1
|
Rezazadeh‐Gavgani E, Majidazar R, Lotfinejad P, Kazemi T, Shamekh A. Immune Checkpoint Molecules: A Review on Pathways and Immunotherapy Implications. Immun Inflamm Dis 2025; 13:e70196. [PMID: 40243372 PMCID: PMC12004596 DOI: 10.1002/iid3.70196] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 03/12/2025] [Accepted: 03/27/2025] [Indexed: 04/18/2025] Open
Abstract
BACKGROUND Today, treating cancer patients with monoclonal antibodies (mAbs), by targeting immune checkpoints, is one of the most outstanding immunotherapeutic methods. Immune checkpoints are special molecules having regulatory role in immune system responses. Once these molecules are presented on cancer cells, these cells will be capable of evading the immune system through their own specific pathways. This Evasion can be prevented by counterbalancing immune system responses with immune checkpoints related antibodies. AIMS The current study aimed to highlight immunotherapy and its methods, describe the immune checkpoints pathways, outline the immune checkpoint inhibitors (ICIs), and recent advances in this field, and sketch an outlook on the best treatment options for the most prevalent cancers. MATERIALS & METHODS This research implemented a narrative review method. A comprehensive literature review on the history, molecular and cellular biology, and the clinical aspects of immune checkpoint molecules was performed to illustrate the pathways involved in various cancers. Also, currently-available and future potential immunotherapies targeting these pathways were extracted from the searched studies. RESULTS The immune checkpoint family consists of many molecules, including CTLA-4, PD-1, PD-L1, LAG-3, TIM-3, and TIGIT. Attempts to modify these molecules in cancer treatment led to the development of therapeutic monoclonal antibodies. Most of these antibodies have entered clinical studies and some of them have been approved by the Food and Drug Administration (FDA) to be used in cancer patients' treatment plans. DISCUSSION With these novel treatments and the combination therapies they offer, there is also hope for better treatment outcomes for the previously untreatable metastatic cancers. In spite of the beneficial aspects of immune checkpoint therapy, similar to other treatments, they may cause side effects in some patients. Therefore, more studies are needed to reduce the probable side effects and uncover their underlying mechanism. CONCLUSION Based on the data shown in this review, there is still a lack of knowledge about the complete properties of ICIs and the possible combination therapies that we may be able to implement to achieve a better treatment response in cancer patients.
Collapse
Affiliation(s)
| | - Reza Majidazar
- Student Research CommitteeTabriz University of Medical SciencesTabrizIran
| | - Parisa Lotfinejad
- Immunology Research CenterTabriz University of Medical SciencesTabrizIran
- Department of ImmunologyTabriz University of Medical SciencesTabrizIran
| | - Tohid Kazemi
- Immunology Research CenterTabriz University of Medical SciencesTabrizIran
- Department of ImmunologyTabriz University of Medical SciencesTabrizIran
| | - Ali Shamekh
- Student Research CommitteeTabriz University of Medical SciencesTabrizIran
- Aging Research InstituteTabriz University of Medical SciencesTabrizIran
| |
Collapse
|
2
|
Zhou Z, Chen Y, Ba Y, Xu H, Zuo A, Liu S, Zhang Y, Weng S, Ren Y, Luo P, Cheng Q, Zuo L, Zhu S, Zhou X, Zhang C, Chen Y, Han X, Pan T, Liu Z. Revolutionising Cancer Immunotherapy: Advancements and Prospects in Non-Viral CAR-NK Cell Engineering. Cell Prolif 2025; 58:e13791. [PMID: 39731215 PMCID: PMC11969250 DOI: 10.1111/cpr.13791] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/14/2024] [Accepted: 11/28/2024] [Indexed: 12/29/2024] Open
Abstract
The recent advancements in cancer immunotherapy have spotlighted the potential of natural killer (NK) cells, particularly chimeric antigen receptor (CAR)-transduced NK cells. These cells, pivotal in innate immunity, offer a rapid and potent response against cancer cells and pathogens without the need for prior sensitization or recognition of peptide antigens. Although NK cell genetic modification is evolving, the viral transduction method continues to be inefficient and fraught with risks, often resulting in cytotoxic outcomes and the possibility of insertional mutagenesis. Consequently, there has been a surge in the development of non-viral transfection technologies to overcome these challenges in NK cell engineering. Non-viral approaches for CAR-NK cell generation are becoming increasingly essential. Cutting-edge techniques such as trogocytosis, electroporation, lipid nanoparticle (LNP) delivery, clustered regularly interspaced short palindromic repeats-associated protein 9 (CRISPR-Cas9) gene editing and transposons not only enhance the efficiency and safety of CAR-NK cell engineering but also open new avenues for novel therapeutic possibilities. Additionally, the infusion of technologies already successful in CAR T-cell therapy into the CAR-NK paradigm holds immense potential for further advancements. In this review, we present an overview of the potential of NK cells in cancer immunotherapies, as well as non-viral transfection technologies for engineering NK cells.
Collapse
Affiliation(s)
- Zhaokai Zhou
- Department of Interventional RadiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Department of UrologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yifeng Chen
- The First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yuhao Ba
- Department of Interventional RadiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Hui Xu
- Department of Interventional RadiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Anning Zuo
- Department of Interventional RadiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Shutong Liu
- Department of Interventional RadiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yuyuan Zhang
- Department of Interventional RadiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Siyuan Weng
- Department of Interventional RadiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yuqing Ren
- Department of Respiratory and Critical Care MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Peng Luo
- The Department of OncologyZhujiang Hospital, Southern Medical UniversityGuangzhouChina
| | - Quan Cheng
- Department of NeurosurgeryXiangya Hospital, Central South UniversityChangshaChina
| | - Lulu Zuo
- Center of Reproductive MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Shanshan Zhu
- Department of GastroenterologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Xing Zhou
- Department of Pediatric SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Chuhan Zhang
- Department of OncologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yukang Chen
- The First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Xinwei Han
- Department of Interventional RadiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Interventional Institute of Zhengzhou UniversityZhengzhouChina
- Interventional Treatment and Clinical Research Center of Henan ProvinceZhengzhouChina
| | - Teng Pan
- Longgang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College)ShenzhenChina
| | - Zaoqu Liu
- Department of Interventional RadiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Interventional Institute of Zhengzhou UniversityZhengzhouChina
- Interventional Treatment and Clinical Research Center of Henan ProvinceZhengzhouChina
- Institute of Basic Medical SciencesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
3
|
Choi SH, Chen YW, Panian J, Yuen K, McKay RR. Emerging innovative treatment strategies for advanced clear cell renal cell carcinoma. Oncologist 2025; 30:oyae276. [PMID: 39401004 PMCID: PMC11954509 DOI: 10.1093/oncolo/oyae276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 09/10/2024] [Indexed: 10/15/2024] Open
Abstract
Dramatic advances in biological discoveries, since the 1990s, have continued to reshape the treatment paradigm of metastatic renal cell carcinoma (RCC). Von Hippel Lindau (VHL) gene alterations are associated with pro-angiogenic activity and are central to the pathogenesis of clear cell RCC (ccRCC), the most predominant histologic subtype of RCC. Antiangiogenic strategies revolving around this VHL/HIF/VEGF axis have been shown to improve survival in metastatic ccRCC. The discovery of immune checkpoints and agents that target their inhibition introduced a new treatment paradigm for patients with RCC. While initially approved as monotherapy, studies investigating immune checkpoint inhibitor combinations have led to their approval as the new standard of care, providing durable responses and unprecedented improvements in clinical outcome. Despite these advances, the projected 14 390 deaths in 2024 from RCC underscore the need to continue efforts in expanding and optimizing treatment options for patients with metastatic RCC. This article reviews key findings that have transformed the way we understand and treat metastatic RCC, in addition to highlighting novel treatment strategies that are currently under development.
Collapse
Affiliation(s)
- Sharon H Choi
- Division of Hematology Oncology, University of California San Diego, San Diego, CA, United States
| | - Yu-Wei Chen
- Division of Hematology Oncology, University of California San Diego, San Diego, CA, United States
| | - Justine Panian
- Division of Hematology Oncology, University of California San Diego, San Diego, CA, United States
| | - Kit Yuen
- Department of Urology, University of California San Diego, San Diego, CA, United States
| | - Rana R McKay
- Division of Hematology Oncology, University of California San Diego, San Diego, CA, United States
- Department of Urology, University of California San Diego, San Diego, CA, United States
| |
Collapse
|
4
|
Gao R, Wu P, Yin X, Zhuang L, Meng X. Deep analysis of the trials and major challenges in the first-line treatment for patients with extensive-stage small cell lung cancer. Int Immunopharmacol 2025; 148:114116. [PMID: 39847950 DOI: 10.1016/j.intimp.2025.114116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 01/15/2025] [Accepted: 01/15/2025] [Indexed: 01/25/2025]
Abstract
The median overall survival (OS) is approximately 10 months when chemotherapy alone is the first-line treatment for extensive-stage small cell lung cancer (ES-SCLC). The approval of the two PD-L1 inhibitors, atezolizumab and durvalumab, marked the beginning of the immunotherapy era for ES-SCLC. Serplulimab, as the first PD-1 inhibitor to achieve success in the first-line treatment of ES-SCLC, has not only demonstrated significant improvements in patient survival outcomes but also ushered in a new era for PD-1 inhibitors in the treatment of ES-SCLC. Recently, antiangiogenic agents with chemo-immunotherapy have achieved breakthroughs in first-line ES-SCLC treatment. Improving the clinical benefits of individualized treatment for patients with ES-SCLC remains challenging. Challenges include identifying biomarkers for targeted therapy, exploring new treatments, developing new medicines, and classifying SCLC molecular subtypes. This review provides an in-depth analysis of research on first-line ES-SCLC treatment. Additionally, it discusses advances in ES-SCLC treatment.
Collapse
Affiliation(s)
- Ran Gao
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong, Jinan, China
| | - Peizhu Wu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong, Jinan, China
| | - Xiaoyan Yin
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong, Jinan, China
| | - Lulu Zhuang
- Cheeloo College of Cancer Center, Shandong University, Jinan, Shandong, China
| | - Xiangjiao Meng
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong, Jinan, China.
| |
Collapse
|
5
|
Struckmeier AK, Gosau M, Smeets R. Immunotherapeutic strategies beyond the PD-1/PD-L1 pathway in head and neck squamous cell carcinoma - A scoping review on current developments in agents targeting TIM-3, TIGIT, LAG-3, and VISTA. Oral Oncol 2025; 161:107145. [PMID: 39705929 DOI: 10.1016/j.oraloncology.2024.107145] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/24/2024] [Accepted: 12/11/2024] [Indexed: 12/23/2024]
Abstract
Head and neck squamous cell carcinoma (HNSCC) poses a considerable challenge due to its high incidence and mortality rates. Immunotherapy targeting PD-(L)1 emerges as a promising approach for HNSCC, as it has the potential to trigger a broad and long-lasting anti-tumor response. Nevertheless, the effectiveness of immunotherapy encounters hurdles, and only a small proportion of patients benefit, with many eventually experiencing relapse. Consequently, there is a pursuit of strategies to enhance overall treatment outcomes. Understanding the mechanisms driving resistance to PD-(L)1 inhibition and devising strategies to overcome these challenges are vital for advancing more effective treatments. Furthermore, gaining insights into the mechanisms of action and safety profiles of novel combination therapies is critical for their successful adoption in clinical practice. As a result, current research is dedicated to investigating various immunotherapeutic agents beyond the PD-1/PD-L1 axis. This review offers a comprehensive overview of the existing immunotherapy strategies in HNSCC with a focus on TIM-3, TIGIT, LAG-3, and VISTA. The aim is to lay a strong foundation for the continual advancement of therapies for HNSCC.
Collapse
Affiliation(s)
- Ann-Kristin Struckmeier
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany.
| | - Martin Gosau
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Ralf Smeets
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany; Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
6
|
Li S, Pan Y, Ye R, Wang Y, Li L. Immune checkpoints in B-cell Lymphoma: Still an Unmet challenge from Basic research to clinical practice. Int Immunopharmacol 2025; 146:113717. [PMID: 39673995 DOI: 10.1016/j.intimp.2024.113717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 11/24/2024] [Accepted: 11/24/2024] [Indexed: 12/16/2024]
Abstract
In the last decade, advancements in immunotherapy knowledge have highlighted CTLA-4, PD-1, LAG-3, TIM-3, and TIGIT, decisive immune checkpoints exhibiting within the tumor microenvironment (TME), as fundamental objects for cancer immunotherapy. The widespread clinical use of immune checkpoint inhibitors (ICls), employing PD-1/PD-L1 or CTLA-4 antibodies to obstruct crucial checkpoint regulators, is noted in treating B-cell lymphoma patients. Nevertheless, the prolonged advantages of the currently employed treatments against CTLA-4, PD-1, and PD-L1 are uncommon among patients. Thus, recent focus has been progressively moved to additional immune checkpoints on T cells, like LAG-3, TIM-3, and TIGIT, which are now seen as reassuring targets for treatment and broadly acknowledged. There are several types of immunecheckpoint molecules expressed by T cells, and inhibitors targeting immune checkpoints can revive and amplify the immune response of T lymphocytes against tumors, a crucial aspect in lymphoma therapy. However, there is little knowledge about their regulation. Herein, we discuss the anti-tumor effects and functions of ICIs in controlling T-cell activity, as well as the progress in combined application with other immunotherapies.
Collapse
Affiliation(s)
- Sijia Li
- Department of Hematology, The Second Hospital of Dalian Medical University, Dalian, PR China
| | - Yuanyuan Pan
- Department of Hematology, The Second Hospital of Dalian Medical University, Dalian, PR China
| | - Ruyu Ye
- Department of Hematology, The Second Hospital of Dalian Medical University, Dalian, PR China
| | - Yu Wang
- Department of Hematology, The Second Hospital of Dalian Medical University, Dalian, PR China
| | - Li Li
- Department of Hematology, The Second Hospital of Dalian Medical University, Dalian, PR China.
| |
Collapse
|
7
|
Hosseininejad-Chafi M, Eftekhari Z, Oghalaie A, Behdani M, Sotoudeh N, Kazemi-Lomedasht F. Nanobodies as innovative immune checkpoint modulators: advancing cancer immunotherapy. Med Oncol 2024; 42:36. [PMID: 39719469 DOI: 10.1007/s12032-024-02588-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/14/2024] [Indexed: 12/26/2024]
Abstract
The immune system relies on a delicate balance between attacking harmful pathogens and preserving the body's own tissues, a balance maintained by immune checkpoints. These checkpoints play a critical role in preventing autoimmune diseases by restraining excessive immune responses while allowing the immune system to recognize and destroy abnormal cells, such as tumors. In recent years, immune checkpoint inhibitors (ICIs) have become central to cancer therapy, enabling the immune system to target and eliminate cancer cells that evade detection. Traditional antibodies, such as IgGs, have been widely used in immune therapies but are limited by their size and complexity. Nanobodies (Nbs), derived from camelid heavy-chain-only antibodies, offer a promising alternative. These small, stable antibody fragments retain the antigen-binding specificity of traditional antibodies but have enhanced solubility and the ability to target otherwise inaccessible epitopes. This review explores the use of Nbs as ICIs, emphasizing their potential in cancer immunotherapy and other immune-related treatments. Their unique structural properties and small size make Nbs highly effective tools for modulating immune responses, representing a novel approach in the evolving landscape of checkpoint inhibitor therapies.
Collapse
Affiliation(s)
- Mohammad Hosseininejad-Chafi
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Zohre Eftekhari
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Akbar Oghalaie
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Mahdi Behdani
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Nazli Sotoudeh
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Fatemeh Kazemi-Lomedasht
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, 1316943551, Iran.
| |
Collapse
|
8
|
Compagno S, Casadio C, Galvani L, Rosellini M, Marchetti A, Tassinari E, Piazza P, Mottaran A, Santoni M, Schiavina R, Massari F, Mollica V. Novel Immune Checkpoint Inhibitor Targets in Advanced or Metastatic Renal Cell Carcinoma: State of the Art and Future Perspectives. J Clin Med 2024; 13:5738. [PMID: 39407796 PMCID: PMC11476392 DOI: 10.3390/jcm13195738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/14/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Immune checkpoint inhibitors (ICI) have become the cornerstone of treatment in renal cell carcinoma (RCC), for both metastatic disease and in an adjuvant setting. However, an adaptive resistance from cancer cells may arise during ICI treatment, therefore many studies are focusing on additional immune checkpoint inhibitor pathways. Promising targets of immunotherapeutic agents under investigation include T cell immunoglobulin and ITIM domain (TIGIT), immunoglobulin-like transcript 4 (ILT4), lymphocyte activation gene-3 (LAG-3), vaccines, T cell immunoglobulin and mucin domain-containing protein 3 (TIM-3), and chimeric antigen receptor (CAR) T cells. In this review of the literature, we recollect the current knowledge of the novel treatment strategies in the field of immunotherapy that are being investigated in RCC and analyze their mechanism of action, their activity and the clinical studies that are currently underway.
Collapse
Affiliation(s)
- Samuele Compagno
- Medical Oncology, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (S.C.); (C.C.); (L.G.); (M.R.); (A.M.); (E.T.); (F.M.)
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy; (P.P.); (A.M.); (R.S.)
| | - Chiara Casadio
- Medical Oncology, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (S.C.); (C.C.); (L.G.); (M.R.); (A.M.); (E.T.); (F.M.)
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy; (P.P.); (A.M.); (R.S.)
| | - Linda Galvani
- Medical Oncology, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (S.C.); (C.C.); (L.G.); (M.R.); (A.M.); (E.T.); (F.M.)
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy; (P.P.); (A.M.); (R.S.)
| | - Matteo Rosellini
- Medical Oncology, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (S.C.); (C.C.); (L.G.); (M.R.); (A.M.); (E.T.); (F.M.)
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy; (P.P.); (A.M.); (R.S.)
| | - Andrea Marchetti
- Medical Oncology, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (S.C.); (C.C.); (L.G.); (M.R.); (A.M.); (E.T.); (F.M.)
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy; (P.P.); (A.M.); (R.S.)
| | - Elisa Tassinari
- Medical Oncology, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (S.C.); (C.C.); (L.G.); (M.R.); (A.M.); (E.T.); (F.M.)
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy; (P.P.); (A.M.); (R.S.)
| | - Pietro Piazza
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy; (P.P.); (A.M.); (R.S.)
- Division of Urology, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Angelo Mottaran
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy; (P.P.); (A.M.); (R.S.)
- Division of Urology, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Matteo Santoni
- Oncology Unit, Macerata Hospital, 62100 Macerata, Italy;
| | - Riccardo Schiavina
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy; (P.P.); (A.M.); (R.S.)
- Division of Urology, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Francesco Massari
- Medical Oncology, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (S.C.); (C.C.); (L.G.); (M.R.); (A.M.); (E.T.); (F.M.)
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy; (P.P.); (A.M.); (R.S.)
| | - Veronica Mollica
- Medical Oncology, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (S.C.); (C.C.); (L.G.); (M.R.); (A.M.); (E.T.); (F.M.)
| |
Collapse
|
9
|
Alekseeva ON, Hoa LT, Vorobyev PO, Kochetkov DV, Gumennaya YD, Naberezhnaya ER, Chuvashov DO, Ivanov AV, Chumakov PM, Lipatova AV. Receptors and Host Factors for Enterovirus Infection: Implications for Cancer Therapy. Cancers (Basel) 2024; 16:3139. [PMID: 39335111 PMCID: PMC11430599 DOI: 10.3390/cancers16183139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/29/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Enteroviruses, with their diverse clinical manifestations ranging from mild or asymptomatic infections to severe diseases such as poliomyelitis and viral myocarditis, present a public health threat. However, they can also be used as oncolytic agents. This review shows the intricate relationship between enteroviruses and host cell factors. Enteroviruses utilize specific receptors and coreceptors for cell entry that are critical for infection and subsequent viral replication. These receptors, many of which are glycoproteins, facilitate virus binding, capsid destabilization, and internalization into cells, and their expression defines virus tropism towards various types of cells. Since enteroviruses can exploit different receptors, they have high oncolytic potential for personalized cancer therapy, as exemplified by the antitumor activity of certain enterovirus strains including the bioselected non-pathogenic Echovirus type 7/Rigvir, approved for melanoma treatment. Dissecting the roles of individual receptors in the entry of enteroviruses can provide valuable insights into their potential in cancer therapy. This review discusses the application of gene-targeting techniques such as CRISPR/Cas9 technology to investigate the impact of the loss of a particular receptor on the attachment of the virus and its subsequent internalization. It also summarizes the data on their expression in various types of cancer. By understanding how enteroviruses interact with specific cellular receptors, researchers can develop more effective regimens of treatment, offering hope for more targeted and efficient therapeutic strategies.
Collapse
Affiliation(s)
- Olga N. Alekseeva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (O.N.A.); (P.O.V.); (D.V.K.); (Y.D.G.); (E.R.N.); (D.O.C.); (P.M.C.)
| | - Le T. Hoa
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Pavel O. Vorobyev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (O.N.A.); (P.O.V.); (D.V.K.); (Y.D.G.); (E.R.N.); (D.O.C.); (P.M.C.)
| | - Dmitriy V. Kochetkov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (O.N.A.); (P.O.V.); (D.V.K.); (Y.D.G.); (E.R.N.); (D.O.C.); (P.M.C.)
| | - Yana D. Gumennaya
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (O.N.A.); (P.O.V.); (D.V.K.); (Y.D.G.); (E.R.N.); (D.O.C.); (P.M.C.)
| | - Elizaveta R. Naberezhnaya
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (O.N.A.); (P.O.V.); (D.V.K.); (Y.D.G.); (E.R.N.); (D.O.C.); (P.M.C.)
| | - Denis O. Chuvashov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (O.N.A.); (P.O.V.); (D.V.K.); (Y.D.G.); (E.R.N.); (D.O.C.); (P.M.C.)
| | - Alexander V. Ivanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (O.N.A.); (P.O.V.); (D.V.K.); (Y.D.G.); (E.R.N.); (D.O.C.); (P.M.C.)
| | - Peter M. Chumakov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (O.N.A.); (P.O.V.); (D.V.K.); (Y.D.G.); (E.R.N.); (D.O.C.); (P.M.C.)
| | - Anastasia V. Lipatova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (O.N.A.); (P.O.V.); (D.V.K.); (Y.D.G.); (E.R.N.); (D.O.C.); (P.M.C.)
| |
Collapse
|
10
|
Iyer K, Ivanov J, Tenchov R, Ralhan K, Rodriguez Y, Sasso JM, Scott S, Zhou QA. Emerging Targets and Therapeutics in Immuno-Oncology: Insights from Landscape Analysis. J Med Chem 2024; 67:8519-8544. [PMID: 38787632 PMCID: PMC11181335 DOI: 10.1021/acs.jmedchem.4c00568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/03/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024]
Abstract
In the ever-evolving landscape of cancer research, immuno-oncology stands as a beacon of hope, offering novel avenues for treatment. This study capitalizes on the vast repository of immuno-oncology-related scientific documents within the CAS Content Collection, totaling over 350,000, encompassing journals and patents. Through a pioneering approach melding natural language processing with the CAS indexing system, we unveil over 300 emerging concepts, depicted in a comprehensive "Trend Landscape Map". These concepts, spanning therapeutic targets, biomarkers, and types of cancers among others, are hierarchically organized into eight major categories. Delving deeper, our analysis furnishes detailed quantitative metrics showcasing growth trends over the past three years. Our findings not only provide valuable insights for guiding future research endeavors but also underscore the merit of tapping the vast and unparalleled breadth of existing scientific information to derive profound insights.
Collapse
Affiliation(s)
| | - Julian Ivanov
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | - Rumiana Tenchov
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | | | - Yacidzohara Rodriguez
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | - Janet M. Sasso
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | - Sabina Scott
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | | |
Collapse
|
11
|
Balmaceda NB, Petrillo A, Krishnan M, Zhao JJ, Kim S, Klute KA, Sundar R. State-of-the-Art Advancements in Gastroesophageal Cancer Treatment: Harnessing Biomarkers for Precision Care. Am Soc Clin Oncol Educ Book 2024; 44:e431060. [PMID: 38771996 DOI: 10.1200/edbk_431060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Gastroesophageal cancers (GECs) represent a significant clinical challenge. For early resectable GEC, the integration of immune checkpoint inhibitors into the perioperative chemotherapy and chemoradiation treatment paradigms are being explored and showing promising results. Frontline management of metastatic GEC is exploring the role of targeted therapies beyond PD-1 inhibitors, including anti-human epidermal growth factor receptor 2 agents, Claudin 18.2 inhibitors, and FGFR2 inhibitors, which have shown considerable efficacy in recent trials. Looking ahead, ongoing trials and emerging technologies such as bispecific antibodies, antibody-drug conjugates, and adoptive cell therapies like chimeric antigen receptor T cells are expected to define the future of GEC management. These advancements signify a paradigm shift toward personalized and immunotherapy-based approaches, offering the potential for improved outcomes and reduced toxicity for patients with GEC.
Collapse
Affiliation(s)
- Nicole Baranda Balmaceda
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | | | - Mridula Krishnan
- Division of Oncology and Hematology, Department of Medicine, University of Nebraska Medical Center, Omaha, NB
| | - Joseph J Zhao
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Hematology-Oncology, National University Cancer Institute, Singapore
- Department of Medicine, National University Hospital, Singapore, Singapore
| | - Sunnie Kim
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Kelsey A Klute
- Division of Oncology and Hematology, Department of Medicine, University of Nebraska Medical Center, Omaha, NB
| | - Raghav Sundar
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Hematology-Oncology, National University Cancer Institute, Singapore
| |
Collapse
|
12
|
Lu C, Tan Y. Promising immunotherapy targets: TIM3, LAG3, and TIGIT joined the party. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200773. [PMID: 38596295 PMCID: PMC10905042 DOI: 10.1016/j.omton.2024.200773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Immune checkpoint inhibitors (ICIs) have shown great promise as immunotherapy for restoring T cell function and reactivating anti-tumor immunity. The US Food and Drug Administration (FDA) approved the first immune checkpoint inhibitor, ipilimumab, in 2011 for advanced melanoma patients, leading to significant improvements in survival rates. Subsequently, other immune checkpoint-targeting antibodies were tested. Currently, seven ICIs, namely ipilimumab (anti-cytotoxic T lymphocyte-associated protein 4 [CTLA4]), pembrolizumab, nivolumab (anti-programmed cell death protein 1 [PD-1]), atezolizumab, avelumab, durvalumab, and cemiplimab (anti-PD-L1), have been approved for various cancer types. However, the efficacy of antibodies targeting CTLA4 or PD-1/programmed death-ligand 1 (PD-L1) remains suboptimal. Consequently, ongoing studies are evaluating the next generation of ICIs, such as lymphocyte activation gene-3 (LAG3), T cell immunoglobulin and mucin-domain containing 3 (TIM3), and T cell immunoglobulin and ITIM domain (TIGIT). Our review provides a summary of clinical trials evaluating these novel immune checkpoints in cancer treatment.
Collapse
Affiliation(s)
- Chenyu Lu
- Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Yuanyan Tan
- Institute of Advanced Biotechnology and School of Medicine, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Shenzhen University, Shenzhen 518061, Guangdong, China
| |
Collapse
|
13
|
Yu Y, Zhang F, Xiao W, Cheng Q, Li T, Tang J, Tao W, Mei L. Adaptive Design of Nanovesicles Overcoming Immunotherapeutic Limitations of Chemotherapeutic Drugs through Poliovirus Receptor Blockade. ACS NANO 2024. [PMID: 38324591 DOI: 10.1021/acsnano.3c13056] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Chemotherapy is currently a widely used treatment for cancer in clinical settings. Some chemotherapeutic drugs such as oxaliplatin (OXA) can cause tumor immunogenic cell death (ICD), activate immunity, and realize chemoimmunotherapy for tumors. However, the low degree of accumulation and immunosuppressive microenvironment in tumors limit the immunotherapeutic efficacy of these drugs. T cell immunoreceptor with Ig and ITIM domains (TIGIT)/poliovirus receptor (PVR) is an inhibitory immune checkpoint pathway involved in mediating natural killer (NK) cell and T cell exhaustion in tumors. TIGIT expression is up-regulated in NK cells and CD8+ T cells during tumor development. Moreover, we first found that tumors upregulated PVR expression after OXA treatment in previous work. Here, we systematically analyzed the effects of OXA on the TIGIT/PVR pathway, further proving the effectiveness of the combination of OXA and TIGIT/PVR blocking combination. We developed engineered TIGIT-expressing cell membrane nanovesicles loaded with OXA (OXA@TIGIT MVs) for synergistic cancer therapy. OXA@TIGIT showed good efficacy in several cancer models, leading to tumor regression, effectively inhibiting tumor growth and prolonging mouse survival. Furthermore, the OXA@TIGIT MVs activate a strong tumor-specific immune response in the body, providing long-term (more than 2 months) protection from tumor reactivation in the B16F10 melanoma rechallenge mouse model.
Collapse
Affiliation(s)
- Yongkang Yu
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, PR China
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen 518107, PR China
| | - Fan Zhang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, PR China
| | - Wenqing Xiao
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, PR China
| | - Qinzhen Cheng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen 518107, PR China
| | - Tingxuan Li
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, PR China
| | - Jing Tang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen 518107, PR China
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Lin Mei
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, PR China
| |
Collapse
|
14
|
Geng Q, Jiao P. Anti-PD-L1-Based Bispecific Antibodies Targeting Co-Inhibitory and Co-Stimulatory Molecules for Cancer Immunotherapy. Molecules 2024; 29:454. [PMID: 38257366 PMCID: PMC10819708 DOI: 10.3390/molecules29020454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/07/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Targeting PD-L1 via monospecific antibodies has shown durable clinical benefits and long-term remissions where patients exhibit no clinical cancer signs for many years after treatment. However, the durable clinical benefits and long-term remissions by anti-PD-L1 monotherapy have been limited to a small fraction of patients with certain cancer types. Targeting PD-L1 via bispecific antibodies (referred to as anti-PD-L1-based bsAbs) which can simultaneously bind to both co-inhibitory and co-stimulatory molecules may increase the durable antitumor responses in patients who would not benefit from PD-L1 monotherapy. A growing number of anti-PD-L1-based bsAbs have been developed to fight against this deadly disease. This review summarizes recent advances of anti-PD-L1-based bsAbs for cancer immunotherapy in patents and literatures, and discusses their anti-tumor efficacies in vitro and in vivo. Over 50 anti-PD-L1-based bsAbs targeting both co-inhibitory and co-stimulatory molecules have been investigated in biological testing or in clinical trials since 2017. At least eleven proteins, such as CTLA-4, LAG-3, PD-1, PD-L2, TIM-3, TIGIT, CD28, CD27, OX40, CD137, and ICOS, are involved in these investigations. Twenty-two anti-PD-L1-based bsAbs are being evaluated to treat various advanced cancers in clinical trials, wherein the indications include NSCLC, SNSCLC, SCLC, PDA, MBNHL, SCCHN, UC, EC, TNBC, CC, and some other malignancies. The released data from clinical trials indicated that most of the anti-PD-L1-based bsAbs were well-tolerated and showed promising antitumor efficacy in patients with advanced solid tumors. However, since the approved and investigational bsAbs have shown much more significant adverse reactions compared to PD-L1 monospecific antibodies, anti-PD-L1-based bsAbs may be further optimized via molecular structure modification to avoid or reduce these adverse reactions.
Collapse
Affiliation(s)
- Qiaohong Geng
- School of Chemistry and Chemical Engineering, Qilu Normal University, Jinan 250200, China
| | - Peifu Jiao
- School of Chemistry and Chemical Engineering, Qilu Normal University, Jinan 250200, China
| |
Collapse
|
15
|
Patwekar M, Sehar N, Patwekar F, Medikeri A, Ali S, Aldossri RM, Rehman MU. Novel immune checkpoint targets: A promising therapy for cancer treatments. Int Immunopharmacol 2024; 126:111186. [PMID: 37979454 DOI: 10.1016/j.intimp.2023.111186] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 11/20/2023]
Abstract
The immune system frequently comprises immunological checkpoints. They serve as a barrier to keep the immune system from overreacting and damaging cells that are robust. Immune checkpoint inhibitors (ICIs) are utilized in immunotherapy to prevent the synergy of partner proteins of checkpoint proteins with auxiliary proteins. Moreover, the T cells may target malignant cells since the "off" signal cannot be conveyed. ICIs, which are mostly composed of monoclonal antibodies (mAbs) against cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) and anti- programmed death-1/programmed ligand 1 (anti-PD-1/PD-L1), might transform the context of cancer therapy. Further, more patients continued to exhibit adaptive resistance, even though several ICIs demonstrated convincing therapeutic benefits in selective tumor types. Immune checkpoint therapy's overall effectiveness is still lacking at this time. A popular area of study involves investigating additional immune checkpoint molecules. Recent research has found a number of fresh immune checkpoint targets, including NKG2A ligands, TIGIT, B7-H6 ligands, Galectin 3, TIM3, and so on. These targets have been focus of the study, and recent investigational approaches have shown encouraging outcomes. In this review article, we covered the development and present level understanding of these recently identified immune checkpoint molecules, its effectiveness and limitations.
Collapse
Affiliation(s)
| | - Nouroz Sehar
- Centre for Translational and Clinical Research, School of Chemical and Life Sciences, Jamia Hamdard University, New Delhi, 110062, India
| | - Faheem Patwekar
- Luqman College of Pharmacy, Gulbarga, 585102, Karnataka, India
| | | | - Shafat Ali
- Cytogenetics and Molecular Biology Laboratory, Centre of Research for Development, University of Kashmir, Srinagar, 190006, Jammu and Kashmir, India.
| | - Rana M Aldossri
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Muneeb U Rehman
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
16
|
Osegueda A, Polo ML, Baquero L, Urioste A, Ghiglione Y, Paz S, Poblete G, Gonzalez Polo V, Turk G, Quiroga MF, Laufer N. Markers of Natural Killer Cell Exhaustion in HIV/HCV Coinfection and Their Dynamics After HCV Clearance Mediated by Direct-Acting Antivirals. Open Forum Infect Dis 2023; 10:ofad591. [PMID: 38107019 PMCID: PMC10723816 DOI: 10.1093/ofid/ofad591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 11/20/2023] [Indexed: 12/19/2023] Open
Abstract
Background Liver fibrosis is a leading cause of morbimortality in people with HIV/hepatitis C virus (HCV). Natural killer (NK) cells are linked with amelioration of liver fibrosis; however, NK cells from individuals coinfected with HIV/HCV with cirrhosis display impaired functionality and high PD-1 expression. Here, we aimed to study PD-1, TIGIT, and Tim3 as potential exhaustion markers in NK cells from persons coinfected with HIV/HCV with mild and advanced liver fibrosis. We also evaluated the role of PD-1 expression on NK cells after HCV clearance by direct-acting antivirals (DAAs). Methods Peripheral blood mononuclear cells were isolated from individuals coinfected with HIV/HCV (N = 54; METAVIR F0/F1, n = 27; F4, evaluated by transient elastography, n = 27). In 26 participants, samples were collected before, at the end of, and 12 months after successful DAA treatment. The frequency, immunophenotype (PD-1, TIGIT, and Tim3 expression), and degranulation capacity (CD107a assay) of NK cells were determined by flow cytometry. Results Unlike PD-1, Tim3 and TIGIT were comparably expressed between persons with mild and advanced fibrosis. Degranulation capacity was diminished in NK/TIGIT+ cells in both fibrosis stages, while NK/PD-1+ cells showed a lower CD107a expression in cirrhotic cases. Twelve months after DAA treatment, those with advanced fibrosis showed an improved NK cell frequency and reduced NK/PD-1+ cell frequency but no changes in CD107a expression. In individuals with mild fibrosis, neither PD-1 nor NK cell frequency was modified, although the percentage of NK/CD107a+ cells was improved at 12 months posttreatment. Conclusions Although DAA improved exhaustion and frequency of NK cells in cirrhotic cases, functionality was reverted only in mild liver fibrosis, remarking the importance of an early DAA treatment.
Collapse
Affiliation(s)
- Ariel Osegueda
- CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Medicina. Buenos Aires, Argentina
| | - Maria Laura Polo
- CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Medicina. Buenos Aires, Argentina
| | - Lucia Baquero
- CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Microbiología, Parasitología e Inmunología, Buenos Aires, Argentina
| | - Alejandra Urioste
- CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Medicina. Buenos Aires, Argentina
| | - Yanina Ghiglione
- CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Medicina. Buenos Aires, Argentina
| | - Silvia Paz
- Hospital Francisco Javier Muñiz, Buenos Aires, Argentina
| | | | - Virginia Gonzalez Polo
- CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Medicina. Buenos Aires, Argentina
| | - Gabriela Turk
- CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Microbiología, Parasitología e Inmunología, Buenos Aires, Argentina
| | - Maria Florencia Quiroga
- CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Microbiología, Parasitología e Inmunología, Buenos Aires, Argentina
| | - Natalia Laufer
- CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Microbiología, Parasitología e Inmunología, Buenos Aires, Argentina
| |
Collapse
|
17
|
Chen C, Cheng Y, Lei H, Feng X, Zhang H, Qi L, Wan J, Xu H, Zhao X, Zhang Y, Yang B. SHP2 potentiates anti-PD-1 effectiveness through intervening cell pyroptosis resistance in triple-negative breast cancer. Biomed Pharmacother 2023; 168:115797. [PMID: 37913735 DOI: 10.1016/j.biopha.2023.115797] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/14/2023] [Accepted: 10/26/2023] [Indexed: 11/03/2023] Open
Abstract
Triple negative breast cancer (TNBC) presents a formidable challenge due to the lack of effective treatment modalities. Immunotherapy stands as a promising therapeutic approach; however, the emergence of drug resistance mechanisms within tumor cells, particularly those targeting apoptosis and pyroptosis, has hampered its clinical efficacy. SHP2 is intricately involved in diverse physiological processes, including immune cell proliferation, infiltration, and tumor progression. Nevertheless, the precise contribution of SHP2 to tumor cell pyroptosis resistance remains inadequately understood. Herein, we demonstrate that SHP2 inhibition hampers the proliferative, migratory, and invasive capabilities of TNBC, accompanied by noticeable alterations in cellular membrane architecture. Mechanistically, we provide evidence that SHP2 depletion triggers the activation of Caspase-1 and GSDMD, resulting in GSDMD-dependent release of LDH, IL-1β, and IL-18. Furthermore, computational analyses and co-localization investigations substantiate the hypothesis that SHP2 may hinder pyroptosis through direct binding to JNK, thereby impeding JNK phosphorylation. Our cellular experiments further corroborate these findings by demonstrating that JNK inhibition rescues pyroptosis induced by SHP2 knockdown. Strikingly, in vivo experiments validate the suppressive impact of SHP2 knockdown on tumor progression via enhanced JNK phosphorylation. Additionally, SHP2 knockdown augments tumor sensitivity to anti-PD-1 therapy, thus reinforcing the pro-pyroptotic effects and inhibiting tumor growth. In summary, our findings elucidate the mechanism by which SHP2 governs TNBC pyroptosis, underscoring the potential of SHP2 inhibition to suppress cell pyroptosis resistance and its utility as an adjunctive agent for tumor immunotherapy.
Collapse
Affiliation(s)
- Chao Chen
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, 126 Ximin street, Chaoyang District, Changchun, Jilin 130021, China
| | - Yuanyuan Cheng
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University, 157 Baojian Rd, Nangang District, Harbin, Heilongjiang 150081, China
| | - Haoqi Lei
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University, 157 Baojian Rd, Nangang District, Harbin, Heilongjiang 150081, China
| | - Xuefei Feng
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University, 157 Baojian Rd, Nangang District, Harbin, Heilongjiang 150081, China
| | - Hongxia Zhang
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University, 157 Baojian Rd, Nangang District, Harbin, Heilongjiang 150081, China
| | - Lingling Qi
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University, 157 Baojian Rd, Nangang District, Harbin, Heilongjiang 150081, China
| | - Jufeng Wan
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University, 157 Baojian Rd, Nangang District, Harbin, Heilongjiang 150081, China
| | - Haiying Xu
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University, 157 Baojian Rd, Nangang District, Harbin, Heilongjiang 150081, China
| | - Xin Zhao
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University, 157 Baojian Rd, Nangang District, Harbin, Heilongjiang 150081, China.
| | - Yan Zhang
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University, 157 Baojian Rd, Nangang District, Harbin, Heilongjiang 150081, China.
| | - Baofeng Yang
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, 126 Ximin street, Chaoyang District, Changchun, Jilin 130021, China.
| |
Collapse
|
18
|
Chen Y, Li H, Fan Y. Shaping the tumor immune microenvironment of SCLC: Mechanisms, and opportunities for immunotherapy. Cancer Treat Rev 2023; 120:102606. [PMID: 37579532 DOI: 10.1016/j.ctrv.2023.102606] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/25/2023] [Accepted: 08/05/2023] [Indexed: 08/16/2023]
Abstract
Small-cell lung cancer (SCLC) is a very aggressive neuroendocrine tumor with a poor prognosis. Whereas immunotherapy has emerged as a promising approach for treating SCLC, its unique tumor immune microenvironment (TIME) might limit patient responses. To fully characterize the TIME and understand the mechanism of its formation with respect to SCLC is crucial. The recent rapid development of multi-omics technologies has rapidly advanced knowledge of TIME features and the regulatory mechanisms associated with SCLC. This review summarizes the TIME features of SCLC as well as shaping the TIME according to the genomics, epigenomics, and metabolomics of tumors. Future opportunities and challenges for immunotherapy are also discussed.
Collapse
Affiliation(s)
- Yunfei Chen
- Department of Thoracic Medical Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China; Postgraduate Training base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, China
| | - Hui Li
- Department of Thoracic Medical Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China; Postgraduate Training base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, China.
| | - Yun Fan
- Department of Thoracic Medical Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China; Postgraduate Training base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, China.
| |
Collapse
|
19
|
Tsumura A, Levis D, Tuscano JM. Checkpoint inhibition in hematologic malignancies. Front Oncol 2023; 13:1288172. [PMID: 37920162 PMCID: PMC10619902 DOI: 10.3389/fonc.2023.1288172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 10/04/2023] [Indexed: 11/04/2023] Open
Abstract
Checkpoint inhibitor therapy has emerged as an effective therapeutic strategy for many types of malignancies, especially in solid tumors. Within the last two decades, numerous monoclonal antibody drugs targeting the CTLA-4 and PD-1/PD-L1 checkpoint pathways have seen FDA approval. Within hematologic malignancies, Hodgkin Lymphoma has seen the greatest clinical benefits thus far with more recent data showing efficacy in the front-line setting. As our understanding of checkpoint inhibition expands, using these pathways as a therapeutic target has shown some utility in the treatment of other hematologic malignancies as well, primarily in the relapsed/refractory settings. Checkpoint inhibition also appears to have a role as a synergistic agent to augment clinical responses to other forms of therapy such as hematopoietic stem cell transplant. Moreover, alternative checkpoint molecules that bypass the well-studied CTLA-4 and PD-1/PD-L1 pathways have emerged as exciting new therapeutic targets. Most excitingly is the use of anti-CD47 blockade in the treatment of high risk MDS and TP-53 mutated AML. Overall, there has been tremendous progress in understanding the benefits of checkpoint inhibition in hematologic malignancies, but further studies are needed in all areas to best utilize these agents. This is a review of the most recent developments and progress in Immune Checkpoint Inhibition in Hematologic Malignancies in the last decade.
Collapse
Affiliation(s)
- Aaron Tsumura
- Division of Malignant Hematology/Cellular Therapy and Transplantation, University of California Davis, Sacramento, CA, United States
| | - Daniel Levis
- School of Medicine, University of California Davis, Sacramento, CA, United States
| | - Joseph M. Tuscano
- Division of Malignant Hematology/Cellular Therapy and Transplantation, University of California Davis, Sacramento, CA, United States
- School of Medicine, University of California Davis, Sacramento, CA, United States
| |
Collapse
|
20
|
Yadav R, Hakobyan N, Wang JC. Role of Next Generation Immune Checkpoint Inhibitor (ICI) Therapy in Philadelphia Negative Classic Myeloproliferative Neoplasm (MPN): Review of the Literature. Int J Mol Sci 2023; 24:12502. [PMID: 37569880 PMCID: PMC10420159 DOI: 10.3390/ijms241512502] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/17/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
The Philadelphia chromosome-negative (Ph-) myeloproliferative neoplasms (MPNs), which include essential thrombocythemia (ET), polycythemia vera (PV), and myelofibrosis (MF), are enduring and well-known conditions. These disorders are characterized by the abnormal growth of one or more hematopoietic cell lineages in the body's stem cells, leading to the enlargement of organs and the manifestation of constitutional symptoms. Numerous studies have provided evidence indicating that the pathogenesis of these diseases involves the dysregulation of the immune system and the presence of chronic inflammation, both of which are significant factors. Lately, the treatment of cancer including hematological malignancy has progressed on the agents aiming for the immune system, cytokine environment, immunotherapy agents, and targeted immune therapy. Immune checkpoints are the molecules that regulate T cell function in the tumor microenvironment (TME). The first line of primary immune checkpoints are programmed cell death-1 (PD-1)/programmed cell death ligand-1 (PD-L1), and cytotoxic T-lymphocyte antigen-4 (CTLA-4). Immune checkpoint inhibitor therapy (ICIT) exerts its anti-tumor actions by blocking the inhibitory pathways in T cells and has reformed cancer treatment. Despite the impressive clinical success of ICIT, tumor internal resistance poses a challenge for oncologists leading to a low response rate in solid tumors and hematological malignancies. A Phase II trial on nivolumab for patients with post-essential thrombocythemia myelofibrosis, primary myelofibrosis, or post-polycythemia myelofibrosis was performed (Identifier: NCT02421354). This trial tested the efficacy of a PD-1 blockade agent, namely nivolumab, but was terminated prematurely due to adverse events and lack of efficacy. A multicenter, Phase II, single-arm open-label study was conducted including pembrolizumab in patients with primary thrombocythemia, post-essential thrombocythemia or post-polycythemia vera myelofibrosis that were ineligible for or were previously treated with ruxolitinib. This study showed that pembrolizumab treatment did not have many adverse events, but there were no pertinent clinical responses hence it was terminated after the first stage was completed. To avail the benefits from immunotherapy, the paradigm has shifted to new immune checkpoints in the TME such as lymphocyte activation gene-3 (LAG-3), T cell immunoglobulin and mucin domain 3 (TIM-3), T cell immunoglobulin and ITIM domain (TIGIT), V-domain immunoglobulin-containing suppressor of T cell activation (VISTA), and human endogenous retrovirus-H long terminal repeat-associating protein 2 (HHLA2) forming the basis of next-generation ICIT. The primary aim of this article is to underscore and elucidate the significance of next-generation ICIT in the context of MPN. Specifically, we aim to explore the potential of monoclonal antibodies as targeted immunotherapy and the development of vaccines targeting specific MPN epitopes, with the intent of augmenting tumor-related immune responses. It is anticipated that these therapeutic modalities rooted in immunotherapy will not only expand but also enhance the existing treatment regimens for patients afflicted with MPN. Preliminary studies from our laboratory showed over-expressed MDSC and over-expressed VISTA in MDSC, and in progenitor and immune cells directing the need for more clinical trials using next-generation ICI in the treatment of MPN.
Collapse
Affiliation(s)
- Ruchi Yadav
- Department of Internal Medicine, Brookdale University Hospital Medical Center, Brooklyn, NY 11212, USA; (R.Y.); (N.H.)
| | - Narek Hakobyan
- Department of Internal Medicine, Brookdale University Hospital Medical Center, Brooklyn, NY 11212, USA; (R.Y.); (N.H.)
| | - Jen-Chin Wang
- Department of Hematology/Oncology, Brookdale University Hospital Medical Center, Brooklyn, NY 11212, USA
| |
Collapse
|
21
|
Pawłowska A, Rekowska A, Kuryło W, Pańczyszyn A, Kotarski J, Wertel I. Current Understanding on Why Ovarian Cancer Is Resistant to Immune Checkpoint Inhibitors. Int J Mol Sci 2023; 24:10859. [PMID: 37446039 DOI: 10.3390/ijms241310859] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
The standard treatment of ovarian cancer (OC) patients, including debulking surgery and first-line chemotherapy, is unsatisfactory because of recurrent episodes in the majority (~70%) of patients with advanced OC. Clinical trials have shown only a modest (10-15%) response of OC individuals to treatment based on immune checkpoint inhibitors (ICIs). The resistance of OC to therapy is caused by various factors, including OC heterogeneity, low density of tumor-infiltrating lymphocytes (TILs), non-cellular and cellular interactions in the tumor microenvironment (TME), as well as a network of microRNA regulating immune checkpoint pathways. Moreover, ICIs are the most efficient in tumors that are marked by high microsatellite instability and high tumor mutation burden, which is rare among OC patients. The great challenge in ICI implementation is connected with distinguishing hyper-, pseudo-, and real progression of the disease. The understanding of the immunological, molecular, and genetic mechanisms of OC resistance is crucial to selecting the group of OC individuals in whom personalized treatment would be beneficial. In this review, we summarize current knowledge about the selected factors inducing OC resistance and discuss the future directions of ICI-based immunotherapy development for OC patients.
Collapse
Affiliation(s)
- Anna Pawłowska
- Independent Laboratory of Cancer Diagnostics and Immunology, Department of Oncological Gynaecology and Gynaecology, Faculty of Medicine, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland
| | - Anna Rekowska
- Students' Scientific Association, Independent Laboratory of Cancer Diagnostics and Immunology, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland
| | - Weronika Kuryło
- Students' Scientific Association, Independent Laboratory of Cancer Diagnostics and Immunology, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland
| | - Anna Pańczyszyn
- Institute of Medical Sciences, Department of Biology and Genetics, Faculty of Medicine, University of Opole, Oleska 48, 45-052 Opole, Poland
| | - Jan Kotarski
- Independent Laboratory of Cancer Diagnostics and Immunology, Department of Oncological Gynaecology and Gynaecology, Faculty of Medicine, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland
| | - Iwona Wertel
- Independent Laboratory of Cancer Diagnostics and Immunology, Department of Oncological Gynaecology and Gynaecology, Faculty of Medicine, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland
| |
Collapse
|
22
|
Weng D, Guo R, Zhu Z, Gao Y, An R, Zhou X. Peptide-based PET imaging agent of tumor TIGIT expression. EJNMMI Res 2023; 13:38. [PMID: 37129788 PMCID: PMC10154443 DOI: 10.1186/s13550-023-00982-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 04/07/2023] [Indexed: 05/03/2023] Open
Abstract
BACKGROUND Accumulating studies have demonstrated that elevated TIGIT expression in tumor microenvironment correlates with better therapeutic response to TIGIT-based immunotherapy in pre-clinical studies. Therefore, a non-invasive method to detect tumor TIGIT expression is crucial to predict the therapeutic effect. METHODS In this study, a peptide-based PET imaging agent, 68Ga-DOTA-DTBP-3, was developed to non-invasively detect TIGIT expression by micro-PET in tumor-bearing BALB/c mice. DTBP-3, a D-peptide comprising of 12 amino acids, was radiolabeled with 68Ga through a DOTA chelator. In vitro studies were performed to evaluate the affinity of 68Ga-DOTA-DTBP-3 to TIGIT and its stability in fetal bovine serum. In vivo studies were assessed by micro-PET, biodistribution, and immunohistochemistry on tumor-bearing BALB/c mice. RESULTS The in vitro studies showed the equilibrium dissociation constant of 68Ga-DOTA-DTBP-3 for TIGIT was 84.21 nM and its radiochemistry purity was 89.24 ± 1.82% in FBS at 4 h in room temperature. The results of micro-PET, biodistribution and immunohistochemistry studies indicated that 68Ga-DOTA-DTBP-3 could be specifically targeted in 4T1 tumor-bearing mice, with a highest uptake at 0.5 h. CONCLUSION 68Ga-DOTA-DTBP-3 holds potential for non-invasively detect tumor TIGIT expression and for timely assessment of the therapeutic effect of immune checkpoint blockade.
Collapse
Affiliation(s)
- Dinghu Weng
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China.
| | - Rong Guo
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430000, Hubei, China
| | - Ziyang Zhu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430000, Hubei, China
| | - Yu Gao
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430000, Hubei, China
| | - Rui An
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430000, Hubei, China
| | - Xiuman Zhou
- School of Pharmaceutical Sciences (Shenzhen), SunYat-Sen University, Shenzhen, 518107, Guangdong, China
| |
Collapse
|
23
|
Li H, Zhang J, Su C, Yang Z, Mei X, Zhang Z, Tian X, Wang S. Dynamic changes in TIGIT expression on the T-cell surface and TIGIT-mediated T-cell dysfunction in the brains of mice with chronic Toxoplasma gondii infection. Acta Trop 2023; 241:106871. [PMID: 36863503 DOI: 10.1016/j.actatropica.2023.106871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/09/2023] [Accepted: 02/26/2023] [Indexed: 03/04/2023]
Abstract
The immunosuppressive receptor TIGIT plays a vital role in the regulation of the immune system's response to pathogens. However, the expression pattern of this receptor in mouse brains during infection with Toxoplasma gondii cysts is not known. Here, we provide evidence of immunological changes and TIGIT expression in infected mouse brains through flow cytometry and QPCR. The obtained results show that TIGIT expression on brain T cells rose considerably after infection. T. gondii infection triggered the conversion of TIGIT+ TCM cells to TIGIT+ TEM cells and reduced their cytotoxicity. During the whole period of T. gondii infection, high intensity and persistent expression of IFN-γ and TNF-α in brain and serum of mice. This study shows that chronic T. gondii infection increases TIGIT expression on brain T cells and affects their immune function.
Collapse
Affiliation(s)
- Haoran Li
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Jing Zhang
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Changwei Su
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Zhenke Yang
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Xuefang Mei
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Zhenchao Zhang
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Xiaowei Tian
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China.
| | - Shuai Wang
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China.
| |
Collapse
|
24
|
Zhang C, Zhang C, Wang H. Immune-checkpoint inhibitor resistance in cancer treatment: Current progress and future directions. Cancer Lett 2023; 562:216182. [PMID: 37076040 DOI: 10.1016/j.canlet.2023.216182] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 04/21/2023]
Abstract
Cancer treatment has been advanced with the advent of immune checkpoint inhibitors (ICIs) exemplified by anti-cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), anti-programmed cell death protein 1 (PD-1) and programmed cell death ligand 1 (PD-L1) drugs. Patients have reaped substantial benefit from ICIs in many cancer types. However, few patients benefit from ICIs whereas the vast majority undergoing these treatments do not obtain survival benefit. Even for patients with initial responses, they may encounter drug resistance in their subsequent treatments, which limits the efficacy of ICIs. Therefore, a deepening understanding of drug resistance is critically important for the explorations of approaches to reverse drug resistance and to boost ICI efficacy. In the present review, different mechanisms of ICI resistance have been summarized according to the tumor intrinsic, tumor microenvironment (TME) and host classifications. We further elaborated corresponding strategies to battle against such resistance accordingly, which include targeting defects in antigen presentation, dysregulated interferon-γ (IFN-γ) signaling, neoantigen depletion, upregulation of other T cell checkpoints as well as immunosuppression and exclusion mediated by TME. Moreover, regarding the host, several additional approaches that interfere with diet and gut microbiome have also been described in reversing ICI resistance. Additionally, we provide an overall glimpse into the ongoing clinical trials that utilize these mechanisms to overcome ICI resistance. Finally, we summarize the challenges and opportunities that needs to be addressed in the investigation of ICI resistance mechanisms, with the aim to benefit more patients with cancer.
Collapse
Affiliation(s)
- Chenyue Zhang
- Department of Integrated Therapy, Fudan University Shanghai Cancer Center, Shanghai Medical College, Shanghai, China
| | - Chenxing Zhang
- Department of Nephrology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haiyong Wang
- Department of Internal Medicine-Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.
| |
Collapse
|
25
|
Zeng P, Shen D, Shu W, Min S, Shu M, Yao X, Wang Y, Chen R. Identification of a novel peptide targeting TIGIT to evaluate immunomodulation of 125I seed brachytherapy in HCC by near-infrared fluorescence. Front Oncol 2023; 13:1143266. [PMID: 37124530 PMCID: PMC10141647 DOI: 10.3389/fonc.2023.1143266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/28/2023] [Indexed: 05/02/2023] Open
Abstract
Introduction Hepatocellular carcinoma (HCC) has very poor prognosis due to its immunosuppressive properties. An effective measure to regulate tumor immunity is brachytherapy, which uses 125I seeds planted into tumor. T cell immune receptors with immunoglobulin and ITIM domains (TIGIT) is highly expressed in HCC. The TIGIT-targeted probe is expected to be an effective tool for indicating immunomodulation of 125I seed brachytherapy in HCC. In this study, We constructed a novel peptide targeting TIGIT to evaluate the immune regulation of 125I seed brachytherapy for HCC by near-infrared fluorescence (NIRF). Methods Expression of TIGIT by immunofluorescence (IF) and flow cytometry (FCM) in different part and different differentiated human liver cancer tissues was verified. An optical fluorescence probe (Po-12) containing a NIRF dye and TIGIT peptide was synthesized for evaluating the modulatory effect of 125I seed brachytherapy. Lymphocytes uptake by Po-12 were detected by FCM and confocal microscopy. The distribution and accumulation of Po-12 in vivo were explored by NIRF imaging in subcutaneous and orthotopic tumors. IHC and IF staining were used to verify the expression of TIGIT in the tumors. Results TIGIT was highly expressed in HCC and increased with tumor differentiation. The dye-labeled peptide (Po-12) retained a stable binding affinity for the TIGIT protein in vitro. Accumulation of fluorescence intensity (FI) increased with time extended in subcutaneous H22 tumors, and the optimal point is 1 h. TIGIT was highly expressed on lymphocytes infiltrated in tumors and could be suppressed by 125I seed brachytherapy. Accumulation of Po-12-Cy5 was increased in tumor-bearing groups while declined in 125I radiation group.
Collapse
Affiliation(s)
- Peng Zeng
- Department of Oncology, Zhongda Hospital, Medical School, Southeast University, Nanjing, Jiangsu, China
| | - Duo Shen
- Department of Gastroenterology, The Second People’s Hospital of Changzhou, Nanjing Medical University, Changzhou, Jiangsu, China
| | - Wenbin Shu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Shudan Min
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, Jiangsu, China
| | - Min Shu
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, Jiangsu, China
| | - Xijuan Yao
- Center of Interventional Radiology and Vascular Surgery, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, Jiangsu, China
| | - Yong Wang
- Center of Interventional Radiology and Vascular Surgery, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, Jiangsu, China
| | - Rong Chen
- Department of Oncology, Zhongda Hospital, Medical School, Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|
26
|
Zhu W, Li Y, Han M, Jiang J. Regulatory Mechanisms and Reversal of CD8+T Cell Exhaustion: A Literature Review. BIOLOGY 2023; 12:biology12040541. [PMID: 37106742 PMCID: PMC10135681 DOI: 10.3390/biology12040541] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/27/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023]
Abstract
CD8+T cell exhaustion is a state of T cell dysfunction during chronic infection and tumor progression. Exhausted CD8+T cells are characterized by low effector function, high expression of inhibitory receptors, unique metabolic patterns, and altered transcriptional profiles. Recently, advances in understanding and interfering with the regulatory mechanisms associated with T cell exhaustion in tumor immunotherapy have brought greater attention to the field. Therefore, we emphasize the typical features and related mechanisms of CD8+T cell exhaustion and particularly the potential for its reversal, which has clinical implications for immunotherapy.
Collapse
Affiliation(s)
- Wanwan Zhu
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, Fourth Military Medical University, Xi’an 710000, China
| | - Yiming Li
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, Fourth Military Medical University, Xi’an 710000, China
| | - Mingwei Han
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, Fourth Military Medical University, Xi’an 710000, China
| | - Jianli Jiang
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, Fourth Military Medical University, Xi’an 710000, China
| |
Collapse
|
27
|
Oncogenic role and potential regulatory mechanism of fatty acid binding protein 5 based on a pan-cancer analysis. Sci Rep 2023; 13:4060. [PMID: 36906605 PMCID: PMC10008585 DOI: 10.1038/s41598-023-30695-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 02/28/2023] [Indexed: 03/13/2023] Open
Abstract
As one member of fatty acid binding proteins (FABPs), FABP5 makes a contribution in the occurrence and development of several tumor types, but existing analysis about FABP5 and FABP5-related molecular mechanism remains limited. Meanwhile, some tumor patients showed limited response rates to current immunotherapy, and more potential targets need to be explored for the improvement of immunotherapy. In this study, we made a pan-cancer analysis of FABP5 based on the clinical data from The Cancer Genome Atlas database for the first time. FABP5 overexpression was observed in many tumor types, and was statistically associated with poor prognosis of several tumor types. Additionally, we further explored FABP5-related miRNAs and corresponding lncRNAs. Then, miR-577-FABP5 regulatory network in kidney renal clear cell carcinoma as well as CD27-AS1/GUSBP11/SNHG16/TTC28-AS1-miR-22-3p-FABP5 competing endogenous RNA regulatory network in liver hepatocellular carcinoma were constructed. Meanwhile, Western Blot and reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) analysis were used to verify miR-22-3p-FABP5 relationship in LIHC cell lines. Moreover, the potential relationships of FABP5 with immune infiltration and six immune checkpoints (CD274, CTLA4, HAVCR2, LAG3, PDCD1 and TIGIT) were discovered. Our work not only deepens the understanding of FABP5's functions in multiple tumors and supplements existing FABP5-related mechanisms, but also provides more possibilities for immunotherapy.
Collapse
|
28
|
Starska-Kowarska K. The Role of Different Immunocompetent Cell Populations in the Pathogenesis of Head and Neck Cancer-Regulatory Mechanisms of Pro- and Anti-Cancer Activity and Their Impact on Immunotherapy. Cancers (Basel) 2023; 15:1642. [PMID: 36980527 PMCID: PMC10046400 DOI: 10.3390/cancers15061642] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/10/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is one of the most aggressive and heterogeneous groups of human neoplasms. HNSCC is characterized by high morbidity, accounting for 3% of all cancers, and high mortality with ~1.5% of all cancer deaths. It was the most common cancer worldwide in 2020, according to the latest GLOBOCAN data, representing the seventh most prevalent human malignancy. Despite great advances in surgical techniques and the application of modern combinations and cytotoxic therapies, HNSCC remains a leading cause of death worldwide with a low overall survival rate not exceeding 40-60% of the patient population. The most common causes of death in patients are its frequent nodal metastases and local neoplastic recurrences, as well as the relatively low response to treatment and severe drug resistance. Much evidence suggests that the tumour microenvironment (TME), tumour infiltrating lymphocytes (TILs) and circulating various subpopulations of immunocompetent cells, such regulatory T cells (CD4+CD25+Foxp3+Tregs), cytotoxic CD3+CD8+ T cells (CTLs) and CD3+CD4+ T helper type 1/2/9/17 (Th1/Th2/Th9/Th17) lymphocytes, T follicular helper cells (Tfh) and CD56dim/CD16bright activated natural killer cells (NK), carcinoma-associated fibroblasts (CAFs), myeloid-derived suppressor cells (MDSCs), tumour-associated neutrophils (N1/N2 TANs), as well as tumour-associated macrophages (M1/M2 phenotype TAMs) can affect initiation, progression and spread of HNSCC and determine the response to immunotherapy. Rapid advances in the field of immuno-oncology and the constantly growing knowledge of the immunosuppressive mechanisms and effects of tumour cancer have allowed for the use of effective and personalized immunotherapy as a first-line therapeutic procedure or an essential component of a combination therapy for primary, relapsed and metastatic HNSCC. This review presents the latest reports and molecular studies regarding the anti-tumour role of selected subpopulations of immunocompetent cells in the pathogenesis of HNSCC, including HPV+ve (HPV+) and HPV-ve (HPV-) tumours. The article focuses on the crucial regulatory mechanisms of pro- and anti-tumour activity, key genetic or epigenetic changes that favour tumour immune escape, and the strategies that the tumour employs to avoid recognition by immunocompetent cells, as well as resistance mechanisms to T and NK cell-based immunotherapy in HNSCC. The present review also provides an overview of the pre- and clinical early trials (I/II phase) and phase-III clinical trials published in this arena, which highlight the unprecedented effectiveness and limitations of immunotherapy in HNSCC, and the emerging issues facing the field of HNSCC immuno-oncology.
Collapse
Affiliation(s)
- Katarzyna Starska-Kowarska
- Department of Physiology, Pathophysiology and Clinical Immunology, Department of Clinical Physiology, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland; ; Tel.: +48-604-541-412
- Department of Otorhinolaryngology, EnelMed Center Expert, Drewnowska 58, 91-001 Lodz, Poland
| |
Collapse
|
29
|
Zhao X, Wang Y, Jiang X, Mo B, Wang C, Tang M, Rong Y, Zhang G, Hu M, Cai H. Comprehensive analysis of the role of ICOS ( CD278 ) in pan-cancer prognosis and immunotherapy. BMC Cancer 2023; 23:194. [PMID: 36855091 PMCID: PMC9971684 DOI: 10.1186/s12885-023-10564-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/19/2023] [Indexed: 03/02/2023] Open
Abstract
BACKGROUND The immunological checkpoint known as Inducible T Cell Costimulatory Factor (ICOS, Cluster of Differentiation, CD278) is activated and expressed on T cells. Both somatic cells and antigen-presenting cells expressed its ligand, ICOSL (including tumor cells in the tumor microenvironment).It is important for immunosuppression. Uncertainty surrounds the function of ICOS in tumor immunity. METHODS Several bioinformatics techniques were employed by us to thoroughly examine the expression and prognostic value of ICOS in 33 cancers based on data collected from TCGA and GTEx. In addition, ICOS was explored with pathological stage, tumor-infiltrating cells, immune checkpoint genes, mismatch repair (MMR) genes, DNA methyltransferases (DNMTs), microsatellite instability (MSI),and tumor mutation burden (TMB).In addition,To ascertain the level of ICOS expression in various cells, qRT-PCR was employed. RESULTS The findings revealed that ICOS expression was up regulation in most cancer types. The high expression of ICOS in tumor samples was related to the poor prognosis of UVM and LGG; The positive prognosis was boosted by the strong expression of ICOS in OV, SARC, SKCM, THYM, UCEC, and HNSC. The result is that the expression of malignancy was revealed by the immune cells' invasion.profile of ICOS in different types of cancer. Different ways that ICOS expression is connected to immune cell infiltration account for variations in patient survival. Additionally, the TMB, MSI, MMR, and DNMT genes as well as ICOS expression are linked in many cancer types.The results of PCR showed that it is highly expressed in gastric, breast, liver and renal cell carcinoma cell lines compared with normal cells. CONCLUSION This study suggests that ICOS may be a potential tumor immunotherapy target and prognostic marker.
Collapse
Affiliation(s)
- Xiashuang Zhao
- grid.417234.70000 0004 1808 3203The First Clinical Medical College of Gansu, University of Chinese Medicine (Gansu Provincial Hospital), 730000 Lanzhou, Gansu China ,grid.417234.70000 0004 1808 3203General Surgery Clinical Medical Center, Gansu Provincial Hospital, 730000 Lanzhou, Gansu China ,grid.417234.70000 0004 1808 3203Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, 730000 Gansu, China ,grid.417234.70000 0004 1808 3203NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, 730000 Lanzhou, China
| | - Yongfeng Wang
- grid.417234.70000 0004 1808 3203General Surgery Clinical Medical Center, Gansu Provincial Hospital, 730000 Lanzhou, Gansu China ,grid.417234.70000 0004 1808 3203Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, 730000 Gansu, China ,grid.417234.70000 0004 1808 3203NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, 730000 Lanzhou, China ,grid.412643.60000 0004 1757 2902The First Clinical Medical College of Lanzhou University, 204 Donggang West Road, 730000 Lanzhou, Gansu China
| | - Xianglai Jiang
- grid.417234.70000 0004 1808 3203General Surgery Clinical Medical Center, Gansu Provincial Hospital, 730000 Lanzhou, Gansu China ,Graduate School, Ning Xia Medical University, 750004 Yinchuan, Ningxia China
| | - Bangqian Mo
- grid.417234.70000 0004 1808 3203The First Clinical Medical College of Gansu, University of Chinese Medicine (Gansu Provincial Hospital), 730000 Lanzhou, Gansu China ,grid.417234.70000 0004 1808 3203General Surgery Clinical Medical Center, Gansu Provincial Hospital, 730000 Lanzhou, Gansu China
| | - Chenyu Wang
- Graduate School, Ning Xia Medical University, 750004 Yinchuan, Ningxia China
| | - Mingzheng Tang
- grid.417234.70000 0004 1808 3203The First Clinical Medical College of Gansu, University of Chinese Medicine (Gansu Provincial Hospital), 730000 Lanzhou, Gansu China ,grid.417234.70000 0004 1808 3203General Surgery Clinical Medical Center, Gansu Provincial Hospital, 730000 Lanzhou, Gansu China
| | - Yao Rong
- grid.417234.70000 0004 1808 3203The First Clinical Medical College of Gansu, University of Chinese Medicine (Gansu Provincial Hospital), 730000 Lanzhou, Gansu China ,grid.417234.70000 0004 1808 3203General Surgery Clinical Medical Center, Gansu Provincial Hospital, 730000 Lanzhou, Gansu China
| | - Guiqian Zhang
- grid.417234.70000 0004 1808 3203The First Clinical Medical College of Gansu, University of Chinese Medicine (Gansu Provincial Hospital), 730000 Lanzhou, Gansu China ,grid.417234.70000 0004 1808 3203General Surgery Clinical Medical Center, Gansu Provincial Hospital, 730000 Lanzhou, Gansu China
| | - Ming Hu
- Gansu Provincial Hospital, 730000, Lanzhou, Gansu, China.
| | - Hui Cai
- General Surgery Clinical Medical Center, Gansu Provincial Hospital, 730000, Lanzhou, Gansu, China. .,Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, 730000, Gansu, China. .,NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, 730000, Lanzhou, China. .,The First Clinical Medical College of Lanzhou University, 204 Donggang West Road, 730000, Lanzhou, Gansu, China. .,Gansu Provincial Hospital, 730000, Lanzhou, Gansu, China.
| |
Collapse
|
30
|
Borovcanin MM, Vesić K, Arsenijević D, Milojević-Rakić M, Mijailović NR, Jovanovic IP. Targeting Underlying Inflammation in Carcinoma Is Essential for the Resolution of Depressiveness. Cells 2023; 12:710. [PMID: 36899845 PMCID: PMC10000718 DOI: 10.3390/cells12050710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/03/2023] [Accepted: 02/22/2023] [Indexed: 02/26/2023] Open
Abstract
In modern clinical practice and research on behavioral changes in patients with oncological problems, there are several one-sided approaches to these problems. Strategies for early detection of behavioral changes are considered, but they must take into account the specifics of the localization and phase in the course and treatment of somatic oncological disease. Behavioral changes, in particular, may correlate with systemic proinflammatory changes. In the up-to-date literature, there are a lot of useful pointers on the relationship between carcinoma and inflammation and between depression and inflammation. This review is intended to provide an overview of these similar underlying inflammatory disturbances in both oncological disease and depression. The specificities of acute and chronic inflammation are considered as a basis for causal current and future therapies. Modern therapeutic oncology protocols may also cause transient behavioral changes, so assessment of the quality, quantity, and duration of behavioral symptoms is necessary to prescribe adequate therapy. Conversely, antidepressant properties could be used to ameliorate inflammation. We will attempt to provide some impetus and present some unconventional potential treatment targets related to inflammation. It is certain that only an integrative oncology approach is justifiable in modern patient treatment.
Collapse
Affiliation(s)
- Milica M. Borovcanin
- Department of Psychiatry, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Katarina Vesić
- Department of Neurology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Dragana Arsenijević
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | | | - Nataša R. Mijailović
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Ivan P. Jovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| |
Collapse
|
31
|
Jantz-Naeem N, Böttcher-Loschinski R, Borucki K, Mitchell-Flack M, Böttcher M, Schraven B, Mougiakakos D, Kahlfuss S. TIGIT signaling and its influence on T cell metabolism and immune cell function in the tumor microenvironment. Front Oncol 2023; 13:1060112. [PMID: 36874131 PMCID: PMC9982004 DOI: 10.3389/fonc.2023.1060112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 01/11/2023] [Indexed: 02/19/2023] Open
Abstract
One of the key challenges for successful cancer therapy is the capacity of tumors to evade immune surveillance. Tumor immune evasion can be accomplished through the induction of T cell exhaustion via the activation of various immune checkpoint molecules. The most prominent examples of immune checkpoints are PD-1 and CTLA-4. Meanwhile, several other immune checkpoint molecules have since been identified. One of these is the T cell immunoglobulin and ITIM domain (TIGIT), which was first described in 2009. Interestingly, many studies have established a synergistic reciprocity between TIGIT and PD-1. TIGIT has also been described to interfere with the energy metabolism of T cells and thereby affect adaptive anti-tumor immunity. In this context, recent studies have reported a link between TIGIT and the hypoxia-inducible factor 1-α (HIF1-α), a master transcription factor sensing hypoxia in several tissues including tumors that among others regulates the expression of metabolically relevant genes. Furthermore, distinct cancer types were shown to inhibit glucose uptake and effector function by inducing TIGIT expression in CD8+ T cells, resulting in an impaired anti-tumor immunity. In addition, TIGIT was associated with adenosine receptor signaling in T cells and the kynurenine pathway in tumor cells, both altering the tumor microenvironment and T cell-mediated immunity against tumors. Here, we review the most recent literature on the reciprocal interaction of TIGIT and T cell metabolism and specifically how TIGIT affects anti-tumor immunity. We believe understanding this interaction may pave the way for improved immunotherapy to treat cancer.
Collapse
Affiliation(s)
- Nouria Jantz-Naeem
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Romy Böttcher-Loschinski
- Department of Hematology and Oncology, University Hospital Magdeburg, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Katrin Borucki
- Institute of Clinical Chemistry, Department of Pathobiochemistry, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Marisa Mitchell-Flack
- Department of Oncology, The Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Martin Böttcher
- Department of Hematology and Oncology, University Hospital Magdeburg, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Burkhart Schraven
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Dimitrios Mougiakakos
- Department of Hematology and Oncology, University Hospital Magdeburg, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Sascha Kahlfuss
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke-University, Magdeburg, Germany
| |
Collapse
|
32
|
Liu Z, Shi M, Ren Y, Xu H, Weng S, Ning W, Ge X, Liu L, Guo C, Duo M, Li L, Li J, Han X. Recent advances and applications of CRISPR-Cas9 in cancer immunotherapy. Mol Cancer 2023; 22:35. [PMID: 36797756 PMCID: PMC9933290 DOI: 10.1186/s12943-023-01738-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/01/2023] [Indexed: 02/18/2023] Open
Abstract
The incidence and mortality of cancer are the major health issue worldwide. Apart from the treatments developed to date, the unsatisfactory therapeutic effects of cancers have not been addressed by broadening the toolbox. The advent of immunotherapy has ushered in a new era in the treatments of solid tumors, but remains limited and requires breaking adverse effects. Meanwhile, the development of advanced technologies can be further boosted by gene analysis and manipulation at the molecular level. The advent of cutting-edge genome editing technology, especially clustered regularly interspaced short palindromic repeats (CRISPR-Cas9), has demonstrated its potential to break the limits of immunotherapy in cancers. In this review, the mechanism of CRISPR-Cas9-mediated genome editing and a powerful CRISPR toolbox are introduced. Furthermore, we focus on reviewing the impact of CRISPR-induced double-strand breaks (DSBs) on cancer immunotherapy (knockout or knockin). Finally, we discuss the CRISPR-Cas9-based genome-wide screening for target identification, emphasis the potential of spatial CRISPR genomics, and present the comprehensive application and challenges in basic research, translational medicine and clinics of CRISPR-Cas9.
Collapse
Affiliation(s)
- Zaoqu Liu
- grid.412633.10000 0004 1799 0733Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China ,grid.207374.50000 0001 2189 3846Interventional Institute of Zhengzhou University, Zhengzhou, 450052 Henan China ,grid.412633.10000 0004 1799 0733Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, 450052 Henan China
| | - Meixin Shi
- grid.412633.10000 0004 1799 0733Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Yuqing Ren
- grid.412633.10000 0004 1799 0733Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Hui Xu
- grid.412633.10000 0004 1799 0733Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Siyuan Weng
- grid.412633.10000 0004 1799 0733Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Wenjing Ning
- grid.207374.50000 0001 2189 3846Department of Emergency Center, Zhengzhou University People’s Hospital, Zhengzhou, 450003 Henan China
| | - Xiaoyong Ge
- grid.412633.10000 0004 1799 0733Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Long Liu
- grid.412633.10000 0004 1799 0733Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Chunguang Guo
- grid.412633.10000 0004 1799 0733Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Mengjie Duo
- grid.412633.10000 0004 1799 0733Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Lifeng Li
- grid.412633.10000 0004 1799 0733Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Jing Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China. .,Interventional Institute of Zhengzhou University, Zhengzhou, 450052, Henan, China. .,Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
33
|
Ni JJ, Zhang ZZ, Ge MJ, Chen JY, Zhuo W. Immune-based combination therapy to convert immunologically cold tumors into hot tumors: an update and new insights. Acta Pharmacol Sin 2023; 44:288-307. [PMID: 35927312 PMCID: PMC9889774 DOI: 10.1038/s41401-022-00953-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/03/2022] [Indexed: 02/04/2023]
Abstract
As a breakthrough strategy for cancer treatment, immunotherapy mainly consists of immune checkpoint inhibitors (ICIs) and other immunomodulatory drugs that provide a durable protective antitumor response by stimulating the immune system to fight cancer. However, due to the low response rate and unique toxicity profiles of immunotherapy, the strategies of combining immunotherapy with other therapies have attracted enormous attention. These combinations are designed to exert potent antitumor effects by regulating different processes in the cancer-immunity cycle. To date, immune-based combination therapy has achieved encouraging results in numerous clinical trials and has received Food and Drug Administration (FDA) approval for certain cancers with more studies underway. This review summarizes the emerging strategies of immune-based combination therapy, including combinations with another immunotherapeutic strategy, radiotherapy, chemotherapy, anti-angiogenic therapy, targeted therapy, bacterial therapy, and stroma-targeted therapy. Here, we highlight the rationale of immune-based combination therapy, the biomarkers and the clinical progress for these immune-based combination therapies.
Collapse
Affiliation(s)
- Jiao-Jiao Ni
- Department of Cell Biology and Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- Department of Gastroenterology, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institution of Gastroenterology, Zhejiang University, Hangzhou, 310016, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Zi-Zhen Zhang
- Department of Gastroenterology, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institution of Gastroenterology, Zhejiang University, Hangzhou, 310016, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Ming-Jie Ge
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Hangzhou, 310006, China
| | - Jing-Yu Chen
- Department of Gastroenterology, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institution of Gastroenterology, Zhejiang University, Hangzhou, 310016, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Wei Zhuo
- Department of Cell Biology and Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
- Institution of Gastroenterology, Zhejiang University, Hangzhou, 310016, China.
- Cancer Center, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
34
|
Zhang W, Xu K, Li Z, Wang L, Chen H. Tumor immune microenvironment components and the other markers can predict the efficacy of neoadjuvant chemotherapy for breast cancer. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2023; 25:1579-1593. [PMID: 36652115 DOI: 10.1007/s12094-023-03075-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 01/06/2023] [Indexed: 01/19/2023]
Abstract
Breast cancer is an epithelial malignant tumor that occurs in the terminal ducts of the breast. Neoadjuvant chemotherapy (NACT) is an important part of breast cancer treatment. Its purpose is to use systemic treatment for some locally advanced breast cancer patients, to decrease the tumor size and clinical stage so that non-operable breast cancer patients can have a chance to access surgical treatment, or patients who are not suitable for breast-conserving surgery can get the opportunity of breast-conserving. However, some patients who do not respond to NACT will lead deterioration in their condition. Therefore, prediction of NACT efficacy in breast cancer is vital for precision therapy. The tumor microenvironment (TME) has a crucial role in the carcinogenesis and therapeutic response of breast cancer. In this review, we summarized the immune cells, immune checkpoints, and other biomarkers in the TME that can evaluate the efficacy of NACT in treating breast cancer. We believe that the detection and evaluation of the TME components in breast cancer are helpful to predict the efficacy of NACT, and the prediction methods are in the prospect. In addition, we also summarized other predictive factors of NACT, such as imaging examination, biochemical markers, and multigene/multiprotein profiling.
Collapse
Affiliation(s)
- Weiqian Zhang
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, People's Republic of China.,Department of Pathology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, People's Republic of China
| | - Ke Xu
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, People's Republic of China.,Department of Pathology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, People's Republic of China
| | - Zhengfa Li
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, People's Republic of China.,Department of Pathology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, People's Republic of China
| | - Linwei Wang
- Department of Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, People's Republic of China
| | - Honglei Chen
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, People's Republic of China. .,Department of Pathology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, People's Republic of China.
| |
Collapse
|
35
|
Yang X, Cao Q, Ma B, Xia Y, Liu M, Tian J, Chen J, Su C, Duan X. Probiotic powder ameliorates colorectal cancer by regulating Bifidobacterium animalis, Clostridium cocleatum, and immune cell composition. PLoS One 2023; 18:e0277155. [PMID: 36913356 PMCID: PMC10010516 DOI: 10.1371/journal.pone.0277155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 10/20/2022] [Indexed: 03/14/2023] Open
Abstract
Based on the relationship between the gut microbiota and colorectal cancer, we developed a new probiotic powder for treatment of colorectal cancer. Initially, we evaluated the effect of the probiotic powder on CRC using hematoxylin and eosin staining, and evaluated mouse survival rate and tumor size. We then investigated the effects of the probiotic powder on the gut microbiota, immune cells, and apoptotic proteins using 16S rDNA sequencing, flow cytometry, and western blot, respectively. The results showed that the probiotic powder improved the intestinal barrier integrity, survival rate, and reduced tumor size in CRC mice. This effect was associated with changes in the gut microbiota. Specifically, the probiotic powder increased the abundance of Bifidobacterium animalis and reduced the abundance of Clostridium cocleatum. In addition, the probiotic powder resulted in decreased numbers of CD4+ Foxp3+ Treg cells, increased numbers of IFN-γ+ CD8+ T cells and CD4+ IL-4+ Th2 cells, decreased expression of the TIGIT in CD4+ IL-4+ Th2 cells, and increased numbers of CD19+ GL-7+ B cells. Furthermore, the expression of the pro-apoptotic protein BAX was significantly increased in tumor tissues in response to the probiotic powder. In summary, the probiotic powder ameliorated CRC by regulating the gut microbiota, reducing Treg cell abundance, promoting the number of IFN-γ+ CD8+ T cells, increasing Th2 cell abundance, inhibiting the expression of TIGIT in Th2 cells, and increasing B cell abundance in the immune microenvironment of CRC, thereby increasing the expression of BAX in CRC.
Collapse
Affiliation(s)
- Xiaojuan Yang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Qian Cao
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Bin Ma
- Department of Oncology Surgery, The First People's Hospital of Yinchuan, Yinchuan, China
| | - Yuhan Xia
- Department of Nutrition, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Miao Liu
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Jinhua Tian
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | | | - Chunxia Su
- Department of Pathogen Biology and Immunology, School of Basic Medical Science, Ningxia Medical University, Yinchuan, China
| | - Xiangguo Duan
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, China.,Department of Laboratory Surgery, General Hospital of Ningxia Medical University, Yinchuan, China
| |
Collapse
|
36
|
Skopelidou V, Strakoš J, Škarda J, Raška M, Kafková-Rašková L. Potential predictors of immunotherapy in small cell lung cancer. Pathol Oncol Res 2023; 29:1611086. [PMID: 37206058 PMCID: PMC10191143 DOI: 10.3389/pore.2023.1611086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 04/18/2023] [Indexed: 05/21/2023]
Abstract
Lung cancer is one of the leading causes of cancer-related deaths worldwide, with small cell lung cancer (SCLC) having the worst prognosis. SCLC is diagnosed late in the disease's progression, limiting treatment options. The most common treatment for SCLC is chemotherapy. As the disease progresses, immunotherapy, most commonly checkpoint inhibitor medication, becomes more important. Efforts should be made in the development of immunotherapy to map specific biomarkers, which play a role in properly assigning a type of immunotherapy to the right cohort of patients, where the benefits outweigh any risks or adverse effects. The objective of this review was to provide a thorough assessment of current knowledge about the nature of the tumor process and treatment options for small cell lung cancer, with a focus on predictive biomarkers. According to the information obtained, the greatest potential, which has already been directly demonstrated in some studies, has characteristics such as tumor microenvironment composition, tumor mutation burden, and molecular subtyping of SCLC. Several other aspects appear to be promising, but more research, particularly prospective studies on a larger number of probands, is required. However, it is clear that this field of study will continue to expand, as developing a reliable method to predict immunotherapy response is a very appealing goal of current medicine and research in the field of targeted cancer therapy.
Collapse
Affiliation(s)
- Valeria Skopelidou
- Institute of Molecular and Clinical Pathology and Medical Genetics, University Hospital Ostrava, Ostrava, Czechia
- Institute of Molecular and Clinical Pathology and Medical Genetics, Faculty of Medicine, University of Ostrava, Ostrava, Czechia
- *Correspondence: Valeria Skopelidou,
| | - Jan Strakoš
- Institute of Molecular and Clinical Pathology and Medical Genetics, University Hospital Ostrava, Ostrava, Czechia
- Institute of Molecular and Clinical Pathology and Medical Genetics, Faculty of Medicine, University of Ostrava, Ostrava, Czechia
| | - Jozef Škarda
- Institute of Molecular and Clinical Pathology and Medical Genetics, University Hospital Ostrava, Ostrava, Czechia
- Institute of Molecular and Clinical Pathology and Medical Genetics, Faculty of Medicine, University of Ostrava, Ostrava, Czechia
- Department of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czechia
| | - Milan Raška
- Department of Immunology, Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czechia
- Department of Immunology, University Hospital Olomouc, Olomouc, Czechia
| | - Leona Kafková-Rašková
- Department of Immunology, Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czechia
- Department of Immunology, University Hospital Olomouc, Olomouc, Czechia
| |
Collapse
|
37
|
Jarroudi OA, Bairi KE, Curigliano G, Afqir S. Immune-Checkpoint Inhibitors: A New Line of Attack in Triple-Negative Breast Cancer. Cancer Treat Res 2023; 188:29-62. [PMID: 38175341 DOI: 10.1007/978-3-031-33602-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Poor prognosis is a distinctive feature of triple-negative breast cancer (TNBC). Chemotherapy has long represented the main and unique treatment for patients with TNBC. Recently, immune checkpoint inhibitors (ICIs) were investigated in several clinical trials and were approved for clinical use in TNBC patients that express programmed cell death protein-1 (PD-1) in combination with chemotherapy in the first-line setting. ICIs are also being investigated in the neoadjuvant and adjuvant settings for TNBC. This chapter aims to discuss different ICIs used to treat all TNBC stages to date.
Collapse
Affiliation(s)
- Ouissam Al Jarroudi
- Faculty of Medicine and Pharmacy, Mohammed Ist University, Oujda, Morocco.
- Department of Medical Oncology, Mohammed VI University Hospital, Oujda, Morocco.
| | - Khalid El Bairi
- Faculty of Medicine and Pharmacy, Mohammed Ist University, Oujda, Morocco
- Department of Medical Oncology, Mohammed VI University Hospital, Oujda, Morocco
| | - Giuseppe Curigliano
- European Institute of Oncology, IRCCS, Milan, Italy
- Department of Oncology and Hematology, University of Milan, Milan, Italy
| | - Said Afqir
- Faculty of Medicine and Pharmacy, Mohammed Ist University, Oujda, Morocco
- Department of Medical Oncology, Mohammed VI University Hospital, Oujda, Morocco
| |
Collapse
|
38
|
Jin S, Zhang Y, Zhou F, Chen X, Sheng J, Zhang J. TIGIT: A promising target to overcome the barrier of immunotherapy in hematological malignancies. Front Oncol 2022; 12:1091782. [PMID: 36605439 PMCID: PMC9807865 DOI: 10.3389/fonc.2022.1091782] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
Immune evasion through up-regulating checkpoint inhibitory receptors on T cells plays an essential role in tumor initiation and progression. Therefore, immunotherapy, including immune checkpoint inhibitor targeting programmed cell death protein 1 (PD-1) and chimeric antigen receptor T cell (CAR-T) therapy, has become a promising strategy for hematological malignancies. T cell immunoreceptor with immunoglobulin and ITIM domain (TIGIT) is a novel checkpoint inhibitory receptor expressed on immune cells, including cytotoxic T cells, regulatory T cells, and NK cells. TIGIT participates in immune regulation via binding to its ligand CD155. Blockage of TIGIT has provided evidence of considerable efficacy in solid tumors in preclinical research and clinical trials, especially when combined with PD-1 inhibition. However, the mechanism and function of TIGIT in hematological malignancies have not been comprehensively studied. In this review, we focus on the role of TIGIT in hematological malignancies and discuss therapeutic strategies targeting TIGIT, which may provide a promising immunotherapy target for hematological malignancies.
Collapse
Affiliation(s)
- Shenhe Jin
- Department of Hematology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ye Zhang
- Department of Hematology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Fengping Zhou
- Department of Hematology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaochang Chen
- Department of Hematology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jianpeng Sheng
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Jin Zhang
- Department of Hematology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
39
|
Pawłowska A, Skiba W, Suszczyk D, Kuryło W, Jakubowicz-Gil J, Paduch R, Wertel I. The Dual Blockade of the TIGIT and PD-1/PD-L1 Pathway as a New Hope for Ovarian Cancer Patients. Cancers (Basel) 2022; 14:5757. [PMID: 36497240 PMCID: PMC9740841 DOI: 10.3390/cancers14235757] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/17/2022] [Accepted: 11/19/2022] [Indexed: 11/25/2022] Open
Abstract
The prognosis for ovarian cancer (OC) patients is poor and the five-year survival rate is only 47%. Immune checkpoints (ICPs) appear to be the potential targets in up-and-coming OC treatment. However, the response of OC patients to immunotherapy based on programmed cell death pathway (PD-1/PD-L1) inhibitors totals only 6-15%. The promising approach is a combined therapy, including other ICPs such as the T-cell immunoglobulin and ITIM domain/CD155/DNAX accessory molecule-1 (TIGIT/CD155/DNAM-1) axis. Preclinical studies in a murine model of colorectal cancer showed that the dual blockade of PD-1/PD-L1 and TIGIT led to remission in the whole studied group vs. the regression of the tumors with the blockade of a single pathway. The approach stimulates the effector activity of T cells and NK cells, and redirects the immune system activity against the tumor. The understanding of the synergistic action of the TIGIT and PD-1/PD-L1 blockade is, however, poor. Thus, the aim of this review is to summarize the current knowledge about the mode of action of the dual TIGIT and PD-1/PD-L1 blockade and its potential benefits for OC patients. Considering the positive impact of this combined therapy in malignancies, including lung and colorectal cancer, it appears to be a promising approach in OC treatment.
Collapse
Affiliation(s)
- Anna Pawłowska
- Independent Laboratory of Cancer Diagnostics and Immunology, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Wiktoria Skiba
- Independent Laboratory of Cancer Diagnostics and Immunology, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Dorota Suszczyk
- Independent Laboratory of Cancer Diagnostics and Immunology, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Weronika Kuryło
- Students’ Scientific Association, Independent Laboratory of Cancer Diagnostics and Immunology, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Joanna Jakubowicz-Gil
- Department of Functional Anatomy and Cytobiology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Roman Paduch
- Department of Virology and Immunology, Institute of Microbiology and Biotechnology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Iwona Wertel
- Independent Laboratory of Cancer Diagnostics and Immunology, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| |
Collapse
|
40
|
[Research Progress of Immune Checkpoint TIGIT in Lung Cancer Immunotherapy]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2022; 25:819-827. [PMID: 36419396 PMCID: PMC9720676 DOI: 10.3779/j.issn.1009-3419.2022.102.45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
T cell immunoreceptor with immunoglobulin and immunoreceptor tyrosine-based inhibition motif domain (TIGIT) is a newly discovered immune checkpoint molecule, mainly expressed on the surface of T cells and natural killer (NK) cells. By binding to cluster of differentiation 155 (CD155) and other ligands, it inhibits T cell and NK cell-mediated immune responses and affects the tumor microenvironment. Multiple preclinical studies have demonstrated that the TIGIT/CD155 pathway plays a role in a variety of solid and hematological tumors. Clinical trials investigating TIGIT inhibitors alone or in combination with programmed cell death 1 (PD-1)/programmed cell death ligand 1 (PD-L1) inhibitors for lung cancer are currently underway.
.
Collapse
|
41
|
Aghbash PS, Hemmat N, Fathi H, Baghi HB. Monoclonal antibodies in cervical malignancy-related HPV. Front Oncol 2022; 12:904790. [PMID: 36276117 PMCID: PMC9582116 DOI: 10.3389/fonc.2022.904790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 09/20/2022] [Indexed: 11/20/2022] Open
Abstract
Despite many efforts to treat HPV infection, cervical cancer survival is still poor for several reasons, including resistance to chemotherapy and relapse. Numerous treatments such as surgery, radiation therapy, immune cell-based therapies, siRNA combined with various drugs, and immunotherapy are being studied and performed to provide the best treatment. Depending on the stage and size of the tumor, methods such as radical hysterectomy, pelvic lymphadenectomy, or chemotherapy can be utilized to treat cervical cancer. While accepted, these treatments lead to interruptions in cellular pathways and immune system homeostasis. In addition to a low survival rate, cervical neoplasm incidence has been rising significantly. However, new strategies have been proposed to increase patient survival while reducing the toxicity of chemotherapy, including targeted therapy and monoclonal antibodies. In this article, we discuss the types and potential therapeutic roles of monoclonal antibodies in cervical cancer.
Collapse
Affiliation(s)
- Parisa Shiri Aghbash
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nima Hemmat
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamidreza Fathi
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tabriz, Iran
| | - Hossein Bannazadeh Baghi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
42
|
Zhang J, Li F, Yin Y, Liu N, Zhu M, Zhang H, Liu W, Yang M, Qin S, Fan X, Yang Y, Zhang K, Yu F. Alpha radionuclide-chelated radioimmunotherapy promoters enable local radiotherapy/chemodynamic therapy to discourage cancer progression. Biomater Res 2022; 26:44. [PMID: 36076298 PMCID: PMC9461185 DOI: 10.1186/s40824-022-00290-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/28/2022] [Indexed: 12/07/2022] Open
Abstract
BACKGROUND Astatine-211 is an α-emitter with high-energy α-ray and high cytotoxicity for cancer cells. However, the targeted alpha therapy (TAT) also suffers from insufficient systematic immune activation, resulting in tumor metastasis and relapse. Combined immune checkpoint blockade (ICB) with chemodynamic therapy (CDT) could boost antitumor immunity, which may magnify the immune responses of TAT. This study aims to discourage tumor metastasis and relapse by tri-model TAT-CDT-ICB strategy. METHODS We successfully designed Mn-based radioimmunotherapy promoters (211At-ATE-MnO2-BSA), which are consisting of 211At, MnO2 and bovine serum albumin (BSA). The efficacy of 211At-ATE-MnO2-BSA was studied as monotherapy or in combination with anti-PD-L1 in both metastatic and relapse models. The immune effects of radioimmunotherapy promoters on cytotoxic T lymphocytes and dendritic cells (DCs) were analyzed by flow cytometry. Enzyme-linked immunosorbent assay and immunofluorescence were used to explore the underlying mechanism. RESULTS Such radioimmunotherapy promoters could not only enhance the therapeutic outcomes of TAT and CDT, but also induce robust anti-cancer immune activity by activating dendritic cells. More intriguingly, 211At-ATE-MnO2-BSA could effectively suppress the growths of primary tumors and distant tumors when combined with immune checkpoint inhibitors. CONCLUSIONS The tri-model TAT-CDT-ICB strategy provides a long-term immunological memory, which can protect against tumor rechallenge after eliminating original tumors. Therefore, this work presents a novel approach for TAT-CDT-ICB tri-modal cancer therapy with repressed metastasis and relapse in clinics.
Collapse
Affiliation(s)
- Jiajia Zhang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai, 200072, People's Republic of China.,Institute of Nuclear Medicine, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai, 200072, People's Republic of China.,Department of Medical Ultrasound and Central Laboratory, Ultrasound Research and Education Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai, 200072, People's Republic of China
| | - Feize Li
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, People's Republic of China
| | - Yuzhen Yin
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai, 200072, People's Republic of China.,Institute of Nuclear Medicine, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai, 200072, People's Republic of China
| | - Ning Liu
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, People's Republic of China
| | - Mengqin Zhu
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai, 200072, People's Republic of China.,Institute of Nuclear Medicine, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai, 200072, People's Republic of China
| | - Han Zhang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai, 200072, People's Republic of China.,Institute of Nuclear Medicine, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai, 200072, People's Republic of China
| | - Weihao Liu
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, People's Republic of China
| | - Mengdie Yang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai, 200072, People's Republic of China.,Institute of Nuclear Medicine, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai, 200072, People's Republic of China
| | - Shanshan Qin
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai, 200072, People's Republic of China.,Institute of Nuclear Medicine, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai, 200072, People's Republic of China
| | - Xin Fan
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai, 200072, People's Republic of China.,Institute of Nuclear Medicine, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai, 200072, People's Republic of China
| | - Yuanyou Yang
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, People's Republic of China.
| | - Kun Zhang
- Institute of Nuclear Medicine, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai, 200072, People's Republic of China. .,Department of Medical Ultrasound and Central Laboratory, Ultrasound Research and Education Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai, 200072, People's Republic of China.
| | - Fei Yu
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai, 200072, People's Republic of China. .,Institute of Nuclear Medicine, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai, 200072, People's Republic of China.
| |
Collapse
|
43
|
Ge S, Jia T, Li J, Zhang B, Sang S, Deng S. Molecular imaging of immune checkpoints in oncology: Current and future applications. Cancer Lett 2022; 548:215896. [PMID: 36041658 DOI: 10.1016/j.canlet.2022.215896] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/19/2022] [Indexed: 11/02/2022]
Abstract
Immune checkpoint (IC) blockade therapy has become the first-line treatment for various cancers. However, the low response rate and acquired drug resistance severely restrict the clinical application of immune checkpoint inhibitors (ICIs). Nuclide molecular imaging of ICs can provide non-invasive and whole-body visualization of in vivo IC dynamic biodistribution. Therefore, molecular imaging of ICs can predict and monitor responses to ICIs as a complementary tool to existing immunohistochemical techniques. Herein, we outlined the current status and recent advances in molecular imaging of the "first-generation" and "next-generation" ICs in preclinical and clinical studies.
Collapse
Affiliation(s)
- Shushan Ge
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China; NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, Mianyang, 621099, China
| | - Tongtong Jia
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Jihui Li
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Bing Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Shibiao Sang
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China.
| | - Shengming Deng
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China; NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, Mianyang, 621099, China.
| |
Collapse
|
44
|
Oncogenic role and potential regulatory mechanism of topoisomerase IIα in a pan-cancer analysis. Sci Rep 2022; 12:11161. [PMID: 35778520 PMCID: PMC9249858 DOI: 10.1038/s41598-022-15205-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/20/2022] [Indexed: 11/08/2022] Open
Abstract
Topoisomerase IIα (TOP2A) plays an oncogenic role in multiple tumor types. However, no pan-cancer analysis about the function and the upstream molecular mechanism of TOP2A is available. For the first time, we analyzed potential oncogenic roles of TOP2A in 33 cancer types via The Cancer Genome Atlas (TCGA) database. Overexpression of TOP2A was existed in almost all cancer types, and related to poor prognosis and advanced pathological stages in most cases. Besides, the high frequency of TOP2A genetic alterations was observed in several cancer types, and related to prognosis in some cases. Moreover, we conduct upstream miRNAs and lncRNAs of TOP2A to establish ceRNA networks in kidney renal clear cell carcinoma (SNHG3-miR-139-5p), kidney renal papillary cell carcinoma (TMEM147-AS1/N4BP2L2-IT2/THUMPD3-AS1/ERICD/TTN-AS1/SH3BP5-AS1/THRB-IT1/SNHG3/NEAT1-miR-139-5p), liver hepatocellular carcinoma (SNHG3/THUMPD3-AS1/NUTM2B-AS1/NUTM2A-AS1-miR-139-5p and SNHG6/GSEC/SNHG1/SNHG14/LINC00265/MIR3142HG-miR-101-3p) and lung adenocarcinoma (TYMSOS/HELLPAR/SNHG1/GSEC/SNHG6-miR-101-3p). TOP2A expression was generally positively correlated with cancer associated fibroblasts, M0 and M1 macrophages in most cancer types. Furthermore, TOP2A was positively associated with expression of immune checkpoints (CD274, CTLA4, HAVCR2, LAG3, PDCD1 and TIGIT) in most cancer types. Our first TOP2A pan-cancer study contributes to understanding the prognostic roles, immunological roles and potential upstream molecular mechanism of TOP2A in different cancers.
Collapse
|
45
|
Gupta M, Chandan K, Sarwat M. Natural Products and their Derivatives as Immune Check Point Inhibitors: Targeting Cytokine/Chemokine Signalling in Cancer. Semin Cancer Biol 2022; 86:214-232. [PMID: 35772610 DOI: 10.1016/j.semcancer.2022.06.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/15/2022] [Accepted: 06/24/2022] [Indexed: 11/29/2022]
Abstract
Cancer immunotherapy is the new generation and widely accepted form of tumour treatment. It is, however, associated with exclusive challenges which include organ-specific inflammation, and single-target strategies. Therefore, approaches that can enhance the efficiency of existing immunotherapies and expand their indications are required for the further development of immunotherapy. Natural products and medicines are stated to have this desired effect on cancer immunotherapy (adoptive immune-cells therapy, cancer vaccines, and immune-check point inhibitors). They refurbish the immunosuppressed tumour microenvironment, which is the primary location of interaction of tumour cells with the host immune system. Various immune cell subsets, via interaction with cytokine/chemokine receptors, are recruited into this microenvironment, and these subsets have roles in tumour progression and treatment responsiveness. This review summarises cytokine/chemokine signalling, types of cancer immunotherapy and the herbal medicine-derived natural products targeting cytokine/chemokines and immune checkpoints. These natural compounds possess immunomodulatory activities and exert their anti-tumour effect by either blocking the interaction or modulating the expression of the proteins linked with immune checkpoint signaling pathways. Some compounds also show a synergistic effect in combination with existing monoclonal antibody drugs to reverse the tumour microenvironment. Additionally, we have also reported some studies about the derivatives and formulations used to overcome the limitations of natural forms. This review can provide important insights for directing future research.
Collapse
Affiliation(s)
- Meenakshi Gupta
- Amity Institute of Pharmacy, Amity University, Noida-201313, Uttar Pradesh, India
| | - Kumari Chandan
- Amity Institute of Pharmacy, Amity University, Noida-201313, Uttar Pradesh, India
| | - Maryam Sarwat
- Amity Institute of Pharmacy, Amity University, Noida-201313, Uttar Pradesh, India.
| |
Collapse
|
46
|
The Ratio of CD226 and TIGIT Expression in Tfh and PD-1 +ICOS +Tfh Cells Are Potential Biomarkers for Chronic Antibody-Mediated Rejection in Kidney Transplantation. J Immunol Res 2022; 2022:5326083. [PMID: 35733922 PMCID: PMC9206998 DOI: 10.1155/2022/5326083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/04/2022] [Accepted: 05/12/2022] [Indexed: 02/05/2023] Open
Abstract
Kidney transplantation is the ideal treatment for end-stage renal disease (ESRD). Chronic antibody-mediated rejection (CAMR) is the main cause of graft failure. Tfh and B cells are key immune cells that play important roles in CAMR. In this study, the populations of different Tfh cell phenotypes and B cell subsets in CAMR were investigated in a total of 36 patients. Based on Banff-2019, 15 patients were diagnosed with CAMR (CAMR group), 11 recipients were diagnosed with recurrent or de novo IgA nephropathy (IgAN group), and 10 patients displayed stable renal function (stable group). The Tfh and B cell subsets were analyzed by flow cytometry. The percentage and absolute number of PD-1+ICOS+Tfh cells were significantly higher in CAMR (p < 0.05), as was the ratio of CD226+Tfh cells to TIGIT+Tfh cells (p < 0.05). Compared with stable recipients, CAMR patients had lower naïve B cells and higher unswitched memory B cells, which were also significantly related to renal function (p < 0.05). Using the logistic regression model, we concluded that the estimated glomerular filtration rate (eGFR), absolute number of PD-1+ICOS+Tfh cells, and ratio of CD226+Tfh cells to TIGIT+Tfh cells were independent risk factors for CAMR. The combination of eGFR, PD-1+ICOS+Tfh cells, and the ratio of CD226+Tfh cells to TIGIT+Tfh cells showed better diagnostic efficacy for CAMR than each single parameter. The collective findings show that monitoring different Tfh phenotypes and B cell subsets is beneficial to kidney transplant recipients and implicate the combination of eGFR, number of PD-1+ICOS+Tfh cells, and ratio of CD226+Tfh cells to TIGIT+Tfh cells as a biomarker for diagnosing CAMR. The findings may also inform new strategies to identify and treat CAMR.
Collapse
|
47
|
Adaptive immune resistance at the tumour site: mechanisms and therapeutic opportunities. Nat Rev Drug Discov 2022; 21:529-540. [PMID: 35701637 DOI: 10.1038/s41573-022-00493-5] [Citation(s) in RCA: 207] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2022] [Indexed: 12/11/2022]
Abstract
Tumours employ various tactics to adapt and eventually resist immune attack. These mechanisms are collectively called adaptive immune resistance (AIR). The first defined and therapeutically validated AIR mechanism is the selective induction of programmed cell death 1 ligand 1 (PDL1) by interferon-γ in the tumour. Blockade of PDL1 binding to its receptor PD1 by antibodies (anti-PD therapy) has resulted in remission of a fraction of patients with advanced-stage cancer, especially in solid tumours. However, many clinical trials combining anti-PD therapy with other antitumour drugs conducted without a strong mechanistic rationale have failed to identify a synergistic or additive effect. In this Perspective article, we discuss why defining AIR mechanisms at the tumour site should be a key focus to direct future drug development as well as practical approaches to improve current cancer therapy.
Collapse
|
48
|
Zelin E, Maronese CA, Dri A, Toffoli L, Di Meo N, Nazzaro G, Zalaudek I. Identifying Candidates for Immunotherapy among Patients with Non-Melanoma Skin Cancer: A Review of the Potential Predictors of Response. J Clin Med 2022; 11:3364. [PMID: 35743435 PMCID: PMC9225110 DOI: 10.3390/jcm11123364] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/02/2022] [Accepted: 06/09/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Non-melanoma skin cancer (NMSC) stands as an umbrella term for common cutaneous malignancies, including basal cell carcinoma (BCC) and cutaneous squamous cell carcinoma (cSCC), together with rarer cutaneous cancers, such as Merkel cell carcinoma (MCC) and other forms of adnexal cancers. The majority of NMSCs can be successfully treated with surgery or radiotherapy, but advanced and metastatic stages may require systemic approaches such as immunotherapy with immune checkpoint inhibitors (ICIs). SUMMARY Since immunotherapy is not effective in all patients and can potentially lead to severe adverse effects, an important clinical question is how to properly identify those who could be suitable candidates for this therapeutic choice. In this paper, we review the potential features and biomarkers used to predict the outcome of ICIs therapy for NMSCs. Moreover, we analyze the role of immunotherapy in special populations, such as the elderly, immunocompromised patients, organ transplant recipients, and subjects suffering from autoimmune conditions. KEY MESSAGES Many clinical, serum, histopathological, and genetic features have been investigated as potential predictors of response in NMSCs treated with ICIs. Although this field of research is very promising, definitive, cost-effective, and reproducible biomarkers are still lacking and further efforts are needed to validate the suggested predictors in larger cohorts.
Collapse
Affiliation(s)
- Enrico Zelin
- Dermatology Clinic, Maggiore Hospital, University of Trieste, 34125 Trieste, Italy; (E.Z.); (L.T.); (N.D.M.); (I.Z.)
| | - Carlo Alberto Maronese
- Dermatology Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milan, Italy
| | - Arianna Dri
- Department of Medicine (DAME), University of Udine, 33100 Udine, Italy;
- Department of Medical Oncology, Azienda Sanitaria Friuli Centrale (ASUFC), 33100 Udine, Italy
| | - Ludovica Toffoli
- Dermatology Clinic, Maggiore Hospital, University of Trieste, 34125 Trieste, Italy; (E.Z.); (L.T.); (N.D.M.); (I.Z.)
| | - Nicola Di Meo
- Dermatology Clinic, Maggiore Hospital, University of Trieste, 34125 Trieste, Italy; (E.Z.); (L.T.); (N.D.M.); (I.Z.)
| | - Gianluca Nazzaro
- Dermatology Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Iris Zalaudek
- Dermatology Clinic, Maggiore Hospital, University of Trieste, 34125 Trieste, Italy; (E.Z.); (L.T.); (N.D.M.); (I.Z.)
| |
Collapse
|
49
|
Annese T, Tamma R, Ribatti D. Update in TIGIT Immune-Checkpoint Role in Cancer. Front Oncol 2022; 12:871085. [PMID: 35656508 PMCID: PMC9152184 DOI: 10.3389/fonc.2022.871085] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/14/2022] [Indexed: 12/12/2022] Open
Abstract
The in-depth characterization of cross-talk between tumor cells and T cells in solid and hematological malignancies will have to be considered to develop new therapeutical strategies concerning the reactivation and maintenance of patient-specific antitumor responses within the patient tumor microenvironment. Activation of immune cells depends on a delicate balance between activating and inhibitory signals mediated by different receptors. T cell immunoreceptor with immunoglobulin and ITIM domain (TIGIT) is an inhibitory receptor expressed by regulatory T cells (Tregs), activated T cells, and natural killer (NK) cells. TIGIT pathway regulates T cell-mediated tumor recognition in vivo and in vitro and represents an exciting target for checkpoint blockade immunotherapy. TIGIT blockade as monotherapy or in combination with other inhibitor receptors or drugs is emerging in clinical trials in patients with cancer. The purpose of this review is to update the role of TIGIT in cancer progression, looking at TIGIT pathways that are often upregulated in immune cells and at possible therapeutic strategies to avoid tumor aggressiveness, drug resistance, and treatment side effects. However, in the first part, we overviewed the role of immune checkpoints in immunoediting, the TIGIT structure and ligands, and summarized the key immune cells that express TIGIT.
Collapse
Affiliation(s)
- Tiziana Annese
- Department of Medicine and Surgery, Libera Università del Mediterraneo (LUM) Giuseppe Degennaro University, Bari, Italy.,Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Section of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy
| | - Roberto Tamma
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Section of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Section of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy
| |
Collapse
|
50
|
Prognostic value of CD155/TIGIT expression in patients with colorectal cancer. PLoS One 2022; 17:e0265908. [PMID: 35324958 PMCID: PMC8946673 DOI: 10.1371/journal.pone.0265908] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 03/09/2022] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION The interaction of CD155 with its ligand, the T cell immunoreceptor with Ig and ITIM domains (TIGIT), is being studied owing to its potential to act as a target in the treatment of various solid tumors. However, the relationship between CD155 and TIGIT in colorectal cancer (CRC) prognosis is not known. We hypothesized that the TIGIT-CD155 pathway suppresses the attack of T cells on tumors, thereby affecting CRC prognosis. METHODS We examined the expression of CD155 and TIGIT using immunohistochemical staining in 100 consecutive patients with CRC who underwent complete resection of ≤Stage III tumors at Wakayama Medical University Hospital between January and December 2013. We assessed the correlation between CD155 and TIGIT expressions and prognosis as well as the clinicopathological background of CD155 and TIGIT. RESULTS Patients with high CD155 and TIGIT expressions showed worse prognosis than those with other levels of expression (p = 0.026). In multivariate analysis that also included the existing prognostic markers, high CD155 and TIGIT expressions were identified as independent poor prognostic factors. CONCLUSIONS The interaction between CD155 and TIGIT possibly plays an important role in the immunological mechanism of CRC. Therefore, it may be possible to effectively predict the postoperative prognosis of CRC by evaluating the combined expression of CD155 and TIGIT. The study findings suggest that CD155 and TIGIT can predict clinical outcomes, thereby contributing to the personalized care of CRC.
Collapse
|