1
|
Debray R, Dickson CC, Webb SE, Archie EA, Tung J. Shared environments complicate the use of strain-resolved metagenomics to infer microbiome transmission. MICROBIOME 2025; 13:59. [PMID: 40022204 PMCID: PMC11869744 DOI: 10.1186/s40168-025-02051-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 01/30/2025] [Indexed: 03/03/2025]
Abstract
BACKGROUND In humans and other social animals, social partners have more similar microbiomes than expected by chance, suggesting that social contact transfers microorganisms. Yet, social microbiome transmission can be difficult to identify based on compositional data alone. To overcome this challenge, recent studies have used information about microbial strain sharing (i.e., the shared presence of highly similar microbial sequences) to infer transmission. However, the degree to which strain sharing is influenced by shared traits and environments among social partners, rather than transmission per se, is not well understood. RESULTS Here, we first use a fecal microbiota transplant dataset to show that strain sharing can recapitulate true transmission networks under ideal settings when donor-recipient pairs are unambiguous and recipients are sampled shortly after transmission. In contrast, in gut metagenomes from a wild baboon population, we find that demographic and environmental factors can override signals of strain sharing among social partners. CONCLUSIONS We conclude that strain-level analyses provide useful information about microbiome similarity, but other facets of study design, especially longitudinal sampling and careful consideration of host characteristics, are essential for inferring the underlying mechanisms of strain sharing and resolving true social transmission network. Video Abstract.
Collapse
Affiliation(s)
- Reena Debray
- Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Saxony, Germany.
| | - Carly C Dickson
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Shasta E Webb
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Elizabeth A Archie
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Jenny Tung
- Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Saxony, Germany
- Department of Biology, Duke University, Durham, NC, USA
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
- Duke Population Research Institute, Duke University, Durham, NC, USA
- Canadian Institute for Advanced Research, Toronto, ON, Canada
| |
Collapse
|
2
|
Pearce CS, Bukovsky D, Douchant K, Katoch A, Greenlaw J, Gale DJ, Nashed JY, Brien D, Kuhlmeier VA, Sabbagh MA, Blohm G, De Felice FG, Pare M, Cook DJ, Scott SH, Munoz DP, Sjaarda CP, Tusche A, Sheth PM, Winterborn A, Boehnke S, Gallivan JP. Changes in social environment impact primate gut microbiota composition. Anim Microbiome 2024; 6:66. [PMID: 39538341 PMCID: PMC11562706 DOI: 10.1186/s42523-024-00355-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND The gut microbiota (GM) has proven to be essential for both physical health and mental wellbeing, yet the forces that ultimately shape its composition remain opaque. One critical force known to affect the GM is the social environment. Prior work in humans and free-ranging non-human primates has shown that cohabitation and frequent social interaction can lead to changes in GM composition. However, it is difficult to assess the direction of causation in these studies, and interpretations are complicated by the influence of uncontrolled but correlated factors, such as shared diet. RESULTS We performed a 15-month longitudinal investigation wherein we disentangled the impacts of diet and social living conditions on GM composition in a captive cohort of 13 male cynomolgus macaques. The animals were in single housing for the first 3 months of the study initially with a variable diet. After baseline data collection they were placed on a controlled diet for the remainder of the study. Following this diet shift the animals were moved to paired housing for 6 months, enabling enhanced social interaction, and then subsequently returned to single housing at the end of our study. This structured sequencing of diet and housing changes allowed us to assess their distinct impacts on GM composition. We found that the early dietary adjustments led to GM changes in both alpha and beta diversity, whereas changes in social living conditions only altered beta diversity. With respect to the latter, we found that two particular bacterial families - Lactobacillaceae and Clostridiaceae - demonstrated significant shifts in abundance during the transition from single housing to paired housing, which was distinct from the shifts we observed based on a change in diet. Conversely, we found that other bacteria previously associated with sociality were not altered based on changes in social living conditions but rather only by changes in diet. CONCLUSIONS Together, these findings decouple the influences that diet and social living have on GM composition and reconcile previous observations in the human and animal literatures. Moreover, the results indicate biological alterations of the gut that may, in part, mediate the relationship between sociality and wellbeing.
Collapse
Affiliation(s)
- Colleen S Pearce
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
- Department of Psychology, Queen's University, Kingston, ON, Canada
| | | | - Katya Douchant
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | - Abhay Katoch
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
- Department of Biology, Queen's University, Kingston, ON, Canada
| | - Jill Greenlaw
- Department of Medicine, Queen's University, Kingston, ON, Canada
| | - Daniel J Gale
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | - Joseph Y Nashed
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | - Don Brien
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | - Valerie A Kuhlmeier
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
- Department of Psychology, Queen's University, Kingston, ON, Canada
| | - Mark A Sabbagh
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
- Department of Psychology, Queen's University, Kingston, ON, Canada
| | - Gunnar Blohm
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Fernanda G De Felice
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Martin Pare
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Douglas J Cook
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
- Department of Neurosurgery, Queen's University, Kingston, ON, Canada
| | - Stephen H Scott
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Douglas P Munoz
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
- Department of Psychology, Queen's University, Kingston, ON, Canada
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
- Department of Medicine, Queen's University, Kingston, ON, Canada
| | - Calvin P Sjaarda
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| | - Anita Tusche
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
- Department of Psychology, Queen's University, Kingston, ON, Canada
| | - Prameet M Sheth
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| | - Andrew Winterborn
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | - Susan Boehnke
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Jason P Gallivan
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada.
- Department of Psychology, Queen's University, Kingston, ON, Canada.
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
3
|
Brown BRP, Williams AE, Sabey KA, Onserio A, Ewoi J, Song SJ, Knight R, Ezenwa VO. Social behaviour mediates the microbiome response to antibiotic treatment in a wild mammal. Proc Biol Sci 2024; 291:20241756. [PMID: 39353556 PMCID: PMC11444789 DOI: 10.1098/rspb.2024.1756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 10/04/2024] Open
Abstract
High levels of social connectivity among group-living animals have been hypothesized to benefit individuals by creating opportunities to rapidly reseed the microbiome and maintain stability against disruption. We tested this hypothesis by perturbing the microbiome of a wild population of Grant's gazelles with an antibiotic and asking whether microbiome recovery differs between individuals with high versus low levels of social connectivity. We found that after treatment, individuals with high social connectivity experienced a faster increase in microbiome richness than less socially connected individuals. Unexpectedly, the rapid increase in microbiome richness of highly connected individuals that received treatment led to their microbiomes becoming more distinct relative to the background population. Our results suggest that the microbiome of individuals with high social connectivity can be rapidly recolonized after a perturbation event, but this leads to a microbiome that is more distinct from, rather than more similar to the unperturbed state. This work provides new insight into the role of social interactions in shaping the microbiome.
Collapse
Affiliation(s)
- Bianca R. P. Brown
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| | | | - Kate A. Sabey
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | | | - John Ewoi
- Mpala Research Centre, Nanyuki, Kenya
| | - Se Jin Song
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
| | - Rob Knight
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Vanessa O. Ezenwa
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
- Odum School of Ecology, University of Georgia, Athens, GA, USA
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| |
Collapse
|
4
|
Bronstein JL, Sridhar H. Connecting and integrating cooperation within and between species. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230203. [PMID: 39034697 PMCID: PMC11293865 DOI: 10.1098/rstb.2023.0203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/31/2023] [Accepted: 01/24/2024] [Indexed: 07/23/2024] Open
Abstract
There has long been a fundamental divide in the study of cooperation: researchers focus either on cooperation within species, including but not limited to sociality, or else on cooperation between species, commonly termed mutualism. Here, we explore the ecologically and evolutionarily significant ways in which within- and between-species cooperation interact. We highlight two primary cross-linkages. First, cooperation of one type can change the context in which cooperation of the other type functions, and thus potentially its outcome. We delineate three possibilities: (i) within-species cooperation modulates benefits for a heterospecific partner; (ii) between-species cooperation affects the dynamics of within-species cooperation; and (iii) both processes take place interactively. The second type of cross-linkage emerges when resources or services that cooperation makes available are obtainable either from members of the same species or from different species. This brings cooperation at the two levels into direct interaction, to some extent obscuring the distinction between them. We expand on these intersections between within- and between-species cooperation in a diversity of taxa and interaction types. These interactions have the potential to weave together social networks and trophic dynamics, contributing to the structure and functioning of ecological communities in ways that are just beginning to be explored. This article is part of the theme issue 'Connected interactions: enriching food web research by spatial and social interactions'.
Collapse
Affiliation(s)
- Judith L. Bronstein
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ85721, USA
| | - Hari Sridhar
- Konrad Lorenz Institute for Evolution and Cognition Research, KlosterneuburgA-3400, Austria
| |
Collapse
|
5
|
Whitney TL, Mallott EK, Diakiw LO, Christie DM, Ting N, Amato KR, Tecot SR, Baden AL. Ecological and genetic variables co-vary with social group identity to shape the gut microbiome of a pair-living primate. Am J Primatol 2024; 86:e23657. [PMID: 38967215 DOI: 10.1002/ajp.23657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 05/17/2024] [Accepted: 06/08/2024] [Indexed: 07/06/2024]
Abstract
Primates exhibit diverse social systems that are intricately linked to their biology, behavior, and evolution, all of which influence the acquisition and maintenance of their gut microbiomes (GMs). However, most studies of wild primate populations focus on taxa with relatively large group sizes, and few consider pair-living species. To address this gap, we investigate how a primate's social system interacts with key environmental, social, and genetic variables to shape the GM in pair-living, red-bellied lemurs (Eulemur rubriventer). Previous research on this species suggests that social interactions within groups influence interindividual microbiome similarity; however, the impacts of other nonsocial variables and their relative contributions to gut microbial variation remain unclear. We sequenced the 16S ribosomal RNA hypervariable V4-V5 region to characterize the GM from 26 genotyped individuals across 11 social groups residing in Ranomafana National Park, Madagascar. We estimated the degree to which sex, social group identity, genetic relatedness, dietary diversity, and home range proximity were associated with variation in the gut microbial communities residing in red-bellied lemurs. All variables except sex played a significant role in predicting GM composition. Our model had high levels of variance inflation, inhibiting our ability to determine which variables were most predictive of gut microbial composition. This inflation is likely due to red-bellied lemurs' pair-living, pair-bonded social system that leads to covariation among environmental, social, and genetic variables. Our findings highlight some of the factors that predict GM composition in a tightly bonded, pair-living species and identify variables that require further study. We propose that future primate microbiome studies should simultaneously consider environmental, social, and genetic factors to improve our understanding of the relationships among sociality, the microbiome, and primate ecology and evolution.
Collapse
Affiliation(s)
- Tabor L Whitney
- Department of Anthropology, Northwestern University, Evanston, Illinois, USA
| | - Elizabeth K Mallott
- Department of Anthropology, Northwestern University, Evanston, Illinois, USA
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Laura O Diakiw
- Department of Ecology, University of Wyoming, Laramie, Wyoming, USA
| | - Diana M Christie
- Department of Anthropology, University of Oregon, Eugene, Oregon, USA
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, USA
| | - Nelson Ting
- Department of Anthropology, University of Oregon, Eugene, Oregon, USA
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, USA
| | - Katherine R Amato
- Department of Anthropology, Northwestern University, Evanston, Illinois, USA
| | - Stacey R Tecot
- School of Anthropology, University of Arizona, Tucson, Arizona, USA
| | - Andrea L Baden
- Department of Anthropology, Hunter College of the City University of New York, New York City, New York, USA
- Department of Anthropology, The Graduate Center of the City University of New York, New York City, New York, USA
- The New York Consortium in Evolutionary Primatology, New York City, New York, USA
| |
Collapse
|
6
|
Samartino S, Christie D, Penna A, Sicotte P, Ting N, Wikberg E. Social network dynamics, infant loss, and gut microbiota composition in female Colobus vellerosus during time periods with alpha male challenges. Primates 2024; 65:299-309. [PMID: 38735025 DOI: 10.1007/s10329-024-01132-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 04/11/2024] [Indexed: 05/13/2024]
Abstract
The gut microbiota of group-living animals is strongly influenced by their social interactions, but it is unclear how it responds to social instability. We investigated whether social instability associated with the arrival of new males and challenges to the alpha male position could explain differences in the gut microbiota in adult female Colobus vellerosus at Boabeng-Fiema, Ghana. First, we used a data set collected during May-August 2007 and May 2008-2009 that consisted of (i) 50 fecal samples from adult females in eight social groups for V4 16S rRNA sequencing to determine gut microbiota composition, and (ii) demographic and behavioral data ad libitum to determine male immigration, challenges to the alpha male position, and infant births and deaths. Sørensen and Bray-Curtis beta diversity indices (i.e., between-sample microbiota variation) were predicted by year, alpha male stability, group identity, and age. Next, we used a more detailed behavioral data set collected during focal observations of adult females in one group with a prolonged alpha male takeover and three cases of infant loss, to create 12-month versus 3-month 1-m proximity networks that preceded and overlapped the gut microbiome sampling period in that group. The long versus short-term networks were not correlated, suggesting temporal variation in proximity networks. In this group, beta diversity among the five adult females was predicted by similarity in infant loss status and short-term (rather than yearly) 1-m proximity ties. Although the mechanism driving this association needs to be further investigated in future studies, our findings indicate that alpha male takeovers are associated with gut microbiota variation and highlight the importance of taking demographic and social network dynamics into account.
Collapse
Affiliation(s)
- Shelby Samartino
- Department of Anthropology, University of Texas at San Antonio, San Antonio, TX, USA.
| | - Diana Christie
- Department of Anthropology and Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA
| | - Anna Penna
- Department of Anthropology, University of Texas at San Antonio, San Antonio, TX, USA
| | - Pascale Sicotte
- Department of Biology, Concordia University, Montreal, QC, Canada
| | - Nelson Ting
- Department of Anthropology and Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA
| | - Eva Wikberg
- Department of Anthropology, University of Texas at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
7
|
Sarkar A, McInroy CJA, Harty S, Raulo A, Ibata NGO, Valles-Colomer M, Johnson KVA, Brito IL, Henrich J, Archie EA, Barreiro LB, Gazzaniga FS, Finlay BB, Koonin EV, Carmody RN, Moeller AH. Microbial transmission in the social microbiome and host health and disease. Cell 2024; 187:17-43. [PMID: 38181740 PMCID: PMC10958648 DOI: 10.1016/j.cell.2023.12.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/06/2023] [Accepted: 12/06/2023] [Indexed: 01/07/2024]
Abstract
Although social interactions are known to drive pathogen transmission, the contributions of socially transmissible host-associated mutualists and commensals to host health and disease remain poorly explored. We use the concept of the social microbiome-the microbial metacommunity of a social network of hosts-to analyze the implications of social microbial transmission for host health and disease. We investigate the contributions of socially transmissible microbes to both eco-evolutionary microbiome community processes (colonization resistance, the evolution of virulence, and reactions to ecological disturbance) and microbial transmission-based processes (transmission of microbes with metabolic and immune effects, inter-specific transmission, transmission of antibiotic-resistant microbes, and transmission of viruses). We consider the implications of social microbial transmission for communicable and non-communicable diseases and evaluate the importance of a socially transmissible component underlying canonically non-communicable diseases. The social transmission of mutualists and commensals may play a significant, under-appreciated role in the social determinants of health and may act as a hidden force in social evolution.
Collapse
Affiliation(s)
- Amar Sarkar
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA.
| | - Cameron J A McInroy
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Siobhán Harty
- Independent, Tandy Court, Spitalfields, Dublin, Ireland
| | - Aura Raulo
- Department of Biology, University of Oxford, Oxford, UK; Department of Computing, University of Turku, Turku, Finland
| | - Neil G O Ibata
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Mireia Valles-Colomer
- Department of Medicine and Life Sciences, Pompeu Fabra University, Barcelona, Spain; Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Katerina V-A Johnson
- Institute of Psychology, Leiden University, Leiden, the Netherlands; Department of Psychiatry, University of Oxford, Oxford, UK
| | - Ilana L Brito
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Joseph Henrich
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Elizabeth A Archie
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Luis B Barreiro
- Committee on Immunology, University of Chicago, Chicago, IL, USA; Department of Medicine, University of Chicago, Chicago, IL, USA; Committee on Genetics, Genomics and Systems Biology, University of Chicago, Chicago, IL, USA
| | - Francesca S Gazzaniga
- Molecular Pathology Unit, Cancer Center, Massachusetts General Hospital Research Institute, Charlestown, MA, USA; Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - B Brett Finlay
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada; Department of Biochemistry, University of British Columbia, Vancouver, BC, Canada
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, USA
| | - Rachel N Carmody
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Andrew H Moeller
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
8
|
Wu Y, Wang H, Gao Z, Wang H, Zou H. Comparison of the Intestinal Bacterial Communities between Captive and Semi-Free-Range Red-Crowned Cranes ( Grus japonensis) before Reintroduction in Zhalong National Nature Reserve, China. Animals (Basel) 2023; 14:3. [PMID: 38200734 PMCID: PMC10778468 DOI: 10.3390/ani14010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/03/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
The wild populations of red-crowned cranes (Grus japonensis) in west China are gradually decreasing, necessitating the optimization of reintroduction measures. This study used 16S rRNA high-throughput sequencing technology to compare the gut microbiota communities of cranes living in two modes (captive and semi-free-range) before their reintroduction in Zhalong National Nature Reserve, Heilongjiang Province, China. The results showed that Proteobacteria (74.39%) and Firmicutes (25.29%) were the dominant gut bacterial phyla inhabiting these cranes. Significant differences were found in the gut microbiota community composition between semi-free-range and captive cranes (p < 0.01). Psychrobacter, Sporosarcina, and Lactococcus were significantly enriched in captive cranes (p < 0.05), while Pseudomonadaceae_Pseudomonas, Pantoea, Lysobacter, and Enterobacteriaceae_Pseudomonas were more abundant in semi-free-range cranes (p < 0.05). The functions and community structure of gut microbiota were affected by feeding patterns (p < 0.05). The metabolic pathways of ethylbenzene degradation, PPAR signaling pathway, betalain biosynthesis, systemic lupus erythematosus, and shigellosis were up-regulated in semi-free-range cranes (p < 0.05).
Collapse
Affiliation(s)
- Yining Wu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; (Y.W.); (H.W.); (H.W.)
| | - Huan Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; (Y.W.); (H.W.); (H.W.)
| | - Zhongyan Gao
- Management Bureau of Heilongjiang Zhalong National Reserve, Qiqihar 161005, China;
| | - He Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; (Y.W.); (H.W.); (H.W.)
| | - Hongfei Zou
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; (Y.W.); (H.W.); (H.W.)
| |
Collapse
|
9
|
Rose C, Lund MB, Schramm A, Bilde T, Bechsgaard J. Does ecological drift explain variation in microbiome composition among groups in a social host species? J Evol Biol 2023; 36:1684-1694. [PMID: 37776090 DOI: 10.1111/jeb.14228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/18/2023] [Accepted: 06/26/2023] [Indexed: 10/01/2023]
Abstract
Within a given species, considerable inter-individual, spatial, and temporal variation in the composition of the host microbiome exists. In group-living animals, social interactions homogenize microbiome composition among group members, nevertheless divergence in microbiome composition among related groups arise. Such variation can result from deterministic and stochastic processes. Stochastic changes, or ecological drift, can occur among symbionts with potential for colonizing a host and within individual hosts, and drive divergence in microbiome composition among hosts or host groups. We tested whether ecological drift associated with dispersal and foundation of new groups cause divergence in microbiome composition between natal and newly formed groups in the social spider Stegodyphus dumicola. We simulated the initiation of new groups by splitting field-collected nests into groups of 1, 3, and 10 individuals respectively, and compared variation in microbiome composition among and within groups after 6 weeks using 16S rRNA gene sequencing. Theory predicts that ecological drift increases with decreasing group size. We found that microbiome composition among single founders was more dissimilar than among individuals kept in groups, supporting this prediction. Divergence in microbiome composition from the natal nest was mainly driven by a higher number of non-core symbionts. This suggests that stochastic divergence in host microbiomes can arise during the process of group formation by individual founders, which could explain the existence of among-group variation in microbiome composition in the wild. Individual founders appear to harbour higher relative abundances of non-core symbionts compared with founders in small groups, some of which are possible pathogens. These symbionts vary in occurrence with group size, indicating that group dynamics influence various core and non-core symbionts differently.
Collapse
Affiliation(s)
- Clémence Rose
- Section for Genetic Ecology and Evolution, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Marie Braad Lund
- Section for Microbiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Andreas Schramm
- Section for Microbiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Trine Bilde
- Section for Genetic Ecology and Evolution, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Jesper Bechsgaard
- Section for Genetic Ecology and Evolution, Department of Biology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
10
|
Mee L, Barribeau SM. Influence of social lifestyles on host-microbe symbioses in the bees. Ecol Evol 2023; 13:e10679. [PMID: 37928198 PMCID: PMC10620586 DOI: 10.1002/ece3.10679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 11/07/2023] Open
Abstract
Microbiomes are increasingly recognised as critical for the health of an organism. In eusocial insect societies, frequent social interactions allow for high-fidelity transmission of microbes across generations, leading to closer host-microbe coevolution. The microbial communities of bees with other social lifestyles are less studied, and few comparisons have been made between taxa that vary in social structure. To address this gap, we leveraged a cloud-computing resource and publicly available transcriptomic data to conduct a survey of microbial diversity in bee samples from a variety of social lifestyles and taxa. We consistently recover the core microbes of well-studied corbiculate bees, supporting this method's ability to accurately characterise microbial communities. We find that the bacterial communities of bees are influenced by host location, phylogeny and social lifestyle, although no clear effect was found for fungal or viral microbial communities. Bee genera with more complex societies tend to harbour more diverse microbes, with Wolbachia detected more commonly in solitary tribes. We present a description of the microbiota of Euglossine bees and find that they do not share the "corbiculate core" microbiome. Notably, we find that bacteria with known anti-pathogenic properties are present across social bee genera, suggesting that symbioses that enhance host immunity are important with higher sociality. Our approach provides an inexpensive means of exploring microbiomes of a given taxa and identifying avenues for further research. These findings contribute to our understanding of the relationships between bees and their associated microbial communities, highlighting the importance of considering microbiome dynamics in investigations of bee health.
Collapse
Affiliation(s)
- Lauren Mee
- Institute of Infection, Veterinary and Ecological Sciences, Department of Evolution, Ecology and BehaviourUniversity of LiverpoolLiverpoolUK
| | - Seth M. Barribeau
- Institute of Infection, Veterinary and Ecological Sciences, Department of Evolution, Ecology and BehaviourUniversity of LiverpoolLiverpoolUK
| |
Collapse
|
11
|
Capelle JJ, Hartog E, Wilkes T, Bouma TJ. Seasonal variation in the balance and strength of cooperative and competitive behavior in patches of blue mussels. PLoS One 2023; 18:e0293142. [PMID: 37856481 PMCID: PMC10586602 DOI: 10.1371/journal.pone.0293142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/05/2023] [Indexed: 10/21/2023] Open
Abstract
Aggregation into groups may affect performance of individuals through the balance and strength of facilitative versus competitive interactions. We studied in situ how seasonal variation in abiotic environment affects this balance for blue mussels, a semi-sessile species. We hypothesize that seasonal variation in stresses and resources affects the strength of the interaction. We expected that, in benign conditions (here: high food availability, medium temperatures, low hydrodynamic stress), performance is dominated by growth and is better at low densities, while at adverse conditions (here: low food availability, low or high temperatures, high hydrodynamic stress), performance is dominated by survival and higher at high densities. Mussels were kept in shallow subtidal exclosures at 10 different densities for a one-month period. This exact procedure was repeated seven times at the same location within a one-year period. We measured development in mussel patch shape, performance, and environmental parameters. Environmental conditions for mussels were most benign in summer and most adverse in winter. Patches developed into less complex shapes at lower densities, but also after stronger hydrodynamic disturbances. Towards summer, mussels became more active, aggregation behavior increased, and interactions became more pronounced. Towards winter, mussels became less active: aggregation behavior and growth rates declined and at the lowest temperatures survival started to decrease with mussel density. Survival and growth (by proxy of mussel condition) were both density-dependent; however, contrary to our expectations we found positive interactions between density and survival at the most benign conditions in summer and negative interactions at the most adverse conditions in winter. In between the two seasons, the strength of the interactions increased towards summer and decreased towards winter following a bell-shaped pattern. This pattern might be explained by the environmental mediated aggregation behavior of the mussels. The obvious seasonal pattern in balance and strength of density-dependent interactions demonstrates that strength and direction of intra-specific interactions are both strongly affected by environmental context.
Collapse
Affiliation(s)
- Jacob J. Capelle
- Wageningen University & Research -Wageningen Marine Research, Yerseke, The Netherlands
| | - Eva Hartog
- HZ University of Applied Sciences, Vlissingen, The Netherlands
| | - Tony Wilkes
- Wageningen University & Research -Wageningen Marine Research, Yerseke, The Netherlands
| | - Tjeerd J. Bouma
- Netherlands Institute for Sea Research, Yerseke, The Netherlands
- Faculty of Geosciences, Department of Physical Geography, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
12
|
Narciso A, Barra Caracciolo A, De Carolis C. Overview of Direct and Indirect Effects of Antibiotics on Terrestrial Organisms. Antibiotics (Basel) 2023; 12:1471. [PMID: 37760767 PMCID: PMC10525971 DOI: 10.3390/antibiotics12091471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Antibiotics (ABs) have made it possible to treat bacterial infections, which were in the past untreatable and consequently fatal. Regrettably, their use and abuse among humans and livestock led to antibiotic resistance, which has made them ineffective in many cases. The spread of antibiotic resistance genes (ARGs) and bacteria is not limited to nosocomial environments, but also involves water and soil ecosystems. The environmental presence of ABs and ARGs is a hot topic, and their direct and indirect effects, are still not well known or clarified. A particular concern is the presence of antibiotics in agroecosystems due to the application of agro-zootechnical waste (e.g., manure and biosolids), which can introduce antibiotic residues and ARGs to soils. This review provides an insight of recent findings of AB direct and indirect effects on terrestrial organisms, focusing on plant and invertebrates. Possible changing in viability and organism growth, AB bioaccumulation, and shifts in associated microbiome composition are reported. Oxidative stress responses of plants (such as reactive oxygen species production) to antibiotics are also described.
Collapse
Affiliation(s)
- Alessandra Narciso
- Water Research Institute, National Research Council (IRSA-CNR), SP 35d, km 0.7 Montelibretti, 00010 Rome, Italy; (A.N.); (C.D.C.)
- Department of Ecological and Biological Sciences, Tuscia University, Largo dell’Università s.n.c., 01100 Viterbo, Italy
| | - Anna Barra Caracciolo
- Water Research Institute, National Research Council (IRSA-CNR), SP 35d, km 0.7 Montelibretti, 00010 Rome, Italy; (A.N.); (C.D.C.)
| | - Chiara De Carolis
- Water Research Institute, National Research Council (IRSA-CNR), SP 35d, km 0.7 Montelibretti, 00010 Rome, Italy; (A.N.); (C.D.C.)
- Department of Environmental Biology, La Sapienza’ University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
13
|
Rose C, Lund MB, Søgård AM, Busck MM, Bechsgaard JS, Schramm A, Bilde T. Social transmission of bacterial symbionts homogenizes the microbiome within and across generations of group-living spiders. ISME COMMUNICATIONS 2023; 3:60. [PMID: 37330540 PMCID: PMC10276852 DOI: 10.1038/s43705-023-00256-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/12/2023] [Accepted: 05/12/2023] [Indexed: 06/19/2023]
Abstract
Disentangling modes and fidelity of symbiont transmission are key for understanding host-symbiont associations in wild populations. In group-living animals, social transmission may evolve to ensure high-fidelity transmission of symbionts, since non-reproducing helpers constitute a dead-end for vertical transmission. We investigated symbiont transmission in the social spider Stegodyphus dumicola, which lives in family groups where the majority of females are non-reproducing helpers, females feed offspring by regurgitation, and individuals feed communally on insect prey. Group members share temporally stable microbiomes across generations, while distinct variation in microbiome composition exists between groups. We hypothesized that horizontal transmission of symbionts is enhanced by social interactions, and investigated transmission routes within (horizontal) and across (vertical) generations using bacterial 16S rRNA gene amplicon sequencing in three experiments: (i) individuals were sampled at all life stages to assess at which life stage the microbiome is acquired. (ii) a cross-fostering design was employed to test whether offspring carry the microbiome from their natal nest, or acquire the microbiome of the foster nest via social transmission. (iii) adult spiders with different microbiome compositions were mixed to assess whether social transmission homogenizes microbiome composition among group members. We demonstrate that offspring hatch symbiont-free, and bacterial symbionts are transmitted vertically across generations by social interactions with the onset of regurgitation feeding by (foster)mothers in an early life stage. Social transmission governs horizontal inter-individual mixing and homogenization of microbiome composition among nest mates. We conclude that temporally stable host-symbiont associations in social species can be facilitated and maintained by high-fidelity social transmission.
Collapse
Affiliation(s)
- Clémence Rose
- Section for Genetics, Ecology and Evolution, Department of Biology, Aarhus University, Aarhus, Denmark.
| | - Marie B Lund
- Section for Microbiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Andrea M Søgård
- Section for Genetics, Ecology and Evolution, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Mette M Busck
- Section for Microbiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Jesper S Bechsgaard
- Section for Genetics, Ecology and Evolution, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Andreas Schramm
- Section for Microbiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Trine Bilde
- Section for Genetics, Ecology and Evolution, Department of Biology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
14
|
Whittaker DJ, Atyam A, Burroughs NA, Greenberg JM, Hagey TJ, Novotny MV, Soini HA, Theis KR, Van Laar TA, Slade JWG. Effects of short-term experimental manipulation of captive social environment on uropygial gland microbiome and preen oil volatile composition. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2022.1027399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
IntroductionAvian preen oil, secreted by the uropygial gland, is an important source of volatile compounds that convey information about the sender’s identity and quality, making preen oil useful for the recognition and assessment of potential mates and rivals. Although intrinsic factors such as hormone levels, genetic background, and diet can affect preen oil volatile compound composition, many of these compounds are not the products of the animal’s own metabolic processes, but rather those of odor-producing symbiotic microbes. Social behavior affects the composition of uropygial microbial communities, as physical contact results in microbe sharing. We experimentally manipulated social interactions in captive dark-eyed juncos (Junco hyemalis) to assess the relative influence of social interactions, subspecies, and sex on uropygial gland microbial composition and the resulting preen oil odor profiles.MethodsWe captured 24 birds at Mountain Lake Biological Station in Virginia, USA, including birds from two seasonally sympatric subspecies – one resident, one migratory. We housed them in an outdoor aviary in three phases of social configurations: first in same-sex, same-subspecies flocks, then in male-female pairs, and finally in the original flocks. Using samples taken every four days of the experiment, we characterized their uropygial gland microbiome through 16S rRNA gene sequencing and their preen oil volatile compounds via GC-MS.ResultsWe predicted that if social environment was the primary driver of uropygial gland microbiome composition, and if microbiome composition in turn affected preen oil volatile profiles, then birds housed together would become more similar over time. Our results did not support this hypothesis, instead showing that sex and subspecies were stronger predictors of microbiome composition. We observed changes in volatile compounds after the birds had been housed in pairs, which disappeared after they were moved back into flocks, suggesting that hormonal changes related to breeding condition were the most important factor in these patterns.DiscussionAlthough early life social environment of nestlings and long-term social relationships have been shown to be important in shaping uropygial gland microbial communities, our study suggests that shorter-term changes in social environment do not have a strong effect on uropygial microbiomes and the resulting preen oil volatile compounds.
Collapse
|
15
|
Xiong X, Loo SL, Tanaka MM. Gut mutualists can persist in host populations despite low fidelity of vertical transmission. EVOLUTIONARY HUMAN SCIENCES 2022; 4:e41. [PMID: 37588926 PMCID: PMC10426022 DOI: 10.1017/ehs.2022.38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 06/30/2022] [Accepted: 08/09/2022] [Indexed: 11/07/2022] Open
Abstract
Humans harbour diverse microbial communities, and this interaction has fitness consequences for hosts and symbionts. Understanding the mechanisms that preserve host-symbiont association is an important step in studying co-evolution between humans and their mutualist microbial partners. This association is promoted by vertical transmission, which is known to be imperfect. It is unclear whether host-microbial associations can generally be maintained despite 'leaky' vertical transmission. Cultural practices of the host are expected to be important in bacterial transmission as they influence the host's interaction with other individuals and with the environment. There is a need to understand whether and how cultural practices affect host-microbial associations. Here, we develop a mathematical model to identify the conditions under which the mutualist can persist in a population where vertical transmission is imperfect. We show with this model that several factors compensate for imperfect vertical transmission, namely, a selective advantage to the host conferred by the mutualist, horizontal transmission of the mutualist through an environmental reservoir and transmission of a cultural practice that promotes microbial transmission. By making the host-microbe association more likely to persist in the face of leaky vertical transmission, these factors strengthen the association which in turn enables host-mutualist co-evolution.
Collapse
Affiliation(s)
- Xiyan Xiong
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
- Evolution and Ecology Research Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Sara L. Loo
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
- Evolution and Ecology Research Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Mark M. Tanaka
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
- Evolution and Ecology Research Centre, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
16
|
Pinacho-Guendulain B, Montiel-Castro AJ, Ramos-Fernández G, Pacheco-López G. Social complexity as a driving force of gut microbiota exchange among conspecific hosts in non-human primates. Front Integr Neurosci 2022; 16:876849. [PMID: 36110388 PMCID: PMC9468716 DOI: 10.3389/fnint.2022.876849] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
The emergent concept of the social microbiome implies a view of a highly connected biological world, in which microbial interchange across organisms may be influenced by social and ecological connections occurring at different levels of biological organization. We explore this idea reviewing evidence of whether increasing social complexity in primate societies is associated with both higher diversity and greater similarity in the composition of the gut microbiota. By proposing a series of predictions regarding such relationship, we evaluate the existence of a link between gut microbiota and primate social behavior. Overall, we find that enough empirical evidence already supports these predictions. Nonetheless, we conclude that studies with the necessary, sufficient, explicit, and available evidence are still scarce. Therefore, we reflect on the benefit of founding future analyses on the utility of social complexity as a theoretical framework.
Collapse
Affiliation(s)
- Braulio Pinacho-Guendulain
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana (UAM), Ciudad de México, Mexico
| | - Augusto Jacobo Montiel-Castro
- Department of Health Sciences, Metropolitan Autonomous University (UAM), Lerma, Mexico
- *Correspondence: Augusto Jacobo Montiel-Castro,
| | - Gabriel Ramos-Fernández
- Institute for Research on Applied Mathematics and Systems (IIMAS), National Autonomous University of Mexico (UNAM), Mexico City, Mexico
- Center for Complexity Sciences, National Autonomous University of Mexico, Mexico City, Mexico
| | - Gustavo Pacheco-López
- Department of Health Sciences, Metropolitan Autonomous University (UAM), Lerma, Mexico
- Gustavo Pacheco-López,
| |
Collapse
|
17
|
Sun F, Chen J, Liu K, Tang M, Yang Y. The avian gut microbiota: Diversity, influencing factors, and future directions. Front Microbiol 2022; 13:934272. [PMID: 35992664 PMCID: PMC9389168 DOI: 10.3389/fmicb.2022.934272] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
The gut microbiota is viewed as the “second genome” of animals, sharing intricate relationships with their respective hosts. Because the gut microbial community and its diversity are affected by many intrinsic and extrinsic factors, studying intestinal microbes has become an important research topic. However, publications are dominated by studies on domestic or captive birds, while research on the composition and response mechanism of environmental changes in the gut microbiota of wild birds remains scarce. Therefore, it is important to understand the co-evolution of host and intestinal bacteria under natural conditions to elucidate the diversity, maintenance mechanisms, and functions of gut microbes in wild birds. Here, the existing knowledge of gut microbiota in captive and wild birds is summarized, along with previous studies on the composition and function, research methods employed, and factors influencing the avian gut microbial communities. Furthermore, research hotspots and directions were also discussed to identify the dynamics of the avian gut microbiota, aiming to contribute to studies of avian microbiology in the future.
Collapse
|
18
|
Capello M, Rault J, Deneubourg JL, Dagorn L. Schooling in habitats with aggregative sites: the case of tropical tuna and floating objects. J Theor Biol 2022; 547:111163. [DOI: 10.1016/j.jtbi.2022.111163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/07/2022] [Accepted: 05/11/2022] [Indexed: 10/18/2022]
|
19
|
Rudolph K, Schneider D, Fichtel C, Daniel R, Heistermann M, Kappeler PM. Drivers of gut microbiome variation within and between groups of a wild Malagasy primate. MICROBIOME 2022; 10:28. [PMID: 35139921 PMCID: PMC8827170 DOI: 10.1186/s40168-021-01223-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 12/20/2021] [Indexed: 05/12/2023]
Abstract
BACKGROUND Various aspects of sociality can benefit individuals' health. The host social environment and its relative contributions to the host-microbiome relationship have emerged as key topics in microbial research. Yet, understanding the mechanisms that lead to structural variation in the social microbiome, the collective microbial metacommunity of an animal's social network, remains difficult since multiple processes operate simultaneously within and among animal social networks. Here, we examined the potential drivers of the convergence of the gut microbiome on multiple scales among and within seven neighbouring groups of wild Verreaux's sifakas (Propithecus verreauxi) - a folivorous primate of Madagascar. RESULTS Over four field seasons, we collected 519 faecal samples of 41 animals and determined gut communities via 16S and 18S rRNA gene amplicon analyses. First, we examined whether group members share more similar gut microbiota and if diet, home range overlap, or habitat similarity drive between-group variation in gut communities, accounting for seasonality. Next, we examined within-group variation in gut microbiota by examining the potential effects of social contact rates, male rank, and maternal relatedness. To explore the host intrinsic effects on the gut community structure, we investigated age, sex, faecal glucocorticoid metabolites, and female reproductive state. We found that group members share more similar gut microbiota and differ in alpha diversity, while none of the environmental predictors explained the patterns of between-group variation. Maternal relatedness played an important role in within-group microbial homogeneity and may also explain why adult group members shared the least similar gut microbiota. Also, dominant males differed in their bacterial composition from their group mates, which might be driven by rank-related differences in physiology and scent-marking behaviours. Links to sex, female reproductive state, or faecal glucocorticoid metabolites were not detected. CONCLUSIONS Environmental factors define the general set-up of population-specific gut microbiota, but intrinsic and social factors have a stronger impact on gut microbiome variation in this primate species. Video abstract.
Collapse
Affiliation(s)
- Katja Rudolph
- Behavioral Ecology & Sociobiology Unit, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany.
- Department of Sociobiology/Anthropology, Johann-Friedrich-Blumenbach Institute of Zoology and Anthropology, Georg-August University Göttingen, Kellnerweg 6, 37077, Göttingen, Germany.
- Leibniz Science Campus "Primate Cognition", Göttingen, Germany.
| | - Dominik Schneider
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University Göttingen, Grisebachstraße 8, 37077, Göttingen, Germany
| | - Claudia Fichtel
- Behavioral Ecology & Sociobiology Unit, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany
- Leibniz Science Campus "Primate Cognition", Göttingen, Germany
| | - Rolf Daniel
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University Göttingen, Grisebachstraße 8, 37077, Göttingen, Germany
| | - Michael Heistermann
- Endocrinology Laboratory, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany
| | - Peter M Kappeler
- Behavioral Ecology & Sociobiology Unit, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany
- Department of Sociobiology/Anthropology, Johann-Friedrich-Blumenbach Institute of Zoology and Anthropology, Georg-August University Göttingen, Kellnerweg 6, 37077, Göttingen, Germany
- Leibniz Science Campus "Primate Cognition", Göttingen, Germany
| |
Collapse
|
20
|
van der Goot E, Vink SN, van Vliet D, van Spronsen FJ, Falcao Salles J, van der Zee EA. Gut-Microbiome Composition in Response to Phenylketonuria Depends on Dietary Phenylalanine in BTBR Pah enu2 Mice. Front Nutr 2022; 8:735366. [PMID: 35059423 PMCID: PMC8763796 DOI: 10.3389/fnut.2021.735366] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/17/2021] [Indexed: 01/03/2023] Open
Abstract
Phenylketonuria (PKU) is a metabolic disorder caused by a hepatic enzyme deficiency causing high blood and brain levels of the amino acid Phenylalanine (Phe), leading to severe cognitive and psychological deficits that can be prevented, but not completely, by dietary treatment. The behavioral outcome of PKU could be affected by the gut-microbiome-brain axis, as diet is one of the major drivers of the gut microbiome composition. Gut-microbiome alterations have been reported in treated patients with PKU, although the question remains whether this is due to PKU, the dietary treatment, or their interaction. We, therefore, examined the effects of dietary Phe restriction on gut-microbiome composition and relationships with behavioral outcome in mice. Male and female BTBR Pahenu2 mice received either a control diet (normal protein, “high” Phe), liberalized Phe-restricted (33% natural protein restriction), or severe Phe-restricted (75% natural protein restriction) diet with protein substitutes for 10 weeks (n = 14 per group). Their behavioral performance was examined in an open field test, novel and spatial object location tests, and a balance beam. Fecal samples were collected and sequenced for the bacterial 16S ribosomal RNA (rRNA) region. Results indicated that PKU on a high Phe diet reduced Shannon diversity significantly and altered the microbiome composition compared with wild-type animals. Phe-restriction prevented this loss in Shannon diversity but changed community composition even more than the high-Phe diet, depending on the severity of the restriction. Moreover, on a taxonomic level, we observed the highest number of differentially abundant genera in animals that received 75% Phe-restriction. Based on correlation analyses with differentially abundant taxa, the families Entereococacceae, Erysipelotrichaceae, Porphyromonadaceae, and the genus Alloprevotella showed interesting relationships with either plasma Phe levels and/or object memory. According to our results, these bacterial taxa could be good candidates to start examining the microbial metabolic potential and probiotic properties in the context of PKU. We conclude that PKU leads to an altered gut microbiome composition in mice, which is least severe on a liberalized Phe-restricted diet. This may suggest that the current Phe-restricted diet for PKU patients could be optimized by taking dietary effects on the microbiome into account.
Collapse
Affiliation(s)
- Els van der Goot
- Molecular Neurobiology, Groningen Institute for Evolutionary Sciences, University of Groningen, Groningen, Netherlands.,Microbial Ecology Cluster, Groningen Institute for Evolutionary Sciences, University of Groningen, Groningen, Netherlands
| | - Stefanie N Vink
- Microbial Ecology Cluster, Groningen Institute for Evolutionary Sciences, University of Groningen, Groningen, Netherlands
| | - Danique van Vliet
- Department of Pediatrics, Beatrix Children's Hospital, University Medical Center Groningen, Groningen, Netherlands
| | - Francjan J van Spronsen
- Department of Pediatrics, Beatrix Children's Hospital, University Medical Center Groningen, Groningen, Netherlands
| | - Joana Falcao Salles
- Microbial Ecology Cluster, Groningen Institute for Evolutionary Sciences, University of Groningen, Groningen, Netherlands
| | - Eddy A van der Zee
- Molecular Neurobiology, Groningen Institute for Evolutionary Sciences, University of Groningen, Groningen, Netherlands
| |
Collapse
|
21
|
Di Marcantonio L, Marotta F, Vulpiani MP, Sonntag Q, Iannetti L, Janowicz A, Serafino GD, Di Giannatale E, Garofolo G. Investigating the cecal microbiota in broiler poultry farms and its potential relationships with animal welfare. Res Vet Sci 2022; 144:115-125. [DOI: 10.1016/j.rvsc.2022.01.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 12/11/2022]
|
22
|
Rosenberg E, Zilber-Rosenberg I. Reconstitution and Transmission of Gut Microbiomes and Their Genes between Generations. Microorganisms 2021; 10:microorganisms10010070. [PMID: 35056519 PMCID: PMC8780831 DOI: 10.3390/microorganisms10010070] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/26/2021] [Accepted: 12/28/2021] [Indexed: 12/13/2022] Open
Abstract
Microbiomes are transmitted between generations by a variety of different vertical and/or horizontal modes, including vegetative reproduction (vertical), via female germ cells (vertical), coprophagy and regurgitation (vertical and horizontal), physical contact starting at birth (vertical and horizontal), breast-feeding (vertical), and via the environment (horizontal). Analyses of vertical transmission can result in false negatives (failure to detect rare microbes) and false positives (strain variants). In humans, offspring receive most of their initial gut microbiota vertically from mothers during birth, via breast-feeding and close contact. Horizontal transmission is common in marine organisms and involves selectivity in determining which environmental microbes can colonize the organism's microbiome. The following arguments are put forth concerning accurate microbial transmission: First, the transmission may be of functions, not necessarily of species; second, horizontal transmission may be as accurate as vertical transmission; third, detection techniques may fail to detect rare microbes; lastly, microbiomes develop and reach maturity with their hosts. In spite of the great variation in means of transmission discussed in this paper, microbiomes and their functions are transferred from one generation of holobionts to the next with fidelity. This provides a strong basis for each holobiont to be considered a unique biological entity and a level of selection in evolution, largely maintaining the uniqueness of the entity and conserving the species from one generation to the next.
Collapse
|
23
|
Cowgill M, Zink AG, Sparagon W, Yap TA, Sulaeman H, Koo MS, Vredenburg VT. Social Behavior, Community Composition, Pathogen Strain, and Host Symbionts Influence Fungal Disease Dynamics in Salamanders. Front Vet Sci 2021; 8:742288. [PMID: 34938792 PMCID: PMC8687744 DOI: 10.3389/fvets.2021.742288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/06/2021] [Indexed: 11/29/2022] Open
Abstract
The emerging fungal pathogen, Batrachochytrium dendrobatidis (Bd), which can cause a fatal disease called chytridiomycosis, is implicated in the collapse of hundreds of host amphibian species. We describe chytridiomycosis dynamics in two co-occurring terrestrial salamander species, the Santa Lucia Mountains slender salamander, Batrachoseps luciae, and the arboreal salamander, Aneides lugubris. We (1) conduct a retrospective Bd-infection survey of specimens collected over the last century, (2) estimate present-day Bd infections in wild populations, (3) use generalized linear models (GLM) to identify biotic and abiotic correlates of infection risk, (4) investigate susceptibility of hosts exposed to Bd in laboratory trials, and (5) examine the ability of host skin bacteria to inhibit Bd in culture. Our historical survey of 2,866 specimens revealed that for most of the early 20th century (~1920–1969), Bd was not detected in either species. By the 1990s the proportion of infected specimens was 29 and 17% (B. luciae and A. lugubris, respectively), and in the 2010s it was 10 and 17%. This was similar to the number of infected samples from contemporary populations (2014–2015) at 10 and 18%. We found that both hosts experience signs of chytridiomycosis and suffered high Bd-caused mortality (88 and 71% for B. luciae and A. lugubris, respectively). Our GLM revealed that Bd-infection probability was positively correlated with intraspecific group size and proximity to heterospecifics but not to abiotic factors such as precipitation, minimum temperature, maximum temperature, mean temperature, and elevation, or to the size of the hosts. Finally, we found that both host species contain symbiotic skin-bacteria that inhibit growth of Bd in laboratory trials. Our results provide new evidence consistent with other studies showing a relatively recent Bd invasion of amphibian host populations in western North America and suggest that the spread of the pathogen may be enabled both through conspecific and heterospecific host interactions. Our results suggest that wildlife disease studies should assess host-pathogen dynamics that consider the interactions and effects of multiple hosts, as well as the historical context of pathogen invasion, establishment, and epizootic to enzootic transitions to better understand and predict disease dynamics.
Collapse
Affiliation(s)
- Mae Cowgill
- Department of Biology, San Francisco State University, San Francisco, CA, United States
| | - Andrew G Zink
- Department of Biology, San Francisco State University, San Francisco, CA, United States
| | - Wesley Sparagon
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, Department of Oceanography and Sea Grant College Program, UUniversity of Hawai'i at Mānoa, HI, United States
| | - Tiffany A Yap
- Center for Biological Diversity, Oakland, CA, United States
| | - Hasan Sulaeman
- Department of Biology, San Francisco State University, San Francisco, CA, United States
| | - Michelle S Koo
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA, United States
| | - Vance T Vredenburg
- Department of Biology, San Francisco State University, San Francisco, CA, United States.,Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
24
|
Ning Y, Roberts NJ, Qi J, Peng Z, Long Z, Zhou S, Gu J, Hou Z, Yang E, Ren Y, Lang J, Liang Z, Zhang M, Ma J, Jiang G. Inbreeding status and implications for Amur tigers. Anim Conserv 2021. [DOI: 10.1111/acv.12761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Y. Ning
- College of Life Science Jilin Agricultural University Changchun China
- Feline Research Center of National Forestry and Grassland Administration College of Wildlife and Protected Area Northeast Forestry University Harbin China
| | - N. J. Roberts
- Feline Research Center of National Forestry and Grassland Administration College of Wildlife and Protected Area Northeast Forestry University Harbin China
| | - J. Qi
- Feline Research Center of National Forestry and Grassland Administration College of Wildlife and Protected Area Northeast Forestry University Harbin China
- School of Forestry Northeast Forestry University Harbin China
| | - Z. Peng
- School of Basic Medical Sciences Nanchang University Nanchang China
| | - Z. Long
- Feline Research Center of National Forestry and Grassland Administration College of Wildlife and Protected Area Northeast Forestry University Harbin China
| | - S. Zhou
- Heilongjiang Research Institute of Wildlife Harbin China
| | - J. Gu
- Feline Research Center of National Forestry and Grassland Administration College of Wildlife and Protected Area Northeast Forestry University Harbin China
| | - Z. Hou
- College of Wildlife and Protected Area Northeast Forestry University Harbin China
| | - E. Yang
- Wildlife Conservation Society Hunchun China
| | - Y. Ren
- Wildlife Conservation Society Hunchun China
| | - J. Lang
- Jilin Hunchun Amur Tiger National Nature Reserve Hunchun China
| | - Z. Liang
- Heilongjiang Laoyeling Amur Tiger National Nature Reserve Dongning China
| | - M. Zhang
- Feline Research Center of National Forestry and Grassland Administration College of Wildlife and Protected Area Northeast Forestry University Harbin China
| | - J. Ma
- Feline Research Center of National Forestry and Grassland Administration College of Wildlife and Protected Area Northeast Forestry University Harbin China
| | - G. Jiang
- Feline Research Center of National Forestry and Grassland Administration College of Wildlife and Protected Area Northeast Forestry University Harbin China
| |
Collapse
|
25
|
Vostinar AE, Skocelas KG, Lalejini A, Zaman L. Symbiosis in Digital Evolution: Past, Present, and Future. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.739047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Symbiosis, the living together of unlike organisms as symbionts, is ubiquitous in the natural world. Symbioses occur within and across all scales of life, from microbial to macro-faunal systems. Further, the interactions between symbionts are multimodal in both strength and type, can span from parasitic to mutualistic within one partnership, and persist over generations. Studying the ecological and evolutionary dynamics of symbiosis in natural or laboratory systems poses a wide range of challenges, including the long time scales at which symbioses evolve de novo, the limited capacity to experimentally control symbiotic interactions, the weak resolution at which we can quantify interactions, and the idiosyncrasies of current model systems. These issues are especially challenging when seeking to understand the ecological effects and evolutionary pressures on and of a symbiosis, such as how a symbiosis may shift between parasitic and mutualistic modes and how that shift impacts the dynamics of the partner population. In digital evolution, populations of computational organisms compete, mutate, and evolve in a virtual environment. Digital evolution features perfect data tracking and allows for experimental manipulations that are impractical or impossible in natural systems. Furthermore, modern computational power allows experimenters to observe thousands of generations of evolution in minutes (as opposed to several months or years), which greatly expands the range of possible studies. As such, digital evolution is poised to become a keystone technique in our methodological repertoire for studying the ecological and evolutionary dynamics of symbioses. Here, we review how digital evolution has been used to study symbiosis, and we propose a series of open questions that digital evolution is well-positioned to answer.
Collapse
|
26
|
Yarlagadda K, Razik I, Malhi RS, Carter GG. Social convergence of gut microbiomes in vampire bats. Biol Lett 2021; 17:20210389. [PMID: 34727703 PMCID: PMC8563296 DOI: 10.1098/rsbl.2021.0389] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/11/2021] [Indexed: 12/12/2022] Open
Abstract
The 'social microbiome' can fundamentally shape the costs and benefits of group-living, but understanding social transmission of microbes in free-living animals is challenging due to confounding effects of kinship and shared environments (e.g. highly associated individuals often share the same spaces, food and water). Here, we report evidence for convergence towards a social microbiome among introduced common vampire bats, Desmodus rotundus, a highly social species in which adults feed only on blood, and engage in both mouth-to-body allogrooming and mouth-to-mouth regurgitated food sharing. Shotgun sequencing of samples from six zoos in the USA, 15 wild-caught bats from a colony in Belize and 31 bats from three colonies in Panama showed that faecal microbiomes were more similar within colonies than between colonies. To assess microbial transmission, we created an experimentally merged group of the Panama bats from the three distant sites by housing these bats together for four months. In this merged colony, we found evidence that dyadic gut microbiome similarity increased with both clustering and oral contact, leading to microbiome convergence among introduced bats. Our findings demonstrate that social interactions shape microbiome similarity even when controlling for past social history, kinship, environment and diet.
Collapse
Affiliation(s)
- Karthik Yarlagadda
- Department of Anthropology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Imran Razik
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH, USA
- Smithsonian Tropical Research Institute, Balboa, Ancón, Panama
| | - Ripan S. Malhi
- Department of Anthropology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Program in Ecology, Evolution and Conservation Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Gerald G. Carter
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH, USA
- Smithsonian Tropical Research Institute, Balboa, Ancón, Panama
| |
Collapse
|
27
|
Shimoji H, Itoh H, Matsuura Y, Yamashita R, Hori T, Hojo MK, Kikuchi Y. Worker-dependent gut symbiosis in an ant. ISME COMMUNICATIONS 2021; 1:60. [PMID: 37938661 PMCID: PMC9723695 DOI: 10.1038/s43705-021-00061-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/24/2021] [Accepted: 10/04/2021] [Indexed: 04/27/2023]
Abstract
The hallmark of eusocial insects, honeybees, ants, and termites, is division of labor between reproductive and non-reproductive worker castes. In addition, environmental adaption and ecological dominance are also underpinned by symbiotic associations with beneficial microorganisms. Microbial symbionts are generally considered to be maintained in an insect colony in two alternative ways: shared among all colony members or inherited only by a specific caste. Especially in ants, the reproductive caste plays a crucial role in transmission of the symbionts shared among colony members over generations. Here, we report an exceptional case, the worker-dependent microbiota in an ant, Diacamma cf. indicum from Japan. By collecting almost all the individuals from 22 colonies in the field, we revealed that microbiota of workers is characterized by a single dominant bacterium localized at the hindgut. The bacterium belonging to an unclassified member within the phylum Firmicutes, which is scarce or mostly absent in the reproductive castes. Furthermore, we show that the gut symbiont is acquired at the adult stage. Collectively, our findings strongly suggest that the specific symbiont is maintained by only workers, demonstrating a novel pattern of ant-associated bacterial symbiosis, and thus further our understanding of host-microbe interactions in the light of sociobiology.
Collapse
Affiliation(s)
- Hiroyuki Shimoji
- Shool of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Hyogo Hyogo, 669-1337, Japan.
| | - Hideomi Itoh
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) Hokkaido, Sapporo, Hokkaido, 062-8517, Japan.
| | - Yu Matsuura
- Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Okinawa, 903-0213, Japan.
| | - Rio Yamashita
- Shool of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Hyogo Hyogo, 669-1337, Japan
| | - Tomoyuki Hori
- Environmental Management Research Institute, National Institute of Advanced IndustrialScience and Technology (AIST) Tsukuba West, Tsukuba, Ibaraki, 305-8569, Japan
| | - Masaru K Hojo
- Shool of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Hyogo Hyogo, 669-1337, Japan
| | - Yoshitomo Kikuchi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) Hokkaido, Sapporo, Hokkaido, 062-8517, Japan.
| |
Collapse
|
28
|
Perofsky AC, Ancel Meyers L, Abondano LA, Di Fiore A, Lewis RJ. Social groups constrain the spatiotemporal dynamics of wild sifaka gut microbiomes. Mol Ecol 2021; 30:6759-6775. [PMID: 34558751 DOI: 10.1111/mec.16193] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/25/2021] [Accepted: 09/17/2021] [Indexed: 12/29/2022]
Abstract
Primates acquire gut microbiota from conspecifics through direct social contact and shared environmental exposures. Host behaviour is a prominent force in structuring gut microbial communities, yet the extent to which group or individual-level forces shape the long-term dynamics of gut microbiota is poorly understood. We investigated the effects of three aspects of host sociality (social groupings, dyadic interactions, and individual dispersal between groups) on gut microbiome composition and plasticity in 58 wild Verreaux's sifaka (Propithecus verreauxi) from six social groups. Over the course of three dry seasons in a 5-year period, the six social groups maintained distinct gut microbial signatures, with the taxonomic composition of individual communities changing in tandem among coresiding group members. Samples collected from group members during each season were more similar than samples collected from single individuals across different years. In addition, new immigrants and individuals with less stable social ties exhibited elevated rates of microbiome turnover across seasons. Our results suggest that permanent social groupings shape the changing composition of commensal and mutualistic gut microbial communities and thus may be important drivers of health and resilience in wild primate populations.
Collapse
Affiliation(s)
- Amanda C Perofsky
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Lauren Ancel Meyers
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA.,Santa Fe Institute, Santa Fe, New Mexico, USA
| | - Laura A Abondano
- Department of Anthropology, The University of Texas at Austin, Austin, Texas, USA.,Primate Molecular Ecology and Evolution Laboratory, The University of Texas at Austin, Austin, Texas, USA
| | - Anthony Di Fiore
- Department of Anthropology, The University of Texas at Austin, Austin, Texas, USA.,Primate Molecular Ecology and Evolution Laboratory, The University of Texas at Austin, Austin, Texas, USA
| | - Rebecca J Lewis
- Department of Anthropology, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
29
|
Social group size influences pathogen transmission in salamanders. Behav Ecol Sociobiol 2021. [DOI: 10.1007/s00265-021-03057-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
30
|
Correa F, Torti V, Spiezio C, Checcucci A, Modesto M, Borruso L, Cavani L, Mimmo T, Cesco S, Luise D, Randrianarison RM, Gamba M, Rarojoson NJ, Sanguinetti M, Di Vito M, Bugli F, Mattarelli P, Trevisi P, Giacoma C, Sandri C. Disentangling the Possible Drivers of Indri indri Microbiome: A Threatened Lemur Species of Madagascar. Front Microbiol 2021; 12:668274. [PMID: 34421838 PMCID: PMC8378179 DOI: 10.3389/fmicb.2021.668274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 07/08/2021] [Indexed: 01/04/2023] Open
Abstract
Research on the gut microbiome may help with increasing our understanding of primate health with species' ecology, evolution, and behavior. In particular, microbiome-related information has the potential to clarify ecology issues, providing knowledge in support of wild primates conservation and their associated habitats. Indri (Indri indri) is the largest extant living lemur of Madagascar. This species is classified as "critically endangered" by the IUCN Red List of Threatened Species, representing one of the world's 25 most endangered primates. Indris diet is mainly folivorous, but these primates frequently and voluntarily engage in geophagy. Indris have never been successfully bred under human care, suggesting that some behavioral and/or ecological factors are still not considered from the ex situ conservation protocols. Here, we explored gut microbiome composition of 18 indris belonging to 5 different family groups. The most represented phyla were Proteobacteria 40.1 ± 9.5%, Bacteroidetes 28.7 ± 2.8%, Synergistetes 16.7 ± 4.5%, and Firmicutes 11.1 ± 1.9%. Further, our results revealed that bacterial alpha and beta diversity were influenced by indri family group and sex. In addition, we investigated the chemical composition of geophagic soil to explore the possible ecological value of soil as a nutrient supply. The quite acidic pH and high levels of secondary oxide-hydroxides of the soils could play a role in the folivorous diet's gut detoxification activity. In addition, the high contents of iron and manganese found the soils could act as micronutrients in the indris' diet. Nevertheless, the concentration of a few elements (i.e., calcium, sulfur, boron, nickel, sodium, and chromium) was higher in non-geophagic than in geophagic soils. In conclusion, the data presented herein provide a baseline for outlining some possible drivers responsible for the gut microbiome diversity in indris, thus laying the foundations for developing further strategies involved in indris' conservation.
Collapse
Affiliation(s)
- Federico Correa
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Valeria Torti
- Department of Life Sciences and Systems Biology, University of Torino, Turin, Italy
| | - Caterina Spiezio
- Department of Animal Health Care and Management, Parco Natura Viva – Garda Zoological Park, Verona, Italy
| | - Alice Checcucci
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Monica Modesto
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Luigimaria Borruso
- Faculty of Science and Technology, Free University of Bolzano-Bozen, Bolzano, Italy
| | - Luciano Cavani
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Tanja Mimmo
- Faculty of Science and Technology, Free University of Bolzano-Bozen, Bolzano, Italy
| | - Stefano Cesco
- Faculty of Science and Technology, Free University of Bolzano-Bozen, Bolzano, Italy
| | - Diana Luise
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Rose M. Randrianarison
- Groupe d’Étude et de Recherche sur les Primates de Madagascar, Antananarivo, Madagascar
- Mention d’Anthropobiologie et de Deìveloppement Durable, Université de Antananarivo, Antananarivo, Madagascar
| | - Marco Gamba
- Department of Life Sciences and Systems Biology, University of Torino, Turin, Italy
| | | | - Maurizio Sanguinetti
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Maura Di Vito
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Francesca Bugli
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Paola Mattarelli
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Paolo Trevisi
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Cristina Giacoma
- Department of Life Sciences and Systems Biology, University of Torino, Turin, Italy
| | - Camillo Sandri
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
- Department of Animal Health Care and Management, Parco Natura Viva – Garda Zoological Park, Verona, Italy
| |
Collapse
|
31
|
Romano M, Manucci F, Rubidge B, Van den Brandt MJ. Volumetric Body Mass Estimate and in vivo Reconstruction of the Russian Pareiasaur Scutosaurus karpinskii. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.692035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Pareiasaurs (Amniota, Parareptilia) were characterized by a global distribution during the Permian period, forming an important component of middle (Capitanian) and late Permian (Lopingian) terrestrial tetrapod biodiversity. This clade represents an early evolution of sizes over a ton, playing a fundamental role in the structure of middle and late Permian biodiversity and ecosystems. Despite their important ecological role and relative abundance around the world, our general knowledge of the biology of these extinct tetrapods is still quite limited. In this contribution we provide a possible in vivo reconstruction of the largest individual of the species Scutosaurus karpinskii and a volumetric body mass estimate for the taxon, considering that body size is one of the most important biological aspects of organisms. The body mass of Scutosaurus was calculated using a 3D photogrammetric model of the complete mounted skeleton PIN 2005/1537 from the Sokolki locality, Arkhangelsk Region, Russia, on exhibit at the Borissiak Paleontological Institute, Russian Academy of Sciences (Moscow). By applying three different densities for living tissues of 0.99, 1, and 1.15 kg/1,000 cm3 to reconstructed “slim,” “average” and “fat” 3D models we obtain average body masses, respectively, of 1,060, 1,160, and 1,330 kg, with a total range varying from a minimum of one ton to a maximum of 1.46 tons. Choosing the average model as the most plausible reconstruction and close to the natural condition, we consider a body mass estimate of 1,160 kg as the most robust value for Scutosaurus, a value compatible with that of a large terrestrial adult black rhino and domestic cow. This contribution demonstrates that barrel-shaped herbivores, subsisting on a high-fiber diet and with a body mass exceeding a ton, had already evolved in the upper Palaeozoic among parareptiles, shedding new light on the structure of the first modern terrestrial ecosystems.
Collapse
|
32
|
Ortega VA, Mercer EM, Giesbrecht GF, Arrieta MC. Evolutionary Significance of the Neuroendocrine Stress Axis on Vertebrate Immunity and the Influence of the Microbiome on Early-Life Stress Regulation and Health Outcomes. Front Microbiol 2021; 12:634539. [PMID: 33897639 PMCID: PMC8058197 DOI: 10.3389/fmicb.2021.634539] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
Stress is broadly defined as the non-specific biological response to changes in homeostatic demands and is mediated by the evolutionarily conserved neuroendocrine networks of the hypothalamus-pituitary-adrenal (HPA) axis and the sympathetic nervous system. Activation of these networks results in transient release of glucocorticoids (cortisol) and catecholamines (epinephrine) into circulation, as well as activation of sympathetic fibers innervating end organs. These interventions thus regulate numerous physiological processes, including energy metabolism, cardiovascular physiology, and immunity, thereby adapting to cope with the perceived stressors. The developmental trajectory of the stress-axis is influenced by a number of factors, including the gut microbiome, which is the community of microbes that colonizes the gastrointestinal tract immediately following birth. The gut microbiome communicates with the brain through the production of metabolites and microbially derived signals, which are essential to human stress response network development. Ecological perturbations to the gut microbiome during early life may result in the alteration of signals implicated in developmental programming during this critical window, predisposing individuals to numerous diseases later in life. The vulnerability of stress response networks to maladaptive development has been exemplified through animal models determining a causal role for gut microbial ecosystems in HPA axis activity, stress reactivity, and brain development. In this review, we explore the evolutionary significance of the stress-axis system for health maintenance and review recent findings that connect early-life microbiome disturbances to alterations in the development of stress response networks.
Collapse
Affiliation(s)
- Van A Ortega
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada.,International Microbiome Centre, Cumming School of Medicine, Health Sciences Centre, University of Calgary, Calgary, AB, Canada
| | - Emily M Mercer
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada.,International Microbiome Centre, Cumming School of Medicine, Health Sciences Centre, University of Calgary, Calgary, AB, Canada.,Department of Pediatrics, University of Calgary, Calgary, AB, Canada
| | - Gerald F Giesbrecht
- Department of Pediatrics, University of Calgary, Calgary, AB, Canada.,Department of Community Health Sciences, University of Calgary, Calgary, AB, Canada.,Owerko Centre, The Alberta Children's Hospital Research Institute, Calgary, AB, Canada
| | - Marie-Claire Arrieta
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada.,International Microbiome Centre, Cumming School of Medicine, Health Sciences Centre, University of Calgary, Calgary, AB, Canada.,Department of Pediatrics, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
33
|
Nguyen TT, Zhang X, Wu TC, Liu J, Le C, Tu XM, Knight R, Jeste DV. Association of Loneliness and Wisdom With Gut Microbial Diversity and Composition: An Exploratory Study. Front Psychiatry 2021; 12:648475. [PMID: 33841213 PMCID: PMC8029068 DOI: 10.3389/fpsyt.2021.648475] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/08/2021] [Indexed: 12/17/2022] Open
Abstract
Loneliness and wisdom have opposite effects on health and well-being. Loneliness is a serious public health problem associated with increased morbidity and mortality. Wisdom is associated with better health and well-being. We have consistently found a strong negative correlation between loneliness and wisdom. The present study aimed to investigate the association of loneliness and wisdom with the gut microbiome. One hundred eighty-four community-dwelling adults (28-97 years) completed validated self-report-based measures of loneliness, wisdom, compassion, social support, and social engagement. Fecal samples were collected and profiled using 16S rRNA sequencing. Linear regression analyses, controlling for age and body mass index, revealed that lower levels of loneliness and higher levels of wisdom, compassion, social support, and social engagement were associated with greater phylogenetic richness and diversity of the gut microbiome. Partial least squares (PLS) analysis to investigate multivariate relationships extracted two composite variables. Linear regression model predicting alpha-diversity with PLS components revealed that a linear combination of all psychosocial predictors (with negative loading for loneliness and positive loadings for all others, including wisdom, compassion, social support, and social engagement) was significantly associated with alpha-diversity. For beta-diversity, compassion and wisdom accounted for a significant proportion of variance in overall microbial community composition. Findings may have implications for interventions to reduce loneliness and possibly its health-related adverse consequences. Future research should explore whether increasing compassion and wisdom may improve loneliness and overall well-being as well as microbial diversity.
Collapse
Affiliation(s)
- Tanya T. Nguyen
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
- Sam and Rose Stein Institute for Research on Aging, University of California, San Diego, La Jolla, CA, United States
- Veterans Affairs San Diego Healthcare System, La Jolla, CA, United States
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, United States
| | - Xinlian Zhang
- Department of Family Medicine and Public Health, University of California, San Diego, La Jolla, CA, United States
| | - Tsung-Chin Wu
- Sam and Rose Stein Institute for Research on Aging, University of California, San Diego, La Jolla, CA, United States
- Department of Family Medicine and Public Health, University of California, San Diego, La Jolla, CA, United States
| | - Jinyuan Liu
- Sam and Rose Stein Institute for Research on Aging, University of California, San Diego, La Jolla, CA, United States
- Department of Family Medicine and Public Health, University of California, San Diego, La Jolla, CA, United States
| | - Collin Le
- Sam and Rose Stein Institute for Research on Aging, University of California, San Diego, La Jolla, CA, United States
| | - Xin M. Tu
- Sam and Rose Stein Institute for Research on Aging, University of California, San Diego, La Jolla, CA, United States
- Department of Family Medicine and Public Health, University of California, San Diego, La Jolla, CA, United States
| | - Rob Knight
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, United States
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA, United States
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States
| | - Dilip V. Jeste
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
- Sam and Rose Stein Institute for Research on Aging, University of California, San Diego, La Jolla, CA, United States
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, United States
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
34
|
García-Cabrerizo R, Carbia C, O Riordan KJ, Schellekens H, Cryan JF. Microbiota-gut-brain axis as a regulator of reward processes. J Neurochem 2021; 157:1495-1524. [PMID: 33368280 DOI: 10.1111/jnc.15284] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/08/2020] [Accepted: 12/21/2020] [Indexed: 12/14/2022]
Abstract
Our gut harbours trillions of microorganisms essential for the maintenance of homeostasis and host physiology in health and disease. In the last decade, there has been a growing interest in understanding the bidirectional pathway of communication between our microbiota and the central nervous system. With regard to reward processes there is accumulating evidence from both animal and human studies that this axis may be a key factor in gating reward valence. Focusing on the mesocorticolimbic pathway, we will discuss how the intestinal microbiota is involved in regulating brain reward functions, both in natural (i.e. eating, social or sexual behaviours) and non-natural reinforcers (drug addiction behaviours including those relevant to alcohol, psychostimulants, opioids and cannabinoids). We will integrate preclinical and clinical evidence suggesting that the microbiota-gut-brain axis could be implicated in the development of disorders associated with alterations in the reward system and how it may be targeted as a promising therapeutic strategy. Cover Image for this issue: https://doi.org/10.1111/jnc.15065.
Collapse
Affiliation(s)
| | - Carina Carbia
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | - Harriet Schellekens
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
35
|
Disentangling the Relative Roles of Vertical Transmission, Subsequent Colonizations, and Diet on Cockroach Microbiome Assembly. mSphere 2021; 6:6/1/e01023-20. [PMID: 33408228 PMCID: PMC7845597 DOI: 10.1128/msphere.01023-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
A multitude of factors affect the assemblies of complex microbial communities associated with animal hosts, with implications for community flexibility, resilience, and long-term stability; however, their relative effects have rarely been deduced. Here, we use a tractable lab model to quantify the relative and combined effects of parental transmission (egg case microbiome present/reduced), gut inocula (cockroach versus termite gut provisioned), and varying diets (matched or unmatched with gut inoculum source) on gut microbiota structure of hatchlings of the omnivorous cockroach Shelfordella lateralis using 16S rRNA gene (rDNA) amplicon sequencing. We show that the presence of a preexisting bacterial community via vertical transmission of microbes on egg cases reduces subsequent microbial invasion, suggesting priority effects that allow initial colonizers to take a strong hold and which stabilize the microbiome. However, subsequent inoculation sources more strongly affect ultimate community composition and their ecological networks, with distinct host-taxon-of-origin effects on which bacteria establish. While this is so, communities respond flexibly to specific diets in ways that consequently impact predicted community functions. In conclusion, our findings suggest that inoculations drive communities toward different stable states depending on colonization and extinction events, through ecological host-microbe relations and interactions with other gut bacteria, while diet in parallel shapes the functional capabilities of these microbiomes. These effects may lead to consistent microbial communities that maximize the extended phenotype that the microbiota provides the host, particularly if microbes spend most of their lives in host-associated environments.IMPORTANCE When host fitness is dependent on gut microbiota, microbial community flexibility and reproducibility enhance host fitness by allowing fine-tuned environmental tracking and sufficient stability for host traits to evolve. Our findings lend support to the importance of vertically transmitted early-life microbiota as stabilizers, through interactions with potential colonizers, which may contribute to ensuring that the microbiota aligns within host fitness-enhancing parameters. Subsequent colonizations are driven by microbial composition of the sources available, and we confirm that host-taxon-of-origin affects stable subsequent communities, while communities at the same time retain sufficient flexibility to shift in response to available diets. Microbiome structure is thus the result of the relative impact and combined effects of inocula and fluctuations driven by environment-specific microbial sources and digestive needs. These affect short-term community structure on an ecological time scale but could ultimately shape host species specificities in microbiomes across evolutionary time, if environmental conditions prevail.
Collapse
|
36
|
Infant Skin Bacterial Communities Vary by Skin Site and Infant Age across Populations in Mexico and the United States. mSystems 2020; 5:5/6/e00834-20. [PMID: 33144313 PMCID: PMC7646528 DOI: 10.1128/msystems.00834-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
This study contributes to the sparse literature on the infant skin microbiome in general, and the virtually nonexistent literature on the infant skin microbiome in a field setting. While microbiome research often addresses patterns at a national scale, this study addresses the influence of population-level factors, such as maternal socioeconomic status and contact with caregivers, on infant skin bacterial communities. This approach strengthens our understanding of how local variables influence the infant skin microbiome, and paves the way for additional studies to combine biological sample collection with questionnaires to adequately capture how specific behaviors dictate infant microbial exposures. Work in this realm has implications for infant care and health, as well as for investigating how the microbial communities of different body sites develop over time, with applications to specific health outcomes associated with the skin microbiome (e.g., immune system development or atopic dermatitis). Daily practices put humans in close contact with the surrounding environment, and differences in these practices have an impact on human physiology, development, and health. There is mounting evidence that the microbiome represents an interface that mediates interactions between the human body and the environment. In particular, the skin microbiome serves as the primary interface with the external environment and aids in host immune function by contributing as the first line of defense against pathogens. Despite these important connections, we have only a basic understanding of how the skin microbiome is first established, or which environmental factors contribute to its development. To this end, this study compared the skin bacterial communities of infants (n = 47) living in four populations in Mexico and the United States that span the socioeconomic gradient, where we predicted that variation in physical and social environments would shape the infant skin microbiome. Results of 16S rRNA bacterial gene sequencing on 119 samples (armpit, hand, and forehead) showed that infant skin bacterial diversity and composition are shaped by population-level factors, including those related to socioeconomic status and household composition, and vary by skin site and infant age. Differences in infant-environment interactions, including with other people, appear to vary across the populations, likely influencing infant microbial exposures and, in turn, the composition of infant skin bacterial communities. These findings suggest that variation in microbial exposures stemming from the local environment in infancy can impact the establishment of the skin microbiome across body sites, with implications for developmental and health outcomes. IMPORTANCE This study contributes to the sparse literature on the infant skin microbiome in general, and the virtually nonexistent literature on the infant skin microbiome in a field setting. While microbiome research often addresses patterns at a national scale, this study addresses the influence of population-level factors, such as maternal socioeconomic status and contact with caregivers, on infant skin bacterial communities. This approach strengthens our understanding of how local variables influence the infant skin microbiome, and paves the way for additional studies to combine biological sample collection with questionnaires to adequately capture how specific behaviors dictate infant microbial exposures. Work in this realm has implications for infant care and health, as well as for investigating how the microbial communities of different body sites develop over time, with applications to specific health outcomes associated with the skin microbiome (e.g., immune system development or atopic dermatitis).
Collapse
|
37
|
Busck MM, Settepani V, Bechsgaard J, Lund MB, Bilde T, Schramm A. Microbiomes and Specific Symbionts of Social Spiders: Compositional Patterns in Host Species, Populations, and Nests. Front Microbiol 2020; 11:1845. [PMID: 32849442 PMCID: PMC7412444 DOI: 10.3389/fmicb.2020.01845] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 07/14/2020] [Indexed: 12/18/2022] Open
Abstract
Social spiders have remarkably low species-wide genetic diversities, potentially increasing the relative importance of microbial symbionts for host fitness. Here we explore the bacterial microbiomes of three species of social Stegodyphus (S. dumicola, S. mimosarum, and S. sarasinorum), within and between populations, using 16S rRNA gene amplicon sequencing. The microbiomes of the three spider species were distinct but shared similarities in membership and structure. This included low overall diversity (Shannon index 0.5–1.7), strong dominance of single symbionts in individual spiders (McNaughton’s dominance index 0.68–0.93), and a core microbiome (>50% prevalence) consisting of 5–7 specific symbionts. The most abundant and prevalent symbionts were classified as Chlamydiales, Borrelia, and Mycoplasma, all representing novel, presumably Stegodyphus-specific lineages. Borrelia- and Mycoplasma-like symbionts were localized by fluorescence in situ hybridization (FISH) in the spider midgut. The microbiomes of individual spiders were highly similar within nests but often very different between nests from the same population, with only the microbiome of S. sarasinorum consistently reflecting host population structure. The weak population pattern in microbiome composition renders microbiome-facilitated local adaptation unlikely. However, the retention of specific symbionts across populations and species may indicate a recurrent acquisition from environmental vectors or an essential symbiotic contribution to spider phenotype.
Collapse
Affiliation(s)
- Mette Marie Busck
- Section for Microbiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Virginia Settepani
- Section for Genetics, Ecology and Evolution, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Jesper Bechsgaard
- Section for Genetics, Ecology and Evolution, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Marie Braad Lund
- Section for Microbiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Trine Bilde
- Section for Genetics, Ecology and Evolution, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Andreas Schramm
- Section for Microbiology, Department of Biology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
38
|
Microbial transmission in animal social networks and the social microbiome. Nat Ecol Evol 2020; 4:1020-1035. [DOI: 10.1038/s41559-020-1220-8] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 05/11/2020] [Indexed: 12/15/2022]
|
39
|
Vendl C, Slavich E, Nelson T, Acevedo-Whitehouse K, Montgomery K, Ferrari B, Thomas T, Rogers T. Does sociality drive diversity and composition of airway microbiota in cetaceans? ENVIRONMENTAL MICROBIOLOGY REPORTS 2020; 12:324-333. [PMID: 32162479 DOI: 10.1111/1758-2229.12835] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 02/25/2020] [Accepted: 03/09/2020] [Indexed: 05/23/2023]
Abstract
The number of social contacts of mammals is positively correlated with the diversity of their gut microbes. There is some evidence that sociality also affects microbes in the respiratory tract. We tested whether the airway microbiota of cetacean species differ depending on the whales' level of sociality. We sampled the blow of blue (Balaenoptera musculus), grey (Eschrichtius robustus), humpback (Megaptera novaeangliae) and long-finned pilot whales (PWs) (Globicephala melas) and analysed the blow microbiota by barcode tag sequencing targeting the V4 region of the bacterial 16S rRNA gene. Humpback whales (HWs) show higher levels of sociality than blue (BW) and grey (GW), while PWs are the most gregarious among the four species. The blow samples of the HWs showed the highest richness and diversity. HWs were also the only species with a species-specific clustering of their microbial community composition and a relatively large number of core taxa. Therefore, we conclude that it cannot be sociality alone shaping the diversity and composition of airway microbiota. We suggest the whale species' lung volume and size of the plume of exhaled air as an additional factor impacting the transmission potential of blow microbiota from one individual whale to another.
Collapse
Affiliation(s)
- Catharina Vendl
- Evolution & Ecology Research Centre, School of Biological, Environmental and Earth Science, UNSW Sydney, NSW, 2052, Australia
| | - Eve Slavich
- Evolution & Ecology Research Centre, School of Biological, Environmental and Earth Science, UNSW Sydney, NSW, 2052, Australia
- Stats Central, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, UNSW, 2052, Australia
| | - Tiffanie Nelson
- Queensland Facility for Advanced Bioinformatics, School of Medicine, Menzies Health Institute Queensland, Building G40, Level 9, Gold Coast Campus, Griffith University, Southport, QLD, 4215, Australia
| | - Karina Acevedo-Whitehouse
- Unit for Basic and Applied Microbiology, School of Natural Sciences, Autonomous University of Queretaro, Queretaro, 76230, Mexico
| | - Kate Montgomery
- The School of Biotechnology and Biomolecular Sciences, UNSW Sydney, NSW, 2052, Australia
| | - Belinda Ferrari
- The School of Biotechnology and Biomolecular Sciences, UNSW Sydney, NSW, 2052, Australia
| | - Torsten Thomas
- Centre of Marine Bio-Innovation (CMB), School of Biological, Environmental and Earth Science, UNSW Sydney, NSW, 2052, Australia
| | - Tracey Rogers
- Evolution & Ecology Research Centre, School of Biological, Environmental and Earth Science, UNSW Sydney, NSW, 2052, Australia
| |
Collapse
|
40
|
Trumbo S, Klassen J. Editorial overview: Hidden players: microbes reshape the insect niche. CURRENT OPINION IN INSECT SCIENCE 2020; 39:vi-ix. [PMID: 32546376 DOI: 10.1016/j.cois.2020.05.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
|
41
|
Figueiredo ART, Kramer J. Cooperation and Conflict Within the Microbiota and Their Effects On Animal Hosts. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00132] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
42
|
Interactions between social groups of colobus monkeys (Colobus vellerosus) explain similarities in their gut microbiomes. Anim Behav 2020. [DOI: 10.1016/j.anbehav.2020.02.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
43
|
Tang GS, Liang XX, Yang MY, Wang TT, Chen JP, Du WG, Li H, Sun BJ. Captivity Influences Gut Microbiota in Crocodile Lizards ( Shinisaurus crocodilurus). Front Microbiol 2020; 11:550. [PMID: 32390955 PMCID: PMC7190797 DOI: 10.3389/fmicb.2020.00550] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 03/13/2020] [Indexed: 12/11/2022] Open
Abstract
Captivity is an important measure for conservation of an endangered species, and it is becoming a hot topic in conservation biology, which integrates gut microbiota and endangered species management in captivity. As an ancient reptile, the crocodile lizard (Shinisaurus crocodilurus) is facing extreme danger of extinction, resulting in great significance to species conservation in the reserve. Thus, it is critical to understand the differences in gut microbiota composition between captive and wild populations, as it could provide fundamental information for conservative management of crocodile lizards. Here, fecal samples of crocodile lizards were collected from two wild and one captive populations with different ages (i.e., juveniles and adults) and were analyzed for microbiota composition by 16S ribosomal RNA (rRNA) gene amplicon sequencing. This study showed that the lizard gut microbiota was mainly composed of Firmicutes and Proteobacteria. The gut microbiota composition of crocodile lizard did not differ between juveniles and adults, as well as between two wild populations. Interestingly, captivity increased community richness and influenced community structures of gut microbiota in crocodile lizards, compared with wild congeners. This was indicated by higher abundances of the genera Epulopiscium and Glutamicibacter. These increases might be induced by complex integration of simple food resources or human contact in captivity. The gut microbiota functions of crocodile lizards are primarily enriched in metabolism, environmental information processing, genetic information processing, and cellular processes based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. This study provides fundamental information about the gut microbiota of crocodile lizards in wild and captive populations. In the future, exploring the relationship among diet, gut microbiota, and host health is necessary for providing animal conservation strategies.
Collapse
Affiliation(s)
- Guo-Shuai Tang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xi-Xi Liang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Meng-Yuan Yang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ting-Ting Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jin-Ping Chen
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, China
| | - Wei-Guo Du
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Huan Li
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, China
| | - Bao-Jun Sun
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
44
|
Sinotte VM, Renelies-Hamilton J, Taylor BA, Ellegaard KM, Sapountzis P, Vasseur-Cognet M, Poulsen M. Synergies Between Division of Labor and Gut Microbiomes of Social Insects. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2019.00503] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
45
|
Abstract
The evolution of a mutualism requires reciprocal interactions whereby one species provides a service that the other species cannot perform or performs less efficiently. Services exchanged in insect-fungus mutualisms include nutrition, protection, and dispersal. In ectosymbioses, which are the focus of this review, fungi can be consumed by insects or can degrade plant polymers or defensive compounds, thereby making a substrate available to insects. They can also protect against environmental factors and produce compounds antagonistic to microbial competitors. Insects disperse fungi and can also provide fungal growth substrates and protection. Insect-fungus mutualisms can transition from facultative to obligate, whereby each partner is no longer viable on its own. Obligate dependency has (a) resulted in the evolution of morphological adaptations in insects and fungi, (b) driven the evolution of social behaviors in some groups of insects, and (c) led to the loss of sexuality in some fungal mutualists.
Collapse
Affiliation(s)
- Peter H W Biedermann
- Research Group Insect-Fungus Symbiosis, Department of Animal Ecology and Tropical Biology, University of Würzburg, 97074 Würzburg, Germany;
| | - Fernando E Vega
- Sustainable Perennial Crops Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, Maryland 20705, USA;
| |
Collapse
|
46
|
Segers FHID, Kaltenpoth M, Foitzik S. Abdominal microbial communities in ants depend on colony membership rather than caste and are linked to colony productivity. Ecol Evol 2019; 9:13450-13467. [PMID: 31871657 PMCID: PMC6912891 DOI: 10.1002/ece3.5801] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/30/2019] [Accepted: 10/03/2019] [Indexed: 12/13/2022] Open
Abstract
Gut bacteria aid their host in digestion and pathogen defense, and bacterial communities that differ in diversity or composition may vary in their ability to do so. Typically, the gut microbiomes of animals living in social groups converge as members share a nest environment and frequently interact. Social insect colonies, however, consist of individuals that differ in age, physiology, and behavior, traits that could affect gut communities or that expose the host to different bacteria, potentially leading to variation in the gut microbiome within colonies. Here we asked whether bacterial communities in the abdomen of Temnothorax nylanderi ants, composed largely of the gut microbiome, differ between different reproductive and behavioral castes. We compared microbiomes of queens, newly eclosed workers, brood carers, and foragers by high-throughput 16S rRNA sequencing. Additionally, we sampled individuals from the same colonies twice, in the field and after 2 months of laboratory housing. To disentangle the effects of laboratory environment and season on microbial communities, additional colonies were collected at the same location after 2 months. There were no large differences between ant castes, although queens harbored more diverse microbial communities than workers. Instead, we found effects of colony, environment, and season on the abdominal microbiome. Interestingly, colonies with more diverse communities had produced more brood. Moreover, the queens' microbiome composition was linked to egg production. Although long-term coevolution between social insects and gut bacteria has been repeatedly evidenced, our study is the first to find associations between abdominal microbiome characteristics and colony productivity in social insects.
Collapse
Affiliation(s)
- Francisca H. I. D. Segers
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE‐TBG)FrankfurtGermany
- Behavioural Ecology and Social EvolutionInstitute of Organismic and Molecular EvolutionJohannes Gutenberg UniversityMainzGermany
- Present address:
Applied Bioinformatics GroupInstitute of Cell Biology & NeuroscienceGoethe UniversityFrankfurtGermany
| | - Martin Kaltenpoth
- Evolutionary EcologyInstitute of Organismic and Molecular EvolutionJohannes Gutenberg UniversityMainzGermany
| | - Susanne Foitzik
- Evolutionary EcologyInstitute of Organismic and Molecular EvolutionJohannes Gutenberg UniversityMainzGermany
| |
Collapse
|
47
|
Sherwin E, Bordenstein SR, Quinn JL, Dinan TG, Cryan JF. Microbiota and the social brain. Science 2019; 366:366/6465/eaar2016. [DOI: 10.1126/science.aar2016] [Citation(s) in RCA: 186] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Sociability can facilitate mutually beneficial outcomes such as division of labor, cooperative care, and increased immunity, but sociability can also promote negative outcomes, including aggression and coercion. Accumulating evidence suggests that symbiotic microorganisms, specifically the microbiota that reside within the gastrointestinal system, may influence neurodevelopment and programming of social behaviors across diverse animal species. This relationship between host and microbes hints that host-microbiota interactions may have influenced the evolution of social behaviors. Indeed, the gastrointestinal microbiota is used by certain species as a means to facilitate communication among conspecifics. Further understanding of how microbiota influence the brain in nature may be helpful for elucidating the causal mechanisms underlying sociability and for generating new therapeutic strategies for social disorders in humans, such as autism spectrum disorders (ASDs).
Collapse
Affiliation(s)
- Eoin Sherwin
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Seth R. Bordenstein
- Department of Biological Sciences, Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, TN, USA
| | - John L. Quinn
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland
| | - Timothy G. Dinan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioral Sciences, University College Cork, Cork, Ireland
| | - John F. Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
48
|
Kuthyar S, Manus MB, Amato KR. Leveraging non-human primates for exploring the social transmission of microbes. Curr Opin Microbiol 2019; 50:8-14. [PMID: 31585390 DOI: 10.1016/j.mib.2019.09.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/16/2019] [Accepted: 09/02/2019] [Indexed: 12/15/2022]
Abstract
Host social interactions can provide multiple complex pathways for microbial transmission. Here, we suggest non-human primates as models to study the social transmission of commensal or mutualistic microbes due to their high sociality, wide range of group compositions and dominance structures, and diverse group interactions. Microbial sharing from social interactions can positively impact host health by promoting microbial diversity and influencing immunity. Microbes may also drive their own transmission by shaping host behavior, which could lead to fitness benefits for both microbes and hosts. Variation in patterns of social interactions at both the individual and group scale make non-human primates an ideal system to explore the relationship between social behavior, microbial sharing, and their impact on host health and evolution.
Collapse
Affiliation(s)
- Sahana Kuthyar
- Department of Anthropology, Northwestern University, Evanston, IL 60208, United States
| | - Melissa B Manus
- Department of Anthropology, Northwestern University, Evanston, IL 60208, United States
| | - Katherine R Amato
- Department of Anthropology, Northwestern University, Evanston, IL 60208, United States.
| |
Collapse
|
49
|
Voulgari-Kokota A, McFrederick QS, Steffan-Dewenter I, Keller A. Drivers, Diversity, and Functions of the Solitary-Bee Microbiota. Trends Microbiol 2019; 27:1034-1044. [PMID: 31451346 DOI: 10.1016/j.tim.2019.07.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/12/2019] [Accepted: 07/29/2019] [Indexed: 12/31/2022]
Abstract
Accumulating reports of global bee declines have drawn much attention to the bee microbiota and its importance. Most research has focused on social bees, while solitary species have received scant attention despite their enormous biodiversity, ecological importance, and agroeconomic value. We review insights from several recent studies on diversity, function, and drivers of the solitary-bee microbiota, and compare these factors with those relevant to the social-bee microbiota. Despite basic similarities, the social-bee model, with host-specific core microbiota and social transmission, is not representative of the vast majority of bee species. The solitary-bee microbiota exhibits greater variability and biodiversity, with a strong impact of environmental acquisition routes. Our synthesis identifies outstanding questions that will build understanding of these interactions, responses to environmental threats, and consequences for health.
Collapse
Affiliation(s)
- Anna Voulgari-Kokota
- Department of Bioinformatics, University of Würzburg, Biocenter, Am Hubland, 97074 Würzburg, Germany; Center for Computational and Theoretical Biology, University of Würzburg, Hubland Nord, Emil-Fischer Straße, 97074 Würzburg, Germany
| | - Quinn S McFrederick
- Department of Entomology, University of California, 900 University Ave, Riverside, CA 92521, USA
| | - Ingolf Steffan-Dewenter
- Department of Animal Ecology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Alexander Keller
- Department of Bioinformatics, University of Würzburg, Biocenter, Am Hubland, 97074 Würzburg, Germany; Center for Computational and Theoretical Biology, University of Würzburg, Hubland Nord, Emil-Fischer Straße, 97074 Würzburg, Germany.
| |
Collapse
|
50
|
Orkin JD, Webb SE, Melin AD. Small to modest impact of social group on the gut microbiome of wild Costa Rican capuchins in a seasonal forest. Am J Primatol 2019; 81:e22985. [PMID: 31081233 DOI: 10.1002/ajp.22985] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/13/2019] [Accepted: 04/14/2019] [Indexed: 12/18/2022]
Abstract
The horizontal transmission of pathogenic and beneficial microbes has implications for health and development of socially living animals. Social group is repeatedly implicated as an important predictor of gut microbiome structure among primates, with individuals in neighboring social groups exhibiting distinct microbiomes. Here we examine whether group membership is a predictor of gut microbiome structure and diversity across three groups of white-faced capuchins (Cebus capucinus imitator) inhabiting a seasonal Costa Rican forest. We collected 62 fecal samples from 18 adult females during four sampling bouts. Sampling bouts spanned the dry-to-wet-to-dry seasonal transitions. To investigate gut microbial composition, we sequenced the V4 region of the 16S rRNA gene. We used the DADA2 pipeline to assign amplicon sequence variants and the RDP database to classify taxa. Our findings are: 1) gut microbiomes of capuchins clustered by social group in the late dry season, but this pattern was less evident in other sampling bouts; 2) social group was a significant variable in a PERMANOVA test of beta diversity, but it accounted for less variation than season; 3) social group was not an important predictor of abundance for the ten most abundant microbial taxa in capuchins; 4) when examining log2-fold abundances of microbes between social groups, there were significant differences in some pairwise comparisons. While this is suggestive of group-wide differences, individual variation may have a strong impact and should be assessed in future studies. Overall, we found a minor impact of social group membership on the gut microbiota of wild white-faced capuchins. Future research including home range overlap and resource use, as well as fine-scale investigation of individual variation, will further elucidate patterns of socially structured microbes.
Collapse
Affiliation(s)
- Joseph Daniel Orkin
- Department of Anthropology and Archaeology, University of Calgary, Calgary, Alberta.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta
| | - Shasta Ellen Webb
- Department of Anthropology and Archaeology, University of Calgary, Calgary, Alberta
| | - Amanda Dawn Melin
- Department of Anthropology and Archaeology, University of Calgary, Calgary, Alberta.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta.,Department of Medical Genetics, University of Calgary, Calgary, Alberta
| |
Collapse
|