1
|
Liang F, Zhang Y, Xue Q, Zhang X. Integrated PBPK-EO modeling of osimertinib to predict plasma concentrations and intracranial EGFR engagement in patients with brain metastases. Sci Rep 2024; 14:12736. [PMID: 38830973 PMCID: PMC11148161 DOI: 10.1038/s41598-024-63743-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/31/2024] [Indexed: 06/05/2024] Open
Abstract
The purpose of this study was to develop and validate a physiologically based pharmacokinetic (PBPK) model combined with an EGFR occupancy (EO) model for osimertinib (OSI) to predict plasma trough concentration (Ctrough) and the intracranial time-course of EGFR (T790M and L858R mutants) engagement in patient populations. The PBPK model was also used to investigate the key factors affecting OSI pharmacokinetics (PK) and intracranial EGFR engagement, analyze resistance to the target mutation C797S, and determine optimal dosing regimens when used alone and in drug-drug interactions (DDIs). A population PBPK-EO model of OSI was developed using physicochemical, biochemical, binding kinetic, and physiological properties, and then validated using nine clinical PK studies, observed EO study, and two clinical DDI studies. The PBPK-EO model demonstrated good consistency with observed data, with most prediction-to-observation ratios falling within the range of 0.7 to 1.3 for plasma AUC, Cmax, Ctrough and intracranial free concentration. The simulated time-course of C797S occupancy by the PBPK model was much lower than T790M and L858R occupancy, providing an explanation for OSI on-target resistance to the C797S mutation. The PBPK model identified ABCB1 CLint,u, albumin level, and EGFR expression as key factors affecting plasma Ctrough and intracranial EO for OSI. Additionally, PBPK-EO simulations indicated that the optimal dosing regimen for OSI in patients with brain metastases is either 80 mg once daily (OD) or 160 mg OD, or 40 mg or 80 mg twice daily (BID). When used concomitantly with CYP enzyme perpetrators, the PBPK-EO model suggested appropriate dosing regimens of 80 mg OD with fluvoxamine (FLUV) itraconazole (ITR) or fluvoxamine (FLUC) for co-administration and an increase to 160 mg OD with rifampicin (RIF) or efavirenz (EFA). In conclusion, the PBPK-EO model has been shown to be capable of simulating the pharmacokinetic concentration-time profiles and the time-course of EGFR engagement for OSI, as well as determining the optimum dosing in various clinical situations.
Collapse
Affiliation(s)
- Feng Liang
- Bethune International Peace Hospital, Shijiazhuang, China
| | - Yimei Zhang
- Bethune International Peace Hospital, Shijiazhuang, China
| | - Qian Xue
- Bethune International Peace Hospital, Shijiazhuang, China
| | - Xiaoling Zhang
- Bethune International Peace Hospital, Shijiazhuang, China.
| |
Collapse
|
2
|
Mehlhaff E, Miller D, Ebben JD, Dobrzhanskyi O, Uboha NV. Targeted Agents in Esophagogastric Cancer Beyond Human Epidermal Growth Factor Receptor-2. Hematol Oncol Clin North Am 2024; 38:659-675. [PMID: 38485551 DOI: 10.1016/j.hoc.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2024]
Abstract
Gastroesophageal cancers are highly diverse tumors in terms of their anatomic and molecular characteristics, making drug development challenging. Recent advancements in understanding the molecular profiles of these cancers have led to the identification of several new biomarkers. Ongoing clinical trials are investigating new targeted agents with promising results. CLDN18.2 has emerged as a biomarker with established activity of associated targeted therapies. Other targeted agents, such as bemarituzumab and DKN-01, are under active investigation. As new agents are incorporated into the treatment continuum, the questions of biomarker overlap, tumor heterogeneity, and toxicity management will need to be addressed.
Collapse
Affiliation(s)
- Eric Mehlhaff
- Division of Hematology, Medical Oncology and Palliative Care, Department of Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin, 600 Highland Avenue, Madison, WI 53792, USA
| | - Devon Miller
- Division of Hematology, Medical Oncology and Palliative Care, Department of Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin, 600 Highland Avenue, Madison, WI 53792, USA
| | - Johnathan D Ebben
- Division of Hematology, Medical Oncology and Palliative Care, Department of Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin, 600 Highland Avenue, Madison, WI 53792, USA
| | - Oleksii Dobrzhanskyi
- Upper Gastrointestinal Tumors Department, National Cancer Institute, Kyiv, Ukraine
| | - Nataliya V Uboha
- Division of Hematology, Medical Oncology and Palliative Care, Department of Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin, 600 Highland Avenue, Madison, WI 53792, USA; University of Wisconsin, Carbone Cancer Center, Madison, WI, USA.
| |
Collapse
|
3
|
Li F, Yu J, Pan T, Feng H, Li J, Yu B, Fan Z, Sang Q, Chen M, Zang M, Hou J, Wu X, Yu Y, Li Y, Yan C, Zhu Z, Su L, Liu B. BPTF Drives Gastric Cancer Resistance to EGFR Inhibitor by Epigenetically Regulating the C-MYC/PLCG1/Perk Axis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303091. [PMID: 37863665 PMCID: PMC10700682 DOI: 10.1002/advs.202303091] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/06/2023] [Indexed: 10/22/2023]
Abstract
Erlotinib, an EGFR tyrosine kinase inhibitor, is used for treating patients with cancer exhibiting EGFR overexpression or mutation. However, the response rate of erlotinib is low among patients with gastric cancer (GC). The findings of this study illustrated that the overexpression of bromodomain PHD finger transcription factor (BPTF) is partially responsible for erlotinib resistance in GC, and the combination of the BPTF inhibitor AU-1 with erlotinib synergistically inhibited tumor growth both in vivo and in vitro. AU-1 inhibited the epigenetic function of BPTF and decreased the transcriptional activity of c-MYC on PLCG1 by attenuating chromosome accessibility of the PLCG1 promoter region, thus decreasing the expression of p-PLCG1 and p-Erk and eventually improving the sensitivity of GC cells to erlotinib. In patient-derived xenograft (PDX) models, AU-1 monotherapy exhibited remarkable tumor-inhibiting activity and is synergistic anti-tumor effects when combined with erlotinib. Altogether, the findings illustrate that BPTF affects the responsiveness of GC to erlotinib by epigenetically regulating the c-MYC/PLCG1/pErk axis, and the combination of BPTF inhibitors and erlotinib is a viable therapeutic approach for GC.
Collapse
Affiliation(s)
- Fangyuan Li
- Department of General SurgeryShanghai Key Laboratory of Gastric NeoplasmsShanghai Institute of Digestive SurgeryRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
| | - Junxian Yu
- Department of General SurgeryShanghai Key Laboratory of Gastric NeoplasmsShanghai Institute of Digestive SurgeryRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
| | - Tao Pan
- Department of General SurgeryShanghai Key Laboratory of Gastric NeoplasmsShanghai Institute of Digestive SurgeryRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
| | - Haoran Feng
- Department of General SurgeryShanghai Key Laboratory of Gastric NeoplasmsShanghai Institute of Digestive SurgeryRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
| | - Jianfang Li
- Department of General SurgeryShanghai Key Laboratory of Gastric NeoplasmsShanghai Institute of Digestive SurgeryRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
| | - Beiqin Yu
- Department of General SurgeryShanghai Key Laboratory of Gastric NeoplasmsShanghai Institute of Digestive SurgeryRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
| | - Zhiyuan Fan
- Department of General SurgeryShanghai Key Laboratory of Gastric NeoplasmsShanghai Institute of Digestive SurgeryRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
| | - Qingqing Sang
- Department of General SurgeryShanghai Key Laboratory of Gastric NeoplasmsShanghai Institute of Digestive SurgeryRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
| | - Mengdi Chen
- Department of General SurgeryShanghai Key Laboratory of Gastric NeoplasmsShanghai Institute of Digestive SurgeryRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
| | - Mingde Zang
- Department of General SurgeryShanghai Key Laboratory of Gastric NeoplasmsShanghai Institute of Digestive SurgeryRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
- Department of Gastric Cancer SurgeryFudan University Shanghai Cancer CenterDepartment of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China
| | - Junyi Hou
- Department of General SurgeryShanghai Key Laboratory of Gastric NeoplasmsShanghai Institute of Digestive SurgeryRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
| | - Xiongyan Wu
- Department of General SurgeryShanghai Key Laboratory of Gastric NeoplasmsShanghai Institute of Digestive SurgeryRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
| | - Yingyan Yu
- Department of General SurgeryShanghai Key Laboratory of Gastric NeoplasmsShanghai Institute of Digestive SurgeryRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
| | - Yuan‐Yuan Li
- Shanghai Center for Bioinformation TechnologyShanghai Engineering Research Center of Pharmaceutical Translation & Shanghai Industrial Technology InstituteShanghai202163P. R. China
| | - Chao Yan
- Department of General SurgeryShanghai Key Laboratory of Gastric NeoplasmsShanghai Institute of Digestive SurgeryRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
| | - Zhenggang Zhu
- Department of General SurgeryShanghai Key Laboratory of Gastric NeoplasmsShanghai Institute of Digestive SurgeryRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
| | - Liping Su
- Department of General SurgeryShanghai Key Laboratory of Gastric NeoplasmsShanghai Institute of Digestive SurgeryRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
| | - Bingya Liu
- Department of General SurgeryShanghai Key Laboratory of Gastric NeoplasmsShanghai Institute of Digestive SurgeryRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
| |
Collapse
|
4
|
Zhang Y. Targeting Epidermal Growth Factor Receptor for Cancer Treatment: Abolishing Both Kinase-Dependent and Kinase-Independent Functions of the Receptor. Pharmacol Rev 2023; 75:1218-1232. [PMID: 37339882 PMCID: PMC10595022 DOI: 10.1124/pharmrev.123.000906] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/11/2023] [Accepted: 06/13/2023] [Indexed: 06/22/2023] Open
Abstract
Epidermal growth factor receptor (EGFR), a receptor tyrosine kinase, is activated by ligand binding, overexpression, or mutation. It is well known for its tyrosine kinase-dependent oncogenic activities in a variety of human cancers. A large number of EGFR inhibitors have been developed for cancer treatment, including monoclonal antibodies, tyrosine kinase inhibitors, and a vaccine. The EGFR inhibitors are aimed at inhibiting the activation or the activity of EGFR tyrosine kinase. However, these agents have shown efficacy in only a few types of cancers. Drug resistance, both intrinsic and acquired, is common even in cancers where the inhibitors have shown efficacy. The drug resistance mechanism is complex and not fully known. The key vulnerability of cancer cells that are resistant to EGFR inhibitors has not been identified. Nevertheless, it has been increasingly recognized in recent years that EGFR also possesses kinase-independent oncogenic functions and that these noncanonical functions may play a crucial role in cancer resistance to EGFR inhibitors. In this review, both kinase-dependent and -independent activities of EGFR are discussed. Also discussed are the mechanisms of actions and therapeutic activities of clinically used EGFR inhibitors and sustained EGFR overexpression and EGFR interaction with other receptor tyrosine kinases to counter the EGFR inhibitors. Moreover, this review discusses emerging experimental therapeutics that have shown potential for overcoming the limitation of the current EGFR inhibitors in preclinical studies. The findings underscore the importance and feasibility of targeting both kinase-dependent and -independent functions of EGFR to enhance therapeutic efficacy and minimize drug resistance. SIGNIFICANCE STATEMENT: EGFR is a major oncogenic driver and therapeutic target, but cancer resistance to current EGFR inhibitors remains a significant unmet clinical problem. This article reviews the cancer biology of EGFR as well as the mechanisms of actions and the therapeutic efficacies of current and emerging EGFR inhibitors. The findings could potentially lead to development of more effective treatments for EGFR-positive cancers.
Collapse
Affiliation(s)
- Yuesheng Zhang
- Department of Pharmacology and Toxicology, School of Medicine, and Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
5
|
Seo JW, Park KB, Chin HM, Jun KH. Does Epstein-Barr virus-positive gastric cancer establish a significant relationship with the multiple genes related to gastric carcinogenesis? PLoS One 2023; 18:e0283366. [PMID: 37285389 DOI: 10.1371/journal.pone.0283366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/07/2023] [Indexed: 06/09/2023] Open
Abstract
Gastric cancer has been categorized into molecular subtypes including Epstein-Barr virus (EBV)-positive tumors, which provide clinicopathological and prognostic information. In this study, we investigated the EBV infection status of patients with gastric cancer and its correlation with the clinicopathological characteristics and multiple genes related to gastric carcinogenesis. The data of 460 gastric cancer patients who underwent curative gastrectomy with D2 lymph node dissection between January 2017 and February 2022 were analyzed. The clinicopathological features and prognosis of the patients with EBV-positive gastric cancers were compared with those of EBV-negative gastric cancers. Immunohistochemistry for epidermal growth factor receptor (EGFR), C-erb B2, Ki-67, and p53 was performed. Additionally, in situ hybridization was conducted to detect EBV, and microsatellite instability (MSI) analysis was used to assess the deficiency in mismatch repair (MMR) genes. EBV-positivity and MSI were identified in 10.4% and 37.3% of gastric cancer patients, respectively. EBV positivity was associated with male gender (P = 0.001), proximal location (P = 0.004), poorly differentiated histological type (P = 0.048), moderate to severe lymphoid stroma (P = 0.006), high Ki-67 expression (P = 0.02), and a shorter resection margin. EGFR was more often expressed in EBV-negative gastric cancers (P < 0.001). MSI tumors were associated with older age (P = 0.01), the presence of lymphatic invasion (P = 0.02), less perineural invasion (P = 0.05), and the presence of H. pylori infection (P = 0.05). EBV positive gastric cancer is associated with increased Ki-67 and decreased EGFR expression and a shorter resection margin due to the prominent lymphoid stroma. However, MMR deficiency is not associated with EBV status even though MSI gastric cancer is related to H. pylori status.
Collapse
Affiliation(s)
- Ji Won Seo
- Department of Surgery, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ki Bum Park
- Department of Surgery, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyung Min Chin
- Department of Surgery, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Kyong Hwa Jun
- Department of Surgery, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
6
|
Pallares-Rusiñol A, Bernuz M, Moura SL, Fernández-Senac C, Rossi R, Martí M, Pividori MI. Advances in exosome analysis. Adv Clin Chem 2022; 112:69-117. [PMID: 36642486 DOI: 10.1016/bs.acc.2022.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
There is growing demand for novel biomarkers that detect early stage disease as well as monitor clinical management and therapeutic strategies. Exosome analysis could provide the next advance in attaining that goal. Exosomes are membrane encapsulated biologic nanometric-sized particles of endocytic origin which are released by all cell types. Unfortunately, exosomes are exceptionally challenging to characterize with current technologies. Exosomes are between 30 and 200nm in diameter, a size that makes them out of the sensitivity range to most cell-oriented sorting or analysis platforms, i.e., traditional flow cytometers. The most common methods for targeting exosomes to date typically involve purification followed by the characterization and the specific determination of their cargo. The whole procedure is time consuming, requiring thus skilled personnel as well as laboratory facilities and benchtop instrumentation. The most relevant methodology for exosome isolation, characterization and quantification is addressed in this chapter, including the most up-to-date approaches to explore the potential usefulness of exosomes as biomarkers in liquid biopsies and in advanced nanomedicine.
Collapse
Affiliation(s)
- Arnau Pallares-Rusiñol
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, Spain; Grup de Sensors i Biosensors, Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Mireia Bernuz
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, Spain; Grup de Sensors i Biosensors, Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Silio Lima Moura
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, Spain; Grup de Sensors i Biosensors, Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Carolina Fernández-Senac
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, Spain; Grup de Sensors i Biosensors, Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Rosanna Rossi
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, Spain; Grup de Sensors i Biosensors, Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Mercè Martí
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - María Isabel Pividori
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, Spain; Grup de Sensors i Biosensors, Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, Spain.
| |
Collapse
|
7
|
Maron SB, Moya S, Morano F, Emmett MJ, Chou JF, Sabwa S, Walch H, Peterson B, Schrock AB, Zhang L, Janjigian YY, Chalasani S, Ku GY, Disel U, Enzinger P, Uboha N, Kato S, Yoshino T, Shitara K, Nakamura Y, Saeed A, Kasi P, Chao J, Lee J, Capanu M, Wainberg Z, Petty R, Pietrantonio F, Klempner SJ, Catenacci DVT. Epidermal Growth Factor Receptor Inhibition in Epidermal Growth Factor Receptor-Amplified Gastroesophageal Cancer: Retrospective Global Experience. J Clin Oncol 2022; 40:2458-2467. [PMID: 35349370 PMCID: PMC9467681 DOI: 10.1200/jco.21.02453] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
PURPOSE Subset analyses from phase III evaluation of epidermal growth factor receptor inhibition (EGFRi) suggest improved outcomes in patients with EGFR-amplified gastroesophageal adenocarcinoma (GEA), but large-scale analyses are lacking. This multi-institutional analysis sought to determine the role of EGFRi in the largest cohort of patients with EGFR-amplified GEA to date. PATIENTS AND METHODS A total of 60 patients from 15 tertiary cancer centers in six countries met the inclusion criteria. These criteria required histologically confirmed GEA in the metastatic or unresectable setting with EGFR amplification identified by using a Clinical Laboratory Improvement Amendments-approved assay, and who received on- or off-protocol EGFRi. Testing could be by tissue next-generation sequencing, plasma circulating tumor DNA next-generation sequencing, and/or fluorescence in situ hybridization performed by a Clinical Laboratory Improvement Amendments approved laboratory. Treatment patterns and outcomes analysis was also performed using a deidentified clinicogenomic database (CGDB). RESULTS Sixty patients with EGFR-amplified GEA received EGFRi, including 31 of 60 patients (52%) with concurrent chemotherapy. Across treatment lines, patients achieved a 43% objective response rate with a median progression-free survival of 4.6 months (95% CI, 3.5 to 6.4). Patients receiving EGFRi in first-, second-, and third-line therapy achieved a median overall survival of 20.6 months (95% CI, 13.5 to not reached [NR]), 9 months (95% CI, 7.9 to NR), and 8.4 months (7.6 to NR), respectively. This survival far exceeded the 11.2-month (95% CI, 8.7 to 14.2) median overall survival from first-line initiation of non-EGFRi therapy in patients with EGFR-amplified GEA in the CGDB. Despite this benefit, analysis of the CGDB (January 2011-December 2020) suggests that only 5% of patients with EGFR-amplified GEA received EGFRi. CONCLUSION Patients with EGFR-amplified GEA derive significant benefit from EGFRi. Further prospective investigation of EGFRi in a well-selected patient population is ongoing in an upcoming trial of amivantamab in EGFR and/or MET amplified GEA.
Collapse
Affiliation(s)
- Steven B Maron
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY.,Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Stephanie Moya
- Department of Medicine, Division of Hematology-Oncology, University of Chicago School of Medicine, Chicago, IL
| | - Federica Morano
- Oncologia Medica, Instituto Nazionale dei Tumori di Milano, Milan, Italy
| | | | - Joanne F Chou
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Shalom Sabwa
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Henry Walch
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY.,Marie-Josée & Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Bryan Peterson
- Department of Medicine, Division of Hematology-Oncology, University of Chicago School of Medicine, Chicago, IL
| | | | | | - Yelena Y Janjigian
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY.,Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Sree Chalasani
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Geoffrey Y Ku
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY.,Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Umut Disel
- Department of Medical Oncology, Adana Acibadem Hospital, Adana, Turkey
| | - Peter Enzinger
- Department of Medical Oncology, Dana-Farber Cancer Institute & Harvard Medical School, Boston, MA
| | - Nataliya Uboha
- Department of Medicine, Section of Hematology & Oncology, Carbone Cancer Center, University of Wisconsin, Madison, WI
| | - Shumei Kato
- Department of Medicine, University of California San Diego Moores Cancer Center, La Jolla, CA
| | - Takayuki Yoshino
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Kohei Shitara
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Yoshiaki Nakamura
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Anwaar Saeed
- Department of Medicine, Division of Medical Oncology, Kansas University Cancer Center, Kansas City, KS
| | - Pashtoon Kasi
- Division of Hematology, Oncology and Blood and Marrow Transplantation, Department of Medicine, University of Iowa, Iowa City, IA
| | - Joseph Chao
- Department of Developmental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA
| | - Jeeyun Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Marinela Capanu
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Zev Wainberg
- Division of Oncology, Department of Medicine, UCLA School of Medicine, Los Angeles, CA
| | - Russell Petty
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, United Kingdom
| | | | | | - Daniel V T Catenacci
- Department of Medicine, Division of Hematology-Oncology, University of Chicago School of Medicine, Chicago, IL
| |
Collapse
|
8
|
Li Z, Zhao Z, Wang C, Wang D, Mao H, Liu F, Yang Y, Tao F, Lu Z. Association Between DCE-MRI Perfusion Histogram Parameters and EGFR and VEGF Expressions in Different Lauren Classifications of Advanced Gastric Cancer. Pathol Oncol Res 2022; 27:1610001. [PMID: 35069035 PMCID: PMC8772396 DOI: 10.3389/pore.2021.1610001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 12/14/2021] [Indexed: 11/21/2022]
Abstract
Objective: To investigate the correlations between dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) perfusion histogram parameters and vascular endothelial growth factor (VEGF) and epidermal growth factor receptor (EGFR) expressions in advanced gastric cancer (AGC). Methods: This retrospective study included 80 pathologically confirmed patients with AGC who underwent DCE-MRI before surgery from February 2017 to May 2021. The DCE-MRI perfusion histogram parameters were calculated by Omni Kinetics software in four quantitative parameter maps. Immunohistochemical methods were used to detect VEGF and EGFR expressions and calculate the immunohistochemical score. Results: VEGF expression was relatively lower in patients with intestinal-type AGC than those with diffuse-type AGC (p < 0.05). For VEGF, Receiver operating characteristics (ROC) curve analysis revealed that Quantile 90 of Ktrans, Meanvalue of Kep and Quantile 50 of Ve provided the perfect combination of sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) for distinguishing high and low VEGF expression, For EGFR, Skewness of Ktrans, Energy of Kep and Entropy of Vp provided the perfect combination of sensitivity, specificity, PPV and NPV for distinguishing high and low EGFR expression. Ktrans (Quantile 90, Entropy) showed the strongest correlation with VEGF and EGFR in patients with intestinal-type AGC (r = 0.854 and r = 0.627, respectively); Ktrans (Mean value, Entropy) had the strongest correlation with VEGF and EGFR in patients with diffuse-type AGC (r = 0.635 and 0.656, respectively). Conclusion: DCE-MRI perfusion histogram parameters can serve as imaging biomarkers to reflect VEGF and EGFR expressions and estimate their difference in different Lauren classifications of AGC.
Collapse
Affiliation(s)
- Zhiheng Li
- Shaoxing University School of Medicine, Shaoxing, China
| | - Zhenhua Zhao
- Department of Radiology, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, China
| | - Chuchu Wang
- Shaoxing University School of Medicine, Shaoxing, China
| | - Dandan Wang
- Department of Radiology, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, China
| | - Haijia Mao
- Department of Radiology, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, China
| | - Fang Liu
- Department of Pathology, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, China
| | - Ye Yang
- Department of Pathology, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, China
| | - Feng Tao
- Department of Gastrointestinal Surgery, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, China
| | - Zengxin Lu
- Department of Radiology, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, China.,The First Affiliated Hospital of Shaoxing University, Shaoxing, China
| |
Collapse
|
9
|
Wakiyama H, Kato T, Furusawa A, Choyke PL, Kobayashi H. Near infrared photoimmunotherapy of cancer; possible clinical applications. NANOPHOTONICS 2021; 10:3135-3151. [PMID: 36405499 PMCID: PMC9646249 DOI: 10.1515/nanoph-2021-0119] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 04/15/2021] [Indexed: 05/07/2023]
Abstract
Near-infrared photoimmunotherapy (NIR-PIT) is a new cancer treatment that uses an antibody-photo-absorber conjugate (APC) composed of a targeting monoclonal antibody conjugated with a photoactivatable phthalocyanine-derivative dye, IRDye700DX (IR700). APCs injected into the body can bind to cancer cells where they are activated by local exposure to NIR light typically delivered by a NIR laser. NIR light alters the APC chemical conformation inducing damage to cancer cell membranes, resulting in necrotic cell death within minutes of light exposure. NIR-PIT selectivity kills cancer cells by immunogenic cell death (ICD) with minimal damage to adjacent normal cells thus, leading to rapid recovery by the patient. Moreover, since NIR-PIT induces ICD only on cancer cells, NIR-PIT initiates and activates antitumor host immunity that could be further enhanced when combined with immune checkpoint inhibition. NIR-PIT induces dramatic changes in the tumor vascularity causing the super-enhanced permeability and retention (SUPR) effect that dramatically enhances nanodrug delivery to the tumor bed. Currently, a worldwide Phase 3 study of NIR-PIT for recurrent or inoperable head and neck cancer patients is underway. In September 2020, the first APC and accompanying laser system were conditionally approved for clinical use in Japan. In this review, we introduce NIR-PIT and the SUPR effect and summarize possible applications of NIR-PIT in a variety of cancers.
Collapse
Affiliation(s)
- Hiroaki Wakiyama
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Takuya Kato
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Aki Furusawa
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Peter L. Choyke
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Hisataka Kobayashi
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| |
Collapse
|
10
|
Kato T, Wakiyama H, Furusawa A, Choyke PL, Kobayashi H. Near Infrared Photoimmunotherapy; A Review of Targets for Cancer Therapy. Cancers (Basel) 2021; 13:cancers13112535. [PMID: 34064074 PMCID: PMC8196790 DOI: 10.3390/cancers13112535] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/12/2021] [Accepted: 05/18/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Near-infrared photoimmunotherapy (NIR-PIT) is a newly developed cancer treatment that uses an antibody-photoabsorber (IRDye700DX) conjugate (APC) that is activated by NIR light irradiation. A major benefit of NIR-PIT is that only APC-bound cancer cells that are exposed to NIR light are killed by NIR-PIT; thus, minimal damage occurs in adjacent normal cells. NIR-PIT has now been applied to many cancers expressing various cell-surface target proteins using monoclonal antibodies designed to bind to them. Moreover, NIR-PIT is not limited to tumor antigens but can also be used to kill specific host cells that create immune-permissive environments in which tumors grow. Moreover, multiple targets can be treated simultaneously with NIR-PIT using a cocktail of APCs. NIR-PIT has great potential to treat a wide variety of cancers by targeting appropriate tumor cells, immune cells, or both, and can be augmented by other immunotherapies. Abstract Near-infrared photoimmunotherapy (NIR-PIT) is a newly developed cancer treatment that uses an antibody-photoabsorber (IRDye700DX) conjugate (APC) that is activated by NIR light irradiation. In September 2020, the first APC and laser system were conditionally approved for clinical use in Japan. A major benefit of NIR-PIT is that only APC-bound cancer cells that are exposed to NIR light are killed by NIR-PIT; thus, minimal damage occurs in adjacent normal cells. These early trials have demonstrated that in addition to direct cell killing, there is a significant therapeutic host immune response that greatly contributes to the success of the therapy. Although the first clinical use of NIR-PIT targeted epidermal growth factor receptor (EGFR), many other targets are suitable for NIR-PIT. NIR-PIT has now been applied to many cancers expressing various cell-surface target proteins using monoclonal antibodies designed to bind to them. Moreover, NIR-PIT is not limited to tumor antigens but can also be used to kill specific host cells that create immune-permissive environments in which tumors grow. Moreover, multiple targets can be treated simultaneously with NIR-PIT using a cocktail of APCs. NIR-PIT can be used in combination with other therapies, such as immune checkpoint inhibitors, to enhance the therapeutic effect. Thus, NIR-PIT has great potential to treat a wide variety of cancers by targeting appropriate tumor cells, immune cells, or both, and can be augmented by other immunotherapies.
Collapse
|
11
|
Karlsen EA, Kahler S, Tefay J, Joseph SR, Simpson F. Epidermal Growth Factor Receptor Expression and Resistance Patterns to Targeted Therapy in Non-Small Cell Lung Cancer: A Review. Cells 2021; 10:1206. [PMID: 34069119 PMCID: PMC8156654 DOI: 10.3390/cells10051206] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 04/29/2021] [Accepted: 05/06/2021] [Indexed: 12/21/2022] Open
Abstract
Globally, lung cancer is the leading cause of cancer-related death. The majority of non-small cell lung cancer (NSCLC) tumours express epidermal growth factor receptor (EGFR), which allows for precise and targeted therapy in these patients. The dysregulation of EGFR in solid epithelial cancers has two distinct mechanisms: either a kinase-activating mutation in EGFR (EGFR-mutant) and/or an overexpression of wild-type EGFR (wt-EGFR). The underlying mechanism of EGFR dysregulation influences the efficacy of anti-EGFR therapy as well as the nature of resistance patterns and secondary mutations. This review will critically analyse the mechanisms of EGFR expression in NSCLC, its relevance to currently approved targeted treatment options, and the complex nature of secondary mutations and intrinsic and acquired resistance patterns in NSCLC.
Collapse
Affiliation(s)
- Emma-Anne Karlsen
- Simpson Laboratory, The University of Queensland Diamantina Institute, Woolloongabba, Brisbane 4102, Australia; (S.R.J.); (F.S.)
- Department of General Surgery, Mater Hospital Brisbane, South Brisbane 4101, Australia
- Faculty of Medicine, The University of Queensland, St Lucia 4067, Australia; (S.K.); (J.T.)
| | - Sam Kahler
- Faculty of Medicine, The University of Queensland, St Lucia 4067, Australia; (S.K.); (J.T.)
| | - Joan Tefay
- Faculty of Medicine, The University of Queensland, St Lucia 4067, Australia; (S.K.); (J.T.)
- Department of General Surgery, Redland Hospital, Cleveland 4163, Australia
| | - Shannon R. Joseph
- Simpson Laboratory, The University of Queensland Diamantina Institute, Woolloongabba, Brisbane 4102, Australia; (S.R.J.); (F.S.)
| | - Fiona Simpson
- Simpson Laboratory, The University of Queensland Diamantina Institute, Woolloongabba, Brisbane 4102, Australia; (S.R.J.); (F.S.)
| |
Collapse
|
12
|
Kohli P, Penumadu P, Srinivas BH, M S, Dubashi B, Kate V, Kumar H, R K, Balasubramanian A. Clinicopathological profile and its association with peritoneal disease among gastric cancer patients. Surg Oncol 2021; 38:101595. [PMID: 33991942 DOI: 10.1016/j.suronc.2021.101595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 03/30/2021] [Accepted: 04/26/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND There are no clinicopathological criteria or test to predict peritoneal metastasis either in primary or recurrent gastric cancer. The early prediction will help in altering or adding other adjuvant potential therapy modalities like HIPEC and maintenance chemotherapy. METHODS Paraffin based blocks of 110 gastric tumor specimens were subjected to IHC staining to assess VEGF, Her 2 neu, E cadherin, bcl 2 and p 53 expression and its association with peritoneal disease evaluated. RESULTS Her 2 neu uptake was present in 17.3%, bcl-2 expression in 19.1%, P53 expression in 40.9%, VEGF in 41.8% and E cadherin expression in 49.1% patients. On univariate analysis, a younger age(p = .029), female sex(p = .026), positive VEGF expression (p = .001) and p53 expression(p = .015) were significantly associated with peritoneal disease. A binomial logistic regression was performed to ascertain the effects of independent variables evaluated on univariate analysis. Of the 10 predictors variables, only three were statistically significant: tumor type, P53, and VEGF. Positive VEGF expression had 48.7, E cadherin 2.6 and Her2neu 1.5 times higher odds of exhibiting peritoneal disease. CONCLUSION A younger age, female sex, distal 2/3rd, diffuse variant, VEGF staining in >10% cells and decrease p53 expression were associated with peritoneal disease.
Collapse
Affiliation(s)
- Pavneet Kohli
- Department of Surgical Oncology, JIPMER, Puducherry, 6050006, India
| | - Prasanth Penumadu
- Department of Surgical Oncology, JIPMER, Puducherry, 6050006, India.
| | - B H Srinivas
- Department of Pathology, JIPMER, Puducherry, 605006, India
| | - Sivasanker M
- HPB Unit, Department of Surgery, Royal Liverpool University Hospitals NHS Trust, Merseyside, UK
| | - Biswajit Dubashi
- Department of Medical Oncology, JIPMER, Puducherry, 605006, India
| | - Vikram Kate
- Department of General Surgery, JIPMER, Puducherry, 605006, India
| | | | - Kalayarasan R
- Department of Surgical Gastroenterology, JIPMER, Puducherry, 605006, India
| | | |
Collapse
|
13
|
Abstract
The Bateson–Dobzhansky–Muller (BDM) model describes negative epistatic interactions that occur between genes with a different evolutionary history to account for hybrid incompatibility and is a central theory explaining genetic mechanisms underlying speciation. Since the early 1900 s when the BDM model was forwarded examples of BDM incompatibility have been described in only a few nonvertebrate cases. This study reports the only vertebrate system, with clearly defined interacting loci, that supports the BDM model. In addition, this study also poses that tumorigenesis serves as a novel mechanism that accounts for postzygotic isolation. Mixing genomes of different species by hybridization can disrupt species-specific genetic interactions that were adapted and fixed within each species population. Such disruption can predispose the hybrids to abnormalities and disease that decrease the overall fitness of the hybrids and is therefore named as hybrid incompatibility. Interspecies hybridization between southern platyfish and green swordtails leads to lethal melanocyte tumorigenesis. This occurs in hybrids with tumor incidence following progeny ratio that is consistent with two-locus interaction, suggesting melanoma development is a result of negative epistasis. Such observations make Xiphophorus one of the only two vertebrate hybrid incompatibility examples in which interacting genes have been identified. One of the two interacting loci has been characterized as a mutant epidermal growth factor receptor. However, the other locus has not been identified despite over five decades of active research. Here we report the localization of the melanoma regulatory locus to a single gene, rab3d, which shows all expected features of the long-sought oncogene interacting locus. Our findings provide insights into the role of egfr regulation in regard to cancer etiology. Finally, they provide a molecular explainable example of hybrid incompatibility.
Collapse
|
14
|
Fernandes E, Freitas R, Ferreira D, Soares J, Azevedo R, Gaiteiro C, Peixoto A, Oliveira S, Cotton S, Relvas-Santos M, Afonso LP, Palmeira C, Oliveira MJ, Ferreira R, Silva AMN, Lara Santos L, Ferreira JA. Nucleolin-Sle A Glycoforms as E-Selectin Ligands and Potentially Targetable Biomarkers at the Cell Surface of Gastric Cancer Cells. Cancers (Basel) 2020; 12:cancers12040861. [PMID: 32252346 PMCID: PMC7226152 DOI: 10.3390/cancers12040861] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/24/2020] [Accepted: 03/28/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Gastric cancer (GC) is a major health burden worldwide, with half of patients developing metastases within 5 years after treatment, urging novel biomarkers for diagnosis and efficient therapeutic targeting. Sialyl-Lewis A (SLeA), a terminal glycoepitope of glycoproteins and glycolipids, offers tremendous potential towards this objective. It is rarely expressed in healthy tissues and blood cells, while it is present in highly metastatic cell lines and metastases. SLeA is also involved in E-selectin mediated metastasis, making it an ideal target to control disease dissemination. METHODS AND RESULTS To improve cancer specificity, we have explored the SLeA-glycoproteome of six GC cell models, with emphasis on glycoproteins showing affinity for E-selectin. A novel bioinformatics-assisted algorithm identified nucleolin (NCL), a nuclear protein, as a potential targetable biomarker potentially involved in metastasis. Several immunoassays, including Western blot and in situ proximity ligation reinforced the existence of cell surface NCL-SLeA glycoforms in GC. The NCL-SLeA glycophenotype was associated with decreased survival and was not reflected in relevant healthy tissues. CONCLUSIONS NCL-SLeA is a biomarker of poor prognosis in GC holding potential for precise cancer targeting. This is the first report describing SLeA in preferentially nuclear protein, setting a new paradigm for cancer biomarkers discovery and targeted therapies.
Collapse
Affiliation(s)
- Elisabete Fernandes
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, 4200-162 Porto, Portugal; (E.F.); (R.F.); (D.F.); (J.S.); (R.A.); (C.G.); (A.P.); (S.O.); (S.C.); (M.R.-S.); (L.P.A.); (C.P.); (L.L.S.)
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-013 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal;
- Institute for Biomedical Engineering (INEB), Porto, Portugal, 4200-135 Porto, Portugal
- Digestive Cancer Research Group, 1495-161 Algés, Portugal
| | - Rui Freitas
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, 4200-162 Porto, Portugal; (E.F.); (R.F.); (D.F.); (J.S.); (R.A.); (C.G.); (A.P.); (S.O.); (S.C.); (M.R.-S.); (L.P.A.); (C.P.); (L.L.S.)
| | - Dylan Ferreira
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, 4200-162 Porto, Portugal; (E.F.); (R.F.); (D.F.); (J.S.); (R.A.); (C.G.); (A.P.); (S.O.); (S.C.); (M.R.-S.); (L.P.A.); (C.P.); (L.L.S.)
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal;
- Institute for Biomedical Engineering (INEB), Porto, Portugal, 4200-135 Porto, Portugal
- Digestive Cancer Research Group, 1495-161 Algés, Portugal
| | - Janine Soares
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, 4200-162 Porto, Portugal; (E.F.); (R.F.); (D.F.); (J.S.); (R.A.); (C.G.); (A.P.); (S.O.); (S.C.); (M.R.-S.); (L.P.A.); (C.P.); (L.L.S.)
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-013 Porto, Portugal
- REQUIMTE-LAQV, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Rita Azevedo
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, 4200-162 Porto, Portugal; (E.F.); (R.F.); (D.F.); (J.S.); (R.A.); (C.G.); (A.P.); (S.O.); (S.C.); (M.R.-S.); (L.P.A.); (C.P.); (L.L.S.)
| | - Cristiana Gaiteiro
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, 4200-162 Porto, Portugal; (E.F.); (R.F.); (D.F.); (J.S.); (R.A.); (C.G.); (A.P.); (S.O.); (S.C.); (M.R.-S.); (L.P.A.); (C.P.); (L.L.S.)
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-013 Porto, Portugal
| | - Andreia Peixoto
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, 4200-162 Porto, Portugal; (E.F.); (R.F.); (D.F.); (J.S.); (R.A.); (C.G.); (A.P.); (S.O.); (S.C.); (M.R.-S.); (L.P.A.); (C.P.); (L.L.S.)
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-013 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal;
- Institute for Biomedical Engineering (INEB), Porto, Portugal, 4200-135 Porto, Portugal
| | - Sara Oliveira
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, 4200-162 Porto, Portugal; (E.F.); (R.F.); (D.F.); (J.S.); (R.A.); (C.G.); (A.P.); (S.O.); (S.C.); (M.R.-S.); (L.P.A.); (C.P.); (L.L.S.)
| | - Sofia Cotton
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, 4200-162 Porto, Portugal; (E.F.); (R.F.); (D.F.); (J.S.); (R.A.); (C.G.); (A.P.); (S.O.); (S.C.); (M.R.-S.); (L.P.A.); (C.P.); (L.L.S.)
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-013 Porto, Portugal
| | - Marta Relvas-Santos
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, 4200-162 Porto, Portugal; (E.F.); (R.F.); (D.F.); (J.S.); (R.A.); (C.G.); (A.P.); (S.O.); (S.C.); (M.R.-S.); (L.P.A.); (C.P.); (L.L.S.)
- Institute for Biomedical Engineering (INEB), Porto, Portugal, 4200-135 Porto, Portugal
- REQUIMTE-LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences of the University of Porto, 4169-007 Porto, Portugal;
| | - Luis Pedro Afonso
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, 4200-162 Porto, Portugal; (E.F.); (R.F.); (D.F.); (J.S.); (R.A.); (C.G.); (A.P.); (S.O.); (S.C.); (M.R.-S.); (L.P.A.); (C.P.); (L.L.S.)
- Pathology Department, Portuguese Institute of Oncology of Porto, 4200-162 Porto, Portugal
| | - Carlos Palmeira
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, 4200-162 Porto, Portugal; (E.F.); (R.F.); (D.F.); (J.S.); (R.A.); (C.G.); (A.P.); (S.O.); (S.C.); (M.R.-S.); (L.P.A.); (C.P.); (L.L.S.)
- Immunology Department, Portuguese Institute of Oncology of Porto, 4200-162 Porto, Portugal
- Health Science Faculty, University of Fernando Pessoa, 4249-004 Porto, Portugal
| | - Maria José Oliveira
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal;
- Institute for Biomedical Engineering (INEB), Porto, Portugal, 4200-135 Porto, Portugal
| | - Rita Ferreira
- REQUIMTE-LAQV, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - André M. N. Silva
- REQUIMTE-LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences of the University of Porto, 4169-007 Porto, Portugal;
| | - Lúcio Lara Santos
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, 4200-162 Porto, Portugal; (E.F.); (R.F.); (D.F.); (J.S.); (R.A.); (C.G.); (A.P.); (S.O.); (S.C.); (M.R.-S.); (L.P.A.); (C.P.); (L.L.S.)
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-013 Porto, Portugal
- Digestive Cancer Research Group, 1495-161 Algés, Portugal
- Health Science Faculty, University of Fernando Pessoa, 4249-004 Porto, Portugal
- Department of Surgical Oncology, Portuguese Institute of Oncology of Porto, 4200-162 Porto, Portugal
- Department, Porto Comprehensive Cancer Centre (P.ccc), 4200-162 Porto, Portugal
| | - José Alexandre Ferreira
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, 4200-162 Porto, Portugal; (E.F.); (R.F.); (D.F.); (J.S.); (R.A.); (C.G.); (A.P.); (S.O.); (S.C.); (M.R.-S.); (L.P.A.); (C.P.); (L.L.S.)
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-013 Porto, Portugal
- Department, Porto Comprehensive Cancer Centre (P.ccc), 4200-162 Porto, Portugal
- Correspondence: ; Tel.: +351-225084000 (ext. 5111)
| |
Collapse
|
15
|
Matrix Effect in the Isolation of Breast Cancer-Derived Nanovesicles by Immunomagnetic Separation and Electrochemical Immunosensing-A Comparative Study. SENSORS 2020; 20:s20040965. [PMID: 32054015 PMCID: PMC7071381 DOI: 10.3390/s20040965] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 02/05/2020] [Accepted: 02/06/2020] [Indexed: 01/16/2023]
Abstract
Exosomes are cell-derived nanovesicles released into biological fluids, which are involved in cell-to-cell communication. The analysis of the content and the surface of the exosomes allow conclusions about the cells they are originating from and the underlying condition, pathology or disease. Therefore, the exosomes are currently considered good candidates as biomarkers to improve the current methods for clinical diagnosis, including cancer. However, due to their low concentration, conventional procedures for exosome detection including biosensing usually require relatively large sample volumes and involve preliminary purification and preconcentration steps by ultracentrifugation. In this paper, the immunomagnetic separation is presented as an alternative method for the specific isolation of exosomes in serum. To achieve that, a rational study of the surface proteins in exosomes, which can be recognized by magnetic particles, is presented. The characterization was performed in exosomes obtained from cell culture supernatants of MCF7, MDA-MB-231 and SKBR3 breast cancer cell lines, including TEM and nanoparticle tracking analysis (NTA). For the specific characterization by flow cytometry and confocal microscopy, different commercial antibodies against selected receptors were used, including the general tetraspanins CD9, CD63 and CD81, and cancer-related receptors (CD24, CD44, CD54, CD326 and CD340). The effect of the serum matrix on the immunomagnetic separation was then carefully evaluated by spiking the exosomes in depleted human serum. Based on this study, the exosomes were preconcentrated by immunomagnetic separation on antiCD81-modified magnetic particles in order to achieve further magnetic actuation on the surface of the electrode for the electrochemical readout. The performance of this approach is discussed and compared with classical characterization methods.
Collapse
|
16
|
Hamzehlou S, Momeny M, Zandi Z, Kashani B, Yousefi H, Dehpour AR, Tavakkoly-Bazzaz J, Ghaffari SH. Anti-tumor activity of neratinib, a pan-HER inhibitor, in gastric adenocarcinoma cells. Eur J Pharmacol 2019; 863:172705. [DOI: 10.1016/j.ejphar.2019.172705] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/25/2019] [Accepted: 09/26/2019] [Indexed: 12/24/2022]
|
17
|
Thomas R, Weihua Z. Rethink of EGFR in Cancer With Its Kinase Independent Function on Board. Front Oncol 2019; 9:800. [PMID: 31508364 PMCID: PMC6716122 DOI: 10.3389/fonc.2019.00800] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 08/06/2019] [Indexed: 12/23/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) is one of most potent oncogenes that are commonly altered in cancers. As a receptor tyrosine kinase, EGFR's kinase activity has been serving as the primary target for developing cancer therapeutics, namely the EGFR inhibitors including small molecules targeting its ATP binding pocket and monoclonal antibodies targeting its ligand binding domains. EGFR inhibitors have produced impressive therapeutic benefits to responsive types of cancers. However, acquired and innate resistances have precluded current anti-EGFR agents from offering sustainable benefits to initially responsive cancers and benefits to EGFR-positive cancers that are innately resistant. Recent years have witnessed a realization that EGFR possesses kinase-independent (KID) pro-survival functions in cancer cells. This new knowledge has offered a different angle of understanding of EGFR in cancer and opened a new avenue of targeting EGFR for cancer therapy. There are already many excellent reviews on the role of EGFR with a focus on its kinase-dependent functions and mechanisms of resistance to EGFR targeted therapies. The present opinion aims to initiate a fresh discussion about the function of EGFR in cancer cells by laying out some unanswered questions pertaining to EGFR in cancer cells, by rethinking the unmet therapeutic challenges from a view of EGFR's KID function, and by proposing novel approaches to target the KID functions of EGFR for cancer treatment.
Collapse
Affiliation(s)
- Rintu Thomas
- Department of Biology and Biochemistry, College of Natural Science and Mathematics, University of Houston, Houston, TX, United States
| | - Zhang Weihua
- Department of Biology and Biochemistry, College of Natural Science and Mathematics, University of Houston, Houston, TX, United States
| |
Collapse
|
18
|
Assessment of EGFR and ERBB2 (HER2) in Gastric and Gastroesophageal Carcinomas: EGFR Amplification is Associated With a Worse Prognosis in Early Stage and Well to Moderately Differentiated Carcinoma. Appl Immunohistochem Mol Morphol 2019; 26:374-382. [PMID: 27753660 DOI: 10.1097/pai.0000000000000437] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Epidermal growth factor receptor 1 (EGFR) and erb-b2 receptor tyrosine kinase 2 (ERBB2/HER2) are frequently dysregulated in human cancers. We analyzed EGFR and ERBB2 status in 105 gastric and gastroesophageal junction carcinoma and their clinicopathologic features. For EGFR, 92 (88%) tumors were scored as 0, 2 (2%) as 1+, 7 (7%) as 2+, and 4 (3%) as 3+ by immunohistochemistry (IHC) and 4 (4%) tumors showed EGFR amplification by fluorescence in situ hybridization (FISH). For ERBB2, 90 (86%) tumors were scored as 0, 4 (4%) as 1+, 6 (6%) as 2+, and 5 (5%) as 3+ by IHC and 12 (12%) showed ERBB2 amplification by FISH. The concordance rate between IHC and FISH of EGFR was 98.1% (P<0.001) and of ERBB2 was 93.3% (P<0.001). Most tumors with ERBB2 amplification were tubular adenocarcinoma (N=11, P=0.02) and Lauren intestinal type (N=12, P=0.016). There was no statistically significant difference between EGFR amplification and tumor classification. EGFR amplification had significant impact on overall survival in certain subgroups: early stages (stages I and II) (P<0.001), well to moderately differentiated tumors (P=0.001), and fewer regional lymph node metastasis (pN1) (P=0.001). ERBB2 status had little predictive value on overall survival. In conclusion, this study showed ERBB2 amplification was significantly observed in tubular adenocarcinoma and Lauren intestinal-type carcinoma. The IHC scoring criteria for ERBB2 can be applied to EGFR. EGFR amplification had associated with poor prognosis in early, well to moderately differentiated carcinoma.
Collapse
|
19
|
Miyamoto Y, Muguruma N, Fujimoto S, Okada Y, Kida Y, Nakamura F, Tanaka K, Nakagawa T, Kitamura S, Okamoto K, Miyamoto H, Sato Y, Takayama T. Epidermal growth factor receptor-targeted molecular imaging of colorectal tumors: Detection and treatment evaluation of tumors in animal models. Cancer Sci 2019; 110:1921-1930. [PMID: 30973663 PMCID: PMC6549923 DOI: 10.1111/cas.14020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 04/03/2019] [Accepted: 04/08/2019] [Indexed: 12/13/2022] Open
Abstract
To overcome the problem of overlooking colorectal tumors, a new and highly sensitive modality of colonoscopy is needed. Moreover, it is also important to establish a new modality to evaluate viable tumor volume in primary lesions of colorectal cancer (CRC) during chemotherapy. Therefore, we carried out molecular imaging of colorectal tumors targeting epidermal growth factor receptor (EGFR), which is highly expressed on tumor cells, for evaluating chemotherapeutic efficacy and for endoscopic detection of colorectal adenomas. We first attempted to image five CRC cell lines with various levels of EGFR expression using an Alexa Fluor-labeled anti-EGFR monoclonal antibody (AF-EGFR-Ab). A strong fluorescence signal was observed in the cells depending on the level of EGFR expression. When nude mice xenografted with LIM1215 CRC cells, which highly express EGFR, were i.v. injected with AF-EGFR-Ab, a strong fluorescence signal appeared in the tumor with a high signal to noise ratio, peaking at 48 hours after injection and then gradually decreasing, as shown using an IVIS Spectrum system. When the xenografted mice were treated with 5-fluorouracil, fluorescence intensity in the tumor decreased in proportion to the viable tumor cell volume. Moreover, when the colorectum of azoxymethane-treated rats was observed using a thin fluorescent endoscope with AF-EGFR-Ab, all 10 small colorectal adenomas (≤3 mm) were detected with a clear fluorescence signal. These preliminary results of animal experiments suggest that EGFR-targeted fluorescent molecular imaging may be useful for quantitatively evaluating cell viability in CRC during chemotherapy, and also for detecting small adenomas using a fluorescent endoscope.
Collapse
Affiliation(s)
- Yoshihiko Miyamoto
- Department of Gastroenterology and OncologyUniversity of Tokushima Faculty of Medicine Graduate School of Medical SciencesTokushimaJapan
| | - Naoki Muguruma
- Department of Gastroenterology and OncologyUniversity of Tokushima Faculty of Medicine Graduate School of Medical SciencesTokushimaJapan
| | - Shota Fujimoto
- Department of Gastroenterology and OncologyUniversity of Tokushima Faculty of Medicine Graduate School of Medical SciencesTokushimaJapan
| | - Yasuyuki Okada
- Department of Gastroenterology and OncologyUniversity of Tokushima Faculty of Medicine Graduate School of Medical SciencesTokushimaJapan
| | - Yoshifumi Kida
- Department of Gastroenterology and OncologyUniversity of Tokushima Faculty of Medicine Graduate School of Medical SciencesTokushimaJapan
| | - Fumika Nakamura
- Department of Gastroenterology and OncologyUniversity of Tokushima Faculty of Medicine Graduate School of Medical SciencesTokushimaJapan
| | - Kumiko Tanaka
- Department of Gastroenterology and OncologyUniversity of Tokushima Faculty of Medicine Graduate School of Medical SciencesTokushimaJapan
| | - Tadahiko Nakagawa
- Department of Health and NutritionUniversity of Shimane Faculty of NursingIzumoJapan
| | - Shinji Kitamura
- Department of Gastroenterology and OncologyUniversity of Tokushima Faculty of Medicine Graduate School of Medical SciencesTokushimaJapan
| | - Koichi Okamoto
- Department of Gastroenterology and OncologyUniversity of Tokushima Faculty of Medicine Graduate School of Medical SciencesTokushimaJapan
| | - Hiroshi Miyamoto
- Department of Gastroenterology and OncologyUniversity of Tokushima Faculty of Medicine Graduate School of Medical SciencesTokushimaJapan
| | - Yasushi Sato
- Department of Community Medicine for Gastroenterology and OncologyTokushima University Graduate SchoolTokushimaJapan
| | - Tetsuji Takayama
- Department of Gastroenterology and OncologyUniversity of Tokushima Faculty of Medicine Graduate School of Medical SciencesTokushimaJapan
| |
Collapse
|
20
|
Cheng G, Mei Y, Pan X, Liu M, Wu S. Expression of HER2/c-erbB-2, EGFR Protein in Gastric Carcinoma and its Clinical Significance. Open Life Sci 2019; 14:119-125. [PMID: 33817143 PMCID: PMC7874756 DOI: 10.1515/biol-2019-0013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 10/08/2018] [Indexed: 01/18/2023] Open
Abstract
Objective To investigate the HER2/c-erbB-2, epidermal growth factor receptor (EGFR) protein expression in gastric cancer and association with patients’ clinical pathology characteristics and prognosis. Methods HER2/c-erbB-2 and EGFR protein expression was examined by immunohistochemical assay in gastric cancer tissue and corresponding paired normal gastric tissue of 67 patients of gastric carcinoma. The HER2/c-erbB-2, EGFR protein positive expression rate in cancer tissue and normal gastric tissue were compared. The correlation between HER2/c-erbB-2, EGFR protein positive expression and patients’ clinical pathology characteristics and survival was evaluated. Results The positive expression rate of HER2/c-erbB-2 in the cancer and paired normal gastric tissues were 32.8% (22/67) and 4.5% (3/67), respectively with statistical difference (p<0.05). And the positive expression rate of EGFR in cancer and paired normal gastric tissues were 41.8% (28/67) and 5.9 (4/67), respectively, with statistical difference (p<0.05). HER2/c-erbB-2 positive expression in cancer tissue was significant correlated with the pathology grading (p<0.05), tumor invasion depth (p<0.05) and local regional lymph node metastasis (p<0.05); EGFR positive expression in cancer tissue was significant correlated with the tumor invasion depth (p<0.05) and local regional lymph node metastasis (p<0.05). The median survival time was 13.14 and 23.6 months respectively for HER2/c-erbB-2 positive and negative expression groups respectively with statistical difference ( HR=2.26, 9%CI:1.06-4.80, p<0.05). However, the median survival time was 15.47 and 22.87 months for EGFR positive and negative expression groups respectively, without statistical difference (HR=1.78, 9%CI:0.96-3.29, p>0.05). Conclusion Positive expression of HER2/c-erbB-2 and EGFR proteins in cancer tissue was significant higher than normal gastric tissue and have significant correlation with prognosis.
Collapse
Affiliation(s)
- Guoxiong Cheng
- Department of Gastrointestinal surgery, Lishui Peoples’ Hospital of Zhejiang Province323000 PR, ZhejiangChina
| | - Yijun Mei
- Department of Gastrointestinal surgery, Lishui Peoples’ Hospital of Zhejiang Province323000 PR, ZhejiangChina
| | - Xiaoming Pan
- Department of Gastrointestinal surgery, Lishui Peoples’ Hospital of Zhejiang Province323000 PR, ZhejiangChina
| | - Ming Liu
- Department of Gastrointestinal surgery, Lishui Peoples’ Hospital of Zhejiang Province323000 PR, ZhejiangChina
| | - Suping Wu
- Department of Gastrointestinal surgery, Lishui Peoples’ Hospital of Zhejiang Province323000 PR, ZhejiangChina
- E-mail:
| |
Collapse
|
21
|
Zhang M, Liu P, Xu F, He Y, Xie X, Jiang X. Vinculin promotes gastric cancer proliferation and migration and predicts poor prognosis in patients with gastric cancer. J Cell Biochem 2019; 120:14107-14115. [PMID: 30989694 DOI: 10.1002/jcb.28686] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 02/10/2019] [Accepted: 02/14/2019] [Indexed: 12/17/2022]
Abstract
Vinculin is a highly conserved protein involved in cell proliferation, migration, and adhesion. However, the effects of vinculin on gastric cancer (GC) remain unclear. Therefore, we aimed to explore the functional role of vinculin in GC, as well as its underlying mechanism. Expression of vinculin in patients with GC was analyzed by real-time polymerase chain reaction, Western blot analysis, and immunohistochemistry. Overall survival was evaluated by the Kaplan-Meier method with the log-rank test. The relationship between vinculin and clinicopathological characteristics of patients with GC was further identified. In addition, we assessed the expression of vinculin in GC cell lines. Besides, vinculin was suppressed or overexpressed by transfection with small interfering (si-vinculin) or pcDNA-vinculin and then cell viability, cell apoptosis, and/or migration was respectively examined by the 3-(4, 5-dimethylthiazole-2-yl)-2, 5-biphenyl tetrazolium bromide assay, flow cytometer, and scratch assay, respectively. Moreover, the cell cycle- and apoptosis-related proteins were detected by Western blot analysis. The expression of vinculin was significantly increased in the GC tissues and cells compared with the nontumor tissues or cells. Vinculin protein positive staining was mainly located in the cell membrane and cytoplasm. Moreover, vinculin was significantly associated with Tumor Node Metastasis (TNM) and poor differentiation. Patients with high vinculin levels had significantly worse overall survival than those with low levels. Suppression of vinculin significantly decreased cell viability and migration and promoted cell apoptosis. However, overexpression of vinculin statistically increased cell viability but had no effects on cell apoptosis. Vinculin promotes GC proliferation and migration and predicts poor prognosis in patients with GC.
Collapse
Affiliation(s)
- Mingming Zhang
- Department of Gastroenterology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, Shandong, China
| | - Pei Liu
- Department of Infectious Diseases, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Famei Xu
- Department of Pathology, Zibo Central Hospital, Zibo, Shandong, China
| | - Yuanlong He
- Department of Gastroenterology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xiangjun Xie
- Department of Gastroenterology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xiangjun Jiang
- Department of Gastroenterology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
22
|
Jeung Y, Lee K, Lee HJ, Kim E, Son MJ, Ahn J, Kim H, Kim W, Lee H, Kim JM, Chung K. Cationic amino acid transporter PQLC2 is a potential therapeutic target in gastric cancer. Cancer Sci 2019; 110:1453-1463. [PMID: 30729615 PMCID: PMC6447956 DOI: 10.1111/cas.13966] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 01/25/2019] [Accepted: 02/05/2019] [Indexed: 12/11/2022] Open
Abstract
Tumor cells overexpress amino acid transporters to meet the increased demand for amino acids. PQ loop repeat-containing (PQLC)2 is a cationic amino acid transporter that might be involved in cancer progression. Here, we show that upregulation of PQLC2 is critical to gastric cancer (GC) development in vitro and in vivo. Both PQLC2 mRNA and protein were overexpressed in GC tissues, especially of the diffuse type. Overexpression of PQLC2 promoted cell growth, anchorage independence, and tumor formation in nude mice. This was due to activation of MEK/ERK1/2 and PI3K/AKT signaling. Conversely, PQLC2 knockdown caused growth arrest and cell death of cancer cells and suppressed tumor growth in a mouse xenograft model. These results suggest that targeting PQLC2 is an effective strategy for GC treatment.
Collapse
Affiliation(s)
- Yun‐Ji Jeung
- Biomedical Translational Research CenterKRIBBDaejeonKorea
- Department of Pathology and Medical ScienceChungnam National University College of MedicineDaejeonKorea
| | - Kyeong Lee
- College of PharmacyDongguk University‐SeoulGoyangKorea
| | - Hyo Jin Lee
- Department of Internal MedicineChungnam National University College of MedicineDaejeonKorea
| | - Eunah Kim
- Stem Cell Convergence Research CenterKRIBBDaejeonKorea
| | - Myung Jin Son
- Stem Cell Convergence Research CenterKRIBBDaejeonKorea
- Department of Functional GenomicsKRIBB School of BioscienceKorea University of Science and Technology (UST)DaejeonKorea
| | - Jiwon Ahn
- Biomedical Translational Research CenterKRIBBDaejeonKorea
| | - Han‐Gyeul Kim
- Biomedical Translational Research CenterKRIBBDaejeonKorea
- Department of Functional GenomicsKRIBB School of BioscienceKorea University of Science and Technology (UST)DaejeonKorea
| | - Wantae Kim
- Biomedical Translational Research CenterKRIBBDaejeonKorea
| | - Ho‐Joon Lee
- Stem Cell Convergence Research CenterKRIBBDaejeonKorea
| | - Jin Man Kim
- Department of Internal MedicineChungnam National University College of MedicineDaejeonKorea
| | - Kyung‐Sook Chung
- Biomedical Translational Research CenterKRIBBDaejeonKorea
- Stem Cell Convergence Research CenterKRIBBDaejeonKorea
- Department of Functional GenomicsKRIBB School of BioscienceKorea University of Science and Technology (UST)DaejeonKorea
| |
Collapse
|
23
|
Oono Y, Kuwata T, Takashima K, Shinmura K, Hori K, Yoda Y, Ikematsu H, Shitara K, Kinoshita T, Yano T. Human epidermal growth factor receptor 2-, epidermal growth factor receptor-, and mesenchymal epithelial transition factor-positive sites of gastric cancer using surgical samples. Gastric Cancer 2019; 22:335-343. [PMID: 29951752 DOI: 10.1007/s10120-018-0853-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 06/24/2018] [Indexed: 01/04/2023]
Abstract
BACKGROUND Receptor tyrosine kinases (RTKs) play critical roles in gastric cancer (GC) progression and are potential targets for novel molecular-targeted agents or photo-immunotherapies. During patient selection, targeted biopsy is the first step. However, heterogeneous expression of RTKs based on the macroscopic appearance in GC has not been extensively addressed. Accordingly, in this study, we evaluated differences in RTK expression associated with macroscopic appearance in GC. METHODS In total, 375 consecutive patients who had undergone gastrectomy at the National Cancer Center Hospital East and who had histologically proven adenocarcinoma, available archived tumor sample, and no history of chemotherapy were enrolled in this study. For these cases, tissue microarray (TMA) samples were examined using immunohistochemistry (IHC). Based on the results of IHC, cases were selected for detailed examination. We re-evaluated IHC scores in more than three tumor blocks per case and comparatively evaluated differences in IHC expression in RTKs between the mucosal portion (MuP) and invasive portion (InP). RESULTS Human epidermal growth factor receptor 2 (HER2)-, epidermal growth factor receptor (EGFR)-, and mesenchymal epithelial transition factor (c-MET)-positive rates were 6, 9, and 20%, respectively. Twenty-two cases were then analyzed to assess differences in IHC expression levels in the same lesion. Concordance rates of positive staining of HER2, EGFR, and MET between MuP and whole tumor were 100, 40, and 56% and those with InP were 46, 100, and 56%. CONCLUSIONS To avoid underestimating expression status, biopsies must be taken from MuP for HER2, InP for EGFR, and both proportions for c-MET.
Collapse
Affiliation(s)
- Yasuhiro Oono
- Department of Gastroenterology and Endoscopy, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan.
| | - Takeshi Kuwata
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital East, Kashiwa, Japan
| | - Kenji Takashima
- Department of Gastroenterology and Endoscopy, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| | - Kensuke Shinmura
- Department of Gastroenterology and Endoscopy, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| | - Keisuke Hori
- Department of Gastroenterology and Endoscopy, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| | - Yusuke Yoda
- Department of Gastroenterology and Endoscopy, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| | - Hiroaki Ikematsu
- Department of Gastroenterology and Endoscopy, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| | - Kohei Shitara
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Takahiro Kinoshita
- Gastric Surgery Division, National Cancer Center Hospital East, Kashiwa, Japan
| | - Tomonori Yano
- Department of Gastroenterology and Endoscopy, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| |
Collapse
|
24
|
Moghbeli M, Makhdoumi Y, Soltani Delgosha M, Aarabi A, Dadkhah E, Memar B, Abdollahi A, Abbaszadegan MR. ErbB1 and ErbB3 co-over expression as a prognostic factor in gastric cancer. Biol Res 2019; 52:2. [PMID: 30621788 PMCID: PMC6323733 DOI: 10.1186/s40659-018-0208-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 12/14/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Epidermal growth factor receptor family members such as ErbB1 and ErbB3 are involved in tumor progression and metastasis. Although, there are various reports about the prognostic value of EGFR members separately in gastric cancer, there is not any report about the probable correlation between ErbB1 and ErbB3 co-expression and gastric cancer prognosis. In present study, we assessed the correlation between ErbB1 and ErbB3 co-overexpression (in the level of mRNA and protein expression) and gastric cancer prognosis for the first time. METHODS ErbB1 and ErbB3 expressions were analyzed by immunohistochemistry and real-time PCR in 50 patients with gastric cancer. Parametric correlations were done between the ErbB1 and ErbB3 expression and clinicopathological features. Multivariate and logistic regression analyses were also done to assess the roles of ErbB1 and ErbB3 in tumor prognosis and survival. RESULTS There were significant correlations between ErbB1/ErbB3 co-overexpression and tumor size (p = 0.026), macroscopic features (p < 0.05), tumor differentiation (p < 0.05), stage of tumor (p < 0.05), and recurrence (p < 0.05). Moreover, ErbB1/ErbB3 co-overexpression may predict the survival status of patients (p < 0.05). CONCLUSION ErbB1 and ErbB3 co-overexpression is accompanied with the poor prognosis and can be used efficiently in targeted therapy of gastric cancer patients.
Collapse
Affiliation(s)
- Meysam Moghbeli
- Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yasha Makhdoumi
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Azadeh Aarabi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ezzat Dadkhah
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bahram Memar
- Surgical oncology research center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abbas Abdollahi
- Surgical oncology research center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Abbaszadegan
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
25
|
Hung YS, Chang SC, Liu KH, Hung CY, Kuo YC, Tsai CY, Hsu JT, Yeh TS, Chen JS, Chou WC. A prognostic model based on lymph node metastatic ratio for predicting survival outcome in gastric cancer patients with N3b subclassification. Asian J Surg 2019; 42:85-92. [PMID: 29248301 DOI: 10.1016/j.asjsur.2017.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 09/28/2017] [Accepted: 10/11/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Determining the survival outcome for gastric cancer patients with metastases to more than 15 regional lymph nodes is difficult. This study aims to develop a lymph node metastatic ratio (LNR)-based prognostic model to predict the survival outcome after D2 surgery in such patient groups. METHODS Our study retrospectively enrolled 139 gastric cancer patients with metastases to more than 15 regional lymph nodes who underwent D2 surgery between 2007 and 2014. Clinicopathologic variables to predict overall survival (OS) using multivariate Cox regression were selected to create a prognostic model. RESULTS The prognostic model for predicting OS was developed based on five independent factors, namely, T-classification (T2 or T3 vs. T4), LNR (<0.80 vs. ≥0.80), carcinoembryonic antigen level (<5 vs. ≥5 ng/ml), Eastern Cooperative Oncology Group performance scale (scale 0-1 vs. ≥2), and adjuvant chemotherapy (yes vs. no). Using the prognostic score, patients were stratified into good, intermediate, and poor prognostic groups. The median OS in the good, intermediate, and poor prognostic risk groups was 32.0 months (95% confidence interval [CI]: 22.3-41.7), 12.4 months (95% CI: 8.5-16.3), and 5.4 months (95% CI: 2.1-8.7), respectively. The c-index of the prognostic model was 0.79 (95% CI: 0.71-0.87). CONCLUSION This study developed an accurate LNR-based prognostic model for predicting the survival outcome after D2 surgery in gastric cancer patients with metastasis to more than 15 regional lymph nodes. This model might assist clinicians in prognostic stratification of such patients and convince eligible patients to receive adjuvant chemotherapy.
Collapse
Affiliation(s)
- Yu-Shin Hung
- Department of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taiwan
| | - Shin-Chun Chang
- Department of Surgery, Chang Gung Memorial Hospital at Linkou, Taiwan
| | - Keng-Hao Liu
- Department of Surgery, Chang Gung Memorial Hospital at Linkou, Taiwan
| | - Chia-Yen Hung
- Department of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taiwan; Department of Hema-Oncology, Division of Internal Medicine, Mackay Memorial Hospital, Taipei, Taiwan
| | - Yung-Chia Kuo
- Department of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taiwan
| | - Chun-Yi Tsai
- Department of Surgery, Chang Gung Memorial Hospital at Linkou, Taiwan
| | - Jun-Te Hsu
- Department of Surgery, Chang Gung Memorial Hospital at Linkou, Taiwan
| | - Ta-Sen Yeh
- Department of Surgery, Chang Gung Memorial Hospital at Linkou, Taiwan
| | - Jen-Shi Chen
- Department of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taiwan
| | - Wen-Chi Chou
- Department of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taiwan; Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
26
|
Abbas M, Faggian A, Sintali DN, Khan GJ, Naeem S, Shi M, Dingding C. Current and future biomarkers in gastric cancer. Biomed Pharmacother 2018; 103:1688-1700. [DOI: 10.1016/j.biopha.2018.04.178] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/24/2018] [Accepted: 04/24/2018] [Indexed: 02/06/2023] Open
|
27
|
Luo C, Tao Y, Zhang Y, Zhu Y, Minyao DN, Haleem M, Dong C, Zhang L, Zhang X, Zhao J, Liao Q. Regulatory network analysis of high expressed long non-coding RNA LINC00941 in gastric cancer. Gene 2018; 662:103-109. [PMID: 29653230 DOI: 10.1016/j.gene.2018.04.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/13/2018] [Accepted: 04/09/2018] [Indexed: 12/12/2022]
Abstract
Accumulating evidence suggests that the aberrant expression of long non-coding RNAs is closely related to the carcinogenesis and progression of gastric cancer (GC), which is a type of prevalent tumor with a high incidence and mortality rate. However, it is still a challenge to find reliable biomarkers and to understand their molecular mechanisms in GC. In this study, we first confirmed that LINC00941was up-regulated in GC tumor tissues compared with adjacent normal tissues by RT-PCR, and found that the expression level of LINC00941 was correlated with invasion depth, lymphatic metastasis, and the TNM stage of patients with GC. Furthermore, by performing enrichment analysis based on the co-expression network and regulatory network, we found that LINC00941 was associated with cancer related biological processes such as cell cycle, cell communication, cell migration, cell division, as well as processes associated with the immune system. Our results suggested that LINC00941 may be a potential novel biomarker for therapeutic or diagnostic of GC.
Collapse
Affiliation(s)
- Cong Luo
- Department of Abdominal Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| | - Yang Tao
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medical School of Ningbo University, Ningbo, China
| | - Yuwei Zhang
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medical School of Ningbo University, Ningbo, China
| | - Yinyin Zhu
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medical School of Ningbo University, Ningbo, China
| | - Derry Ng Minyao
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medical School of Ningbo University, Ningbo, China
| | - Maria Haleem
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medical School of Ningbo University, Ningbo, China
| | - Changzheng Dong
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medical School of Ningbo University, Ningbo, China
| | - Lina Zhang
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medical School of Ningbo University, Ningbo, China
| | - Xiaohong Zhang
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medical School of Ningbo University, Ningbo, China
| | - Jinshun Zhao
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medical School of Ningbo University, Ningbo, China
| | - Qi Liao
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medical School of Ningbo University, Ningbo, China.
| |
Collapse
|
28
|
Petrini I, Lencioni M, Vasile E, Fornaro L, Belluomini L, Pasquini G, Ginocchi L, Caparello C, Musettini G, Vivaldi C, Caponi S, Ricci S, Proietti A, Fontanini G, Naccarato AG, Nardini V, Santi S, Falcone A. EGFR and AKT1 overexpression are mutually exclusive and associated with a poor survival in resected gastric adenocarcinomas. Cancer Biomark 2018; 21:731-741. [DOI: 10.3233/cbm-170865] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Iacopo Petrini
- Medical Oncology, University Hospital of Pisa, 56126 Pisa, Italy
| | - Monica Lencioni
- Medical Oncology, University Hospital of Pisa, 56126 Pisa, Italy
| | - Enrico Vasile
- Medical Oncology, University Hospital of Pisa, 56126 Pisa, Italy
| | - Lorenzo Fornaro
- Medical Oncology, University Hospital of Pisa, 56126 Pisa, Italy
| | | | - Giulia Pasquini
- Medical Oncology, University Hospital of Pisa, 56126 Pisa, Italy
| | - Laura Ginocchi
- Medical Oncology, University Hospital of Pisa, 56126 Pisa, Italy
| | - Chiara Caparello
- Medical Oncology, University Hospital of Pisa, 56126 Pisa, Italy
| | - Gianna Musettini
- Medical Oncology, University Hospital of Pisa, 56126 Pisa, Italy
| | - Caterina Vivaldi
- Medical Oncology, University Hospital of Pisa, 56126 Pisa, Italy
| | - Sara Caponi
- Medical Oncology, University Hospital of Pisa, 56126 Pisa, Italy
| | - Sergio Ricci
- Medical Oncology, University Hospital of Pisa, 56126 Pisa, Italy
| | - Agenese Proietti
- Surgical Pathology, Unit 3, University Hospital of Pisa, 56126 Pisa, Italy
| | | | | | - Vincenzo Nardini
- Surgical Pathology, Unit 2, University Hospital of Pisa, 56126 Pisa, Italy
| | - Stefano Santi
- Esophageal Surgery, University Hospital of Pisa, 56126 Pisa, Italy
| | - Alfredo Falcone
- Medical Oncology, University Hospital of Pisa, 56126 Pisa, Italy
| |
Collapse
|
29
|
Frequent Coamplification of Receptor Tyrosine Kinase and Downstream Signaling Genes in Japanese Primary Gastric Cancer and Conversion in Matched Lymph Node Metastasis. Ann Surg 2018; 267:114-121. [DOI: 10.1097/sla.0000000000002042] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
30
|
The Prognostic Significance of c-MET and EGFR Overexpression in Resected Gastric Adenocarcinomas. Am J Clin Oncol 2017; 40:543-551. [PMID: 26125303 DOI: 10.1097/coc.0000000000000202] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Epidermal growth factor receptor (EGFR) and c-MET are tyrosine kinase growth factor receptors implicated in gastric cancer (GC), and their pathways appear to be interdependent. The aim of this study was to investigate the prognostic value of EGFR and c-MET protein overexpression by immunohistochemistry in Canadian patients with resected GC and correlate it with clinicopathologic characteristics and overall survival (OS). MATERIALS AND METHODS Tissue microarray blocks were constructed from 120 resected GCs stained with EGFR and c-MET and scored semiquantitatively (0 to 3+). Each receptor's expression was compared with clinicopathologic characteristics and survival. Descriptive statistics, Kaplan-Meyer, and Cox regression were used for statistical analyses. RESULTS Of the 113 interpretable cases, overexpression of EGFR and c-MET was noted in 17 (15%) and 65 (57%), respectively; coexpression of EGFR and c-MET was observed in 12 (10%) of GC. EGFR and c-MET overexpression correlated with poor OS: median 13 versus 30 months in EGFR positive versus negative GC (hazard ratio [HR]=1.67, P=0.11); 27 versus 49 months in c-MET positive versus negative GC (HR=1.17, P=0.49), respectively. GC coexpressing EGFR and c-MET was significantly correlated with poor survival: 12 versus 29 months in double-positive versus rest of tumors both in univariate (HR=2.62, P=0.003) and multivariate analyses (HR=2.58, P=0.01). CONCLUSIONS This study describes the prevalence and prognostic value of EGFR and c-MET in a Canadian population of patients undergoing curative intent resection for GC. Both c-MET and EGFR overexpression trended toward poor OS, but only the group with EGFR+/c-MET+ GC reached statistical significance on multivariate analysis.
Collapse
|
31
|
Hou C, Dong Y, Zhang F, Du B. MicroRNA‑509 acts as a tumor suppressor in tongue squamous cell carcinoma by targeting epidermal growth factor receptor. Mol Med Rep 2017; 16:7245-7252. [PMID: 28944863 PMCID: PMC5865852 DOI: 10.3892/mmr.2017.7531] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Accepted: 06/29/2017] [Indexed: 02/06/2023] Open
Abstract
Tongue squamous cell carcinoma (TSCC) is the most frequent type of oral carcinoma, and is characterized by high metastatic and growth capabilities. Previous studies have demonstrated that aberrantly expressed cancer‑associated microRNAs (miRs) may be associated with tumorigenesis and tumor development in various types of cancer, including TSCC. miR‑509 has been identified as a critical regulator in tumorigenesis and tumor development, via its tumor‑suppressing actions in several types of human cancer. In the present study, miR‑509 expression in TSCC tissues and cell lines was determined by reverse transcription‑quantitative polymerase chain reaction. The effects of miR‑509 on TSCC cell proliferation and invasion were evaluated via MTT and invasion assays, respectively. In addition, the direct target of miR‑509 in TSCC was investigated. The present study demonstrated that miR‑509 expression was downregulated in TSCC tissue samples and cell lines, whereas its ectopic expression suppressed TSCC cell proliferation and invasion in vitro. In addition, epidermal growth factor receptor (EGFR) was identified as a direct target gene of miR‑509 in TSCC cells. EGFR downregulation was demonstrated to suppress the proliferation and invasion of TSCC cells, similar to miR‑509 overexpression. Furthermore, EGFR was significantly upregulated in TSCC tissues, and the levels of miR‑509 were revealed to be negatively correlated with EGFR expression in TSCC tissues. Following transfection with miR‑509 mimics, signaling pathways downstream of EGFR appeared to be suppressed, as phosphorylated (p)‑extracellular signal‑regulated kinase and p‑Akt were downregulated in TSCC cells. In conclusion, the results of the present study suggested that miR‑509 may inhibit the proliferation and invasion of TSCC cells via directly targeting EGFR, thus suggesting that the miR‑509/EGFR axis may have potential as a novel therapeutic target for the development of a treatment for patients with TSCC.
Collapse
Affiliation(s)
- Chao Hou
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, Shandong 250012, P.R. China
- Department of Stomatology, Zaozhuang Municipal Hospital, Zaozhuang, Shandong 277100, P.R. China
| | - Yan Dong
- Department of Stomatology, Zaozhuang Municipal Hospital, Zaozhuang, Shandong 277100, P.R. China
| | - Fenghe Zhang
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Bo Du
- Department of Stomatology, Zaozhuang Municipal Hospital, Zaozhuang, Shandong 277100, P.R. China
| |
Collapse
|
32
|
Zhang Z, Tang H, Lin J, Hu Y, Luo G, Luo Z, Cheng C, Wang P. Clinicopathologic and prognostic significance of human epidermal growth factor receptor in patients with gastric cancer: An updated meta-analysis. Oncotarget 2017; 8:17202-17215. [PMID: 28199988 PMCID: PMC5370033 DOI: 10.18632/oncotarget.15231] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 01/06/2017] [Indexed: 12/12/2022] Open
Abstract
Purpose The aim of this update meta-analysis was to clarify the clinicopathologic and prognostic significance of human epidermal growth factor receptor(EGFR) expression in gastric cancer patients. Experimental Design Several electronic databases were searched from January 1970 to May 2016. The odds ratio (OR) was calculated to assess the association between EGFR expression and pathological parameters. The hazard ratio (HR) and 95% CI were calculated to explore the relationship between EGFR expression and overall survival. Results Finally 7229 patients with gastric cancer from 25 eligible studies were included in the present meta analysis. High EGFR expression was found to be significantly related with tumor differentiation (OR=1.96, 95%CI: 1.14-3.34, Z=2.43, P=0.015), lymph node metastasis (OR=2.20, 95% CI: 1.63-2.96, Z=5.17, P=0.001), and tumor stage (OR=2.13, 95% CI: 1.35-3.36, Z=3.25, P=0.001). However, high EGFR expression was not significantly associated with invasion depth (OR=2.09, 95% CI: 0.4-11.05, Z=0.87, P=0.385). The pooled HR suggested that high EGFR expression was significantly correlated with overall survival (HR=1.19, 95% CI 1.04-1.37, Z=2.44, P=0.015). Conclusions The present meta-analysis demonstrated that high EGFR expression significantly predicts poor prognosis, suggesting that high EGFR expression may serve as a predictive biomarker for poor prognosis in patients with gastric cancer.
Collapse
Affiliation(s)
- Zhiqiao Zhang
- Department of Infectious Disease, The First People's Hospital of Shunde, Shunde, Guangdong, China.,Department of Internal Medicine, The Chencun Hospital Affiliated to The First People's Hospital of Shunde, Shunde, Guangdong, China
| | - Hongfeng Tang
- Department of Science and Education, The First People's Hospital of Shunde, Shunde, Guangdong, China
| | - Jixin Lin
- Department of Internal Medicine, The Chencun Hospital Affiliated to The First People's Hospital of Shunde, Shunde, Guangdong, China
| | - Yunzhao Hu
- Department of Infectious Disease, The First People's Hospital of Shunde, Shunde, Guangdong, China.,Department of Internal Medicine, The Chencun Hospital Affiliated to The First People's Hospital of Shunde, Shunde, Guangdong, China
| | - Guanying Luo
- Department of Infectious Disease, The First People's Hospital of Shunde, Shunde, Guangdong, China.,Department of Internal Medicine, The Chencun Hospital Affiliated to The First People's Hospital of Shunde, Shunde, Guangdong, China
| | - Zhaowen Luo
- Department of Internal Medicine, The Chencun Hospital Affiliated to The First People's Hospital of Shunde, Shunde, Guangdong, China
| | - Canchang Cheng
- Department of Infectious Disease, The First People's Hospital of Shunde, Shunde, Guangdong, China.,Department of Internal Medicine, The Chencun Hospital Affiliated to The First People's Hospital of Shunde, Shunde, Guangdong, China
| | - Peng Wang
- Department of Infectious Disease, The First People's Hospital of Shunde, Shunde, Guangdong, China.,Department of Internal Medicine, The Chencun Hospital Affiliated to The First People's Hospital of Shunde, Shunde, Guangdong, China
| |
Collapse
|
33
|
Salati M, Di Emidio K, Tarantino V, Cascinu S. Second-line treatments: moving towards an opportunity to improve survival in advanced gastric cancer? ESMO Open 2017; 2:e000206. [PMID: 29209523 PMCID: PMC5703389 DOI: 10.1136/esmoopen-2017-000206] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 05/04/2017] [Indexed: 12/26/2022] Open
Abstract
Gastric cancer is the third leading cause of cancer-related death globally with approximately 723 000 deaths every year. Most patients present with advanced unresectable or metastatic disease, only amenable to palliative systemic treatment and a median survival uncommonly exceeding 12 months. Over the last years, the efficacy of chemotherapy combination has plateaued and the introduction of the anti-human epidermal growth factor receptor 2 trastuzumab has resulted in a limited survival gain in the upfront setting. After this positive experience, first-line treatment with new targeted therapies failed to improve the outcome of advanced gastric cancer. On the contrary, second-line options, including monochemotherapy with taxanes or irinotecan and the anti-vascular endothelial growth factor receptor 2 ramucirumab, either alone or combined with paclitaxel, opened new therapeutic rooms for an ever-increasing number of patients who maintain an acceptable performance status across multiple lines. This article provides an updated overview on the current management of advanced gastric cancer and discusses how the different treatment options available may be best combined to favourably impact the outcome of patients following the logic of a treatment strategy.
Collapse
Affiliation(s)
- Massimiliano Salati
- Department of Oncology, Università di Modena e Reggio Emilia, Policlinico di Modena, Modena, Italy
| | - Katia Di Emidio
- Department of Oncology, Università di Modena e Reggio Emilia, Policlinico di Modena, Modena, Italy
| | - Vittoria Tarantino
- Department of Oncology, Università di Modena e Reggio Emilia, Policlinico di Modena, Modena, Italy
| | - Stefano Cascinu
- Department of Oncology, Università di Modena e Reggio Emilia, Policlinico di Modena, Modena, Italy
| |
Collapse
|
34
|
Zhai J, Zhao L, Zheng L, Gao F, Gao L, Liu R, Wang Y, Gao X. Peptide-Au Cluster Probe: Precisely Detecting Epidermal Growth Factor Receptor of Three Tumor Cell Lines at a Single-Cell Level. ACS OMEGA 2017; 2:276-282. [PMID: 30023515 PMCID: PMC6044707 DOI: 10.1021/acsomega.6b00390] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 01/10/2017] [Indexed: 05/29/2023]
Abstract
Alterations in protein (e.g., biomarkers) expression levels have a significant correlation with tumor development and prognosis; therefore, it is desired to develop precise methods to differentiate the expression level of proteins in tumor cell lines, especially at the single-cell level. Here, we report a precise and versatile approach of quantifying the protein expression levels of three tumor cell lines in situ using a peptide-Au cluster probe. The probe (Au5Peptide3) consists of a peptide with a specific cell membrane epidermal growth factor receptor (EGFR) targeting ability and an Au cluster for both cell membrane EGFR imaging using confocal microscopy and cell membrane EGFR counting by laser ablation inductively coupled plasma mass spectrometry. Utilizing the peptide-Au cluster probe, we successfully quantify the EGFR expression levels of SMMC-7721, KB, and HeLa cells at a single-cell level and differentiate the EGFR expression levels among these cell lines. The peptide-Au cluster probe, with the ability to differentiate the protein expression level of different cell lines, shows exceptional promise for providing reliable predictive and prognostic information of tumors at a single-cell level.
Collapse
Affiliation(s)
- Jiao Zhai
- Key
Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy
of Sciences, Beijing 100049, China
| | - Lina Zhao
- Key
Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy
of Sciences, Beijing 100049, China
| | - Lingna Zheng
- Key
Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy
of Sciences, Beijing 100049, China
| | - Fuping Gao
- Key
Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy
of Sciences, Beijing 100049, China
| | - Liang Gao
- Key
Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy
of Sciences, Beijing 100049, China
| | - Ru Liu
- Key
Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy
of Sciences, Beijing 100049, China
| | - Yaling Wang
- Key
Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy
of Sciences, Beijing 100049, China
| | - Xueyun Gao
- Key
Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy
of Sciences, Beijing 100049, China
- Department
of Chemistry and Chemical Engineering, Beijing
University of Technology, Beijing 100124, China
| |
Collapse
|
35
|
Kruziki MA, Case BA, Chan JY, Zudock EJ, Woldring DR, Yee D, Hackel BJ. 64Cu-Labeled Gp2 Domain for PET Imaging of Epidermal Growth Factor Receptor. Mol Pharm 2016; 13:3747-3755. [PMID: 27696863 DOI: 10.1021/acs.molpharmaceut.6b00538] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
This purpose of this study is to determine the efficacy of a 45-amino acid Gp2 domain, engineered to bind to epidermal growth factor receptor (EGFR), as a positron emission tomography (PET) probe of EGFR in a xenograft mouse model. The EGFR-targeted Gp2 (Gp2-EGFR) and a nonbinding control were site-specifically labeled with 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) chelator. Binding affinity was tested toward human EGFR and mouse EGFR. Biological activity on downstream EGFR signaling was examined in cell culture. DOTA-Gp2 molecules were labeled with 64Cu and intravenously injected (0.6-2.3 MBq) into mice bearing EGFRhigh (n = 7) and EGFRlow (n = 4) xenografted tumors. PET/computed tomography (CT) images were acquired at 45 min, 2 h, and 24 h. Dynamic PET (25 min) was also acquired. Tomography results were verified with gamma counting of resected tissues. Two-tailed t tests with unequal variances provided statistical comparison. DOTA-Gp2-EGFR bound strongly to human (KD = 7 ± 5 nM) and murine (KD = 29 ± 6 nM) EGFR, and nontargeted Gp2 had no detectable binding. Gp2-EGFR did not agonize EGFR nor antagonize EGF-EGFR. 64Cu-Gp2-EGFR tracer effectively localized to EGFRhigh tumors at 45 min (3.2 ± 0.5%ID/g). High specificity was observed with significantly lower uptake in EGFRlow tumors (0.9 ± 0.3%ID/g, p < 0.001), high tumor-to-background ratios (11 ± 6 tumor/muscle, p < 0.001). Nontargeted Gp2 tracer had low uptake in EGFRhigh tumors (0.5 ± 0.3%ID/g, p < 0.001). Similar data was observed at 2 h, and tumor signal was retained at 24 h (2.9 ± 0.3%ID/g). An engineered Gp2 PET imaging probe exhibited low background and target-specific EGFRhigh tumor uptake at 45 min, with tumor signal retained at 24 h postinjection, and compared favorably with published EGFR PET probes for alternative protein scaffolds. These beneficial in vivo characteristics, combined with thermal stability, efficient evolution, and small size of the Gp2 domain validate its use as a future class of molecular imaging agents.
Collapse
Affiliation(s)
- Max A Kruziki
- Department of Chemical Engineering and Materials Science, ‡Department of Pharmacology, §Department of Medicine, and ∥Masonic Cancer Center, University of Minnesota-Twin Cities , 421 16th Avenue SE, Minneapolis, Minnesota 55455, United States
| | - Brett A Case
- Department of Chemical Engineering and Materials Science, ‡Department of Pharmacology, §Department of Medicine, and ∥Masonic Cancer Center, University of Minnesota-Twin Cities , 421 16th Avenue SE, Minneapolis, Minnesota 55455, United States
| | - Jie Y Chan
- Department of Chemical Engineering and Materials Science, ‡Department of Pharmacology, §Department of Medicine, and ∥Masonic Cancer Center, University of Minnesota-Twin Cities , 421 16th Avenue SE, Minneapolis, Minnesota 55455, United States
| | - Elizabeth J Zudock
- Department of Chemical Engineering and Materials Science, ‡Department of Pharmacology, §Department of Medicine, and ∥Masonic Cancer Center, University of Minnesota-Twin Cities , 421 16th Avenue SE, Minneapolis, Minnesota 55455, United States
| | - Daniel R Woldring
- Department of Chemical Engineering and Materials Science, ‡Department of Pharmacology, §Department of Medicine, and ∥Masonic Cancer Center, University of Minnesota-Twin Cities , 421 16th Avenue SE, Minneapolis, Minnesota 55455, United States
| | - Douglas Yee
- Department of Chemical Engineering and Materials Science, ‡Department of Pharmacology, §Department of Medicine, and ∥Masonic Cancer Center, University of Minnesota-Twin Cities , 421 16th Avenue SE, Minneapolis, Minnesota 55455, United States
| | - Benjamin J Hackel
- Department of Chemical Engineering and Materials Science, ‡Department of Pharmacology, §Department of Medicine, and ∥Masonic Cancer Center, University of Minnesota-Twin Cities , 421 16th Avenue SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
36
|
He J, Jin Y, Chen Y, Yao HB, Xia YJ, Ma YY, Wang W, Shao QS. Downregulation of ALDOB is associated with poor prognosis of patients with gastric cancer. Onco Targets Ther 2016; 9:6099-6109. [PMID: 27785057 PMCID: PMC5065259 DOI: 10.2147/ott.s110203] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Objectives To examine the expression of ALDOB in gastric cancer (GC) tissue and to reveal its potential clinicopathological and prognostic significance. Materials and methods We screened for genes that were differentially expressed between GC and nontumor tissues using a microarray, specifically the Affymetrix U133 Plus 2.0 Array platform. We then verified the transcriptional and translational levels of ALDOB by performing quantitative real-time polymerase chain reaction (qRT-PCR) and immunohistochemistry (IHC). In addition, a merged data set based on the Gene Expression Omnibus was generated and a survival analysis performed. Results The microarray analysis revealed that ALDOB was downregulated (more than sevenfold) in GC compared with nontumor tissue. Both qRT-PCR and IHC validated the decrease of ALDOB in GC tissue. Moreover, we found that the expression of ALDOB was significantly related to tumor-invasion depth, lymph-node metastasis, distant metastasis, and TNM stage. The survival analysis, based on the IHC and merged data set, indicated that the overall survival was better in patients with high ALDOB expression. The Cox regression analysis showed that ALDOB expression was an independent prognostic factor for GC. Conclusion The expression of ALDOB in GC tissue was significantly related to the clinicopathological features and prognosis of the disease, thus suggesting that ALDOB could act as a novel molecular marker for GC.
Collapse
Affiliation(s)
- Jun He
- Department of Gastroenterology and Pancreatic Surgery
| | - Yi Jin
- Department of Gastroenterology and Pancreatic Surgery
| | | | - Hai-Bo Yao
- Department of Gastroenterology and Pancreatic Surgery
| | - Ying-Jie Xia
- Key Laboratory of Gastroenterology of Zhejiang Province
| | - Ying-Yu Ma
- Clinic Research Institute, Zhejiang Provincial People's Hospital, Hangzhou, People's Republic of China
| | | | - Qin-Shu Shao
- Department of Gastroenterology and Pancreatic Surgery
| |
Collapse
|
37
|
Chen J, Zeng F, Forrester SJ, Eguchi S, Zhang MZ, Harris RC. Expression and Function of the Epidermal Growth Factor Receptor in Physiology and Disease. Physiol Rev 2016; 96:1025-1069. [DOI: 10.1152/physrev.00030.2015] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The epidermal growth factor receptor (EGFR) is the prototypical member of a family of membrane-associated intrinsic tyrosine kinase receptors, the ErbB family. EGFR is activated by multiple ligands, including EGF, transforming growth factor (TGF)-α, HB-EGF, betacellulin, amphiregulin, epiregulin, and epigen. EGFR is expressed in multiple organs and plays important roles in proliferation, survival, and differentiation in both development and normal physiology, as well as in pathophysiological conditions. In addition, EGFR transactivation underlies some important biologic consequences in response to many G protein-coupled receptor (GPCR) agonists. Aberrant EGFR activation is a significant factor in development and progression of multiple cancers, which has led to development of mechanism-based therapies with specific receptor antibodies and tyrosine kinase inhibitors. This review highlights the current knowledge about mechanisms and roles of EGFR in physiology and disease.
Collapse
Affiliation(s)
- Jianchun Chen
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Fenghua Zeng
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Steven J. Forrester
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Satoru Eguchi
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Ming-Zhi Zhang
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Raymond C. Harris
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
38
|
Qiu Y, Wen Q, Zhang L, Yang P. Label-free and dynamic evaluation of cell-surface epidermal growth factor receptor expression via an electrochemiluminescence cytosensor. Talanta 2016; 150:286-95. [DOI: 10.1016/j.talanta.2015.12.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 12/03/2015] [Accepted: 12/10/2015] [Indexed: 12/26/2022]
|
39
|
Park JS, Kim HS, Bae YS, Cheong JH, Rha SY, Noh SH, Kim H. Prognostic significance and frequency of EGFR expression and amplification in surgically resected advanced gastric cancer. Jpn J Clin Oncol 2016; 46:507-16. [PMID: 27008850 DOI: 10.1093/jjco/hyw030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 02/14/2016] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE The aim of this study is to find the frequency and the role of epidermal growth factor receptor expression as a prognostic biomarker in gastric cancer. METHODS We evaluated the prognostic value and frequency of epidermal growth factor receptor expression and amplification using immunohistochemistry and silver in situ hybridization in a large cohort of curatively resected gastric cancer. RESULTS Of the total of 935 cases, 294 (31.4%), 101 (10.8%) and 36 (3.9%) patients showed epidermal growth factor receptor 1+, 2+ and 3+ expression on immunohistochemistry, respectively. Epidermal growth factor receptor-positive (2+/3+) patients more frequently had intestinal type than epidermal growth factor receptor-negative (0/1+) patients (82.5 vs. 44.1%, P < 0.001). After adjusting for sex, age, stage and adjuvant chemotherapy, epidermal growth factor receptor-positive patients had a favorable overall survival outcome compared with epidermal growth factor receptor-negative patients (hazard ratio, 0.734; 95% confidence interval, 0.541-0.997; P = 0.047), especially in Stage III disease (hazard ratio, 0.676; 95% confidence interval, 0.472-0.968; P = 0.033). Among the 393 cases available for in situ hybridization, the correlation between immunohistochemistry and in situ hybridization was statistically significant (P = 0.001). Thirteen patients with gene amplification (3.3%) did not show different survival outcome with others (P = 0.359). CONCLUSION Epidermal growth factor receptor positivity was an independent favorable prognostic factor for gastric cancer, especially in Stage III disease.
Collapse
Affiliation(s)
- Ji Soo Park
- Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul Department of Internal Medicine, Yonsei University College of Medicine, Seoul
| | - Hyo Song Kim
- Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul Department of Internal Medicine, Yonsei University College of Medicine, Seoul
| | - Yoon Sung Bae
- Department of Pathology, Yonsei University College of Medicine, Seoul
| | - Jae-Ho Cheong
- Department of Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sun Young Rha
- Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul Department of Internal Medicine, Yonsei University College of Medicine, Seoul
| | - Sung Hoon Noh
- Department of Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyunki Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul
| |
Collapse
|
40
|
van Dommelen SM, van der Meel R, van Solinge WW, Coimbra M, Vader P, Schiffelers RM. Cetuximab treatment alters the content of extracellular vesicles released from tumor cells. Nanomedicine (Lond) 2016; 11:881-90. [PMID: 27021928 DOI: 10.2217/nnm-2015-0009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM Extracellular vesicles (EVs) are attractive candidates for biomarker research, because their content reflects the parental cell status. This study aimed to examine whether tumor cell derived EVs mirrored the cellular changes caused by treatment with cetuximab, a therapeutic antibody that blocks activation of EGF receptor (EGFR). MATERIALS & METHODS A-431 cells were treated with cetuximab for 48 h. EVs were isolated using differential centrifugation and protein content was analyzed using western blotting. RESULTS EV levels of EGFR and phospho-EGFR were reduced after cetuximab treatment, reflecting similar changes in the parental cells. In addition, cetuximab was found associated with EVs. CONCLUSION EVs could serve as biomarkers to monitor cetuximab treatment. Association of cetuximab with EVs might influence its behavior.
Collapse
Affiliation(s)
- Susan M van Dommelen
- Department of Clinical Chemistry & Haematology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Roy van der Meel
- Department of Clinical Chemistry & Haematology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands.,Department of Biochemistry & Molecular Biology, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Wouter W van Solinge
- Department of Clinical Chemistry & Haematology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Maria Coimbra
- Department of Pharmaceutics, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Pieter Vader
- Department of Clinical Chemistry & Haematology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Raymond M Schiffelers
- Department of Clinical Chemistry & Haematology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
41
|
Liu SY, Shun CT, Hung KY, Juan HF, Hsu CL, Huang MC, Lai IR. Mucin glycosylating enzyme GALNT2 suppresses malignancy in gastric adenocarcinoma by reducing MET phosphorylation. Oncotarget 2016; 7:11251-62. [PMID: 26848976 PMCID: PMC4905470 DOI: 10.18632/oncotarget.7081] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 01/17/2016] [Indexed: 02/07/2023] Open
Abstract
Glycosylation affects malignancy in cancer. Here, we report that N- acetylgalactosaminyltransferase 2 (GALNT2), an enzyme that mediates the initial step of mucin type-O glycosylation, suppresses malignant phenotypes in gastric adenocarcinoma (GCA) by modifying MET (Hepatocyte growth factor receptor) activity. GALNT2 mRNA and protein were downregulated in GCAs, and this reduction was associated with more advanced disease stage and shorter recurrence-free survival. Suppressing GALNT2 expression in GCA cells increased cell growth, migration, and invasion in vitro, and tumor metastasis in vivo. GALNT2 knockdown enhanced phosphorylation of MET and decreased expression of the Tn antigen on MET. Inhibiting MET activity with PHA665752 decreased the malignant phenotypes caused by GALNT2 knockdown in GCA cells. Our results indicate that GALNT2 suppresses the malignant potential of GCA cells and provide novel insights into the significance of O-glycosylation in MET activity and GCA progression.
Collapse
Affiliation(s)
- Shin-Yun Liu
- Graduate Institute of Anatomy and Cell Biology College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chia-Tung Shun
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | - Kuan-Yu Hung
- Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch, Taipei, Taiwan
| | - Hsueh-Fen Juan
- Department of Life Science and Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
| | - Chia-Lang Hsu
- Department of Life Science and Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
| | - Min-Chuan Huang
- Graduate Institute of Anatomy and Cell Biology College of Medicine, National Taiwan University, Taipei, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| | - I-Rue Lai
- Graduate Institute of Anatomy and Cell Biology College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
42
|
Tomasello G, Ghidini M, Liguigli W, Ratti M, Toppo L, Passalacqua R. Targeted therapies in gastric cancer treatment: where we are and where we are going. Invest New Drugs 2016; 34:378-93. [PMID: 26873643 DOI: 10.1007/s10637-016-0330-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 02/09/2016] [Indexed: 12/12/2022]
Abstract
Gastric cancer (GC) is one of the most common malignancies and a major cause of cancer-related deaths worldwide. Its incidence has significantly declined over the last few decades, probably due to the identification of specific etiologic agents such as Helicobacter pylori and other dietary and environmental risk factors. Nevertheless, most of the cases are unfortunately diagnosed at an advanced stage justifying median overall survival rates frequently not exceeding one year. Palliative combination chemotherapy usually represented by a platinum-based doublet is the mainstay of treatment in the metastatic setting. Adding a third drug such as an anthracycline or a taxane has been shown to improve response rate and provide limited survival benefits in fit selected patients. Unlike other tumors, the introduction of molecularly targeted drugs in the medical armamentarium for GC is relatively recent with trastuzumab and ultimately ramucirumab constituting the only agents approved to date. Recent advances in the understanding of GC biology have led to the development of novel targeted therapies holding the promise to further improve treatment outcomes. The aim of this paper is to review the main available data coming from clinical trials of targeted drugs and to describe some of the most interesting molecules in clinical development in GC. These include drugs targeting EGFR, angiogenesis, c-MET, FGFR2, mTOR and immune checkpoints.
Collapse
Affiliation(s)
- Gianluca Tomasello
- Oncology Division, Azienda Socio Sanitaria Territoriale di Cremona, Ospedale di Cremona, Viale Concordia 1, 26100, Cremona, Italy.
| | - Michele Ghidini
- Oncology Division, Azienda Socio Sanitaria Territoriale di Cremona, Ospedale di Cremona, Viale Concordia 1, 26100, Cremona, Italy
| | - Wanda Liguigli
- Oncology Division, Azienda Socio Sanitaria Territoriale di Cremona, Ospedale di Cremona, Viale Concordia 1, 26100, Cremona, Italy
| | - Margherita Ratti
- Oncology Division, Azienda Socio Sanitaria Territoriale di Cremona, Ospedale di Cremona, Viale Concordia 1, 26100, Cremona, Italy
| | - Laura Toppo
- Oncology Division, Azienda Socio Sanitaria Territoriale di Cremona, Ospedale di Cremona, Viale Concordia 1, 26100, Cremona, Italy
| | - Rodolfo Passalacqua
- Oncology Division, Azienda Socio Sanitaria Territoriale di Cremona, Ospedale di Cremona, Viale Concordia 1, 26100, Cremona, Italy
| |
Collapse
|
43
|
Hisamatsu Y, Oki E, Otsu H, Ando K, Saeki H, Tokunaga E, Aishima S, Morita M, Oda Y, Maehara Y. Effect of EGFR and p-AKT Overexpression on Chromosomal Instability in Gastric Cancer. Ann Surg Oncol 2016; 23:1986-92. [PMID: 26847684 DOI: 10.1245/s10434-016-5097-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Indexed: 02/04/2023]
Abstract
BACKGROUND Molecular profiling in gastric cancer (GC) is important for diagnosis and treatment. In this study, we investigated signal transduction pathways that might induce chromosomal instability in GC. METHODS Epidermal growth factor receptor (EGFR), human epidermal growth factor receptor 2 (HER2), and p-AKT expression were analyzed using immunohistochemistry, and chromosomal instability was assessed by DNA aneuploidy using laser scanning cytometry, in a total of 202 GC cases. RESULTS The rate of EGFR expression and p-AKT expression was 70.3 and 34.2 %, respectively, in GC patients. In total, 57.5 % of GC patients exhibited DNA aneuploidy, and p-AKT positively correlated with EGFR and HER2 (p = 0.0127 and p = 0.00031, respectively). Patients with EGFR overexpressing GC showed shorter disease-specific survival than the other cases (hazard ratio 2.00, 95 % confidence interval 1.19-3.53; p = 0.0104). Moreover, EGFR and p-AKT expression was significantly correlated with DNA aneuploidy (p = 0.0002 and p = 0.0302, respectively). CONCLUSIONS Our data showed that both EGFR and p-AKT overexpression were clearly associated with DNA aneuploidy. Aneuploidy could be a useful marker for therapies that target EGFR.
Collapse
Affiliation(s)
- Yuichi Hisamatsu
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Eiji Oki
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Hajime Otsu
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koji Ando
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroshi Saeki
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Eriko Tokunaga
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shinichi Aishima
- Department Anatomic Pathology and Pathological Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masaru Morita
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshinao Oda
- Department Anatomic Pathology and Pathological Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshihiko Maehara
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
44
|
Wang YW, Zhu ML, Wang RF, Xue WJ, Zhu XR, Wang LF, Zheng LZ. Predictable factors for lymph node metastasis in early gastric cancer analysis of clinicopathologic factors and biological markers. Tumour Biol 2016; 37:8567-78. [PMID: 26733174 DOI: 10.1007/s13277-015-4721-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 12/21/2015] [Indexed: 12/29/2022] Open
Abstract
Predicting lymph node metastasis (LNM) accurately is very important to decide treatment strategies preoperatively. The aim of this study was to explore risk factors that predict the presence of LNM in early gastric cancer (EGC). A total of 230 patients with EGC who underwent curative gastrectomy with lymph adenectomy at Xinhua Hospital from January 2006 to July 2014 were retrospectively reviewed. We studied the relationship between clinicopathological factors, biological markers (p53, ki67, nm23, vascular endothelial growth factor (VEGF), epidermal growth factor receptor (EGFR), E-cadherin (E-cad), beta-catenin (b-catenin), glutathione S-transferase (GST), and topoisomerase II (Topo II)), and LNM of EGC patients by chi-square test and logistic regression analysis. Meta-analyses were further conducted to review the effects of the proteins (P53, ki67, E-cad, and b-catenin) on LNM in ECG patients. LNM was detected in 42 (18.3 %) of 230 patients. Incidences of LNM was distinct in different tumor size (p = 0.044), depth of submucosal invasion (p < 0.0001), and P53 overexpression (p = 0.004). Multivariate analysis further indentified that large tumor size (≥20 mm, odds ratio (OR) = 2.168, p = 0.041), submucosa (OR = 4.000, p = 0.0005), and P53 overexpression (OR = 3.010, p = 0.022) were independent risk factors of LNM in EGC patients. The meta-analysis revealed a significantly statistical association of P53, ki67, and b-catenin with an increased risk of LNM in EGC patients (P53, OR = 1.81, p = 0.017; ki67, OR = 2.53, p = 0.0003; b-catenin, OR = 0.53, p = 0.01). Tumor size (≥20 mm), the depth of invasion (submucosa), and P53 overexpression may be helpful predictors of LNM in EGC patients. Furthermore, the results of meta-analysis revealed that P53, ki67 overexpression, and abnormal expression of b-catenin may be associated with LNM in EGC. The results need further validation in single large studies.
Collapse
Affiliation(s)
- Yi-Wei Wang
- Department of Oncology, Xin Hua Hospital affiliated to Shanghai Jiaotong University School of Medicine, NO.1665, Kong Jiang Road, Shanghai, 200092, People's Republic of China
| | - Mei-Ling Zhu
- Department of Oncology, Xin Hua Hospital affiliated to Shanghai Jiaotong University School of Medicine, NO.1665, Kong Jiang Road, Shanghai, 200092, People's Republic of China
| | - Rui-Fen Wang
- Department of Pathology, Xin Hua Hospital affiliated to Shanghai Jiaotong University School of Medicine, NO.1665, Kong Jiang Road, Shanghai, 200092, People's Republic of China
| | - Wen-Ji Xue
- Department of Oncology, Xin Hua Hospital affiliated to Shanghai Jiaotong University School of Medicine, NO.1665, Kong Jiang Road, Shanghai, 200092, People's Republic of China
| | - Xue-Ru Zhu
- Department of Oncology, Xin Hua Hospital affiliated to Shanghai Jiaotong University School of Medicine, NO.1665, Kong Jiang Road, Shanghai, 200092, People's Republic of China
| | - Li-Feng Wang
- Department of Pathology, Xin Hua Hospital affiliated to Shanghai Jiaotong University School of Medicine, NO.1665, Kong Jiang Road, Shanghai, 200092, People's Republic of China.
| | - Lei-Zhen Zheng
- Department of Oncology, Xin Hua Hospital affiliated to Shanghai Jiaotong University School of Medicine, NO.1665, Kong Jiang Road, Shanghai, 200092, People's Republic of China.
| |
Collapse
|
45
|
Tumor-associated macrophages of the M2 phenotype contribute to progression in gastric cancer with peritoneal dissemination. Gastric Cancer 2016; 19:1052-1065. [PMID: 26621525 PMCID: PMC5034006 DOI: 10.1007/s10120-015-0579-8] [Citation(s) in RCA: 204] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 11/13/2015] [Indexed: 02/07/2023]
Abstract
BACKGROUND Tumor-associated macrophages (TAMs) of the M2 phenotype are known to promote tumor proliferation and to be associated with a poor prognosis in numerous cancers. Here, we investigated whether M2 macrophages participate in the development of peritoneal dissemination in gastric cancer. METHODS The characteristics of peritoneal macrophages in gastric cancer patients with or without peritoneal dissemination were examined by flow cytometry and the real-time quantitative polymerase chain reaction. The effects of M2 macrophages on phenotypic changes of the gastric cancer cell line MKN45 were assessed with a direct or indirect co-culture system in vitro and an in vivo mouse xenograft model. RESULTS The number of peritoneal macrophages with the M2 phenotype (CD68(+)CD163(+) or CD68(+)CD204(+)) was significantly higher in gastric cancer patients with peritoneal dissemination than in those without peritoneal dissemination. Higher expression of the M2-related messenger RNAs (IL-10, vascular endothelial growth factor A, vascular endothelial growth factor C, matrix metalloproteinase 1, and amphiregulin) and lower expression of M1-related messenger RNAs (TNF-α, CD80, CD86, and IL-12p40) were also confirmed in the TAMs. Macrophage co-culture with gastric cancer cells converted M1 phenotype into M2 phenotype. Moreover, the coexistence of MKN45 cells with M2 macrophages resulted in cancer cell proliferation and an acceleration of tumor growth in the xenograft model. CONCLUSIONS Intraperitoneal TAMs in gastric cancer patients with peritoneal dissemination were polarized to the M2 phenotype, and could contribute to tumor proliferation and progression. Therefore, intraperitoneal TAMs are expected to be a promising target in the treatment of peritoneal dissemination in gastric cancer.
Collapse
|
46
|
The association between EGFR expression and clinical pathology characteristics in gastric cancer. Open Life Sci 2016. [DOI: 10.1515/biol-2016-0043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
AbstractObjectiveThe aim of this study was to investigate epidermal growth factor receptor (EGFR) expression in the gastric cancer tissues and the association of EGFR expression with clinical pathology characteristics.MethodsWe firstly analyzed the copy number alteration of EGFR gene in gastric cancer by utilizing the online TCGA resources. We then gathered 71 cases of gastric cancer patients from February 2010 to February 2015 in our hospital. The cancer tissues and normal gastric tissues were tested for EGFR expression by immunohistochemical (IHC) staining and western blotting methods. The association of EGFR expression with clinical pathology characteristics and the prognosis value of EGFR expression were evaluated by the statistical software.ResultsThe copy number of EGFR gene was found to be increased in gastric cancer patients. Western blotting confirmed that EGFR protein was obviously upregulated in tested gastric cancer tissues. Additionally, our IHC results showed that the positive rates of EGFR expression in gastric carcinoid tumors (CTs) and distant normal gastric tissues were 45.1% (32/71) and 25.0% (9/36), respectively. The former was significantly higher than the latter (P < 0.05). The EGFR-positive expression in CTs was related to tumor size, invasion depth, and lymphatic metastasis. The median survival of the EGFR-positive patients was 15.6 months, which was less than that (23.0 months) of the EGFR-negative patients [HR = 2.12, 95%CI: 1.29-4.10 (P < 0.05)]. Also, online survival analysis showed that high expression of EGFR predicted shorter overall survival of gastric cancer patients.ConclusionEGFR was highly expressed in gastric cancer tissues and associated with poor prognosis.
Collapse
|
47
|
Roviello G, Polom K, Petrioli R, Marano L, Marrelli D, Paganini G, Savelli V, Generali D, De Franco L, Ravelli A, Roviello F. Monoclonal antibodies-based treatment in gastric cancer: current status and future perspectives. Tumour Biol 2016; 37:127-140. [PMID: 26566626 DOI: 10.1007/s13277-015-4408-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 11/09/2015] [Indexed: 12/11/2022] Open
Abstract
Gastric cancer (GC) is the second leading cause of cancer-related death, and despite having improved treatment modalities over the last decade, for most patients, only modest improvements have been seen in overall survival. Recent progress in understanding the molecular biology of GC and the related signaling pathways offers, from the clinical point of view, promising advances for selected groups of patients. In the past, targeted therapies have significantly impacted the treatment strategy of several common solid tumors such as breast, colorectal, and lung cancers. Unfortunately, translational and clinical research shows fewer encouraging targeted treatments with regards to the GC. To date, only two monoclonal antibodies (mAb), named trastuzumab and ramucirumab, are approved for the treatment of advanced GC, suggesting that in GC, maybe more than in other cancers, effective targeted therapy requires patient selection based on precise predictive molecular biomarkers. The aim of this review is to summarize the available data on the clinical advantages offered by the use of mAbs in the treatment of advanced/metastatic GC. Future perspective is also discussed.
Collapse
Affiliation(s)
- Giandomenico Roviello
- Section of pharmacology and University Center DIFF-Drug Innovation Forward Future, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25124, Brescia, Italy.
| | - Karol Polom
- Department of Medical, Surgical and Neuroscience; Unit of General and Minimally Invasive Surgery, University of Siena, Viale Bracci 11, 53100, Siena, Italy
| | - Roberto Petrioli
- Medical Oncology Unit, University of Siena, Viale Bracci 11, 53100, Siena, Italy
| | - Luigi Marano
- General, Minimally Invasive and Robotic Surgery, Department of Surgery, "San Matteo degli Infermi" Hospital, ASL Umbria 2, 06049, Spoleto, Italy
| | - Daniele Marrelli
- Department of Medical, Surgical and Neurosciences, Section of Advanced Surgical Oncology, University of Siena, Viale Bracci 11, 53100, Siena, Italy
| | - Giovanni Paganini
- Unit of General Medicine, Azienda Ospedaliera "C. Poma " Presidio ospedaliero di Pieve di Coriano, Mantova, Italy
| | - Vinno Savelli
- Department of Surgery and Bioengineering, Section of Surgery, University of Siena, Viale Bracci 11, 53100, Siena, Italy
| | - Daniele Generali
- Department of Medical, Surgery and Health Sciences, University of Trieste, Piazza Ospitale 1, 34129, Trieste, Italy
| | - Lorenzo De Franco
- Department of Medical, Surgical and Neurosciences, Section of Advanced Surgical Oncology, University of Siena, Viale Bracci 11, 53100, Siena, Italy
| | - Andrea Ravelli
- Department of Clinical and Experimental Medicine, University of Parma, Parma, Italy
| | - Franco Roviello
- Department of Medical, Surgical and Neuroscience; Unit of General and Minimally Invasive Surgery, University of Siena, Viale Bracci 11, 53100, Siena, Italy
| |
Collapse
|
48
|
Prognostic impact of HER2, EGFR, and c-MET status on overall survival of advanced gastric cancer patients. Gastric Cancer 2016; 19:183-91. [PMID: 25682441 DOI: 10.1007/s10120-015-0471-6] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 01/25/2015] [Indexed: 02/07/2023]
Abstract
BACKGROUND This study was conducted to investigate whether human epidermal growth factor receptor 2 (HER2) status, epidermal growth factor receptor (EGFR) status, and c-MET status are independent prognostic factors for advanced gastric cancer patients who received standard chemotherapy. METHOD Unresectable or recurrent gastric or gastroesophageal junction cancer patients with histologically confirmed adenocarcinoma treated with S-1 plus cisplatin as first-line chemotherapy were eligible. Formalin-fixed paraffin-embedded tumor samples were examined for HER2, EGFR, and c-MET status using immunohistochemistry (IHC). Additionally, gene amplification was examined using fluorescent in situ hybridization (FISH) for HER2. Positivity was defined as an IHC score of 3+ or an IHC score of 2+/FISH positive for HER2, and an IHC score of 2+ or 3+ for both EGFR and c-MET. RESULTS Of the 293 patients from nine institutions, 43 (15%) were HER2 positive, 79 (27%) were EGFR positive, and 120 (41%) were c-MET positive. Ten patients (3%) showed positive co-expression of HER2, EGFR, and c-MET. After a median follow-up time of 58.4 months with 280 deaths, there was no significant difference in overall survival (OS) in terms of HER2 and EGFR status. However, there was a significant difference in OS between c-MET-positive and c-MET-negative patients [median, 11.9 months vs 14.2 months; hazard ratio, 1.31 (95% confidence interval, 1.03-1.67); log-rank P = 0.024]. Multivariate analysis also showed that c-MET positivity was still a prognostic factor for OS [hazard ratio, 1.30 (95% confidence interval, 1.02-1.67); P = 0.037]. CONCLUSIONS The study suggested that c-MET-positive status had poor prognostic value. These data could be used as the basis for future clinical trials for targeting agents for advanced gastric cancer patients.
Collapse
|
49
|
Janbabai G, Oladi Z, Farazmandfar T, Taghvaei T, Naghshvar F. The prognostic impact of EGFR, ErbB2 and MET gene amplification in human gastric carcinomas as measured by quantitative Real-Time PCR. J Cancer Res Clin Oncol 2015; 141:1945-1952. [PMID: 25820598 DOI: 10.1007/s00432-015-1965-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 03/19/2015] [Indexed: 02/07/2023]
Abstract
PURPOSE Identification of critical genes which play pivotal roles in controlling tumor growth and survival will establish the basis for developing therapeutic targets. In this study, we focused on frequencies of EGFR, ErbB2 and MET gene amplification in gastric cancer patients to develop personalized medicine to improve the treatment. METHOD EGFR, ErbB2 and MET gene amplification, and mRNA expression were analyzed by the quantitative Real-Time PCR in paraffin-embedded samples from 115 patients with gastric cancer. RESULTS EGFR, ErbB2 and MET genes were amplified in 11.3 % (13/115), 6.1 % (7/115) and 19.1 % (22/115) of cancerous specimens, respectively. The correlation coefficient test clearly indicated that gene amplification in these three genes was positively correlated with mRNA transcription (EGFR: R = 0.631, p = 0.009; ErbB2: R = 0.652, p = 0.023; MET: R = 0.715, p < 0.001). EGFR and MET gene amplification was significantly associated with Ki-67 MI (p = 0.022 and p = 0.015). MET amplification was also significantly associated with age of ≥60 years (p = 0.021) and tumor size of ≥5 cm (p = 0.032). MET amplification, but not EGFR and ErbB2, was a significant prognostic factor in poor survival among patients with gastric cancer. CONCLUSIONS EGFR, ErbB2 and MET genes are frequently amplified in gastric carcinoma. EGFR, ErbB2 and MET gene amplification is positively correlated with mRNA transcription. MET gene amplification correlates with a poor prognosis and poor survival in gastric carcinomas.
Collapse
Affiliation(s)
- Ghasem Janbabai
- Inflammatory Diseases of Upper Gastrointestinal Tract Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ziaeddin Oladi
- Inflammatory Diseases of Upper Gastrointestinal Tract Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Touraj Farazmandfar
- Inflammatory Diseases of Upper Gastrointestinal Tract Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
- Faculty of Advanced Medical Science Technologies, Golestan University of Medical Sciences, Gorgan, Iran.
- Cancer Research Center, Mazandaran University of Medical Sciences, P.O. Box 4817773913, Sari, Iran.
| | - Tarang Taghvaei
- Inflammatory Diseases of Upper Gastrointestinal Tract Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Farshad Naghshvar
- Department of Pathology, Imam Khomeini Hospital, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
50
|
Ieni A, Barresi V, Rigoli L, Caruso RA, Tuccari G. HER2 Status in Premalignant, Early, and Advanced Neoplastic Lesions of the Stomach. DISEASE MARKERS 2015; 2015:234851. [PMID: 26494937 PMCID: PMC4606090 DOI: 10.1155/2015/234851] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 07/30/2015] [Indexed: 02/06/2023]
Abstract
OBJECTIVES HER2 expression in gastric cancer (GC) has received attention as a potential target for therapy with Trastuzumab. We reviewed the current knowledge on HER2 status in premalignant gastric lesions and in early (EGC) and advanced (AGC) GC to discuss the possible pathogenetic and prognostic roles of HER2 overexpression in GC. RESULTS HER2 overexpression was documented in gastric low-grade (LG) and high-grade intraepithelial neoplasia (HG-IEN), with higher frequency in gastric type dysplasia. HER2 overexpression was significantly associated with disease recurrence and poor prognosis in EGC representing an independent risk factor for lymph node metastases. HER2 overexpression was more frequent in AGC characterized by high grade, advanced stage, and high Ki-67 labeling index. The discordance in HER2 status was evidenced between primitive GC and synchronous or metachronous metastases. CONCLUSIONS HER2 overexpression in premalignant gastric lesions suggests its potential involvement in the early steps of gastric carcinogenesis. The assessment of HER2 status in EGC may be helpful for the identification of patients who are at low risk for developing nodal metastases. Finally, the possible discordance in HER2 status between primary GC and its synchronous metastases support routine assessment of HER2 both in the primary GC and in its metastatic lesions.
Collapse
Affiliation(s)
- A. Ieni
- Department of Human Pathology “Gaetano Barresi”, Section of Anatomic Pathology, Azienda Ospedaliera Universitaria “Gaetano Martino, University of Messina,” Via Consolare Valeria 1, 98125 Messina, Italy
| | - V. Barresi
- Department of Human Pathology “Gaetano Barresi”, Section of Anatomic Pathology, Azienda Ospedaliera Universitaria “Gaetano Martino, University of Messina,” Via Consolare Valeria 1, 98125 Messina, Italy
| | - L. Rigoli
- Department of Pediatrics, Gynecology and Microbiology Sciences, Azienda Ospedaliera Universitaria “Gaetano Martino, University of Messina,” Via Consolare Valeria 1, 98125 Messina, Italy
| | - R. A. Caruso
- Department of Human Pathology “Gaetano Barresi”, Section of Anatomic Pathology, Azienda Ospedaliera Universitaria “Gaetano Martino, University of Messina,” Via Consolare Valeria 1, 98125 Messina, Italy
| | - G. Tuccari
- Department of Human Pathology “Gaetano Barresi”, Section of Anatomic Pathology, Azienda Ospedaliera Universitaria “Gaetano Martino, University of Messina,” Via Consolare Valeria 1, 98125 Messina, Italy
| |
Collapse
|