1
|
Filippini DM, Broseghini E, Liberale C, Gallerani G, Siepe G, Nobili E, Ferracin M, Molteni G. Vaccine-Based Immunotherapy for Oropharyngeal and Nasopharyngeal Cancers. J Clin Med 2025; 14:1170. [PMID: 40004705 PMCID: PMC11856027 DOI: 10.3390/jcm14041170] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 02/05/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
Viral infections such as human papillomavirus (HPV) and Epstein-Barr virus (EBV) play a critical role in the onset of oropharyngeal (OPC) and nasopharyngeal cancer (NPC), respectively. Despite advancements in targeted therapies and immunotherapies, in the recurrent/metastatic setting, these tumors remain incurable diseases with poor prognosis. The development of therapeutic tumor vaccines, utilizing either neoantigens or oncoviral antigens, represents a promising addition to the cancer immunotherapy arsenal. Research on vaccine-based immunotherapy for OPC and NPC focuses on targeting viral antigens, particularly HPV E6/E7 and EBV EBNA1/LMP2. The potential for vaccine platforms, including peptide-based, DNA, RNA, and viral vector-based vaccines, to induce durable immune responses against viral antigens is reported. The early-phase clinical trials evaluating vaccine-based therapies for HPV-related OPC and EBV-related NPC revealed safety and preliminary signs of efficacy; however, further clinical trials are crucial for validation. This review provides an overview of the current landscape of vaccine-based strategies for HPV-related OPC and EBV-related NPC, discussing their biological mechanisms and immune processes involved in anti-HPV and anti-EBV vaccine treatments, with a particular focus on the immune factors that influence these therapies.
Collapse
Affiliation(s)
- Daria Maria Filippini
- Medical Oncology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy; (G.G.); (M.F.)
| | | | - Carlotta Liberale
- Unit of Otorhinolaryngology, Head & Neck Department, University of Verona, 37134 Verona, Italy;
| | - Giulia Gallerani
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy; (G.G.); (M.F.)
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Giambattista Siepe
- Radiation Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Elisabetta Nobili
- Medical Oncology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Manuela Ferracin
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy; (G.G.); (M.F.)
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Gabriele Molteni
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy; (G.G.); (M.F.)
- Department of Otolaryngology-Head and Neck Surgery, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| |
Collapse
|
2
|
Fehn A, von Witzleben A, Grages A, Kors TA, Ezić J, Betzler AC, Brunner C, Schuler PJ, Theodoraki MN, Hoffmann TK, Laban S. 5-Aza-2'-deoxycytidin (Decitabine) increases cancer-testis antigen expression in head and neck squamous cell carcinoma and modifies immune checkpoint expression, especially in CD39-positive CD8 and CD4 T cells. Neoplasia 2025; 59:101086. [PMID: 39608124 PMCID: PMC11636331 DOI: 10.1016/j.neo.2024.101086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/11/2024] [Indexed: 11/30/2024]
Abstract
Failure of immunotherapy in head and neck squamous cell carcinoma (HNSCC) patients represents an unmet need to augment leverage of adaptive immunity. Immunogenic cancer-testis antigen (CTA) expression as well as lymphocyte differentiation and function are regulated by DNA methylation. Therefore, epigenetic therapy via inhibition of DNA-Methyltransferases by 5-Aza-2'-deoxycytidine (DAC) serves a promising adjuvant in immunotherapy. We investigated the effects of DAC on CTA expression and proliferative capacity in HNSCC cell lines and on the expression of 12 immune checkpoint molecules (ICM) on lymphocytes of oropharyngeal squamous cell carcinoma (OPSCC) patients and healthy donors. In all cell lines CTA were upregulated accompanied by decreased proliferation. In lymphocytes pronounced alterations of the ICM repertoire were observed, influenced by donor type and subpopulation. On CD39+ CD4 and CD8 T cells, the expression of co-stimulatory ICM GITR and OX40 increased dose dependently, whereas expression decreased on CD39- CD4 T cells. PD1 expression increased primarily on CD39+ CD8 T cells and decreased on CD39- CD4 T cells. CD27 expression decreased primarily in CD8 T cells, but increased in CD39- CD4 T cells, whereas ICOS expression was lowered in both CD39+ and CD39- subsets of CD4 as well as CD8 T cells. DAC treatment increased immunogenicity and decreased proliferation in HNSCC cells while enhancing expression of co-stimulatory ICM GITR and OX40. We propose low dose DAC treatment as a adjuvant to immunotherapy.
Collapse
Affiliation(s)
- Adrian Fehn
- Head and Neck Cancer Center of the Comprehensive Cancer Center, Department of Otorhinolaryngology and Head & Neck Surgery, Ulm University Medical Center, Germany; Ulm University Medical Faculty, Core Facility Immune Monitoring, Ulm, Germany
| | - Adrian von Witzleben
- Head and Neck Cancer Center of the Comprehensive Cancer Center, Department of Otorhinolaryngology and Head & Neck Surgery, Ulm University Medical Center, Germany; Ulm University Medical Faculty, Core Facility Immune Monitoring, Ulm, Germany
| | - Ayla Grages
- Head and Neck Cancer Center of the Comprehensive Cancer Center, Department of Otorhinolaryngology and Head & Neck Surgery, Ulm University Medical Center, Germany
| | - Tsima Abou Kors
- Head and Neck Cancer Center of the Comprehensive Cancer Center, Department of Otorhinolaryngology and Head & Neck Surgery, Ulm University Medical Center, Germany
| | - Jasmin Ezić
- Head and Neck Cancer Center of the Comprehensive Cancer Center, Department of Otorhinolaryngology and Head & Neck Surgery, Ulm University Medical Center, Germany
| | - Annika C Betzler
- Head and Neck Cancer Center of the Comprehensive Cancer Center, Department of Otorhinolaryngology and Head & Neck Surgery, Ulm University Medical Center, Germany; Ulm University Medical Faculty, Core Facility Immune Monitoring, Ulm, Germany
| | - Cornelia Brunner
- Head and Neck Cancer Center of the Comprehensive Cancer Center, Department of Otorhinolaryngology and Head & Neck Surgery, Ulm University Medical Center, Germany; Ulm University Medical Faculty, Core Facility Immune Monitoring, Ulm, Germany
| | - Patrick J Schuler
- Head and Neck Cancer Center of the Comprehensive Cancer Center, Department of Otorhinolaryngology and Head & Neck Surgery, Ulm University Medical Center, Germany; Ulm University Medical Faculty, Core Facility Immune Monitoring, Ulm, Germany
| | - Marie-Nicole Theodoraki
- Head and Neck Cancer Center of the Comprehensive Cancer Center, Department of Otorhinolaryngology and Head & Neck Surgery, Ulm University Medical Center, Germany; Ulm University Medical Faculty, Core Facility Immune Monitoring, Ulm, Germany
| | - Thomas K Hoffmann
- Head and Neck Cancer Center of the Comprehensive Cancer Center, Department of Otorhinolaryngology and Head & Neck Surgery, Ulm University Medical Center, Germany; Ulm University Medical Faculty, Core Facility Immune Monitoring, Ulm, Germany
| | - Simon Laban
- Head and Neck Cancer Center of the Comprehensive Cancer Center, Department of Otorhinolaryngology and Head & Neck Surgery, Ulm University Medical Center, Germany; Ulm University Medical Faculty, Core Facility Immune Monitoring, Ulm, Germany.
| |
Collapse
|
3
|
Liu R, He X, Bao W, Li Z. Enhancement of HPV therapeutic peptide-based vaccine efficacy through combination therapies and improved delivery strategies: A review. Hum Vaccin Immunother 2024; 20:2396710. [PMID: 39193781 PMCID: PMC11364057 DOI: 10.1080/21645515.2024.2396710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/13/2024] [Accepted: 08/22/2024] [Indexed: 08/29/2024] Open
Abstract
Human papillomavirus (HPV) has been linked to the development of various cancers, including head and neck, cervical, vaginal, penile, and anal cancers. The development of therapeutic vaccines against HPV-positive tumors is crucial for protecting individuals already infected with HPV, preventing tumor progression, and effectively treating the disease. The HPV therapeutic peptide-based vaccines demonstrate specificity and safety advantages by targeting specific epitopes while minimizing the risk of allergic or autoimmune reactions. However, HPV therapeutic peptide-based vaccines typically lack immunogenicity and frequently fail to induce effective immune responses. Therefore, there is a need for more effective approaches to improve the immunogenicity of HPV peptide-based vaccines. Here, we review relevant research and possible uses for increasing the immunogenicity and therapeutic efficacy of HPV peptide-based vaccines through combined therapy and improved delivery strategies. Additional research is necessary to validate the application of combination therapy and delivery strategy modifications as standard treatment approaches for HPV therapeutic peptide-based vaccines.
Collapse
Affiliation(s)
- Rongyu Liu
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, People’s Republic of China
- Ministry of Education, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Chengdu, People’s Republic of China
| | - Xinlin He
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, People’s Republic of China
- Ministry of Education, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Chengdu, People’s Republic of China
| | - Wanying Bao
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, People’s Republic of China
- Ministry of Education, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Chengdu, People’s Republic of China
| | - Zhengyu Li
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, People’s Republic of China
- Ministry of Education, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Chengdu, People’s Republic of China
| |
Collapse
|
4
|
Jiang B, Elkashif A, Coulter JA, Dunne NJ, McCarthy HO. Immunotherapy for HPV negative head and neck squamous cell carcinoma. Biochim Biophys Acta Rev Cancer 2024; 1879:189138. [PMID: 38889878 DOI: 10.1016/j.bbcan.2024.189138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/02/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024]
Abstract
Head and neck cancer (HNSCC) is the 8th most common cancer in the UK, with incidence increasing due to lifestyle factors such as tobacco and alcohol abuse. HNSCC is an immune-suppressive disease characterised by impaired cytokine secretion and dysregulation of immune infiltrate. As such, immunotherapy is a potential treatment option, with therapeutic cancer vaccination demonstrating the greatest potential. The success of cancer vaccination is dependent on informed antigen selection: an ideal antigen must be either tumour-specific or tumour-associated, as well as highly immunogenic. Stratification of the patient population for antigen expression and validated biomarkers are also vital. This review focuses on the latest developments in immunotherapy, specifically the development of therapeutic vaccines, and highlights successes, potential drawbacks and areas for future development. Immunotherapy approaches considered for HNSCC include monoclonal antibodies (mAb), Oncolytic viral (OV) therapies, Immune Checkpoint Inhibitors (ICIs) and cancer vaccines.
Collapse
Affiliation(s)
- Binyumeng Jiang
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Ahmed Elkashif
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Jonathan A Coulter
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Nicholas J Dunne
- School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland
| | - Helen O McCarthy
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
5
|
Abou Kors T, Meier M, Mühlenbruch L, Betzler AC, Oliveri F, Bens M, Thomas J, Kraus JM, Doescher J, von Witzleben A, Hofmann L, Ezic J, Huber D, Benckendorff J, Barth TFE, Greve J, Schuler PJ, Brunner C, Blackburn JM, Hoffmann TK, Ottensmeier C, Kestler HA, Rammensee HG, Walz JS, Laban S. Multi-omics analysis of overexpressed tumor-associated proteins: gene expression, immunopeptide presentation, and antibody response in oropharyngeal squamous cell carcinoma, with a focus on cancer-testis antigens. Front Immunol 2024; 15:1408173. [PMID: 39136024 PMCID: PMC11317303 DOI: 10.3389/fimmu.2024.1408173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024] Open
Abstract
Introduction The human leukocyte antigen complex (HLA) is essential for inducing specific immune responses to cancer by presenting tumor-associated peptides (TAP) to T cells. Overexpressed tumor associated antigens, mainly cancer-testis antigens (CTA), are outlined as essential targets for immunotherapy in oropharyngeal squamous cell carcinoma (OPSCC). This study assessed the degree to which presentation, gene expression, and antibody response (AR) of TAP, mainly CTA, are correlated in OPSCC patients to evaluate their potential as immunotherapy targets. Materials and methods Snap-frozen tumor (NLigand/RNA=40), healthy mucosa (NRNA=6), and healthy tonsils (NLigand=5) samples were obtained. RNA-Seq was performed using Illumina HiSeq 2500/NovaSeq 6000 and whole exome sequencing (WES) utilizing NextSeq500. HLA ligands were isolated from tumor tissue using immunoaffinity purification, UHPLC, and analyzed by tandem MS. Antibodies were measured in serum (NAb=27) utilizing the KREX™ CT262 protein array. Data analysis focused on 312 proteins (KREX™ CT262 panel + overexpressed self-proteins). Results 183 and 94 of HLA class I and II TAP were identified by comparative profiling with healthy tonsils. Genes from 26 TAP were overexpressed in tumors compared to healthy mucosa (LFC>1; FDR<0.05). Low concordance (r=0.25; p<0.0001) was found between upregulated mRNA and class I TAP. The specific mode of correlation of TAP was found to be dependent on clinical parameters. A lack of correlation was observed both between mRNA and class II TAP, as well as between class II tumor-unique TAP (TAP-U) presentation and antibody response (AR) levels. Discussion This study demonstrates that focusing exclusively on gene transcript levels fails to capture the full extent of TAP presentation in OPSCC. Furthermore, our findings reveal that although CTA are presented at relatively low levels, a few CTA TAP-U show potential as targets for immunotherapy.
Collapse
Affiliation(s)
- Tsima Abou Kors
- Department of Otorhinolaryngology and Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
| | - Matthias Meier
- Department of Otorhinolaryngology and Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
| | - Lena Mühlenbruch
- Department of Immunology, Institute for Cell Biology, Eberhard Karls University of Tübingen, Tübingen, Germany
- Department of Peptide-based Immunotherapy, Eberhard Karls University and University Hospital Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK), Partner Site Tübingen, Tübingen, Germany
| | - Annika C. Betzler
- Department of Otorhinolaryngology and Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
- Core Facility Immune Monitoring, Ulm University Medical Center, Ulm, Germany
| | - Franziska Oliveri
- Department of Otorhinolaryngology and Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
| | - Martin Bens
- Core Facility Next Generation Sequencing, Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| | - Jaya Thomas
- Cancer Sciences Unit, University of Southampton, Faculty of Medicine, Southampton, United Kingdom
| | - Johann M. Kraus
- Institute of Medical Systems Biology, Faculty of Medicine, Ulm University, Ulm, Germany
| | - Johannes Doescher
- Department of Otorhinolaryngology and Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
- Department of Otolaryngology, Augsburg University Hospital, Augsburg, Germany
| | - Adrian von Witzleben
- Department of Otorhinolaryngology and Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
| | - Linda Hofmann
- Department of Otorhinolaryngology and Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
| | - Jasmin Ezic
- Department of Otorhinolaryngology and Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
| | - Diana Huber
- Department of Otorhinolaryngology and Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
| | | | | | - Jens Greve
- Department of Otorhinolaryngology and Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
| | - Patrick J. Schuler
- Department of Otorhinolaryngology and Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
- Surgical Oncology Ulm, i2SOUL Consortium, Ulm, Germany
| | - Cornelia Brunner
- Department of Otorhinolaryngology and Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
- Core Facility Immune Monitoring, Ulm University Medical Center, Ulm, Germany
| | - Jonathan M. Blackburn
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Thomas K. Hoffmann
- Department of Otorhinolaryngology and Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
- Surgical Oncology Ulm, i2SOUL Consortium, Ulm, Germany
| | - Christian Ottensmeier
- Institute of Systems, Molecular and Integrative Biology, Liverpool Head and Neck Center, University of Liverpool, Faculty of Medicine, Liverpool, United Kingdom
| | - Hans A. Kestler
- Institute of Medical Systems Biology, Faculty of Medicine, Ulm University, Ulm, Germany
- Surgical Oncology Ulm, i2SOUL Consortium, Ulm, Germany
| | - Hans-Georg Rammensee
- Department of Immunology, Institute for Cell Biology, Eberhard Karls University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK), Partner Site Tübingen, Tübingen, Germany
| | - Juliane S. Walz
- Department of Peptide-based Immunotherapy, Eberhard Karls University and University Hospital Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK), Partner Site Tübingen, Tübingen, Germany
- Clinical Collaboration Unit Translational Immunology, Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Simon Laban
- Department of Otorhinolaryngology and Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
- Surgical Oncology Ulm, i2SOUL Consortium, Ulm, Germany
| |
Collapse
|
6
|
Rosenberg AJ, Perez CA, Guo W, de Oliveira Novaes JM, da Silva Reis KFO, McGarrah PW, Price KAR. Breaking Ground in Recurrent or Metastatic Head and Neck Squamous Cell Carcinoma: Novel Therapies Beyond PD-L1 Immunotherapy. Am Soc Clin Oncol Educ Book 2024; 44:e433330. [PMID: 38718318 DOI: 10.1200/edbk_433330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The treatment for recurrent/metastatic (R/M) head and neck squamous cell carcinoma (HNSCC) with immune checkpoint inhibitors (anti-PD1) with or without chemotherapy has led to an improvement in survival. Yet, despite this therapeutic advancement, only 15%-19% of patients remain alive at four years, highlighting the poor survival and unmet need for improved therapies for this patient population. Some of the key evolving novel therapeutics beyond anti-PD1 in R/M HNSCC have included therapeutic vaccine therapies, bispecific antibodies/fusion proteins and multitargeted kinase inhibitors, and antibody-drug conjugates (ADCs). Multiple concurrent investigations of novel therapeutics for patients with R/M HNSCC beyond anti-PD(L)1 inhibition are currently underway with some promising early results. Beyond immune checkpoint inhibition, novel immunotherapeutic strategies including therapeutic vaccines ranging from targeting human papillomavirus-specific epitopes to personalized neoantigen vaccines are ongoing with some early efficacy signals and large, randomized trials. Other novel weapons including bispecific antibodies, fusion proteins, and multitargeted kinase inhibitors leverage multiple concurrent targets and modulation of the tumor microenvironment to harness antitumor immunity and inhibition of protumorigenic signaling pathways with emerging promising results. Finally, as with other solid tumors, ADCs remain a promising therapeutic intervention either alone or in combination with immunotherapy for patients with R/M HNSCC. With early enthusiasm across novel therapies in R/M HNSCC, results of larger randomized trials in R/M HNSCC are eagerly awaited.
Collapse
Affiliation(s)
- Ari J Rosenberg
- Department of Medicine, Section of Hematology and Oncology, University of Chicago, Chicago, IL
| | - Cesar A Perez
- Sarah Cannon Research Institute at Florida Cancer Specialists, Orlando, FL
| | - Wenji Guo
- Department of Medicine, Section of Hematology and Oncology, University of Chicago, Chicago, IL
| | | | | | | | | |
Collapse
|
7
|
Emilius L, Bremm F, Binder AK, Schaft N, Dörrie J. Tumor Antigens beyond the Human Exome. Int J Mol Sci 2024; 25:4673. [PMID: 38731892 PMCID: PMC11083240 DOI: 10.3390/ijms25094673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
With the advent of immunotherapeutics, a new era in the combat against cancer has begun. Particularly promising are neo-epitope-targeted therapies as the expression of neo-antigens is tumor-specific. In turn, this allows the selective targeting and killing of cancer cells whilst healthy cells remain largely unaffected. So far, many advances have been made in the development of treatment options which are tailored to the individual neo-epitope repertoire. The next big step is the achievement of efficacious "off-the-shelf" immunotherapies. For this, shared neo-epitopes propose an optimal target. Given the tremendous potential, a thorough understanding of the underlying mechanisms which lead to the formation of neo-antigens is of fundamental importance. Here, we review the various processes which result in the formation of neo-epitopes. Broadly, the origin of neo-epitopes can be categorized into three groups: canonical, noncanonical, and viral neo-epitopes. For the canonical neo-antigens that arise in direct consequence of somatic mutations, we summarize past and recent findings. Beyond that, our main focus is put on the discussion of noncanonical and viral neo-epitopes as we believe that targeting those provides an encouraging perspective to shape the future of cancer immunotherapeutics.
Collapse
Affiliation(s)
- Lisabeth Emilius
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.E.); (F.B.); (A.K.B.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Franziska Bremm
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.E.); (F.B.); (A.K.B.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Amanda Katharina Binder
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.E.); (F.B.); (A.K.B.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Niels Schaft
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.E.); (F.B.); (A.K.B.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Jan Dörrie
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.E.); (F.B.); (A.K.B.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| |
Collapse
|
8
|
Vieira GDS, Kimura TDC, Scarini JF, de Lima-Souza RA, Lavareze L, Emerick C, Gonçalves MT, Damas II, Figueiredo-Maciel T, Sales de Sá R, Aquino IG, Gonçalves de Paiva JP, Fernandes PM, Gonçalves MWA, Kowalski LP, Altemani A, Fillmore GC, Mariano FV, Egal ESA. Hematopoietic colony-stimulating factors in head and neck cancers: Recent advances and therapeutic challenges. Cytokine 2024; 173:156417. [PMID: 37944421 DOI: 10.1016/j.cyto.2023.156417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023]
Abstract
Colony-stimulating factors (CSFs) are key cytokines responsible for the production, maturation, and mobilization of the granulocytic and macrophage lineages from the bone marrow, which have been gaining attention for playing pro- and/or anti-tumorigenic roles in cancer. Head and neck cancers (HNCs) represent a group of heterogeneous neoplasms with high morbidity and mortality worldwide. Treatment for HNCs is still limited even with the advancements in cancer immunotherapy. Novel treatments for patients with recurrent and metastatic HNCs are urgently needed. This article provides an in-depth review of the role of hematopoietic cytokines such as granulocyte colony-stimulating factor (G-CSF), granulocyte-macrophage colony-stimulating factor (GM-CSF), macrophage colony-stimulating factor (M-CSF), and interleukin-3 (IL-3; also known as multi-CSF) in the HNCs tumor microenvironment. We have reviewed current results from clinical trials using CSFs as adjuvant therapy to treat HNCs patients, and also clinical findings reported to date on the therapeutic application of CSFs toxicities arising from chemoradiotherapy.
Collapse
Affiliation(s)
- Gustavo de Souza Vieira
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil; Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Talita de Carvalho Kimura
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil; Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - João Figueira Scarini
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil; Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Reydson Alcides de Lima-Souza
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil; Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Luccas Lavareze
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil; Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Carolina Emerick
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil; Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Mayara Trevizol Gonçalves
- Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Ingrid Iara Damas
- Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Tayná Figueiredo-Maciel
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil; Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Raisa Sales de Sá
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - Iara Gonçalves Aquino
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - João Paulo Gonçalves de Paiva
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - Patrícia Maria Fernandes
- Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Moisés Willian Aparecido Gonçalves
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil; Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Luiz Paulo Kowalski
- Department of Head and Neck Surgery, School of Medicine, University of São Paulo (USP), São Paulo, Brazil; Department of Head and Neck Surgery and Otolaryngology, AC Camargo Cancer Center, São Paulo, Brazil
| | - Albina Altemani
- Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Gary Chris Fillmore
- Biorepository and Molecular Pathology, Huntsman Cancer Institute, University of Utah (UU), Salt Lake City, UT, United States
| | - Fernanda Viviane Mariano
- Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| | - Erika Said Abu Egal
- Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil; Biorepository and Molecular Pathology, Huntsman Cancer Institute, University of Utah (UU), Salt Lake City, UT, United States.
| |
Collapse
|
9
|
Jain M, Yadav D, Jarouliya U, Chavda V, Yadav AK, Chaurasia B, Song M. Epidemiology, Molecular Pathogenesis, Immuno-Pathogenesis, Immune Escape Mechanisms and Vaccine Evaluation for HPV-Associated Carcinogenesis. Pathogens 2023; 12:1380. [PMID: 38133265 PMCID: PMC10745624 DOI: 10.3390/pathogens12121380] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/08/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
Human papillomavirus (HPV) is implicated in over 90% of cervical cancer cases, with factors like regional variability, HPV genotype, the population studied, HPV vaccination status, and anatomical sample collection location influencing the prevalence and pathology of HPV-induced cancer. HPV-16 and -18 are mainly responsible for the progression of several cancers, including cervix, anus, vagina, penis, vulva, and oropharynx. The oncogenic ability of HPV is not only sufficient for the progression of malignancy, but also for other tumor-generating steps required for the production of invasive cancer, such as coinfection with other viruses, lifestyle factors such as high parity, smoking, tobacco chewing, use of contraceptives for a long time, and immune responses such as stimulation of chronic stromal inflammation and immune deviation in the tumor microenvironment. Viral evasion from immunosurveillance also supports viral persistence, and virus-like particle-based prophylactic vaccines have been licensed, which are effective against high-risk HPV types. In addition, vaccination awareness programs and preventive strategies could help reduce the rate and incidence of HPV infection. In this review, we emphasize HPV infection and its role in cancer progression, molecular and immunopathogenesis, host immune response, immune evasion by HPV, vaccination, and preventive schemes battling HPV infection and HPV-related cancers.
Collapse
Affiliation(s)
- Meenu Jain
- Department of Microbiology, Viral Research and Diagnostic Laboratory, Gajra Raja Medical College, Gwalior 474009, Madhya Pradesh, India
| | - Dhananjay Yadav
- Department of Life Science, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Urmila Jarouliya
- SOS in Biochemistry, Jiwaji University, Gwalior 474011 Madhya Pradesh, India;
| | - Vishal Chavda
- Department of Pathology, Stanford School of Medicine, Stanford University Medical Center, Palo Alto, CA 94305, USA;
| | - Arun Kumar Yadav
- Department of Microbiology, Guru Gobind Singh Medical College and Hospital, Baba Farid University of Health Sciences, Faridkot 151203, Punjab, India;
| | - Bipin Chaurasia
- Department of Neurosurgery, Neurosurgery Clinic, Birgunj 44300, Nepal;
| | - Minseok Song
- Department of Life Science, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| |
Collapse
|
10
|
Goswami M, Schlom J, Donahue RN. Peripheral surrogates of tumor burden to guide chemotherapeutic and immunotherapeutic strategies for HPV-associated malignancies. Oncotarget 2023; 14:758-774. [PMID: 38958745 PMCID: PMC11221564 DOI: 10.18632/oncotarget.28487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/22/2023] [Indexed: 07/04/2024] Open
Abstract
With the rapid adoption of immunotherapy into clinical practice for HPV-associated malignancies, assessing tumor burden using "liquid biopsies" would further our understanding of clinical outcomes mediated by immunotherapy and allow for tailoring of treatment based on real-time tumor dynamics. In this review, we examine translational studies on peripheral surrogates of tumor burden derived from peripheral blood in HPV-associated malignancies, including levels and methylation of circulating tumor DNA (ctDNA), miRNA derived from extracellular vesicles, circulating tumor cells (CTCs), and HPV-specific antibodies and T cell responses. We review their utility as prognostic and predictive biomarkers of response to chemotherapy and radiation, with a focus on how they may inform and guide immunotherapies to treat locally advanced and metastatic HPV-associated malignancies. We also highlight unanswered questions that must be addressed to translate and integrate these peripheral tumor biomarkers into the clinic.
Collapse
Affiliation(s)
- Meghali Goswami
- Center for Immuno-Oncology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jeffrey Schlom
- Center for Immuno-Oncology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Renee N. Donahue
- Center for Immuno-Oncology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
11
|
Gong X, Chi H, Xia Z, Yang G, Tian G. Advances in HPV-associated tumor management: Therapeutic strategies and emerging insights. J Med Virol 2023; 95:e28950. [PMID: 37465863 DOI: 10.1002/jmv.28950] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/23/2023] [Accepted: 06/29/2023] [Indexed: 07/20/2023]
Abstract
With the rapid increase in the incidence of cervical cancer, anal cancer and other cancers, human papillomavirus (HPV) infection has become a growing concern. Persistent infection with high-risk HPV is a major cause of malignant tumors. In addition, microbiota and viruses such as human immunodeficiency virus, herpes simplex virus, and Epstein-Barr virus are closely associated with HPV infection. The limited effectiveness of existing treatments for HPV-associated tumors and the high rates of recurrence and metastasis in patients create an urgent need for novel and effective approaches. In recent years, HPV vaccine coverage has increased and can reduce the incidence of serious adverse events. Overall, this article provides a comprehensive overview of HPV biology, microbiome, and other viral interactions in cancer development, highlighting the need for a more comprehensive approach to cancer prevention and treatment. Current and emerging HPV-related cancer control and treatment strategies are also further explored.
Collapse
Affiliation(s)
- Xiangjin Gong
- Department of Sports Rehabilitation, Southwest Medical University, Luzhou, China
| | - Hao Chi
- Department of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Zhijia Xia
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Guanhu Yang
- Department of Specialty Medicine, Ohio University, Athens, Ohio, USA
| | - Gang Tian
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
12
|
Therapeutic Vaccination in Head and Neck Squamous Cell Carcinoma—A Review. Vaccines (Basel) 2023; 11:vaccines11030634. [PMID: 36992219 DOI: 10.3390/vaccines11030634] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/27/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
Therapeutic vaccination is one of the most effective immunotherapeutic approaches, second only to immune checkpoint inhibitors (ICIs), which have already been approved for clinical use. Head and neck squamous cell carcinomas (HNSCCs) are heterogenous epithelial tumors of the upper aerodigestive tract, and a significant proportion of these tumors tend to exhibit unfavorable therapeutic responses to the existing treatment options. Comprehending the immunopathology of these tumors and choosing an appropriate immunotherapeutic maneuver seems to be a promising avenue for solving this problem. The current review provides a detailed overview of the strategies, targets, and candidates for therapeutic vaccination in HNSCC. The classical principle of inducing a potent, antigen-specific, cell-mediated cytotoxicity targeting a specific tumor antigen seems to be the most effective mechanism of therapeutic vaccination, particularly against the human papilloma virus positive subset of HNSCC. However, approaches such as countering the immunosuppressive tumor microenvironment of HNSCC and immune co-stimulatory mechanisms have also been explored recently, with encouraging results.
Collapse
|
13
|
Ritter A, Koirala N, Wieland A, Kaumaya PTP, Mitchell DL. Therapeutic Cancer Vaccines for the Management of Recurrent and Metastatic Head and Neck Cancer: A Review. JAMA Otolaryngol Head Neck Surg 2023; 149:168-176. [PMID: 36580281 DOI: 10.1001/jamaoto.2022.4264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Importance Squamous cell carcinoma of the head and neck (HNSCC) is prevalent globally and in the US. Management, particularly after disease recurrence, can be challenging, and exploring additional treatment modalities, such as therapeutic cancer vaccines, may offer an opportunity to improve outcomes in this setting. Observations This review provides an overview of the clinical efficacy of different treatment modalities that are currently available for the treatment of recurrent and metastatic HNSCC, including checkpoint inhibitors and targeted therapies, with a detailed summary of the numerous T-cell vaccines that have been studied in the setting of HNSCC, as well as a detailed summary of B-cell therapeutic vaccines being investigated for various malignant tumors. Conclusions and Relevance The findings of this review suggest that several therapeutic T-cell and B-cell vaccines, which have been recently developed and evaluated in a clinical setting, offer a promising treatment modality with the potential to improve outcomes for patients with recurrent and metastatic HNSCC.
Collapse
Affiliation(s)
- Alex Ritter
- Department of Radiation Oncology, College of Medicine, The Ohio State University Wexner Medical Center, The James Cancer Hospital and Solove Research Institute, Columbus
| | - Nischal Koirala
- Department of Radiation Oncology, College of Medicine, The Ohio State University Wexner Medical Center, The James Cancer Hospital and Solove Research Institute, Columbus
| | - Andreas Wieland
- Department of Otolaryngology, College of Medicine, The Ohio State University Wexner Medical Center, The James Cancer Hospital and Solove Research Institute, Columbus.,Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University Wexner Medical Center, The James Cancer Hospital and Solove Research Institute, Columbus.,Pelotonia Institute for Immuno-Oncology, College of Medicine, The Ohio State University Wexner Medical Center, The James Cancer Hospital and Solove Research Institute, Columbus
| | - Pravin T P Kaumaya
- Department of Obstetrics and Gynecology, College of Medicine, The Ohio State University Wexner Medical Center, The James Cancer Hospital and Solove Research Institute, Columbus
| | - Darrion L Mitchell
- Department of Radiation Oncology, College of Medicine, The Ohio State University Wexner Medical Center, The James Cancer Hospital and Solove Research Institute, Columbus
| |
Collapse
|
14
|
Yan F, Cowell LG, Tomkies A, Day AT. Therapeutic Vaccination for HPV-Mediated Cancers. CURRENT OTORHINOLARYNGOLOGY REPORTS 2023; 11:44-61. [PMID: 36743978 PMCID: PMC9890440 DOI: 10.1007/s40136-023-00443-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2022] [Indexed: 02/04/2023]
Abstract
Purpose of Review The goal of this narrative review is to educate clinicians regarding the foundational concepts, efficacy, and future directions of therapeutic vaccines for human papillomavirus (HPV)-mediated cancers. Recent Findings Therapeutic HPV vaccines deliver tumor antigens to stimulate an immune response to eliminate tumor cells. Vaccine antigen delivery platforms are diverse and include DNA, RNA, peptides, proteins, viral vectors, microbial vectors, and antigen-presenting cells. Randomized, controlled trials have demonstrated that therapeutic HPV vaccines are efficacious in patients with cervical intraepithelial neoplasia. In patients with HPV-mediated malignancies, evidence of efficacy is limited. However, numerous ongoing studies evaluating updated therapeutic HPV vaccines in combination with immune checkpoint inhibition and other therapies exhibit significant promise. Summary Therapeutic vaccines for HPV-mediated malignancies retain a strong biological rationale, despite their limited efficacy to date. Investigators anticipate they will be most effectively used in combination with other regimens, such as immune checkpoint inhibition.
Collapse
Affiliation(s)
- Flora Yan
- Department of Otolaryngology-Head and Neck Surgery, Temple University, Philadelphia, PA USA
| | - Lindsay G Cowell
- Peter O'Donnell Jr. School of Public Health, Department of Immunology, UT Southwestern Medical Center, Dallas, TX USA
| | - Anna Tomkies
- Department of Otolaryngology-Head and Neck Surgery, UT Southwestern Medical Center, 2001 Inwood Blvd, Dallas, TX 75390-9035 USA
| | - Andrew T Day
- Department of Otolaryngology-Head and Neck Surgery, UT Southwestern Medical Center, 2001 Inwood Blvd, Dallas, TX 75390-9035 USA
| |
Collapse
|
15
|
Xu Q, Chen Y, Jin Y, Wang Z, Dong H, Kaufmann AM, Albers AE, Qian X. Advanced Nanomedicine for High-Risk HPV-Driven Head and Neck Cancer. Viruses 2022; 14:v14122824. [PMID: 36560828 PMCID: PMC9788019 DOI: 10.3390/v14122824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
The incidence of high-risk Human Papillomavirus (HR-HPV)-driven head and neck squamous cell carcinoma (HNSCC) is on the rise globally. HR-HPV-driven HNSCC displays molecular and clinical characteristics distinct from HPV-uninvolved cases. Therapeutic strategies for HR-HPV-driven HNSCC are under investigation. HR-HPVs encode the oncogenes E6 and E7, which are essential in tumorigenesis. Meanwhile, involvement of E6 and E7 provides attractive targets for developing new therapeutic regimen. Here we will review some of the recent advancements observed in preclinical studies and clinical trials on HR-HPV-driven HNSCC, focusing on nanotechnology related methods. Materials science innovation leads to great improvement for cancer therapeutics including HNSCC. This article discusses HPV-E6 or -E7- based vaccines, based on plasmid, messenger RNA or peptide, at their current stage of development and testing as well as how nanoparticles can be designed to target and access cancer cells and activate certain immunology pathways besides serving as a delivery vehicle. Nanotechnology was also used for chemotherapy and photothermal treatment. Short interference RNA targeting E6/E7 showed some potential in animal models. Gene editing by CRISPR-CAS9 combined with other treatments has also been assessed. These advancements have the potential to improve the outcome in HR-HPV-driven HNSCC, however breakthroughs are still to be awaited with nanomedicine playing an important role.
Collapse
Affiliation(s)
- Qiang Xu
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Ye Chen
- Department of Clinical Laboratory, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, No. 1 East Banshan Road, Gongshu District, Hangzhou 310022, China
| | - Yuan Jin
- Department of Clinical Laboratory, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, No. 1 East Banshan Road, Gongshu District, Hangzhou 310022, China
| | - Zhiyu Wang
- Department of Clinical Laboratory, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, No. 1 East Banshan Road, Gongshu District, Hangzhou 310022, China
- Wenzhou Medical University, Wenzhou 325000, China
| | - Haoru Dong
- Department of Clinical Laboratory, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, No. 1 East Banshan Road, Gongshu District, Hangzhou 310022, China
- Wenzhou Medical University, Wenzhou 325000, China
| | - Andreas M. Kaufmann
- Clinic for Gynecology, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, 12203 Berlin, Germany
| | - Andreas E. Albers
- Department of Clinical Medicine, Oto-Rhino-Laryngology, Medical School Berlin, 14197 Berlin, Germany
| | - Xu Qian
- Department of Clinical Laboratory, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, No. 1 East Banshan Road, Gongshu District, Hangzhou 310022, China
- Correspondence:
| |
Collapse
|
16
|
Yu C, Li Q, Zhang Y, Wen ZF, Dong H, Mou Y. Current status and perspective of tumor immunotherapy for head and neck squamous cell carcinoma. Front Cell Dev Biol 2022; 10:941750. [PMID: 36092724 PMCID: PMC9458968 DOI: 10.3389/fcell.2022.941750] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) have a high incidence and mortality rate, and investigating the pathogenesis and potential therapeutic strategies of HNSCC is required for further progress. Immunotherapy is a considerable therapeutic strategy for HNSCC due to its potential to produce a broad and long-lasting antitumor response. However, immune escape, which involves mechanisms including dyregulation of cytokines, perturbation of immune checkpoints, and recruitment of inhibitory cell populations, limit the efficacy of immunotherapy. Currently, multiple immunotherapy strategies for HNSCC have been exploited, including immune checkpoint inhibitors, costimulatory agonists, antigenic vaccines, oncolytic virus therapy, adoptive T cell transfer (ACT), and epidermal growth factor receptor (EGFR)-targeted therapy. Each of these strategies has unique advantages, and the appropriate application of these immunotherapies in HNSCC treatment has significant value for patients. Therefore, this review comprehensively summarizes the mechanisms of immune escape and the characteristics of different immunotherapy strategies in HNSCC to provide a foundation and consideration for the clinical treatment of HNSCC.
Collapse
Affiliation(s)
- Chenhang Yu
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Qiang Li
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yu Zhang
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Zhi-Fa Wen
- Department of Clinical Laboratory, Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing, China
| | - Heng Dong
- Department of Clinical Laboratory, Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing, China
| | - Yongbin Mou
- Department of Clinical Laboratory, Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
17
|
Turbeville HR, Toni TA, Allen C. Immune Landscape and Role of Immunotherapy in Treatment of HPV-Associated Head and Neck Squamous Cell Carcinoma (HNSCC). CURRENT OTORHINOLARYNGOLOGY REPORTS 2022. [DOI: 10.1007/s40136-021-00384-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Sun Z, Sun X, Chen Z, Du J, Wu Y. Head and Neck Squamous Cell Carcinoma: Risk Factors, Molecular Alterations, Immunology and Peptide Vaccines. Int J Pept Res Ther 2021; 28:19. [PMID: 34903958 PMCID: PMC8653808 DOI: 10.1007/s10989-021-10334-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2021] [Indexed: 12/29/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) arises from the epithelial lining of the oral cavity, hypopharynx, oropharynx, and larynx. There are several potential risk factors that cause the generation of HNSCC, including cigarette smoking, alcohol consumption, betel quid chewing, inadequate nutrition, poor oral hygiene, HPV and Epstein–Barr virus, and Candida albicans infections. HNSCC has causative links to both environmental factors and genetic mutations, with the latter playing a more critical role in cancer progression. These molecular changes to epithelial cells include the inactivation of cancer suppressor genes and proto-oncogenes overexpression, resulting in tumour cell proliferation and distant metastasis. HNSCC patients have impaired dendritic cell (DC) and natural killer (NK) cell functions, increased production of higher immune-suppressive molecules, loss of regulatory T cells and co-stimulatory molecules and major histocompatibility complex (MHC) class Ι molecules, lower number of lymphocyte subsets, and a poor response to antigen-presenting cells. At present, the standard treatment modalities for HNSCC patients include surgery, chemotherapy and radiotherapy, and combinatorial therapy. Despite advances in the development of novel treatment modalities over the last few decades, survival rates of HNSCC patients have not increased. To establish effective immunotherapies, a greater understanding of interactions between the immune system and HNSCC is required, and there is a particular need to develop novel therapeutic options. A therapeutic cancer vaccine has been proposed as a promising method to improve outcome by inducing a powerful adaptive immune response that leads to cancer cell elimination. Compared with other vaccines, peptide cancer vaccines are more robust and specific. In the past few years, there have been remarkable achievements in peptide-based vaccines for HNSCC patients. Here, we summarize the latest molecular alterations in HNSCC, explore the immune response to HNSCC, and discuss the latest developments in peptide-based cancer vaccine strategies. This review highlights areas for valuable future research focusing on peptide-based cancer vaccines.
Collapse
Affiliation(s)
- Zhe Sun
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021 China
| | - Xiaodong Sun
- Department of Endodontics, Gaoxin Branch of Jinan Stomatological Hospital, Jinan, Shandong 250000 China
| | - Zhanwei Chen
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021 China
| | - Juan Du
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021 China
| | - Yihua Wu
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021 China
| |
Collapse
|
19
|
Vaccine-Based Immunotherapy for Head and Neck Cancers. Cancers (Basel) 2021; 13:cancers13236041. [PMID: 34885150 PMCID: PMC8656843 DOI: 10.3390/cancers13236041] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/27/2021] [Accepted: 11/28/2021] [Indexed: 12/22/2022] Open
Abstract
Simple Summary Therapeutic vaccines are given to patients with cancer, as opposed to prophylactic vaccines given to a healthy population. The challenge for therapeutic oncological vaccines is to stimulate an immune T cell response against endogenous (or derived) antigens that is sufficiently potent to induce cytotoxic activity and broad enough to take tumor heterogeneity into account. The purpose of this article is to provide an updated review of the prophylactic and therapeutic vaccines that target viral or non-viral antigens, particularly in head and neck cancers. Abstract In 2019, the FDA approved pembrolizumab, a monoclonal antibody targeting PD-1, for the first-line treatment of recurrent or metastatic head and neck cancers, despite only a limited number of patients benefiting from the treatment. Promising effects of therapeutic vaccination led the FDA to approve the use of the first therapeutic vaccine in prostate cancer in 2010. Research in the field of therapeutic vaccination, including possible synergistic effects with anti-PD(L)1 treatments, is evolving each year, and many vaccines are in pre-clinical and clinical studies. The aim of this review article is to discuss vaccines as a new therapeutic strategy, particularly in the field of head and neck cancers. Different vaccination technologies are discussed, as well as the results of the first clinical trials in HPV-positive, HPV-negative, and EBV-induced head and neck cancers.
Collapse
|
20
|
In Silico Model Estimates the Clinical Trial Outcome of Cancer Vaccines. Cells 2021; 10:cells10113048. [PMID: 34831269 PMCID: PMC8616443 DOI: 10.3390/cells10113048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/27/2021] [Accepted: 11/03/2021] [Indexed: 12/22/2022] Open
Abstract
Over 30 years after the first cancer vaccine clinical trial (CT), scientists still search the missing link between immunogenicity and clinical responses. A predictor able to estimate the outcome of cancer vaccine CTs would greatly benefit vaccine development. Published results of 94 CTs with 64 therapeutic vaccines were collected. We found that preselection of CT subjects based on a single matching HLA allele does not increase immune response rates (IRR) compared with non-preselected CTs (median 60% vs. 57%, p = 0.4490). A representative in silico model population (MP) comprising HLA-genotyped subjects was used to retrospectively calculate in silico IRRs of CTs based on the percentage of MP-subjects having epitope(s) predicted to bind ≥ 1–4 autologous HLA allele(s). We found that in vitro measured IRRs correlated with the frequency of predicted multiple autologous allele-binding epitopes (AUC 0.63–0.79). Subgroup analysis of multi-antigen targeting vaccine CTs revealed correlation between clinical response rates (CRRs) and predicted multi-epitope IRRs when HLA threshold was ≥ 3 (r = 0.7463, p = 0.0004) but not for single HLA allele-binding epitopes (r = 0.2865, p = 0.2491). Our results suggest that CRR depends on the induction of broad T-cell responses and both IRR and CRR can be predicted when epitopes binding to multiple autologous HLAs are considered.
Collapse
|
21
|
Abstract
Owing to the presence of known tumor-specific viral antigens, human papillomavirus (HPV)-associated cancers are well suited for treatment with immunotherapy designed to unleash, amplify or replace the T cell arm of the adaptive immune system. Immune checkpoint blockade designed to unleash existing T cell immunity is currently Food and Drug Administration approved for certain HPV-associated cancers. More specific immunotherapies such as therapeutic vaccines and T cell receptor-engineered cellular therapy are currently in clinical development. Such therapies may offer more specific immune activation against viral tumor antigens and decrease the risk of immune-related adverse events. Current and planned clinical study of these treatments will determine their utility in the treatment of patients with newly diagnosed advanced stage or relapsed HPV-associated cancer.
Collapse
Affiliation(s)
- Maxwell Y Lee
- Section on Translational Tumor Immunology, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD
| | - Clint T Allen
- Section on Translational Tumor Immunology, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD.
| |
Collapse
|
22
|
Pellom ST, Smalley Rumfield C, Morillon YM, Roller N, Poppe LK, Brough DE, Sabzevari H, Schlom J, Jochems C. Characterization of recombinant gorilla adenovirus HPV therapeutic vaccine PRGN-2009. JCI Insight 2021; 6:141912. [PMID: 33651712 PMCID: PMC8119209 DOI: 10.1172/jci.insight.141912] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 02/25/2021] [Indexed: 12/31/2022] Open
Abstract
There are approximately 44,000 cases of human papillomavirus-associated (HPV-associated) cancer each year in the United States, most commonly caused by HPV types 16 and 18. Prophylactic vaccines successfully prevent healthy people from acquiring HPV infections via HPV-specific antibodies. In order to treat established HPV-associated malignancies, however, new therapies are necessary. Multiple recombinant gorilla adenovirus HPV vaccine constructs were evaluated in NSG-β2m-/- peripheral blood mononuclear cell-humanized mice bearing SiHa, a human HPV16+ cervical tumor, and/or in the syngeneic HPV16+ TC-1 model. PRGN-2009 is a therapeutic gorilla adenovirus HPV vaccine containing multiple cytotoxic T cell epitopes of the viral oncoproteins HPV 16/18 E6 and E7, including T cell enhancer agonist epitopes. PRGN-2009 treatment reduced tumor volume and increased CD8+ and CD4+ T cells in the tumor microenvironment of humanized mice bearing the human cervical tumor SiHa. PRGN-2009 monotherapy in the syngeneic TC-1 model also reduced tumor volumes and weights, generated high levels of HPV16 E6-specific T cells, and increased multifunctional CD8+ and CD4+ T cells in the tumor microenvironment. These studies provide the first evaluation to our knowledge of a therapeutic gorilla adenovirus HPV vaccine, PRGN-2009, showing promising preclinical antitumor efficacy and induction of HPV-specific T cells, along with the rationale for its evaluation in clinical trials.
Collapse
Affiliation(s)
- Samuel T. Pellom
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Claire Smalley Rumfield
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Y. Maurice Morillon
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Nicholas Roller
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Lisa K. Poppe
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | | | | | - Jeffrey Schlom
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Caroline Jochems
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| |
Collapse
|
23
|
Cuzzubbo S, Mangsbo S, Nagarajan D, Habra K, Pockley AG, McArdle SEB. Cancer Vaccines: Adjuvant Potency, Importance of Age, Lifestyle, and Treatments. Front Immunol 2021; 11:615240. [PMID: 33679703 PMCID: PMC7927599 DOI: 10.3389/fimmu.2020.615240] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/23/2020] [Indexed: 12/13/2022] Open
Abstract
Although the discovery and characterization of multiple tumor antigens have sparked the development of many antigen/derived cancer vaccines, many are poorly immunogenic and thus, lack clinical efficacy. Adjuvants are therefore incorporated into vaccine formulations to trigger strong and long-lasting immune responses. Adjuvants have generally been classified into two categories: those that ‘depot’ antigens (e.g. mineral salts such as aluminum hydroxide, emulsions, liposomes) and those that act as immunostimulants (Toll Like Receptor agonists, saponins, cytokines). In addition, several novel technologies using vector-based delivery of antigens have been used. Unfortunately, the immune system declines with age, a phenomenon known as immunosenescence, and this is characterized by functional changes in both innate and adaptive cellular immunity systems as well as in lymph node architecture. While many of the immune functions decline over time, others paradoxically increase. Indeed, aging is known to be associated with a low level of chronic inflammation—inflamm-aging. Given that the median age of cancer diagnosis is 66 years and that immunotherapeutic interventions such as cancer vaccines are currently given in combination with or after other forms of treatments which themselves have immune-modulating potential such as surgery, chemotherapy and radiotherapy, the choice of adjuvants requires careful consideration in order to achieve the maximum immune response in a compromised environment. In addition, more clinical trials need to be performed to carefully assess how less conventional form of immune adjuvants, such as exercise, diet and psychological care which have all be shown to influence immune responses can be incorporated to improve the efficacy of cancer vaccines. In this review, adjuvants will be discussed with respect to the above-mentioned important elements.
Collapse
Affiliation(s)
- Stefania Cuzzubbo
- Université de Paris, PARCC, INSERM U970, 75015, Paris, France.,Laboratoire de Recherches Biochirurgicales (Fondation Carpentier), Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Européen Georges Pompidou, Paris, France
| | - Sara Mangsbo
- Ultimovacs AB, Uppsala, Sweden.,Department of Pharmaceutical Biosciences, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Divya Nagarajan
- Department of Immunology, Genetics and Clinical pathology Rudbeck laboratories, Uppsala University, Uppsala, Sweden
| | - Kinana Habra
- The School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom.,The John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Alan Graham Pockley
- The John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom.,Centre for Health, Ageing and Understanding Disease (CHAUD), School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Stephanie E B McArdle
- The John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom.,Centre for Health, Ageing and Understanding Disease (CHAUD), School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| |
Collapse
|
24
|
Shibata H, Zhou L, Xu N, Egloff AM, Uppaluri R. Personalized cancer vaccination in head and neck cancer. Cancer Sci 2021; 112:978-988. [PMID: 33368875 PMCID: PMC7935792 DOI: 10.1111/cas.14784] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/21/2022] Open
Abstract
Cancer is characterized by an accumulation of somatic mutations that represent a source of neoantigens for targeting by antigen-specific T cells. Head and neck squamous cell carcinoma (HNSCC) has a relatively high mutation burden across all cancer types, and cellular immunity to neoantigens likely plays a key role in HNSCC clinical outcomes. Immune checkpoint inhibitors (CPIs) have brought new treatment options and hopes to patients with recurrent and/or metastatic HNSCC. However, many patients do not benefit from CPI therapies, highlighting the need for novel immunotherapy or combinatorial strategies. One such approach is personalized cancer vaccination targeting tumor-associated antigens and tumor-specific antigens, either as single agents or in combination with other therapies. Recent advances in next-generation genomic sequencing technologies and computational algorithms have enabled efficient identification of somatic mutation-derived neoantigens and are anticipated to facilitate the development of cancer vaccine strategies. Here, we review cancer vaccine approaches against HNSCC, including fundamental mechanisms of a cancer vaccine, considerations for selecting appropriate antigens, and combination therapies.
Collapse
Affiliation(s)
- Hirofumi Shibata
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Otolaryngology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Liye Zhou
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Na Xu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Tea and Food Science, Anhui Agricultural University, Hefei, China
| | - Ann Marie Egloff
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Surgery/Otolaryngology, Brigham and Women's Hospital and Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ravindra Uppaluri
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Surgery/Otolaryngology, Brigham and Women's Hospital and Dana-Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|
25
|
Farmer E, Cheng MA, Hung CF, Wu TC. Vaccination Strategies for the Control and Treatment of HPV Infection and HPV-Associated Cancer. Recent Results Cancer Res 2021; 217:157-195. [PMID: 33200366 DOI: 10.1007/978-3-030-57362-1_8] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Human papillomavirus (HPV) is the most common sexually transmitted infection, currently affecting close to 80 million Americans. Importantly, HPV infection is recognized as the etiologic factor for numerous cancers, including cervical, vulval, vaginal, penile, anal, and a subset of oropharyngeal cancers. The prevalence of HPV infection and its associated diseases are a significant problem, affecting millions of individuals worldwide. Likewise, the incidence of HPV infection poses a significant burden on individuals and the broader healthcare system. Between 2011 and 2015, there were an estimated 42,700 new cases of HPV-associated cancers each year in the United States alone. Similarly, the global burden of HPV is high, with around 630,000 new cases of HPV-associated cancer occurring each year. In the last decade, a total of three preventive major capsid protein (L1) virus-like particle-based HPV vaccines have been licensed and brought to market as a means to prevent the spread of HPV infection. These prophylactic vaccines have been demonstrated to be safe and efficacious in preventing HPV infection. The most recent iteration of the preventive HPV vaccine, a nanovalent, L1-VLP vaccine, protects against a total of nine HPV types (seven high-risk and two low-risk HPV types), including the high-risk types HPV16 and HPV18, which are responsible for causing the majority of HPV-associated cancers. Although current prophylactic HPV vaccines have demonstrated huge success in preventing infection, existing barriers to vaccine acquisition have limited their widespread use, especially in low- and middle-income countries, where the burden of HPV-associated diseases is highest. Prophylactic vaccines are unable to provide protection to individuals with existing HPV infections or HPV-associated diseases. Instead, therapeutic HPV vaccines capable of generating T cell-mediated immunity against HPV infection and associated diseases are needed to ameliorate the burden of disease in individuals with existing HPV infection. To generate a cell-mediated immune response against HPV, most therapeutic vaccines target HPV oncoproteins E6 and E7. Several types of therapeutic HPV vaccine candidates have been developed including live-vector, protein, peptide, dendritic cell, and DNA-based vaccines. This chapter will review the commercially available prophylactic HPV vaccines and discuss the recent progress in the development of therapeutic HPV vaccines.
Collapse
Affiliation(s)
- Emily Farmer
- Department of Pathology, The Johns Hopkins School of Medicine, Cancer Research Building II, 1550 Orleans Street, Baltimore, MD, 21287, USA
| | - Max A Cheng
- Department of Pathology, The Johns Hopkins School of Medicine, Cancer Research Building II, 1550 Orleans Street, Baltimore, MD, 21287, USA
| | - Chien-Fu Hung
- Department of Pathology, The Johns Hopkins School of Medicine, Cancer Research Building II, 1550 Orleans Street, Baltimore, MD, 21287, USA.,Department of Oncology, The Johns Hopkins School of Medicine, Cancer Research Building II, 1550 Orleans Street, Baltimore, MD, 21287, USA
| | - T-C Wu
- Department of Pathology, The Johns Hopkins School of Medicine, Cancer Research Building II, 1550 Orleans Street, Baltimore, MD, 21287, USA. .,Department of Oncology, The Johns Hopkins School of Medicine, Cancer Research Building II, 1550 Orleans Street, Baltimore, MD, 21287, USA. .,Department of Obstetrics and Gynecology, The Johns Hopkins School of Medicine, Cancer Research Building II, 1550 Orleans Street, Baltimore, MD, 21287, USA. .,Department of Pathology, Oncology, Obstetrics and Gynecology, and Molecular Microbiology and Immunology, The Johns Hopkins Medical Institutions, Cancer Research Building II, Room 309, 1550 Orleans Street, Baltimore, MD, 21287, USA.
| |
Collapse
|
26
|
Kardani K, Basimi P, Fekri M, Bolhassani A. Antiviral therapy for the sexually transmitted viruses: recent updates on vaccine development. Expert Rev Clin Pharmacol 2020; 13:1001-1046. [PMID: 32838584 DOI: 10.1080/17512433.2020.1814743] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The sexually transmitted infections (STIs) caused by viruses including human T cell leukemia virus type-1 (HTLV-1), human immunodeficiency virus-1 (HIV-1), human simplex virus-2 (HSV-2), hepatitis C virus (HCV), hepatitis B virus (HBV), and human papillomavirus (HPV) are major public health issues. These infections can cause cancer or result in long-term health problems. Due to high prevalence of STIs, a safe and effective vaccine is required to overcome these fatal viruses. AREAS COVERED This review includes a comprehensive overview of the literatures relevant to vaccine development against the sexually transmitted viruses (STVs) using PubMed and Sciencedirect electronic search engines. Herein, we discuss the efforts directed toward development of effective vaccines using different laboratory animal models including mice, guinea pig or non-human primates in preclinical trials, and human in clinical trials with different phases. EXPERT OPINION There is no effective FDA approved vaccine against the sexually transmitted viruses (STVs) except for HBV and HPV as prophylactic vaccines. Many attempts are underway to develop vaccines against these viruses. There are several approaches for improving prophylactic or therapeutic vaccines such as heterologous prime/boost immunization, delivery system, administration route, adjuvants, etc. In this line, further studies can be helpful for understanding the immunobiology of STVs in human. Moreover, development of more relevant animal models is a worthy goal to induce effective immune responses in humans.
Collapse
Affiliation(s)
- Kimia Kardani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran , Tehran, Iran
| | - Parya Basimi
- Department of Hepatitis and AIDS, Pasteur Institute of Iran , Tehran, Iran
| | - Mehrshad Fekri
- Department of Hepatitis and AIDS, Pasteur Institute of Iran , Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran , Tehran, Iran
| |
Collapse
|
27
|
von Witzleben A, Wang C, Laban S, Savelyeva N, Ottensmeier CH. HNSCC: Tumour Antigens and Their Targeting by Immunotherapy. Cells 2020; 9:E2103. [PMID: 32942747 PMCID: PMC7564543 DOI: 10.3390/cells9092103] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/09/2020] [Accepted: 09/13/2020] [Indexed: 12/12/2022] Open
Abstract
Head and neck squamous cell carcinomas (HNSCC) are a heterogeneous group of malignant tumours typically caused by alcohol and tobacco consumption, although an increasing number of HNSCC arise due to persistent infection with high-risk human papilloma virus (HPV). The treatment of HNSCC remains challenging, and the first-line setting is focused on surgery and chemoradiotherapy. A substantial proportion of HNSCC patients die from their disease, especially those with recurrent and metastatic disease. Among factors linked with good outcome, immune cell infiltration appears to have a major role. HPV-driven HNSCC are often T-cell rich, reflecting the presence of HPV antigens that are immunogenic. Tumour-associated antigens that are shared between patients or that are unique to an individual person may also induce varying degrees of immune response; studying these is important for the understanding of the interaction between the host immune system and the cancer. The resulting knowledge is critical for the design of better immunotherapies. Key questions are: Which antigens lead to an adaptive immune response in the tumour? Which of these are exploitable for immunotherapy? Here, we review the current thinking regarding tumour antigens in HNSCC and what has been learned from early phase clinical trials.
Collapse
Affiliation(s)
- Adrian von Witzleben
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (A.v.W.); (N.S.)
- Department of Otorhinolaryngology, Head & Neck Surgery, University of Ulm, 89081 Ulm, Germany;
| | - Chuan Wang
- Head and Neck Center, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZX, UK;
| | - Simon Laban
- Department of Otorhinolaryngology, Head & Neck Surgery, University of Ulm, 89081 Ulm, Germany;
| | - Natalia Savelyeva
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (A.v.W.); (N.S.)
| | - Christian H. Ottensmeier
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (A.v.W.); (N.S.)
- Head and Neck Center, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZX, UK;
| |
Collapse
|
28
|
Qian X, Leonard F, Wenhao Y, Sudhoff H, Hoffmann TK, Ferrone S, Kaufmann AM, Albers AE. Immunotherapeutics for head and neck squamous cell carcinoma stem cells. HNO 2020; 68:94-99. [PMID: 31996933 DOI: 10.1007/s00106-020-00819-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cancer stem cell (CSC)-related therapy resistance has become a new obstacle to the successful application of cancer treatment and head and neck squamous cell carcinoma (HNSCC) is no exception to this finding. Head and neck squamous cell carcinoma is highly immune-suppressive, and recently the immune suppression and invasion of HNSCC-CSCs have been characterized. These characteristics have received research and clinical attention because they would enable the stratification of patients into specific cancer subtypes and, consequently, the establishment of new therapeutic approaches with improved efficacy. This review discusses the feasibility of CSC-targeted strategies and their incorporation with nanotechnology to improve the efficacy of cancer immunotherapy.
Collapse
Affiliation(s)
- X Qian
- Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou, China.,Department of Clinical Laboratory, Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, China.,Department of Clinical Laboratory, Zhejiang Cancer Hospital, Hangzhou, China.,Department of Otolaryngology, Head and Neck Surgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - F Leonard
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Y Wenhao
- Department of Otolaryngology, Head and Neck Surgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - H Sudhoff
- Department of Otolaryngology, Head and Neck Surgery, Medizinische Fakultät OWL, Klinikum Bielefeld, Universität Bielefeld, Bielefeld, Germany
| | - T K Hoffmann
- Department of Otolaryngology, Head and Neck Surgery, University of Ulm, Ulm, Germany
| | - S Ferrone
- Department of Surgery, Massachussets General Hospital, Harvard Medical School, Boston, MA, USA
| | - A M Kaufmann
- Clinic for Gynecology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - A E Albers
- Department of Otolaryngology, Head and Neck Surgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
29
|
Smalley Rumfield C, Roller N, Pellom ST, Schlom J, Jochems C. Therapeutic Vaccines for HPV-Associated Malignancies. Immunotargets Ther 2020; 9:167-200. [PMID: 33117742 PMCID: PMC7549137 DOI: 10.2147/itt.s273327] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/03/2020] [Indexed: 12/13/2022] Open
Abstract
Human papillomavirus (HPV)-related malignancies are responsible for almost all cases of cervical cancer in women, and over 50% of all cases of head and neck carcinoma. Worldwide, HPV-positive malignancies account for 4.5% of the global cancer burden, or over 600,000 cases per year. HPV infection is a pressing public health issue, as more than 80% of all individuals have been exposed to HPV by age 50, representing an important target for vaccine development to reduce the incidence of cancer and the economic cost of HPV-related health issues. The approval of Gardasil® as a prophylactic vaccine for high-risk HPV 16 and 18 and low-risk HPV6 and 11 for people aged 11-26 in 2006, and of Cervarix® in 2009, revolutionized the field and has since reduced HPV infection in young populations. Unfortunately, prophylactic vaccination does not induce immunity in those with established HPV infections or HPV-induced neoplasms, and there are currently no therapeutic HPV vaccines approved by the US Food and Drug Administration. This comprehensive review will detail the progress made in the development of therapeutic vaccines against high-risk HPV types, and potential combinations with other immunotherapeutic agents for more efficient and rational designs of combination treatments for HPV-associated malignancies.
Collapse
Affiliation(s)
- Claire Smalley Rumfield
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nicholas Roller
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Samuel Troy Pellom
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jeffrey Schlom
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Correspondence: Jeffrey Schlom Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, 10 Center Drive, Room 8B09, Bethesda, MD20892, USATel +1 240-858-3463Fax +1 240-541-4558 Email
| | - Caroline Jochems
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
30
|
Current Prospects of Molecular Therapeutics in Head and Neck Squamous Cell Carcinoma. Pharmaceut Med 2019; 33:269-289. [DOI: 10.1007/s40290-019-00288-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
31
|
Sebastian M, Schröder A, Scheel B, Hong HS, Muth A, von Boehmer L, Zippelius A, Mayer F, Reck M, Atanackovic D, Thomas M, Schneller F, Stöhlmacher J, Bernhard H, Gröschel A, Lander T, Probst J, Strack T, Wiegand V, Gnad-Vogt U, Kallen KJ, Hoerr I, von der Muelbe F, Fotin-Mleczek M, Knuth A, Koch SD. A phase I/IIa study of the mRNA-based cancer immunotherapy CV9201 in patients with stage IIIB/IV non-small cell lung cancer. Cancer Immunol Immunother 2019; 68:799-812. [PMID: 30770959 PMCID: PMC11028316 DOI: 10.1007/s00262-019-02315-x] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 02/09/2019] [Indexed: 12/13/2022]
Abstract
CV9201 is an RNActive®-based cancer immunotherapy encoding five non-small cell lung cancer-antigens: New York esophageal squamous cell carcinoma-1, melanoma antigen family C1/C2, survivin, and trophoblast glycoprotein. In a phase I/IIa dose-escalation trial, 46 patients with locally advanced (n = 7) or metastatic (n = 39) NSCLC and at least stable disease after first-line treatment received five intradermal CV9201 injections (400-1600 µg of mRNA). The primary objective of the trial was to assess safety. Secondary objectives included assessment of antibody and ex vivo T cell responses against the five antigens, and changes in immune cell populations. All CV9201 dose levels were well-tolerated and the recommended dose for phase IIa was 1600 µg. Most AEs were mild-to-moderate injection site reactions and flu-like symptoms. Three (7%) patients had grade 3 related AEs. No related grade 4/5 or related serious AEs occurred. In phase IIa, antigen-specific immune responses against ≥ 1 antigen were detected in 63% of evaluable patients after treatment. The frequency of activated IgD+CD38hi B cells increased > twofold in 18/30 (60%) evaluable patients. 9/29 (31%) evaluable patients in phase IIa had stable disease and 20/29 (69%) had progressive disease. Median progression-free and overall survival were 5.0 months (95% CI 1.8-6.3) and 10.8 months (8.1-16.7) from first administration, respectively. Two- and 3-year survival rates were 26.7% and 20.7%, respectively. CV9201 was well-tolerated and immune responses could be detected after treatment supporting further clinical investigation.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Antigens, Neoplasm/genetics
- B-Lymphocytes/immunology
- Cancer Vaccines/genetics
- Cancer Vaccines/immunology
- Carcinoma, Non-Small-Cell Lung/immunology
- Carcinoma, Non-Small-Cell Lung/mortality
- Carcinoma, Non-Small-Cell Lung/therapy
- Cells, Cultured
- Female
- Humans
- Immunotherapy/adverse effects
- Immunotherapy/methods
- Injection Site Reaction/etiology
- Lung Neoplasms/immunology
- Lung Neoplasms/mortality
- Lung Neoplasms/therapy
- Lymphocyte Activation
- Male
- Middle Aged
- Neoplasm Staging
- RNA, Messenger/administration & dosage
- RNA, Messenger/genetics
- RNA, Messenger/immunology
- RNA, Messenger/therapeutic use
- Survival Analysis
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- Martin Sebastian
- University Medical Center of the Johannes Gutenberg-University, Mainz, Germany.
- Medizinische Klinik II, Hämatologie/Onkologie, Rheumatologie, Infektiologie, HIV Klinikum der J.W. Goethe-Universität Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany.
| | | | | | - Henoch S Hong
- CureVac AG, Tübingen, Germany
- Merck KGaA, Darmstadt, Germany
| | | | - Lotta von Boehmer
- Klinik für Onkologie, UniversitätsSpital Zürich, Zurich, Switzerland
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Alfred Zippelius
- Klinik für Onkologie, Universitätsspital Basel, Basel, Switzerland
| | - Frank Mayer
- Universitätsklinikum Tübingen, Tübingen, Germany
- Praxis und Tagesklinik, Friedrichshafen, Germany
| | - Martin Reck
- LungenClinic Grosshansdorf, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Grosshansdorf, Germany
| | - Djordje Atanackovic
- Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Michael Thomas
- Internistische Onkologie der Thoraxtumoren, Thoraxklinik im Universitätsklinikum Heidelberg, Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | | | - Jan Stöhlmacher
- Universitätsklinikum Carl Gustav Carus, Dresden, Germany
- Tumorgenetik Bonn, Bonn, Germany
| | | | - Andreas Gröschel
- Universitätsklinikum Aachen, Aachen, Germany
- Clemenshospital, Münster, Germany
| | | | - Jochen Probst
- CureVac AG, Tübingen, Germany
- Sandoz GmbH, Langkampfen, Austria
| | | | | | | | - Karl-Josef Kallen
- CureVac AG, Tübingen, Germany
- Kallen Medical Innovation GmbH, Frechen, Germany
| | | | | | | | - Alexander Knuth
- Klinik für Onkologie, UniversitätsSpital Zürich, Zurich, Switzerland
- National Center for Cancer Care and Research NCCCR, Hamad Medical Corporation, Doha, Qatar
| | - Sven D Koch
- CureVac AG, Tübingen, Germany
- Sandoz Biopharmaceuticals, Department of Clinical Bioanalytics, Oberhaching, Germany
| |
Collapse
|
32
|
Kareemaghay S, Tavassoli M. Clinical immunotherapeutic approaches for the treatment of head and neck cancer. Int J Oral Maxillofac Surg 2018; 48:419-436. [PMID: 30401512 DOI: 10.1016/j.ijom.2018.10.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 09/08/2018] [Accepted: 10/19/2018] [Indexed: 12/12/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common malignancy worldwide, accounting for more than 550,000 cases and 380,000 deaths annually. The primary risk factors associated with HNSCC are tobacco use and alcohol consumption; nevertheless genetic predisposition and oncogenic viruses also play important roles in the development of these malignancies. The current treatments for HNSCC patients include surgery, chemotherapy, radiotherapy, and cetuximab, and combinations of these. However, these treatments are associated with significant toxicity, and many patients are either refractory to the treatment or relapse after a short period. Despite improvements in the treatment of patients with HNSCC, the clinical outcomes of those who have been treated with standard therapies have remained unchanged for over three decades and the 5-year overall survival rate in these patients remains around 40-50%. Therefore, more specific and less toxic therapies are needed in order to improve patient outcomes. The tumour microenvironment of HNSCC is immunosuppressive; therefore immunotherapy strategies that can overcome the immunosuppressive environment and produce long-term tumour immunosurveillance will have a significant therapeutic impact in these patients. This review focuses on the current immunological treatment options under investigation or available for clinical use in patients with HNSCC.
Collapse
Affiliation(s)
- S Kareemaghay
- Department of Molecular Oncology, King's College London, London, UK
| | - M Tavassoli
- Department of Molecular Oncology, King's College London, London, UK.
| |
Collapse
|
33
|
Therapeutic human papillomavirus vaccines in head and neck cancer: A systematic review of current clinical trials. Vaccine 2018; 36:6594-6605. [DOI: 10.1016/j.vaccine.2018.09.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/30/2018] [Accepted: 09/12/2018] [Indexed: 12/16/2022]
|
34
|
Aggarwal C, Cohen RB, Morrow MP, Kraynyak KA, Sylvester AJ, Knoblock DM, Bauml JM, Weinstein GS, Lin A, Boyer J, Sakata L, Tan S, Anton A, Dickerson K, Mangrolia D, Vang R, Dallas M, Oyola S, Duff S, Esser M, Kumar R, Weiner D, Csiki I, Bagarazzi ML. Immunotherapy Targeting HPV16/18 Generates Potent Immune Responses in HPV-Associated Head and Neck Cancer. Clin Cancer Res 2018; 25:110-124. [PMID: 30242022 DOI: 10.1158/1078-0432.ccr-18-1763] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/10/2018] [Accepted: 09/19/2018] [Indexed: 12/11/2022]
Abstract
PURPOSE Clinical responses with programmed death (PD-1) receptor-directed antibodies occur in about 20% of patients with advanced head and neck squamous cell cancer (HNSCCa). Viral neoantigens, such as the E6/E7 proteins of HPV16/18, are attractive targets for therapeutic immunization and offer an immune activation strategy that may be complementary to PD-1 inhibition. PATIENTS AND METHODS We report phase Ib/II safety, tolerability, and immunogenicity results of immunotherapy with MEDI0457 (DNA immunotherapy targeting HPV16/18 E6/E7 with IL12 encoding plasmids) delivered by electroporation with CELLECTRA constant current device. Twenty-two patients with locally advanced, p16+ HNSCCa received MEDI0457. RESULTS MEDI0457 was associated with mild injection site reactions, but no treatment-related grade 3-5 adverse events (AE) were noted. Eighteen of 21 evaluable patients showed elevated antigen-specific T-cell activity by IFNγ ELISpot, and persistent cellular responses surpassing 100 spot-forming units (SFUs)/106 peripheral blood mononuclear cells (PBMCs) were noted out to 1 year. Induction of HPV-specific CD8+ T cells was observed. MEDI0457 shifted the CD8+/FoxP3+ ratio in 4 of 5 post immunotherapy tumor samples and increased the number of perforin+ immune infiltrates in all 5 patients. One patient developed metastatic disease and was treated with anti-PD-1 therapy with a rapid and durable complete response. Flow-cytometric analyses revealed induction of HPV16-specific PD-1+ CD8+ T cells that were not found prior to MEDI0547 (0% vs. 1.8%). CONCLUSIONS These data demonstrate that MEDI0457 can generate durable HPV16/18 antigen-specific peripheral and tumor immune responses. This approach may be used as a complementary strategy to PD-1/PD-L1 inhibition in HPV-associated HNSCCa to improve therapeutic outcomes.
Collapse
Affiliation(s)
- Charu Aggarwal
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| | - Roger B Cohen
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | | | | | | | - Joshua M Bauml
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Gregory S Weinstein
- Department of Otorhinolaryngology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Alexander Lin
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jean Boyer
- Inovio Pharmaceuticals, Inc., Plymouth Meeting, Pennsylvania
| | - Lindsay Sakata
- Inovio Pharmaceuticals, Inc., Plymouth Meeting, Pennsylvania
| | - Sophie Tan
- Inovio Pharmaceuticals, Inc., Plymouth Meeting, Pennsylvania
| | - Aubrey Anton
- Inovio Pharmaceuticals, Inc., Plymouth Meeting, Pennsylvania
| | | | | | | | - Michael Dallas
- Inovio Pharmaceuticals, Inc., Plymouth Meeting, Pennsylvania
| | - Sandra Oyola
- Inovio Pharmaceuticals, Inc., Plymouth Meeting, Pennsylvania
| | - Susan Duff
- Inovio Pharmaceuticals, Inc., Plymouth Meeting, Pennsylvania
| | | | | | | | - Ildiko Csiki
- Inovio Pharmaceuticals, Inc., Plymouth Meeting, Pennsylvania
| | | |
Collapse
|
35
|
Specenier P, Vermorken JB. Optimizing treatments for recurrent or metastatic head and neck squamous cell carcinoma. Expert Rev Anticancer Ther 2018; 18:901-915. [PMID: 29999437 DOI: 10.1080/14737140.2018.1493925] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
INTRODUCTION The majority of patients with locally advanced head and neck squamous cell carcinoma (HNSCC) will recur. The treatment of patients with recurrent/metastatic (R/M HNSCC) is rapidly evolving. Areas covered: This article will comprehensively review the current systemic treatment of R/M HNSCC. Expert commentary: For the time being, the EXTREME regimen (cetuximab in combination with platinum and 5-fluorouracil) still remains standard of care in previously untreated R/M HNSCC patients who are candidates for combination chemotherapy. Single agents with well documented activity in HNSCC include methotrexate, cisplatin, 5-FU, docetaxel, and paclitaxel. The anti-PD-1 monoclonal antibody nivolumab can be considered the current standard of care in patients with R/M HNSCC progressing after platinum-based therapy based on the results of CheckMate 141 showing a survival benefit over standard of care drugs, such as single agent weekly cetuximab, methotrexate, or docetaxel. Multiple randomized phase III trials comparing anti-PD(L)-antibodies either as single agent or in combination with chemotherapy or an anti-CTLA-4 with the EXTREME as fist line treatment are ongoing or planned. The outcome of these trials might change the current treatment paradigm in previously untreated R/M HNSCC. Immunotherapeutic agents under active investigation include Toll-like receptor 8 agonists and inhibitors of IDO1.
Collapse
Affiliation(s)
- Pol Specenier
- a Department of Oncology , Antwerp University Hospital , Edegem , Belgium.,b Faculty of Medicine and Health Sciences , University of Antwerp , Wilrijk , Belgium
| | - Jan B Vermorken
- a Department of Oncology , Antwerp University Hospital , Edegem , Belgium.,b Faculty of Medicine and Health Sciences , University of Antwerp , Wilrijk , Belgium
| |
Collapse
|
36
|
Tan YS, Sansanaphongpricha K, Prince MEP, Sun D, Wolf GT, Lei YL. Engineering Vaccines to Reprogram Immunity against Head and Neck Cancer. J Dent Res 2018; 97:627-634. [PMID: 29533731 PMCID: PMC5960883 DOI: 10.1177/0022034518764416] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The recent Food and Drug Administration's approval of monoclonal antibodies targeting immune checkpoint receptors (ICRs) for recurrent or metastatic head and neck squamous cell carcinoma (HNSCC) offers exciting promise to improve patient outcome and reduce morbidities. A favorable response to ICR blockade relies on an extensive collection of preexisting tumor-specific T cells in the tumor microenvironment (TME). ICR blockade reinvigorates exhausted CD8+ T cells and enhances immune killing. However, resistance to ICR blockade is observed in about 85% of patients with HNSCC, therefore highlighting the importance of characterizing the mechanisms underlying HNSCC immune escape and exploring combinatorial strategies to sensitize hypoimmunogenic cold HNSCC to ICR inhibition. Cancer vaccines are designed to bypass the cold TME and directly deliver cancer antigens to antigen-presenting cells (APCs); these vaccines epitomize a priming strategy to synergize with ICR inhibitors. Cancer cells are ineffective antigen presenters, and poor APC infiltration as well as the M2-like polarization in the TME further dampens antigen uptake and processing, both of which render ineffective innate and adaptive immune detection. Cancer vaccines directly activate APC and expand the tumor-specific T-cell repertoire. In addition, cancer vaccines often contain an adjuvant, which further improves APC function, promotes epitope spreading, and augments host intrinsic antitumor immunity. Thus, the vaccine-induced immune priming generates a pool of effectors whose function can be enhanced by ICR inhibitors. In this review, we summarize the major HNSCC immune evasion strategies, the ongoing effort toward improving HNSCC vaccines, and the current challenges limiting the efficacy of cancer vaccines.
Collapse
Affiliation(s)
- Y S Tan
- 1 Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
- 2 University of Michigan Comprehensive Cancer Center, Ann Arbor, MI, USA
| | - K Sansanaphongpricha
- 3 Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
| | - M E P Prince
- 2 University of Michigan Comprehensive Cancer Center, Ann Arbor, MI, USA
- 4 Department of Otolaryngology-Head and Neck Surgery, University of Michigan Health System, Ann Arbor, MI, USA
| | - D Sun
- 3 Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
| | - G T Wolf
- 2 University of Michigan Comprehensive Cancer Center, Ann Arbor, MI, USA
- 4 Department of Otolaryngology-Head and Neck Surgery, University of Michigan Health System, Ann Arbor, MI, USA
| | - Y L Lei
- 1 Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
- 2 University of Michigan Comprehensive Cancer Center, Ann Arbor, MI, USA
- 4 Department of Otolaryngology-Head and Neck Surgery, University of Michigan Health System, Ann Arbor, MI, USA
| |
Collapse
|
37
|
Hanna E, Dany M, Abbas O, Kreidieh F, Kurban M. Updates on the use of vaccines in dermatological conditions. Indian J Dermatol Venereol Leprol 2018; 84:388-402. [PMID: 29794355 DOI: 10.4103/ijdvl.ijdvl_1036_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Numerous vaccines are being actively developed for use in dermatologic diseases. Advances in the fields of immunotherapy, genetics and molecular medicine have allowed for the design of prophylactic and therapeutic vaccines with immense potential in managing infections and malignancies of the skin. This review addresses the different vaccines available for use in dermatological diseases and those under development for future potential use. The major limitation of our review is its complete reliance on published data. Our review is strictly limited to the availability of published research online through available databases. We do not cite any of the authors' previous publications nor have we conducted previous original research studies regarding vaccines in dermatology. Strength would have been added to our paper had we conducted original studies by our research team regarding the candidate vaccines delineated in the paper.
Collapse
Affiliation(s)
- Edith Hanna
- Department of Dermatology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Mohammed Dany
- Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Ossama Abbas
- Department of Dermatology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Firas Kreidieh
- Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Mazen Kurban
- Department of Dermatology, American University of Beirut Medical Center; Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon; Department of Dermatology, Columbia University, New York, USA
| |
Collapse
|
38
|
Mechanistic insights into the efficacy of cell penetrating peptide-based cancer vaccines. Cell Mol Life Sci 2018; 75:2887-2896. [PMID: 29508006 PMCID: PMC6061156 DOI: 10.1007/s00018-018-2785-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 11/15/2017] [Accepted: 02/22/2018] [Indexed: 02/07/2023]
Abstract
Immunotherapies are increasingly used to treat cancer, with some outstanding results. Immunotherapy modalities include therapeutic vaccination to eliminate cancer cells through the activation of patient’s immune system against tumor-derived antigens. Nevertheless, the full potential of therapeutic vaccination has yet to be demonstrated clinically because many early generation vaccines elicited low-level immune responses targeting only few tumor antigens. Cell penetrating peptides (CPPs) are highly promising tools to advance the field towards clinical success. CPPs efficiently penetrate cell membranes, even when linked to antigenic cargos, which can induce both CD8 and CD4 T-cell responses. Pre-clinical studies demonstrated that targeting multiple tumor antigens, even those considered to be poorly immunogenic, led to tumor regression. Therefore, CPP-based cancer vaccines represent a flexible and powerful means to extend therapeutic vaccination to many cancer indications. Here, we review recent findings in CPP development and discuss their use in next generation immunotherapies.
Collapse
|
39
|
Hartmann S, Zwick L, Maurus K, Fuchs AR, Brands RC, Seher A, Kübler AC, Müller-Richter UD. Melanoma-associated antigen A11 reduces erlotinib and afatinib efficacy in head and neck cancer. J Craniomaxillofac Surg 2018; 46:492-497. [DOI: 10.1016/j.jcms.2017.12.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 11/27/2017] [Accepted: 12/15/2017] [Indexed: 12/30/2022] Open
|
40
|
Yan WL, Shen KY, Tien CY, Chen YA, Liu SJ. Recent progress in GM-CSF-based cancer immunotherapy. Immunotherapy 2017; 9:347-360. [PMID: 28303764 DOI: 10.2217/imt-2016-0141] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cancer immunotherapy is a growing field. GM-CSF, a potent cytokine promoting the differentiation of myeloid cells, can also be used as an immunostimulatory adjuvant to elicit antitumor immunity. Additionally, GM-CSF is essential for the differentiation of dendritic cells, which are responsible for processing and presenting tumor antigens for the priming of antitumor cytotoxic T lymphocytes. Some strategies have been developed for GM-CSF-based cancer immunotherapy in clinical practice: GM-CSF monotherapy, GM-CSF-secreting cancer cell vaccines, GM-CSF-fused tumor-associated antigen protein-based vaccines, GM-CSF-based DNA vaccines and GM-CSF combination therapy. GM-CSF also contributes to the regulation of immunosuppression in the tumor microenvironment. This review provides recommendations regarding GM-CSF-based cancer immunotherapy.
Collapse
Affiliation(s)
- Wan-Lun Yan
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.,National Institute of Infectious Diseases & Vaccinology, National Health Research Institutes, No. 35 Keyan Road, Zhunan Town, Miaoli County 350, Taiwan
| | - Kuan-Yin Shen
- National Institute of Infectious Diseases & Vaccinology, National Health Research Institutes, No. 35 Keyan Road, Zhunan Town, Miaoli County 350, Taiwan.,Graduate Instituteof Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Chun-Yuan Tien
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.,National Institute of Infectious Diseases & Vaccinology, National Health Research Institutes, No. 35 Keyan Road, Zhunan Town, Miaoli County 350, Taiwan
| | - Yu-An Chen
- Graduate Instituteof Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Shih-Jen Liu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.,National Institute of Infectious Diseases & Vaccinology, National Health Research Institutes, No. 35 Keyan Road, Zhunan Town, Miaoli County 350, Taiwan
| |
Collapse
|
41
|
Abstract
HPV-associated head and neck squamous cell carcinoma (HNSCC), more specifically the incidence of oropharyngeal cancer, is dramatically increasing in industrialized countries. According to what has been learned from anogenital vaccination programs, there are reasons to believe that current human papillomavirus (HPV) vaccinations may be potentially effective also against HNSCC. However, before specific results on HNSCC are available, one must keep in mind that carcinogenesis in the head and neck region may differ from that of the anogenital tract. Furthermore, the current evidence supports the view that HPV infection is much more complex than simply a sexually transmitted disease. HPV is present in the semen, placenta and in the newborns, and these infections of the newborns create cell-mediated immunity (CMI) against HPV, including the T memory cells. Acquisition of HPV infection in early life will rise new series of questions in the field of HPV vaccination.
Collapse
Affiliation(s)
- Stina Syrjänen
- Department of Oral Pathology, Faculty of Medicine, Turku University Hospital, Institute of Dentistry, University of Turku, Lemminkäisenkatu 2, 20520, Turku, Finland.
| | - Jaana Rautava
- Department of Oral Pathology, Faculty of Medicine, Turku University Hospital, Institute of Dentistry, University of Turku, Lemminkäisenkatu 2, 20520, Turku, Finland
| |
Collapse
|
42
|
Yang A, Farmer E, Wu TC, Hung CF. Perspectives for therapeutic HPV vaccine development. J Biomed Sci 2016; 23:75. [PMID: 27809842 PMCID: PMC5096309 DOI: 10.1186/s12929-016-0293-9] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 10/26/2016] [Indexed: 12/24/2022] Open
Abstract
Background Human papillomavirus (HPV) infections and associated diseases remain a serious burden worldwide. It is now clear that HPV serves as the etiological factor and biologic carcinogen for HPV-associated lesions and cancers. Although preventative HPV vaccines are available, these vaccines do not induce strong therapeutic effects against established HPV infections and lesions. These concerns create a critical need for the development of therapeutic strategies, such as vaccines, to treat these existing infections and diseases. Main Body Unlike preventative vaccines, therapeutic vaccines aim to generate cell-mediated immunity. HPV oncoproteins E6 and E7 are responsible for the malignant progression of HPV-associated diseases and are consistently expressed in HPV-associated diseases and cancer lesions; therefore, they serve as ideal targets for the development of therapeutic HPV vaccines. In this review we revisit therapeutic HPV vaccines that utilize this knowledge to treat HPV-associated lesions and cancers, with a focus on the findings of recent therapeutic HPV vaccine clinical trials. Conclusion Great progress has been made to develop and improve novel therapeutic HPV vaccines to treat existing HPV infections and diseases; however, there is still much work to be done. We believe that therapeutic HPV vaccines have the potential to become a widely available and successful therapy to treat HPV and HPV-associated diseases in the near future.
Collapse
Affiliation(s)
- Andrew Yang
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - Emily Farmer
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - T C Wu
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA.,Department of Obstetrics and Gynecology, Johns Hopkins University, Baltimore, MD, USA.,Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, MD, USA.,Department of Oncology, Johns Hopkins University, Baltimore, MD, USA
| | - Chien-Fu Hung
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA. .,Department of Oncology, Johns Hopkins University, Baltimore, MD, USA. .,The Johns Hopkins University School of Medicine, CRB II Room 307, 1550 Orleans Street, Baltimore, MD, 21231, USA.
| |
Collapse
|
43
|
Novel Immunotherapeutic Approaches for Head and Neck Squamous Cell Carcinoma. Cancers (Basel) 2016; 8:cancers8100087. [PMID: 27669306 PMCID: PMC5082377 DOI: 10.3390/cancers8100087] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 08/16/2016] [Accepted: 09/08/2016] [Indexed: 12/11/2022] Open
Abstract
The immune system plays a key role in preventing tumor formation by recognizing and destroying malignant cells. For over a century, researchers have attempted to harness the immune response as a cancer treatment, although this approach has only recently achieved clinical success. Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide and is associated with cigarette smoking, alcohol consumption, betel nut use, and human papillomavirus infection. Unfortunately, worldwide mortality from HNSCC remains high, partially due to limits on therapy secondary to the significant morbidity associated with current treatments. Therefore, immunotherapeutic approaches to HNSCC treatment are attractive for their potential to reduce morbidity while improving survival. However, the application of immunotherapies to this disease has been challenging because HNSCC is profoundly immunosuppressive, resulting in decreased absolute lymphocyte counts, impaired natural killer cell function, reduced antigen-presenting cell function, and a tumor-permissive cytokine profile. Despite these challenges, numerous clinical trials testing the safety and efficacy of immunotherapeutic approaches to HNSCC treatment are currently underway, many of which have produced promising results. This review will summarize immunotherapeutic approaches to HNSCC that are currently undergoing clinical trials.
Collapse
|
44
|
Chung CH, Germain A, Subramaniam RM, Heilmann AM, Fedorchak K, Ali SM, Miller VA, Palermo RA, Fakhry C. Genomic alterations in human epidermal growth factor receptor 2 (HER2/ERBB2) in head and neck squamous cell carcinoma. Head Neck 2016; 39:E15-E19. [DOI: 10.1002/hed.24587] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 06/20/2016] [Accepted: 08/05/2016] [Indexed: 12/14/2022] Open
Affiliation(s)
- Christine H. Chung
- Department of Oncology; The Johns Hopkins University School of Medicine; Baltimore Maryland
- Department of Otolaryngology-Head and Neck Surgery; The Johns Hopkins University School of Medicine; Baltimore Maryland
- Department of Head and Neck-Endocrine Oncology; Moffitt Cancer Center & Research Institute; Tampa Florida
| | | | - Rathan M. Subramaniam
- Department of Radiology; The Johns Hopkins University School of Medicine; Baltimore Maryland
| | | | | | | | | | - Robert A. Palermo
- Department of Pathology; Greater Baltimore Medical Center; Baltimore Maryland
| | - Carole Fakhry
- Department of Otolaryngology-Head and Neck Surgery; The Johns Hopkins University School of Medicine; Baltimore Maryland
| |
Collapse
|
45
|
Hartmann S, Brisam M, Rauthe S, Driemel O, Brands RC, Rosenwald A, Kübler AC, Müller-Richter UDA. Contrary melanoma-associated antigen-A expression at the tumor front and center: A comparative analysis of stage I and IV head and neck squamous cell carcinoma. Oncol Lett 2016; 12:2942-2947. [PMID: 27703530 DOI: 10.3892/ol.2016.4945] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 04/22/2016] [Indexed: 01/17/2023] Open
Abstract
There is a growing body of evidence indicating that several melanoma-associated antigen-A (MAGE-A) subgroups contribute to the malignancy of head and neck cancer. The present study retrospectively analyzed the expression of all known MAGE-A subgroups in the tumor front and center of 38 head and neck cancer patients (Union for International Cancer Control stage I or IV) by immunohistochemistry. MAGE-A1, -A6, -A8, -A9 and -A11 were expressed at significantly higher levels at the tumor front of stage IV specimens compared with the tumor front of stage I specimens. In stage I cancer, the tumor center and front ratio (C/F ratio) for each subgroup was >1.0. In stage IV cancer, the C/F ratio was <1.0 in 9/11 subgroups. The most significant change in the expression pattern was observed for MAGE-A11. These results indicated that there is a marked alteration and shift to the invasive front of almost all MAGE-A subgroups, but particularly MAGE-A11, during the progression of head and neck squamous cell carcinoma.
Collapse
Affiliation(s)
- Stefan Hartmann
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, D-97070 Würzburg, Germany
| | - Muna Brisam
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, D-97070 Würzburg, Germany
| | - Stephan Rauthe
- Institute of Pathology and Comprehensive Cancer Center Mainfranken, University of Würzburg, D-97080 Würzburg, Germany
| | - Oliver Driemel
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Rostock, D-18057 Rostock, Germany
| | - Roman C Brands
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, D-97070 Würzburg, Germany
| | - Andreas Rosenwald
- Institute of Pathology and Comprehensive Cancer Center Mainfranken, University of Würzburg, D-97080 Würzburg, Germany
| | - Alexander C Kübler
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, D-97070 Würzburg, Germany
| | - Urs D A Müller-Richter
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, D-97070 Würzburg, Germany
| |
Collapse
|
46
|
Abstract
It was estimated that 59,340 new cases of head and neck cancer would be diagnosed in the US alone in 2015 and that 12,290 deaths would be attributed to the disease. Local and regional recurrences may be treated with chemotherapy and radiation; however, metastatic head and neck cancer is fatal and is treated with chemotherapy for palliation. Recent successful treatment of a variety of solid and hematological malignancies by immunotherapeutic approaches (i.e. harnessing the body's own immune system to combat disease) has added a fourth therapeutic option for the treatment of cancer. This commentary will review the status of immunotherapies in clinical development for the specific treatment of head and neck cancer.
Collapse
Affiliation(s)
- Carolina Soto Chervin
- Department of Medicine, NorthShore University HealthSystem, Evanston, Ilinois, 60201, USA
| | - Bruce Brockstein
- Department of Medicine, NorthShore University HealthSystem, Evanston, Ilinois, 60201, USA; Department of Medicine, University of Chicago Pritzker School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
47
|
Makinen SR, Zhu Q, Davis HL, Weeratna RD. CpG-mediated augmentation of CD8+ T-cell responses in mice is attenuated by a water-in-oil emulsion (Montanide ISA-51) but enhanced by an oil-in-water emulsion (IDRI SE). Int Immunol 2016; 28:453-61. [PMID: 27055469 DOI: 10.1093/intimm/dxw017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 03/22/2016] [Indexed: 12/14/2022] Open
Abstract
Adjuvants are a key component in enhancing immunogenicity of vaccines and play a vital role in facilitating the induction of the correct type of immunity required for each vaccine to be optimally efficacious. Several different adjuvants are found in licensed vaccines, and many others are in pre-clinical or clinical testing. Agonists for TLRs are potent activators of the innate immune system and some, such as CpG (TLR9 agonist), are particularly good for promoting cellular immunity because of the induction of Th1 cytokines. Emulsions that have both delivery and adjuvant properties are classified as water-in-oil (W/O) or oil-in-water (O/W) formulations. The W/O emulsion Montanide ISA-51, often combined with CpG, has been widely tested in cancer vaccine clinical trials. Squalene-based O/W emulsions are in licensed influenza vaccines, and T-cell responses have been assessed pre-clinically. No clinical study has compared the two types of emulsions, and the continued use of W/O with CpG in cancer vaccines may be because the lack of single adjuvant controls has masked the interference issue. These findings may have important implications for the development of vaccines where T-cell immunity is considered essential, such as those for cancer and chronic infections. Using particulate (hepatitis B surface antigen) and soluble protein (ovalbumin) antigen, we show in mice that a W/O emulsion (ISA-51) abrogates CpG-mediated augmentation of CD8(+) T-cell responses, whereas a squalene-based O/W emulsion significantly enhanced them.
Collapse
Affiliation(s)
- Shawn R Makinen
- Pfizer Vaccine Immunotherapeutics, Ottawa Laboratories, 340 Terry Fox Drive, Suite 200, Ottawa, Ontario K2K 3A2, Canada
| | - Qin Zhu
- Pfizer Vaccine Immunotherapeutics, Ottawa Laboratories, 340 Terry Fox Drive, Suite 200, Ottawa, Ontario K2K 3A2, Canada
| | - Heather L Davis
- Pfizer Vaccine Immunotherapeutics, Ottawa Laboratories, 340 Terry Fox Drive, Suite 200, Ottawa, Ontario K2K 3A2, Canada
| | - Risini D Weeratna
- Pfizer Vaccine Immunotherapeutics, Ottawa Laboratories, 340 Terry Fox Drive, Suite 200, Ottawa, Ontario K2K 3A2, Canada
| |
Collapse
|
48
|
Yang A, Jeang J, Cheng K, Cheng T, Yang B, Wu TC, Hung CF. Current state in the development of candidate therapeutic HPV vaccines. Expert Rev Vaccines 2016; 15:989-1007. [PMID: 26901118 DOI: 10.1586/14760584.2016.1157477] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The identification of human papillomavirus (HPV) as an etiological factor for HPV-associated malignancies creates the opportunity to control these cancers through vaccination. Currently, available preventive HPV vaccines have not yet demonstrated strong evidences for therapeutic effects against established HPV infections and lesions. Furthermore, HPV infections remain extremely common. Thus, there is urgent need for therapeutic vaccines to treat existing HPV infections and HPV-associated diseases. Therapeutic vaccines differ from preventive vaccines in that they are aimed at generating cell-mediated immunity rather than neutralizing antibodies. The HPV-encoded early proteins, especially oncoproteins E6 and E7, form ideal targets for therapeutic HPV vaccines since they are consistently expressed in HPV-associated malignancies and precancerous lesions, playing crucial roles in the generation and maintenance of HPV-associated disease. Our review will cover various therapeutic vaccines in development for the treatment of HPV-associated lesions and cancers. Furthermore, we review strategies to enhance vaccine efficacy and the latest clinical trials on therapeutic HPV vaccines.
Collapse
Affiliation(s)
- Andrew Yang
- a Department of Pathology , Johns Hopkins University , Baltimore , MD , USA
| | - Jessica Jeang
- a Department of Pathology , Johns Hopkins University , Baltimore , MD , USA
| | - Kevin Cheng
- a Department of Pathology , Johns Hopkins University , Baltimore , MD , USA
| | - Ting Cheng
- a Department of Pathology , Johns Hopkins University , Baltimore , MD , USA
| | - Benjamin Yang
- a Department of Pathology , Johns Hopkins University , Baltimore , MD , USA
| | - T-C Wu
- a Department of Pathology , Johns Hopkins University , Baltimore , MD , USA.,b Department of Obstetrics and Gynecology , Johns Hopkins University , Baltimore , MD , USA.,c Department of Molecular Microbiology and Immunology , Johns Hopkins University , Baltimore , MD , USA.,d Department of Oncology , Johns Hopkins University , Baltimore , MD , USA
| | - Chien-Fu Hung
- a Department of Pathology , Johns Hopkins University , Baltimore , MD , USA.,d Department of Oncology , Johns Hopkins University , Baltimore , MD , USA
| |
Collapse
|
49
|
Abstract
Head and neck squamous cell carcinoma (HNSCC) is characterized by its intense immune suppression and its elaborate immune escape mechanisms. Due to the fact that survival rates remain low, the role of immunotherapy has become more important and the focus of current clinical studies has shifted toward antibody-based immune checkpoint modulation. Application of immunotherapy in curative settings or for prevention of recurrent disease would be desirable.
Collapse
|
50
|
Veit JA, Heine D, Thierauf J, Lennerz J, Shetty S, Schuler PJ, Whiteside T, Beutner D, Meyer M, Grünewald I, Ritter G, Gnjatic S, Sikora AG, Hoffmann TK, Laban S. Expression and clinical significance of MAGE and NY-ESO-1 cancer-testis antigens in adenoid cystic carcinoma of the head and neck. Head Neck 2016; 38:1008-16. [PMID: 26874246 DOI: 10.1002/hed.24403] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2015] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Adenoid cystic carcinoma (ACC) of the head and neck is a rare but highly malignant tumor. Cancer-testis antigens (CTAs) represent an immunogenic family of cancer-specific proteins and thus represent an attractive target for immunotherapy. METHODS Eighty-four cases of ACC were identified, the CTAs pan-Melanoma antigen (pan-MAGE; M3H67) and New York esophageal squamous cell carcinoma (NY-ESO-1; E978) were detected immunohistochemically (IHC) and correlated with clinical data. RESULTS Expression of NY-ESO-1 was found in 48 of 84 patients (57.1%) and of pan-MAGE in 28 of 84 patients (31.2%). Median overall survival (OS) in NY-ESO-1 positive versus negative patients was 130.8 and 282.0 months (p = .223), respectively. OS in pan-MAGE positive versus negative patients was 105.3 and 190.5 months, respectively (p = .096). Patients expressing both NY-ESO-1 and pan-MAGE simultaneously had significantly reduced OS with a median of 90.5 months compared with 282.0 months in negative patients (p = .047). CONCLUSION A significant fraction of patients with ACC show expression of the CTAs NY-ESO-1 and/or pan-MAGE with promising immunotherapeutic implications. © 2016 Wiley Periodicals, Inc. Head Neck 38: 1008-1016, 2016.
Collapse
Affiliation(s)
- Johannes A Veit
- Department of Oto-Rhino-Laryngology and Head and Neck Surgery, University Medical Center Ulm, Ulm, Germany
| | - Daniela Heine
- Department of Oto-Rhino-Laryngology and Head and Neck Surgery, University Medical Center Ulm, Ulm, Germany
| | - Julia Thierauf
- Department of Oto-Rhino-Laryngology and Head and Neck Surgery, University Medical Center Ulm, Ulm, Germany
| | - Jochen Lennerz
- Department of Pathology, Center for Integrated Diagnostics, Massachusetts General Hospital, Boston, Massachusetts
| | - Subasch Shetty
- Department of Ear, Nose and Throat Surgery, Kensington Hospital, Whangarei, New Zealand
| | - Patrick J Schuler
- Department of Oto-Rhino-Laryngology and Head and Neck Surgery, University Medical Center Ulm, Ulm, Germany
| | - Theresa Whiteside
- Department of Pathology, University of Pittsburgh, Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Dirk Beutner
- Department of Otorhinolaryngology, University of Cologne, Cologne, Germany
| | - Moritz Meyer
- Department of Otorhinolaryngology, University of Cologne, Cologne, Germany
| | - Inga Grünewald
- Institute of Pathology, University of Cologne, Cologne, Germany
| | - Gerd Ritter
- Ludwig Institute for Cancer Research and Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sacha Gnjatic
- Icahn School of Medicine at Mount Sinai, Mount Sinai Hospital, New York, New York
| | - Andrew G Sikora
- Department of Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, Houston, Texas
| | - Thomas K Hoffmann
- Department of Oto-Rhino-Laryngology and Head and Neck Surgery, University Medical Center Ulm, Ulm, Germany
| | - Simon Laban
- Department of Oto-Rhino-Laryngology and Head and Neck Surgery, University Medical Center Ulm, Ulm, Germany
| |
Collapse
|