of foxp3 compared to the other transcriptional factors, suggesting a potential communication between cells in the spleen, which may induce a Treg phenotype. Abstract In fish, the spleen is one of the major immune organs in the animal, and the splenocytes could play a key role in the activation and modulation of the immune response, both innate and adaptive. However, the crosstalk between different types of immune cells in the spleen has been poorly understood. In this work, an in vitro strategy is carried out to obtain and characterize mononuclear splenocytes from rainbow trout, using biomarkers associated with lymphocytes (CD4 and IgM) and antigen-presenting cells (CD83 and MHC II). Using these splenocytes, co-cultures of 24 and 48 h are used to determine the gene expression of master transcriptional factors that coordinate the polarization of T cells (t-bet, gata3, and foxp3). The results show a proportional upregulation of foxp3 (compared to t-bet and gata3) in co-cultures (at 24 h) of IFNγ-induced splenocytes with and without stimulation of Piscirickettsia salmonis proteins. In addition, foxp3 upregulation was established in co-cultures with IFNγ-induced cells and in cells only stimulated previously with P. salmonis proteins at 48 h of co-culture. These results show a potential communication between antigen-presenting-like cells and lymphocyte in the spleen, which could be induced towards a Treg phenotype.
Collapse
Affiliation(s)
- Byron Morales-Lange
- Grupo de Marcadores Inmunológicos en Organismos Acuáticos, Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, 2340000 Valparaíso, Chile; (B.M.-L.); (P.S.)
| | - Ivan Nombela
- Instituto de Biología Molecular y Celular (IBMC) and Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (UMH), 03202 Elche, Spain; (I.N.); (M.D.M.O.-V.)
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, 3000 Flanders, Belgium
| | - María Del Mar Ortega-Villaizán
- Instituto de Biología Molecular y Celular (IBMC) and Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (UMH), 03202 Elche, Spain; (I.N.); (M.D.M.O.-V.)
| | - Mónica Imarai
- Centro de Biotecnología Acuícola, Departamento de Biología, Universidad de Santiago de Chile, Estación Central, 9160000 Santiago, Chile;
| | - Paulina Schmitt
- Grupo de Marcadores Inmunológicos en Organismos Acuáticos, Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, 2340000 Valparaíso, Chile; (B.M.-L.); (P.S.)
| | - Luis Mercado
- Grupo de Marcadores Inmunológicos en Organismos Acuáticos, Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, 2340000 Valparaíso, Chile; (B.M.-L.); (P.S.)
- Correspondence:
| |
Collapse
|
33
|
Yong F, Wang H, Li C, Jia H. Sevoflurane represses the migration and invasion of gastric cancer cells by regulating forkhead box protein 3. J Int Med Res 2021; 49:3000605211005936. [PMID: 33906525 PMCID: PMC8108091 DOI: 10.1177/03000605211005936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 03/05/2021] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVE Previous studies suggested that sevoflurane exerts anti-proliferative, anti-migratory, and anti-invasive effects on cancer cells. To determine the role of sevoflurane on gastric cancer (GC) progression, we evaluated its effects on the proliferation, migration, and invasion of SGC7901, AGS, and MGC803 GC cells. METHODS GC cells were exposed to different concentrations of sevoflurane (1.7, 3.4, or 5.1% v/v). Cell viability, migration, and invasion were evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and Transwell assays. Immunohistochemical staining and immunoblotting were performed to analyze forkhead box protein 3 (FOXP3) protein expression in tissue specimens and cell lines, respectively. RESULTS FOXP3 was downregulated in human GC specimens and cell lines. Functionally, FOXP3 overexpression significantly inhibited the proliferation, migration, and invasion of GC cells and accelerated their apoptosis. Moreover, sevoflurane significantly blocked GC cell migration and invasion compared with the findings in the control group. However, FOXP3 silencing neutralized sevoflurane-induced apoptosis and the inhibition of GC cell migration and invasion. Sevoflurane-induced apoptosis and the suppression of migration and invasion might be associated with FOXP3 overactivation in GC cells. CONCLUSIONS Sevoflurane activated FOXP3 and prevented GC progression via inhibiting cell migration and invasion in vitro.
Collapse
Affiliation(s)
- Fangfang Yong
- Department of Anesthesiology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Hemei Wang
- Department of Anesthesiology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Chao Li
- Department of Anesthesiology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Huiqun Jia
- Department of Anesthesiology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| |
Collapse
|
34
|
Stadtlober NP, Flauzino T, da Rosa Franchi Santos LF, Iriyoda TMV, Costa NT, Lozovoy MAB, Dichi I, Reiche EMV, Simão ANC. Haplotypes of FOXP3 genetic variants are associated with susceptibility, autoantibodies, and TGF-β1 in patients with systemic lupus erythematosus. Sci Rep 2021; 11:5406. [PMID: 33686190 PMCID: PMC7940633 DOI: 10.1038/s41598-021-84832-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 01/06/2021] [Indexed: 01/31/2023] Open
Abstract
The aim of this study was to evaluate the association of rs2232365 (-924 G > A) and rs3761548 (-3279 C > A) FOXP3 variants with systemic lupus erythematosus (SLE) susceptibility, TGF-β1 plasma levels, autoantibodies, and LN nephritis, and SLE disease activity index (SLEDAI). The study included 196 SLE female patients and 157 female controls. FOXP3 variants were determined with polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Plasma levels of TGF-β1 were determined using immunofluorimetric assay. The AA genotype [OR: 2.650, CI 95%(1.070-6.564), p = 0.035] and A allele [OR: 2.644, CI 95%(1.104-6.333), p = 0.029] were associated with SLE diagnosis in the -3279 C > A. The A/A haplotype was associated with SLE [OR: 3.729, CI 95%(1.006-13.820), p = 0.049]. GCGC haplotype patients had higher TGF-β1 levels (p = 0.012) than other haplotypes. Patients with -924 AA genotype showed higher frequency of anti-dsDNA (p = 0.012) and anti-U1RNP (p = 0.036). The A/C haplotype had higher SLEDAI score [OR: 1.119, CI 95%(1.015-1.234), p = 0.024] and ACAC haplotype higher frequency of anti-dsDNA [OR: 3.026, CI 95%(1.062-8.624), p = 0.038], anti-U1RNP [OR: 5.649, CI 95%(1.199-26.610), p = 0.029] and nephritis [OR: 2.501, CI 95%(1.004-6.229), p = 0.049]. Our data demonstrate that the G/C haplotype provides protection for SLE. While the presence of allele A of both variants could favor autoimmunity, disease activity, and LN.
Collapse
Affiliation(s)
| | - Tamires Flauzino
- Laboratory of Research in Applied Immunology, State University of Londrina, Londrina, PR, Brazil
| | | | | | | | - Marcell Alysson Batisti Lozovoy
- Department of Pathology, Clinical Analysis and Toxicology, Laboratory of Research in Applied Immunology, Health Sciences Center, University Hospital, State University of Londrina, Av. Robert Koch 60, Londrina, Paraná, CEP, 86038-440, Brazil
| | - Isaias Dichi
- Department of Internal Medicine, Laboratory of Research in Applied Immunology, State University of Londrina, Londrina, PR, Brazil
| | - Edna Maria Vissoci Reiche
- Department of Pathology, Clinical Analysis and Toxicology, Laboratory of Research in Applied Immunology, Health Sciences Center, University Hospital, State University of Londrina, Av. Robert Koch 60, Londrina, Paraná, CEP, 86038-440, Brazil
| | - Andréa Name Colado Simão
- Department of Pathology, Clinical Analysis and Toxicology, Laboratory of Research in Applied Immunology, Health Sciences Center, University Hospital, State University of Londrina, Av. Robert Koch 60, Londrina, Paraná, CEP, 86038-440, Brazil.
| |
Collapse
|
35
|
Anvari S, Schuster K, Grimbergen A, Davis CM, Makedonas G. Attenuation of GARP expression on regulatory T cells by protein transport inhibitors. J Immunol Methods 2021; 492:112998. [PMID: 33600819 DOI: 10.1016/j.jim.2021.112998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 12/02/2020] [Accepted: 02/10/2021] [Indexed: 10/22/2022]
Abstract
An integrated understanding of the functional capacities of cells in the context of their physical parameters and molecular markers is increasingly demanded in immunologic studies. Regulatory T cells (Tregs) are a subpopulation of T cells involved in immune response modulation and mediating tolerance to self-antigen with their absence leading to a loss of tolerance. Glycoprotein repetitions A predominant (GARP) is a key marker for activated Tregs, but its detection may also be useful in determining the functional capacities of the cell. This study aims to deduce the optimal stimulation period and the impact of protein transport inhibitors (PTIs), commonly used in the detection of intracellular cytokines, on GARP detection. Through flow cytometric analysis we analyzed different cell culture conditions for optimal GARP expression on activated Tregs. Healthy donor PBMCs were stimulated with either Staphylococcal Enterotoxin B (SEB) or PMA/Ionomycin (PMA/Iono), in the presence and absence of PTIs monensin and/or brefeldin A (BFA) and GARP expression was assessed on CD4+ CD25+ FOXP3+ Tregs. The optimal stimulation period for the detection of GARP was highest at 24-h. Furthermore, we determined that GARP expression on Tregs is significantly reduced when cells are treated with the PTIs monensin and/or BFA following PMA/Iono stimulation. This effect was not seen following SEB stimulation. Therefore, due to the effects of PTIs, alternative methods should be considered when performing simultaneous analysis for cytokine expression and GARP expression on Tregs.
Collapse
Affiliation(s)
- Sara Anvari
- Baylor College of Medicine, Texas Children's Hospital, Section of Pediatric Immunology, Allergy, and Retrovirology, William T. Shearer Center for Human Immunobiology, 1102 Bates Avenue, Ste. 330, Houston, TX, USA.
| | - Kimberly Schuster
- Baylor College of Medicine, Texas Children's Hospital, Section of Pediatric Immunology, Allergy, and Retrovirology, William T. Shearer Center for Human Immunobiology, 1102 Bates Avenue, Ste. 330, Houston, TX, USA.
| | - Andrea Grimbergen
- Baylor College of Medicine, Texas Children's Hospital, Section of Pediatric Immunology, Allergy, and Retrovirology, William T. Shearer Center for Human Immunobiology, 1102 Bates Avenue, Ste. 330, Houston, TX, USA.
| | - Carla M Davis
- Baylor College of Medicine, Texas Children's Hospital, Section of Pediatric Immunology, Allergy, and Retrovirology, William T. Shearer Center for Human Immunobiology, 1102 Bates Avenue, Ste. 330, Houston, TX, USA.
| | - George Makedonas
- Baylor College of Medicine, Texas Children's Hospital, Section of Pediatric Immunology, Allergy, and Retrovirology, William T. Shearer Center for Human Immunobiology, 1102 Bates Avenue, Ste. 330, Houston, TX, USA.
| |
Collapse
|
36
|
Unraveling the susceptibility of paracoccidioidomycosis: Insights towards the pathogen-immune interplay and immunogenetics. INFECTION GENETICS AND EVOLUTION 2020; 86:104586. [PMID: 33039601 DOI: 10.1016/j.meegid.2020.104586] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/27/2020] [Accepted: 10/05/2020] [Indexed: 02/07/2023]
Abstract
Paracoccidioidomycosis (PCM) is a life-threatening systemic mycosis caused by Paracoccidioides spp. This disease comprises three clinical forms: symptomatic acute and chronic forms (PCM disease) and PCM infection, a latent form without clinical symptoms. PCM disease differs markedly according to severity, clinical manifestations, and host immune response. Fungal virulence factors and adhesion molecules are determinants for entry, latency, immune escape and invasion, and dissemination in the host. Neutrophils and macrophages play a paramount role in first-line defense against the fungus through the recognition of antigens by pattern recognition receptors (PRRs), activating their microbicidal machinery. Furthermore, the clinical outcome of the PCM is strongly associated with the variability of cytokines and immunoglobulins produced by T and B cells. While the mechanisms that mediate susceptibility or resistance to infection are dictated by the immune system, some genetic factors may alter gene expression and its final products and, hence, modulate how the organism responds to infection and injury. This review outlines the main findings relative to this topic, addressing the complexity of the immune response triggered by Paracoccidioides spp. infection from preclinical investigations to studies in humans. Here, we focus on mechanisms of fungal pathogenesis, the patterns of innate and adaptive immunity, and the genetic and molecular basis related to immune response and susceptibility to the development of the PCM and its clinical forms. Immunogenetic features such as HLA system, cytokines/cytokines receptors genes and other immune-related genes, and miRNAs are likewise discussed. Finally, we point out the occurrence of PCM in patients with primary immunodeficiencies and call attention to the research gaps and challenges faced by the PCM field.
Collapse
|
37
|
Maibach F, Sadozai H, Seyed Jafari SM, Hunger RE, Schenk M. Tumor-Infiltrating Lymphocytes and Their Prognostic Value in Cutaneous Melanoma. Front Immunol 2020; 11:2105. [PMID: 33013886 PMCID: PMC7511547 DOI: 10.3389/fimmu.2020.02105] [Citation(s) in RCA: 180] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/04/2020] [Indexed: 12/17/2022] Open
Abstract
Recent breakthroughs in tumor immunotherapy such as immune checkpoint blockade (ICB) antibodies, have demonstrated the capacity of the immune system to fight cancer in a number of malignancies such as melanoma and lung cancer. The numbers, localization and phenotypes of tumor-infiltrating lymphocytes (TIL) are not only predictive of response to immunotherapy but also key modulators of disease progression. In this review, we focus on TIL profiling in cutaneous melanoma using histopathological approaches and highlight the observed prognostic value of the primary TIL subsets. The quantification of TIL in formalin-fixed tumor samples ranges from visual scoring of lymphocytic infiltrates in H&E to multiplex immunohistochemistry and immunofluorescence followed by enumeration using image analysis software. Nevertheless, TIL enumeration in the current literature primarily relies upon single marker immunohistochemistry analyses of major lymphocyte subsets such as conventional T cells (CD3, CD4, CD8), regulatory T cells (FOXP3) and B cells (CD20). We review key studies in the literature on associations between TIL subsets and patient survival. We also cover recent findings with respect to the existence of ectopic lymphoid aggregates found in the TME which are termed tertiary lymphoid structures (TLS) and are generally a positive prognostic feature. In addition to their prognostic significance, the existence of various TIL sub-populations has also been reported to predict a patient's response to ICB. Thus, the literature on the predictive potential of TIL subsets in melanoma patients receiving ICB has also been discussed. Finally, we describe recently developed state-of-the-art profiling approaches for tumor infiltrating immune cells such as digital pathology scoring algorithms (e.g., Immunoscore) and multiplex proteomics-based immunophenotyping platforms (e.g., imaging mass cytometry). Translating these novel technologies have the potential to revolutionize tumor immunopathology leading to altering our current understanding of cancer immunology and dramatically improving outcomes for patients.
Collapse
Affiliation(s)
- Fabienne Maibach
- Institute of Pathology, Experimental Pathology, University of Bern, Bern, Switzerland
| | - Hassan Sadozai
- Institute of Pathology, Experimental Pathology, University of Bern, Bern, Switzerland
| | | | - Robert E. Hunger
- Department of Dermatology, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Mirjam Schenk
- Institute of Pathology, Experimental Pathology, University of Bern, Bern, Switzerland
| |
Collapse
|
38
|
Hepatitis B Virus Core Particles Containing a Conserved Region of the G Protein Combined with Interleukin-35 Protected Mice against Respiratory Syncytial Virus Infection without Vaccine-Enhanced Immunopathology. J Virol 2020; 94:JVI.00007-20. [PMID: 32321805 DOI: 10.1128/jvi.00007-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 04/10/2020] [Indexed: 12/18/2022] Open
Abstract
Respiratory syncytial virus (RSV) is the most important cause of lower respiratory tract infection in infants and young children. The vaccine-enhanced disease (VED) has greatly hindered the development of an RSV vaccine. Currently, there are no licensed vaccines for RSV. In this study, immunization of mice with hepatitis B virus core particles containing a conserved region of the G protein (HBc-tG) combined with interleukin-35 (IL-35) elicited a Th1-biased response and a high frequency of regulatory T (Treg) cells and increased the levels of IL-10, transforming growth factor β, and IL-35 production. Importantly, immunization with HBc-tG together with IL-35 protected mice against RSV infection without vaccine-enhanced immunopathology. To explore the mechanism of how IL-35 reduces lung inflammation at the gene expression level, transcription profiles were obtained from lung tissues of immunized mice after RSV infection by the Illumina sequencing technique and further analyzed by a systems biology method. In total, 2,644 differentially expressed genes (DEGs) were identified. Twelve high-influence modules (HIMs) were selected from these DEGs on the basis of the protein-protein interaction network. A detailed analysis of HIM10, involved in the immune response network, revealed that Il10 plays a key role in regulating the host response. The selected DEGs were consistently confirmed by quantitative real-time PCR (qRT-PCR). Our results demonstrate that IL-35 inhibits vaccine-enhanced immunopathology after RSV infection and has potential for development in novel therapeutic and prophylactic strategies.IMPORTANCE In the past few decades, respiratory syncytial virus (RSV) has still been a major health concern worldwide. The vaccine-enhance disease (VED) has hindered RSV vaccine development. A truncated hepatitis B virus core protein vaccine containing the conserved region (amino acids 144 to 204) of the RSV G protein (HBc-tG) had previously been shown to induce effective immune responses and confer protection against RSV infection in mice but to also lead to VED. In this study, we investigated the effect of IL-35 on the host response and immunopathology following RSV infection in vaccinated mice. Our results indicate that HBc-tG together with IL-35 elicited a balanced immune response and protected mice against RSV infection without vaccine-enhanced immunopathology. Applying a systems biology method, we identified Il10 to be the key regulator in reducing the excessive lung inflammation. Our study provides new insight into the function of IL-35 and its regulatory mechanism of VED at the network level.
Collapse
|
39
|
Li J, Zhang H, Liu M, Xiang Y, Li H, Huang F, Li H, Dai Z, Gu CJ, Liao X, Zhang T. miR‐133a‐3p/FOXP3 axis regulates cell proliferation and autophagy in gastric cancer. J Cell Biochem 2020; 121:3392-3405. [DOI: 10.1002/jcb.29613] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 12/11/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Jia‐Peng Li
- College of Life and Health Sciences, Institute of Biology and MedicineWuhan University of Science and Technology Wuhan Hubei China
| | - Hui‐Min Zhang
- College of Life and Health Sciences, Institute of Biology and MedicineWuhan University of Science and Technology Wuhan Hubei China
| | - Mei‐Jun Liu
- College of Life and Health Sciences, Institute of Biology and MedicineWuhan University of Science and Technology Wuhan Hubei China
| | - Yuan Xiang
- College of Life and Health Sciences, Institute of Biology and MedicineWuhan University of Science and Technology Wuhan Hubei China
| | - Hui Li
- College of Life and Health Sciences, Institute of Biology and MedicineWuhan University of Science and Technology Wuhan Hubei China
| | - Feng Huang
- College of Life and Health Sciences, Institute of Biology and MedicineWuhan University of Science and Technology Wuhan Hubei China
| | - Han‐Han Li
- College of Life and Health Sciences, Institute of Biology and MedicineWuhan University of Science and Technology Wuhan Hubei China
| | - Zhou‐Tong Dai
- College of Life and Health Sciences, Institute of Biology and MedicineWuhan University of Science and Technology Wuhan Hubei China
| | - Chao Jiang Gu
- College of Life and Health Sciences, Institute of Biology and MedicineWuhan University of Science and Technology Wuhan Hubei China
| | - Xing‐Hua Liao
- College of Life and Health Sciences, Institute of Biology and MedicineWuhan University of Science and Technology Wuhan Hubei China
| | - Tong‐Cun Zhang
- College of Life and Health Sciences, Institute of Biology and MedicineWuhan University of Science and Technology Wuhan Hubei China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin, College of BiotechnologyTianjin University of Science and Technology Tianjin China
| |
Collapse
|
40
|
Kalantar K, Khansalar S, Eshkevar Vakili M, Ghasemi D, Dabbaghmanesh M, Amirghofran Z. ASSOCIATION OF FOXP3 GENE VARIANTS WITH RISK OF HASHIMOTO'S THYROIDITIS AND CORRELATION WITH ANTI-TPO ANTIBODY LEVELS. ACTA ENDOCRINOLOGICA (BUCHAREST, ROMANIA : 2005) 2019; 15:423-429. [PMID: 32377237 PMCID: PMC7200107 DOI: 10.4183/aeb.2019.423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
CONTEXT Regulatory T cells (Tregs) have critical roles in preventing autoimmune diseases such as Hashimoto's thyroiditis (HT). Forkhead box P3 (Foxp3), the master transcription factor of Tregs, plays a pivotal role in Treg function. OBJECTIVE Herein, we investigated the association of two single nucleotide polymorphisms (SNPs) of the Foxp3 gene with HT development. METHODS AND STUDY DESIGN A total of 129 HT patients and 127 healthy subjects were genotyped for rs3761548 (-3279 A/C) and rs3761549 (-2383 C/T) in the Foxp3 gene, using polymerase chain reaction-restriction fragment length polymorphism. RESULTS Genotypic and allelic distribution of rs3761548 SNP showed a significant association with HT. The CC genotype was observed in 37.2% of patients versus 22.1% of the controls [P<0.008, odds ratio (OR): 2.1; 95% confidence interval (CI): 1.2-3.6] and the AC genotype in 41.1% of patients compared to 54.3% of the controls (P<0.025, OR: 2.1; CI: 1.2-3.6). In addition, higher frequency of C allele in patients compared to controls (P=0.05, OR: 1.4; 95% CI: 0.9-2) suggested that patients with the CC genotype and C allele had increased susceptibility to HT. There were significantly higher serum levels of anti-thyroid peroxidase (ATPO) antibody in patients with the rs3761548 CC genotype (1156±163 IU/mL) compared to the other genotypes (≈582-656 IU/mL; P<0.004). We observed a greater frequency of the AC genotype in patients who had decreased ATPO antibody levels (P=0.02). CONCLUSIONS The association of the rs3761548 SNP with risk of HT and its influence on ATPO antibody levels suggested an important role for Foxp3 in the biology and pathogenesis of HT.
Collapse
Affiliation(s)
- K. Kalantar
- Shiraz University of Medical Sciences, School of Medicine, Department of Immunology, Shiraz, Iran
| | - S. Khansalar
- Shiraz University of Medical Sciences, School of Medicine, Department of Immunology, Shiraz, Iran
| | - M. Eshkevar Vakili
- Shiraz University of Medical Sciences, School of Medicine, Department of Immunology, Shiraz, Iran
| | - D. Ghasemi
- Shiraz University of Medical Sciences, School of Medicine, Department of Immunology, Shiraz, Iran
| | - M.H. Dabbaghmanesh
- Shiraz University of Medical Sciences, School of Medicine, Department of Immunology, Shiraz, Iran
| | - Z. Amirghofran
- Shiraz University of Medical Sciences, School of Medicine, Department of Immunology, Shiraz, Iran
| |
Collapse
|
41
|
Cardona P, Cardona PJ. Regulatory T Cells in Mycobacterium tuberculosis Infection. Front Immunol 2019; 10:2139. [PMID: 31572365 PMCID: PMC6749097 DOI: 10.3389/fimmu.2019.02139] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 08/27/2019] [Indexed: 12/11/2022] Open
Abstract
Anti-inflammatory regulatory T cells have lately attracted attention as part of the immune response to Mycobacterium tuberculosis infection, where they counterbalance the protective but pro-inflammatory immune response mediated by Th17 cells and especially by the better-known Th1 cells. In chronic infectious diseases there is a delicate balance between pro- and anti-inflammatory responses. While Th1 and Th17 are needed in order to control infection by Mycobacterium tuberculosis, the inflammatory onset can ultimately become detrimental for the host. In this review, we assess current information on the controversy over whether counterbalancing regulatory T cells are promoting pathogen growth or protecting the host.
Collapse
Affiliation(s)
- Paula Cardona
- Unitat de Tuberculosi Experimental, Fundació Institut Germans Trias i Pujol, CIBER Enfermedades Respiratorias, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Pere-Joan Cardona
- Unitat de Tuberculosi Experimental, Fundació Institut Germans Trias i Pujol, CIBER Enfermedades Respiratorias, Universitat Autònoma de Barcelona, Badalona, Spain
| |
Collapse
|
42
|
Allard B, Panariti A, Pernet E, Downey J, Ano S, Dembele M, Nakada E, Fujii U, McGovern TK, Powell WS, Divangahi M, Martin JG. Tolerogenic signaling of alveolar macrophages induces lung adaptation to oxidative injury. J Allergy Clin Immunol 2019; 144:945-961.e9. [PMID: 31356919 DOI: 10.1016/j.jaci.2019.07.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 07/06/2019] [Accepted: 07/12/2019] [Indexed: 12/26/2022]
Abstract
BACKGROUND Inhaled oxidative toxicants present in ambient air cause airway epithelial injury, inflammation, and airway hyperresponsiveness. Effective adaptation to such environmental insults is essential for the preservation of pulmonary function, whereas failure or incomplete adaptation to oxidative injury can render the host susceptible to the development of airway disease. OBJECTIVE We sought to explore the mechanisms of airway adaptation to oxidative injury. METHODS For a model to study pulmonary adaptation to oxidative stress-induced lung injury, we exposed mice to repeated nose-only chlorine gas exposures. Outcome measures were evaluated 24 hours after the last chlorine exposure. Lung mechanics and airway responsiveness to methacholine were assessed by using the flexiVent. Inflammation and antioxidant responses were assessed in both bronchoalveolar lavage fluid and lung tissue. Using both loss or gain of function and genomic approaches, we further dissected the cellular and molecular mechanisms involved in pulmonary adaptation. RESULTS Repeated exposures to oxidative stress resulted in pulmonary adaptation evidenced by abrogation of neutrophilic inflammation and airway hyperresponsiveness. This adaptation was independent of antioxidant mechanisms and regulatory T cells but dependent on residential alveolar macrophages (AMs). Interestingly, 5% of AMs expressed forkhead box P3, and depletion of these cells abolished adaptation. Results from transcriptomic profiling and loss and gain of function suggest that adaptation might be dependent on TGF-β and prostaglandin E2. CONCLUSION Pulmonary adaptation during oxidative stress-induced lung injury is mediated by a novel subset of forkhead box P3-positive AMs that limits inflammation, favoring airway adaptation and host fitness through TGF-β and prostaglandin E2.
Collapse
Affiliation(s)
- Benoit Allard
- Meakins Christie Laboratories, Research Institute of the McGill University Health Centre, and the Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Alice Panariti
- Meakins Christie Laboratories, Research Institute of the McGill University Health Centre, and the Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Erwan Pernet
- Meakins Christie Laboratories, Research Institute of the McGill University Health Centre, and the Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Jeffrey Downey
- Meakins Christie Laboratories, Research Institute of the McGill University Health Centre, and the Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Satoshi Ano
- Meakins Christie Laboratories, Research Institute of the McGill University Health Centre, and the Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Marieme Dembele
- Meakins Christie Laboratories, Research Institute of the McGill University Health Centre, and the Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Emily Nakada
- Meakins Christie Laboratories, Research Institute of the McGill University Health Centre, and the Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Utako Fujii
- Meakins Christie Laboratories, Research Institute of the McGill University Health Centre, and the Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Toby K McGovern
- Meakins Christie Laboratories, Research Institute of the McGill University Health Centre, and the Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - William S Powell
- Meakins Christie Laboratories, Research Institute of the McGill University Health Centre, and the Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Maziar Divangahi
- Meakins Christie Laboratories, Research Institute of the McGill University Health Centre, and the Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - James G Martin
- Meakins Christie Laboratories, Research Institute of the McGill University Health Centre, and the Department of Medicine, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
43
|
Whiteside TL. Human regulatory T cells (Treg) and their response to cancer. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2019; 4:215-228. [PMID: 32953989 PMCID: PMC7500484 DOI: 10.1080/23808993.2019.1634471] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 06/18/2019] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Regulatory T cells (Treg) and their role in health and disease is being intensively investigated. Today, human Treg emerge as a highly heterogeneous subset of CD4+ T cells which mediate immune suppression but also regulate responses of non-immune cells. In cancer, Treg occupy a critical although not yet entirely understood role. AREAS COVERED Newly acquired insights into Treg indicate a much greater plasticity and functional heterogeneity of this T cell subset than was previously known. Functional redundancy of Treg and their interactions with a variety of immune and non-immune cellular targets emphasize the central role Treg play in cancer. Treg not only regulate the host responses to cancer; they may also regulate responses to immune therapies. The impact of immune checkpoint blockade on Treg survival, stability and suppressive activity remains to be elucidated. T cell reprogramming by tumor-derived factors, including tumor-derived exosomes (TEX), plays a key role in shaping the Treg repertoire in the tumor microenvironment (TME). The reprogrammed or induced iTreg acquire capabilities to strongly down-regulate anti-tumor immune responses by mechanisms that are specific for each TME. Therapeutic silencing of such Treg calls for the discrimination of "bad" from "good" Treg subsets, an approach that remains elusive in the absence of a definitive "Treg signature." EXPERT OPINION Context-related plasticity and heterogeneity of Treg in the TME are significant barriers to selective therapeutic depletion of those Treg subsets that are reprogramed by the tumor to suppress anti-tumor immunity.
Collapse
Affiliation(s)
- Theresa L. Whiteside
- Departments of Pathology, Immunology and Otolaryngology, University of Pittsburgh School of Medicine and UPMC Hillman Cancer Center, Pittsburgh, PA, 15213, USA
| |
Collapse
|
44
|
Tang CL, Yu XH, Li Y, Zhang RH, Xie J, Liu ZM. Schistosoma japonicum Soluble Egg Antigen Protects Against Type 2 Diabetes in Lepr db/db Mice by Enhancing Regulatory T Cells and Th2 Cytokines. Front Immunol 2019; 10:1471. [PMID: 31297120 PMCID: PMC6607994 DOI: 10.3389/fimmu.2019.01471] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 06/13/2019] [Indexed: 12/21/2022] Open
Abstract
Type 2 diabetes is a metabolic disorder characterized by persistently elevated glucose levels. There is no effective treatment strategy for this condition, and it poses a massive economic burden globally. Schistosoma soluble egg antigen (SEA)-induced immunomodulatory mechanisms have been reported in the treatment of autoimmune disease. This study aimed to determine the ability of Schistosoma japonicum SEA to protect against type 2 diabetes in Leprdb/db mice and understand the associated mechanisms. The mice were divided into four groups: C57BL/6 (the normal group), SEA (C57BL/6 mice treated with SEA), Leprdb/db, and SEA and Leprdb/db co-treatment groups. The mice in the SEA and co-treatment groups were injected with 50 μg of SEA (twice a week for 6 weeks), and the same volume of PBS was used as control. Blood glucose, insulin, and HOMA-IR levels were measured in all mice, which were sacrificed 6 weeks after the last SEA administration. Flow cytometry was used to detect the percentages of regulatory T cells in splenocytes. ELISA was used to detect the levels of IFN-γ, IL-2, IL-4, and IL-5 in cell culture supernatants. Compared with the mice in the Leprdb/db group, the mice in the SEA + Leprdb/db group exhibited significantly reduced insulin resistance, as evidenced by the enhancement of wound healing. The frequency of spleen regulatory T cells increased significantly after SEA administration; meanwhile, the secretion of IL-4 and IL-5 in spleen cells was elevated. These results indicate that SEA can reduce insulin resistance and provide new targets for the treatment of type 2 diabetes. The potential mechanisms might be associated with increases in regulatory T cells and Th2 cytokines in Leprdb/db mice, which warrants further investigation.
Collapse
Affiliation(s)
- Chun-Lian Tang
- Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Xiao-Hong Yu
- Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Yan Li
- Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Rong-Hui Zhang
- Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Jun Xie
- Medical College of Wuhan University of Science and Technology, Wuhan, China
| | - Zhi-Ming Liu
- Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
45
|
Yang N, Shang YX. Epigallocatechin gallate ameliorates airway inflammation by regulating Treg/Th17 imbalance in an asthmatic mouse model. Int Immunopharmacol 2019; 72:422-428. [PMID: 31030098 DOI: 10.1016/j.intimp.2019.04.044] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 03/30/2019] [Accepted: 04/19/2019] [Indexed: 10/26/2022]
Abstract
Epigallocatechin gallate (EGCG) is a polyphenol that is found in green tea that has been shown to ameliorate airway inflammation in an ovalbumin-sensitized asthmatic mouse model. The purpose of this study was to investigate whether the immunomodulatory and anti-inflammatory effects of EGCG by regulating the regulatory T cell (Treg)/Th 17 cells balance in this model. Female BALB/c mice were sensitized and challenged with ovalbumin by intraperitoneal injection. EGCG was administered to asthmatic mice intraperitoneally 1 h before each OVA challenge. Airway hyperresponsiveness (AHR) was measured, and lung inflammatory infiltrations were assessed by hematoxylin and eosin (HE) staining. Serum OVA-specific IgE levels, Interleukin-10 (IL-10) levels and Interleukin-17A (IL-17A) levels in the bronchoalveolar lavage fluid (BALF), serum, and splenocyte culture supernatants were measured by ELISA. Flow cytometry was used to assess the effects of EGCG on the frequency of CD4+CD25+Foxp3+Treg cells in the splenocytes and real-time PCR method was used to measure the expression of Forkhead box P3 (Foxp3) mRNA and retinoid-related orphan receptor gammat (RORγt) mRNA in the lung tissue. The results showed that administration of EGCG significantly decreased AHR and OVA specific IgE in the serum, increased IL-10 levels in the BALF, serum, and splenocyte culture supernatant, and the frequency of CD4+CD25+Foxp3+Treg cells in the splenocytes in asthmatic mice. Administration of EGCG also ameliorated airway inflammation and eosinophil infiltrations in asthmatic mice. These results suggested that EGCG likely ameliorated OVA-induced airway inflammation by increasing the production of IL-10, the number of CD4+CD25+Foxp3+Treg cells and expression of Foxp3 mRNA in the lung tissue, and it could be an effective agent for treating asthma.
Collapse
Affiliation(s)
- Nan Yang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yun-Xiao Shang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
46
|
Niu J, Wang Y, Liu B, Yao Y. Mesenchymal stem cells prolong the survival of orthotopic liver transplants by regulating the expression of TGF-β1. TURKISH JOURNAL OF GASTROENTEROLOGY 2019; 29:601-609. [PMID: 30260784 DOI: 10.5152/tjg.2018.17395] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND/AIMS Recent studies have shown that transforming growth factor-β1 (TGF-β1) is prominently associated with acute rejection. This study aimed to explore the role of mesenchymal stem cells (MSCs) in the maintenance of the long-term survival of orthotopic liver transplants (OLTs) via the regulation of TGF-β1 in an experimental rat model. MATERIALS AND METHODS We used Lewis rats as donors and ACI rats as recipients. Hematoxylin and eosin staining was performed to evaluate histomorphological changes, and Western blot was performed to measure protein expression. RESULTS The expression of TGF-β1 in the liver allografts and spleen and protein levels of forkhead box P3 (FoxP3), interleukin-10 (IL-10), and cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) were measured using Western blot. The suppressive capacity of CD4+CD25+ regulatory T cells was evaluated using the MTT assay. Cell-mediated immunotoxicity was evaluated using the mixed lymphocyte reaction of CD4+ T cells and cytotoxic T lymphocyte (CTL) assay of CD8+ T cells. The results showed that MSCs prolonged the survival of the OLT mice by regulating the expression of TGF-β1 at different time points. The administration of MSCs promoted a prolonged survival in the ACI recipients (105±6.6 d) compared with the MSC-untreated recipients (16.2±4.0 d). On the postoperative day (POD) 7, the MSC-treated recipients showed a significantly higher expression of TGF-β1, FoxP3, IL-10, and CTLA-4 than the MSC-untreated recipients. However, on POD 100, the MSC-treated recipients showed a lower expression of TGF-β1 and FOxP3 than that on POD 7. Moreover, on POD 7, CD4+CD25+ regulatory T cells extracted from the MSC-treated recipients showed a higher expression of FoxP3, IL-10, CTLA-4, and suppressive capacity. On POD 7, CD4+ T cells from the MSC-treated recipients showed more significantly diminished proliferative functions than the MSC-untreated recipients; further, a reduced allospecific CTL activity of CD8+ T cells was observed in the MSC-treated recipients. CONCLUSION MSCs may represent a promising cell therapeutic approach for inducing immunosuppression or transplant tolerance.
Collapse
Affiliation(s)
- Jian Niu
- Department of General Surgery, Xuzhou Medical College Hospital, Jiangsu, China
| | - Yue Wang
- Department of General Surgery, Xuzhou Medical College Hospital, Jiangsu, China
| | - Bin Liu
- Department of General Surgery, Xuzhou Medical College Hospital, Jiangsu, China
| | - Yuanhu Yao
- Department of General Surgery, Xuzhou Medical College Hospital, Jiangsu, China
| |
Collapse
|
47
|
Fathollahi A, Hashemi SM, Haji Molla Hoseini M, Yeganeh F. In vitro analysis of immunomodulatory effects of mesenchymal stem cell- and tumor cell -derived exosomes on recall antigen-specific responses. Int Immunopharmacol 2018; 67:302-310. [PMID: 30572255 DOI: 10.1016/j.intimp.2018.12.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 11/24/2018] [Accepted: 12/04/2018] [Indexed: 01/02/2023]
Abstract
BACKGROUND The aim of the present study was to evaluate in vitro effects of exosomes derived from mesenchymal stem cells (MSCs) or tumor cells on recall-antigen-specific immune responses. METHODS The exosomes were isolated from the supernatant of the cultures of the adipose-derived MSCs, and 4T1 cell line. The splenocytes isolated from experimental autoimmune encephalomyelitis (EAE) mice were utilized to evaluate the effects of exosomes on recall-antigen-specific responses. The expression of master regulators for T cell sub-types and the levels of their corresponding cytokines were evaluated. RESULTS Treatment by disease-inducing peptide (MOG35-55) combined with MSC-EXO or by MOG+TEX enhanced the expression of Foxp3 as the master regulator for Treg cells; by comparing with splenocytes which were treated by MOG. Nonetheless, the production of IL-10 and TGF-β were increased only in splenocytes treated by MOG+TEX. Additionally, treatments of splenocytes by MOG+TEX and MOG+MSC-EXO decreased the expression of Tbx21 and Gata3, as the master regulator for T helper (TH)1 and TH2 responses. However, the IFN-γ level did not decrease. The expression of Rorc and Elf4, which are the activator and inhibitor for differentiation of TH17 respectively were increased after splenocytes was treated by MOG+TEX. However, a reduction in Rorc and Elf4 levels was observed when splenocytes were treated by MOG+MSC-EXO. Indeed, the concentration of IL-17 did not alter significantly following the treatment by MOG+exosomes. CONCLUSION It was ultimately attained that TEX and MSC-EXO utilized various mechanisms to modulate the recall immune responses. TEX was more potent than MSC-EXO to induce regulatory responses by upregulating the production of Foxp3, IL-10, and TGF-β.
Collapse
Affiliation(s)
- Anwar Fathollahi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Haji Molla Hoseini
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farshid Yeganeh
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
48
|
Regulatory B and T lymphocytes in multiple sclerosis: friends or foes? AUTOIMMUNITY HIGHLIGHTS 2018; 9:9. [PMID: 30415321 PMCID: PMC6230324 DOI: 10.1007/s13317-018-0109-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 10/17/2018] [Indexed: 12/12/2022]
Abstract
Current clinical experience with immunomodulatory agents and monoclonal antibodies in principle has established the benefit of depleting lymphocytic populations in relapsing–remitting multiple sclerosis (RRMS). B and T cells may exert multiple pro-inflammatory actions, but also possess regulatory functions making their role in RRMS pathogenesis much more complex. There is no clear correlation of Tregs and Bregs with clinical features of the disease. Herein, we discuss the emerging data on regulatory T and B cell subset distributions in MS and their roles in the pathophysiology of MS and its murine model, experimental autoimmune encephalomyelitis (EAE). In addition, we summarize the immunomodulatory properties of certain MS therapeutic agents through their effect on such regulatory cell subsets and their relevance to clinical outcomes.
Collapse
|
49
|
Galdino NAL, Loures FV, de Araújo EF, da Costa TA, Preite NW, Calich VLG. Depletion of regulatory T cells in ongoing paracoccidioidomycosis rescues protective Th1/Th17 immunity and prevents fatal disease outcome. Sci Rep 2018; 8:16544. [PMID: 30410119 PMCID: PMC6224548 DOI: 10.1038/s41598-018-35037-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/25/2018] [Indexed: 12/24/2022] Open
Abstract
In human paracoccidioidomycosis (PCM), a primary fungal infection typically diagnosed when the disease is already established, regulatory T cells (Treg) cells are associated with disease severity. Experimental studies in pulmonary PCM confirmed the detrimental role of these cells, but in most studies, Tregs were depleted prior to or early during infection. These facts led us to study the effects of Treg cell depletion using a model of ongoing PCM. Therefore, Treg cell depletion was achieved by treatment of transgenic C57BL/6DTR/eGFP (DEREG) mice with diphtheria toxin (DT) after 3 weeks of intratracheal infection with 1 × 106 Paracoccidioides brasiliensis yeasts. At weeks 6 and 10 post-infection, DT-treated DEREG mice showed a reduced number of Treg cells associated with decreased fungal burdens in the lungs, liver and spleen, reduced tissue pathology and mortality. Additionally, an increased influx of activated CD4+ and CD8+ T cells into the lungs and elevated production of Th1/Th17 cytokines was observed in DT-treated mice. Altogether, our data demonstrate for the first time that Treg cell depletion in ongoing PCM rescues infected hosts from progressive and potentially fatal PCM; furthermore, our data indicate that controlling Treg cells could be explored as a novel immunotherapeutic procedure.
Collapse
Affiliation(s)
- Nayane A L Galdino
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Flávio V Loures
- Instituto de Ciência e Tecnologia, Universidade Federal de São Paulo, São José dos Campos, SP, Brazil
| | - Eliseu F de Araújo
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Tania A da Costa
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Nycolas W Preite
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Vera Lúcia G Calich
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
50
|
Hess J, Su L, Nizzi F, Beebe K, Magee K, Salzberg D, Stahlecker J, Miller HK, Adams RH, Ngwube A. Successful treatment of severe refractory autoimmune hemolytic anemia after hematopoietic stem cell transplant with abatacept. Transfusion 2018; 58:2122-2127. [DOI: 10.1111/trf.14907] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/21/2018] [Accepted: 06/01/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Jennifer Hess
- Center for Cancer and Blood Disorders; Phoenix Children's Hospital; Phoenix Arizona
| | - Leon Su
- Center for Cancer and Blood Disorders; Phoenix Children's Hospital; Phoenix Arizona
| | - Frank Nizzi
- Center for Cancer and Blood Disorders; Phoenix Children's Hospital; Phoenix Arizona
| | - Kristen Beebe
- Center for Cancer and Blood Disorders; Phoenix Children's Hospital; Phoenix Arizona
- Mayo Clinic; Scottsdale Arizona
| | - Kyrie Magee
- Center for Cancer and Blood Disorders; Phoenix Children's Hospital; Phoenix Arizona
- Mayo Clinic; Scottsdale Arizona
| | - Dana Salzberg
- Center for Cancer and Blood Disorders; Phoenix Children's Hospital; Phoenix Arizona
| | - Jennifer Stahlecker
- Center for Cancer and Blood Disorders; Phoenix Children's Hospital; Phoenix Arizona
| | - Holly K. Miller
- Center for Cancer and Blood Disorders; Phoenix Children's Hospital; Phoenix Arizona
| | - Roberta H. Adams
- Center for Cancer and Blood Disorders; Phoenix Children's Hospital; Phoenix Arizona
- Mayo Clinic; Scottsdale Arizona
| | - Alexander Ngwube
- Center for Cancer and Blood Disorders; Phoenix Children's Hospital; Phoenix Arizona
- Mayo Clinic; Scottsdale Arizona
| |
Collapse
|