1
|
Noh KM, Jangid AK, Park J, Kim S, Kim K. Membrane-immobilized gemcitabine for cancer-targetable NK cell surface engineering. J Mater Chem B 2024; 12:12087-12102. [PMID: 39465499 DOI: 10.1039/d4tb01639d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Although natural killer (NK) cell-based adoptive cell transfer (ACT) has shown promise in cancer immunotherapy, its efficacy against solid tumors is limited in the immunosuppressive tumor microenvironment (TME). Combinatorial therapies involving chemotherapeutic drugs such as gemcitabine (Gem) and NK cells have been developed to modulate the TME; however, their clinical application is constrained by low drug delivery efficiency and significant off-target toxicity. In this study, we developed cell membrane-immobilized Gem conjugates (i.e., lipid-Gem conjugates), designed to anchor seamlessly onto NK cell surfaces. Our modular-designed ex vivo cell surface engineeringmaterials comprise a lipid anchor for membrane immobilization, poly(ethylene glycol) to inhibit endocytosis, a disulfide bond as cleavable linker by glutathione (GSH) released during cancer cell lysis, and Gem for targeted sensitization. We demonstrated that the intrinsic properties of NK cells, such as proliferation and surface ligand availability, were preserved despite coating with lipid-Gem conjugates. Moreover, delivery of Gem prodrugs by lipid-Gem coated NK (GCNK) cells was shown to enhance antitumor efficacy against pancreatic cancer cells (PANC-1) through the following mechanisms: (1) NK cells recognized and attacked cancer cells, (2) intracellular GSH was leaked out from the lysed cancer cells, enabling cleavage of disulfide bond, (3) released Gem from the GCNK cells delivered to the target cells, (4) Gem upregulated MHC class I-related chain A and B on cancer cells, and (5) thereby activating NK cells led to enhance antitumor efficacy. The simultaneous co-delivery of membrane-immobilized Gem with NK cells could potentially facilitate both immune synapse-mediated cancer recognition and chemotherapeutic effects, offering a promising approach to enhance the anticancer efficacy of conventional ACTs.
Collapse
Affiliation(s)
- Kyung Mu Noh
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul 04620, Republic of Korea.
| | - Ashok Kumar Jangid
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul 04620, Republic of Korea.
| | - Jaewon Park
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul 04620, Republic of Korea.
| | - Sungjun Kim
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul 04620, Republic of Korea.
| | - Kyobum Kim
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul 04620, Republic of Korea.
| |
Collapse
|
2
|
Zhu Q, Zeng S, Yang J, Zhuo J, Wang P, Wen S, Fang C. Plectin-1-targeted recognition for enhancing comprehensive therapy in pancreatic ductal adenocarcinoma. NANOSCALE 2024; 16:18584-18596. [PMID: 39291372 DOI: 10.1039/d4nr01587h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) poses a formidable challenge due to its aggressive nature and poor prognosis. Gemcitabine (Gem), a primary therapeutic option, functions by inhibiting DNA synthesis and promoting apoptosis, thereby impeding the progression of PDAC. However, Gem is hindered by suboptimal pharmacokinetics and efficacy. In response to these challenges, we have developed a nanoparticle (NP) designed for specific recognition of plectin-1 in PDAC cell membranes. The NPs encapsulate Gem while demonstrating pH-responsive drug release characteristics in the acidic tumor microenvironment. This targeted approach enhances local drug delivery while alleviating concerns about systemic toxicity. Furthermore, the NPs are enriched with indocyanine green (ICG), renowned for its strong photothermal effects, thereby further enhancing therapeutic outcomes. This study presents an innovative therapeutic strategy for PDAC based on a plectin-1-targeted recognition delivery approach. The approach is applied to enhance chemotherapy, combined with photothermal therapy (PTT), inducing apoptosis in PDAC cell lines and improving the pharmacokinetics of Gem. In conclusion, the delivery strategy based on plectin-1-targeted recognition shows promising preclinical prospects for enhancing therapeutic efficacy in PDAC, offering valuable insights for future clinical applications.
Collapse
Affiliation(s)
- Qing Zhu
- Department of Hepatobiliary Surgery I, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
- Guangdong Provincial Clinical and Engineering Center of Digital Medicine, Guangzhou, 510280, China
| | - Silue Zeng
- Department of Hepatobiliary Surgery I, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
- Guangdong Provincial Clinical and Engineering Center of Digital Medicine, Guangzhou, 510280, China
| | - Junying Yang
- Department of Hepatobiliary Surgery I, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
- Guangdong Provincial Clinical and Engineering Center of Digital Medicine, Guangzhou, 510280, China
| | - Jiaming Zhuo
- Department of Hepatobiliary Surgery I, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
- Guangdong Provincial Clinical and Engineering Center of Digital Medicine, Guangzhou, 510280, China
| | - Peifeng Wang
- Department of Hepatobiliary Surgery I, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
- Guangdong Provincial Clinical and Engineering Center of Digital Medicine, Guangzhou, 510280, China
| | - Sai Wen
- Department of Hepatobiliary Surgery I, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
- Guangdong Provincial Clinical and Engineering Center of Digital Medicine, Guangzhou, 510280, China
| | - Chihua Fang
- Department of Hepatobiliary Surgery I, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
- Guangdong Provincial Clinical and Engineering Center of Digital Medicine, Guangzhou, 510280, China
| |
Collapse
|
3
|
Yugatama A, Huang YL, Hsu MJ, Lin JP, Chao FC, Lam JKW, Hsieh CM. Oral Delivery of Photopolymerizable Nanogels Loaded with Gemcitabine for Pancreatic Cancer Therapy: Formulation Design, and in vitro and in vivo Evaluations. Int J Nanomedicine 2024; 19:3753-3772. [PMID: 38686338 PMCID: PMC11057685 DOI: 10.2147/ijn.s443610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 04/19/2024] [Indexed: 05/02/2024] Open
Abstract
Background Gemcitabine (GEM) faces challenges of poor oral bioavailability and extensive first-pass metabolism. Currently, only injectable formulations are available for clinical use. Hence, there is an urgent demand for the development of advanced, efficacious, and user-friendly dosage forms to maintain its status as the primary treatment for pancreatic ductal adenocarcinoma (PDAC). Nanogels (NGs) offer a novel oral drug delivery system, ideal for hydrophilic compounds like GEM. This study aims to develop NGs tailored for GEM delivery, with the goal of enhancing cellular uptake and gastrointestinal permeability for improved administration in PDAC patients. Methods We developed cross-linked NGs via photopolymerization of methacryloyl for drug delivery of GEM. We reveal characterization, cytotoxicity, and cellular uptake studies in Caco-2 and MIA PaCa-2 cells. In addition, studies of in vitro permeability and pharmacokinetics were carried out to evaluate the bioavailability of the drug. Results Our results show NGs, formed via photopolymerization of methacryloyl, had a spherical shape with a size of 233.91±7.75 nm. Gemcitabine-loaded NGs (NGs-GEM) with 5% GelMA exhibited efficient drug loading (particle size: 244.07±19.52 nm). In vitro drug release from NGs-GEM was slower at pH 1.2 than pH 6.8. Cellular uptake studies indicated significantly enhanced uptake in both MIA PaCa-2 and Caco-2 cells. While there was no significant difference in GEM's AUC and Cmax between NGs-GEM and free-GEM groups, NGs-GEM showed markedly lower dFdU content (10.07 hr∙μg/mL) compared to oral free-GEM (19.04 hr∙μg/mL) after oral administration (p<0.01), highlighting NGs' efficacy in impeding rapid drug metabolism and enhancing retention. Conclusion In summary, NGs enhance cellular uptake, inhibit rapid metabolic degradation of GEM, and prolong retention after oral administration. These findings suggest NGs-GEM as a promising candidate for clinical use in oral pancreatic cancer therapy.
Collapse
Affiliation(s)
- Adi Yugatama
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 11031, Taiwan
- Department of Pharmacy, Sebelas Maret University, Surakarta, 57126, Indonesia
| | - Ya-Lin Huang
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 11031, Taiwan
| | - Ming-Jen Hsu
- Department of Pharmacology, Taipei Medical University, Taipei, 11031, Taiwan
| | - Jia-Pei Lin
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 11031, Taiwan
| | - Fang-Ching Chao
- CNRS UMR 8612, Institut Galien Paris-Saclay, Université Paris-Saclay, Orsay, 91400, France
| | - Jenny K W Lam
- Department of Pharmaceutics, School of Pharmacy, University College, London, WC1N 1AX, UK
| | - Chien-Ming Hsieh
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 11031, Taiwan
- Department of Pharmaceutics, School of Pharmacy, University College, London, WC1N 1AX, UK
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, 11031, Taiwan
| |
Collapse
|
4
|
Koehler JK, Schmager S, Bender V, Steiner D, Massing U. Preparation of Nanosized Pharmaceutical Formulations by Dual Centrifugation. Pharmaceuticals (Basel) 2023; 16:1519. [PMID: 38004385 PMCID: PMC10675754 DOI: 10.3390/ph16111519] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/16/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
Dual centrifugation (DC) is an innovative in-vial homogenization and in-vial nanomilling technique that has been in use for the preparation of liposomes for more than one decade. Since then, DC has continuously been developed for preparing various liposomes and other lipid nanoparticles including emulsions and solid lipid nanoparticles (SLNs) as well as polymersomes and nanocrystals. Improvements in equipment technology have been achieved over the past decade, so that DC is now on its way to becoming the quasi-standard for the simple, fast, and aseptic production of lipid nanoparticles and nanocrystals in small and medium batch sizes, including the possibility of simple and fast formulation screening or bedside preparations of therapeutic nanoparticles. More than 68 publications in which DC was used to produce nanoparticles have appeared since then, justifying an initial review of the use of DC for pharmaceutical nanotechnology.
Collapse
Affiliation(s)
- Jonas K. Koehler
- Institute of Pharmaceutical Sciences, University of Freiburg, 79104 Freiburg im Breisgau, Germany; (J.K.K.); (S.S.); (V.B.)
| | - Stefanie Schmager
- Institute of Pharmaceutical Sciences, University of Freiburg, 79104 Freiburg im Breisgau, Germany; (J.K.K.); (S.S.); (V.B.)
| | - Valentin Bender
- Institute of Pharmaceutical Sciences, University of Freiburg, 79104 Freiburg im Breisgau, Germany; (J.K.K.); (S.S.); (V.B.)
| | - Denise Steiner
- Department of Pharmaceutical Technology, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
- Institute of Pharmaceutical Technology and Biopharmacy, University of Münster, Corrensstraße 48, 48149 Münster, Germany
| | - Ulrich Massing
- Institute of Pharmaceutical Sciences, University of Freiburg, 79104 Freiburg im Breisgau, Germany; (J.K.K.); (S.S.); (V.B.)
- Andreas Hettich GmbH & Co. KG, 78532 Tuttlingen, Germany
| |
Collapse
|
5
|
Alafnan A, Seetharam AA, Hussain T, Gupta MS, Rizvi SMD, Moin A, Alamri A, Unnisa A, Awadelkareem AM, Elkhalifa AO, Jayahanumaiah P, Khalid M, Balashanmugam N. Development and Characterization of PEGDA Microneedles for Localized Drug Delivery of Gemcitabine to Treat Inflammatory Breast Cancer. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15217693. [PMID: 36363283 PMCID: PMC9658843 DOI: 10.3390/ma15217693] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 05/14/2023]
Abstract
Inflammatory breast cancer (IBC) is one of the most belligerent types of breast cancer. While various modalities exist in managing/treating IBC, drug delivery using microneedles (MNs) is considered to be the most innovative method of localized delivery of anti-cancer agents. Localized drug delivery helps to treat IBC could limit their adverse reactions. MNs are nothing but small needle like structures that cause little or no pain at the site of administration for drug delivery via layers of the skin. The polyethylene glycol diacrylate (PEGDA) based MNs were fabricated by using three dimensional (3D) technology called Projection Micro-Stereo Lithography (PµSL). The fabricated microneedle patches (MNPs) were characterized and coated with a coating formulation comprising of gemcitabine and sodium carboxymethyl cellulose by a novel and inventive screen plate method. The drug coated MNPs were characterized by various instrumental methods of analysis and release profile studies were carried out using Franz diffusion cell. Coat-and-poke strategy was employed in administering the drug coated MNPs. Overall, the methods employed in the present study not only help in obtaining MNPs with accurate dimensions but also help in obtaining uniformly drug coated MNPs of gemcitabine for treatment of IBC. Most importantly, 100% drug release was achieved within the first one hour only.
Collapse
Affiliation(s)
- Ahmed Alafnan
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia; (A.A.); (A.A.)
| | - Aravindram Attiguppe Seetharam
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Sri Shivarathreeshwara Nagar, Mysore 570015, India;
| | - Talib Hussain
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia; (A.A.); (A.A.)
- Correspondence: (T.H.); (M.S.G.)
| | - Maram Suresh Gupta
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Sri Shivarathreeshwara Nagar, Mysore 570015, India;
- Correspondence: (T.H.); (M.S.G.)
| | - Syed Mohd Danish Rizvi
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia; (S.M.D.R.); (A.M.)
| | - Afrasim Moin
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia; (S.M.D.R.); (A.M.)
| | - Abdulwahab Alamri
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia; (A.A.); (A.A.)
| | - Aziz Unnisa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia;
| | - Amir Mahgoub Awadelkareem
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Ha’il, Ha’il 81442, Saudi Arabia; (A.M.A.); (A.O.E.)
| | - AbdElmoneim O. Elkhalifa
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Ha’il, Ha’il 81442, Saudi Arabia; (A.M.A.); (A.O.E.)
| | - Pradyumna Jayahanumaiah
- Central Manufacturing Technology Institute (CMTI), Tumkur Road, Bangaluru 560022, India; (P.J.); (N.B.)
| | - Mohammad Khalid
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Natchimuthu Balashanmugam
- Central Manufacturing Technology Institute (CMTI), Tumkur Road, Bangaluru 560022, India; (P.J.); (N.B.)
| |
Collapse
|
6
|
Gemcitabine-Loaded Nanocarrier of Essential Oil from Pulicaria crispa: Preparation, Optimization, and In Vitro Evaluation of Anticancer Activity. Pharmaceutics 2022; 14:pharmaceutics14071336. [PMID: 35890232 PMCID: PMC9317157 DOI: 10.3390/pharmaceutics14071336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/16/2022] [Accepted: 06/21/2022] [Indexed: 02/04/2023] Open
Abstract
The limitations of gemcitabine (GEM) in cancer therapy are due to its poor pharmacokinetics, which cause undesired adverse effects. The current study was aimed at investigating the anticancer effect and apoptotic mechanism of synthesized nanoemulsion (NE) containing Pulicaria crispa essential oil (PC-EO) and GEM (PC-NE:GEM) on MCF-7 and Hep-G2 cancer cell lines. An optimized NE formulation was selected based on the Box–Behnken method. The droplet size of the optimized PC-NE was 9.93 ± 0.53 nm, but after GEM loading, it was increased to 11.36 ± 0.0.21 nm. Results from FTIR revealed that GEM was successfully loaded onto PC-NE. The antineoplastic effect of PC-NE:GEM on MCF-7 and Hep-G2 cancer cells was increased more than 100-fold relative to that of GEM. A combination index and isobologram based on CompuSyn software revealed the synergistic effect of the formulation produced by a 1:1 ratio combination of PC-NE and GEM. These findings were confirmed by examination of cellular morphologies. The combination formulation strongly induced about 4.48-fold and 2.95-fold increases in apoptosis in MCF-7 and Hep-G2 cells, respectively, when compared with GEM. Moreover, PC-NE:GEM produced a synergistic increase in ROS production in MCF-7 cells (15.23%) and Hep-G2 cells (31.69%), when compared with GEM. In addition, PC-NE:GEM enhanced the activation of the intrinsic apoptosis pathway through upregulation of expressions of p53 and Caspase-3, and downregulation of Bcl-2 expression in MCF-7 cells, while the expressions of Caspase-3, Bax, and p53 were upregulated in HepG2 cells. These results indicate that the GEM-loaded NE containing PC-EO may reduce the dose of GEM and eliminate the associated side effects.
Collapse
|
7
|
Surapaneni SG, Ambade AV. Poly( N-vinylcaprolactam) containing solid lipid polymer hybrid nanoparticles for controlled delivery of a hydrophilic drug gemcitabine hydrochloride. RSC Adv 2022; 12:17621-17628. [PMID: 35765442 PMCID: PMC9194946 DOI: 10.1039/d2ra02845j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/07/2022] [Indexed: 11/29/2022] Open
Abstract
Folic acid tagged and hydrophilic polymer containing solid lipid nanoparticles (SLNs) were formulated for the controlled and targeted delivery of gemcitabine, a hydrophilic drug. Drug loaded SLNs were prepared by double emulsion method and optimized by 32 level factorial design. Then, a hydrophilic polymer, namely, poly(N-vinylcaprolactam) (PVCL) was incorporated in the optimized SLN batch in the first aqueous phase (W1) to obtain solid lipid polymer hybrid nanoparticles (SLPHNs) that were further decorated with folic acid (F-SLPHNs). TEM analysis of SLNs and SLPHNs revealed the spherical shape with no aggregation while SLPHNs showed higher % EE. SLPHNs exhibited limited burst release of gemcitabine compared to SLNs as well as lower overall % release. All the formulations showed good cytocompatibility against MDA-MB-231 cell lines and folic acid-tagged hybrid particles (F-SLPHNs) showed remarkably higher cellular uptake.
Collapse
Affiliation(s)
- Sai Geetika Surapaneni
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory Dr Homi Bhabha Road Pune - 411008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad - 201002 India
| | - Ashootosh V Ambade
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory Dr Homi Bhabha Road Pune - 411008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad - 201002 India
| |
Collapse
|
8
|
Zhong W, Zhang X, Duan X, Liu H, Fang Y, Luo M, Fang Z, Miao C, Lin D, Wu J. Redox-responsive self-assembled polymeric nanoprodrug for delivery of gemcitabine in B-cell lymphoma therapy. Acta Biomater 2022; 144:67-80. [PMID: 35331940 DOI: 10.1016/j.actbio.2022.03.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 03/08/2022] [Accepted: 03/18/2022] [Indexed: 12/30/2022]
Abstract
Gemcitabine, as a standard and classic strategy for B-cell lymphoma in the clinic, is limited by its poor pharmacodynamics. Although stimuli-responsive polymeric nanodelivery systems have been widely investigated in the past decade, issues such as complicated procedures, low loading capacity, and uncontrollable release kinetics still hinder their clinical translation. In view of the above considerations, we attempt to construct hyperbranched polyprodrug micelles with considerable drug loading via simple procedures and make use of the particularity of the tumor microenvironment to ensure that the micelles are "inactivated" in normal tissues and "activated" in the tumor microenvironment. Hence, in this work, a redox-responsive polymeric gemcitabine-prodrug (GEM-S-S-PEG) was one-pot synthesized via facile esterification and acylation. The self-assembled subsize (< 100 nm) GEM-S-S-PEG (GSP NPs) with considerable loading capacity (≈ 24.6%) exhibited on-demand and accurate control of gemcitabine release under a simulated tumor microenvironment and thus significantly induced the apoptosis of B-cell lymphoma in vitro. Moreover, in the A20 tumor xenograft murine model, GSP NPs efficiently decreased the expansion of tumor tissues with minimal systemic toxicity. In summary, these redox-responsive and self-assembling GSP NPs with a facile one-pot synthesis procedure may hold great potency in clinical translation for enhanced chemotherapy of B-cell lymphoma. STATEMENT OF SIGNIFICANCE: A redox-responsive polymeric gemcitabine-prodrug (GEM-S-S-PEG) was one-pot synthesized via facile esterification and acylation. The self-assembled subsize (< 100 nm) GEM-S-S-PEG (GSP NPs) exhibited significant tumor therapeutic effects in vitro and in vivo. The polyprodrug GEM-S-S-PEG prepared in this study shows the great potential of redox-responsive nanodrugs for antitumor activity, which provides a reference value for the optimization of the design of functional polyprodrugs.
Collapse
Affiliation(s)
- Wenhao Zhong
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Xinyu Zhang
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Xiao Duan
- Department of Reproductive Genetics, Heping Hospital of Changzhi Medical College, The Stem Cell and Tissue Engineering Research Center, Changzhi Medical College, Changzhi, Shanxi 046000, China
| | - Hengyu Liu
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Yifen Fang
- The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou, 511436, China
| | - Moucheng Luo
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen, 518107, China
| | - Zhengwen Fang
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen, 518107, China
| | - Congxiu Miao
- Department of Reproductive Genetics, Heping Hospital of Changzhi Medical College, The Stem Cell and Tissue Engineering Research Center, Changzhi Medical College, Changzhi, Shanxi 046000, China.
| | - Dongjun Lin
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China.
| | - Jun Wu
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China; School of Biomedical Engineering, Sun Yat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
9
|
Abd Al-Jabbar S, Atiroğlu V, Hameed RM, Guney Eskiler G, Atiroğlu A, Deveci Ozkan A, Özacar M. Fabrication of dopamine conjugated with protein @metal organic framework for targeted drug delivery: A biocompatible pH-Responsive nanocarrier for gemcitabine release on MCF‑7 human breast cancer cells. Bioorg Chem 2021; 118:105467. [PMID: 34781115 DOI: 10.1016/j.bioorg.2021.105467] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/31/2021] [Indexed: 01/05/2023]
Abstract
Metal-organic structures (MOF), modern extremely proliferous materials consisting of metal ions and organic coordinating molecules, has become a promising biomedical material because of its unusual features, including great surface area, wide pore volume, flexible functionality and superior performance for drug loading. In the current investigation, Gemcitabine Hydrochloride (Gem), an anticancer drug, and Amygdalin (Amy) were loaded into a nanocomposite structure formed from bovine serum albumin (BSA) as a center and zeolytic imidazolate framework-8 (ZIF-8) as a pH sensitive protective coating. The formed BSA-Gem@ZIF-8 and BSA-Gem-Amy@ZIF-8 were successively coated by polydopamine, chelated by Au3+ and conjugated via gallic acid (GA), acquired ZIF-8 structure as a multifunctional nanocarrier at the end. It was confirmed by different characterization methods that the nanocarrier was successfully produced. Due to the nature of ZIF-8, pH dependent releases of BSA-Gem@ZIF-8/Dopa/GA and BSA-Gem-Amy@ZIF-8/Dopa/GA were observed in in vitro studies. Cytotoxicity and apoptotic effects of these nanocarriers were evaluated using WST-1 and acridine orange staining in MCF-7 human breast cancer and HUVEC control cell lines. In-vitro cytotoxicity studies showed that both BSA-Gem@ZIF-8/Dopa/GA and BSA-Gem-Amy@ZIF-8/Dopa/GA were more effective than gemcitabine alone in MCF-7 cells with less toxicity in HUVEC cells. Additionally, both pH-responsive nanocarriers induced more apoptotic cell death in MCF-7 cells. We therefore believe that the built multifunctional nanocarrier based on ZIF-8 could be an alternative therapeutic strategy the use of gemcitabine for cancer therapy.
Collapse
Affiliation(s)
- Shatha Abd Al-Jabbar
- Karbala University, Faculty of Medicine, Department of Biochemistry, 54187 Karbala, Iraq
| | - Vesen Atiroğlu
- Sakarya University, Biomaterials, Energy, Photocatalysis, Enzyme Technology, Nano & Advanced Materials, Additive Manufacturing, Environmental Applications and Sustainability Research & Development Group (BIOENAMS R & D Group), 54187 Sakarya, Turkey; Sakarya University, Biomedical, Magnetic and Semiconductor Materials Application and Research Center (BIMAS-RC), 54187 Sakarya, Turkey.
| | - Rana M Hameed
- Karbala University, Faculty of Medicine, Department of Biochemistry, 54187 Karbala, Iraq
| | - Gamze Guney Eskiler
- Sakarya University, Faculty of Medicine, Department of Medical Biology, 54290 Sakarya, Turkey
| | - Atheer Atiroğlu
- Sakarya University, Biomaterials, Energy, Photocatalysis, Enzyme Technology, Nano & Advanced Materials, Additive Manufacturing, Environmental Applications and Sustainability Research & Development Group (BIOENAMS R & D Group), 54187 Sakarya, Turkey; Sakarya University, Biomedical, Magnetic and Semiconductor Materials Application and Research Center (BIMAS-RC), 54187 Sakarya, Turkey
| | - Asuman Deveci Ozkan
- Sakarya University, Faculty of Medicine, Department of Medical Biology, 54290 Sakarya, Turkey
| | - Mahmut Özacar
- Sakarya University, Biomaterials, Energy, Photocatalysis, Enzyme Technology, Nano & Advanced Materials, Additive Manufacturing, Environmental Applications and Sustainability Research & Development Group (BIOENAMS R & D Group), 54187 Sakarya, Turkey; Sakarya University, Science & Arts Faculty, Department of Chemistry, 54187 Sakarya, Turkey
| |
Collapse
|
10
|
Hoogevest P, Tiemessen H, Metselaar JM, Drescher S, Fahr A. The Use of Phospholipids to Make Pharmaceutical Form Line Extensions. EUR J LIPID SCI TECH 2021. [DOI: 10.1002/ejlt.202000297] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Peter Hoogevest
- Phospholipid Research Center Im Neuenheimer Feld 515 Heidelberg 69120D‐69120 Germany
| | - Harry Tiemessen
- Technical & Research Development PHAD PDU Specialty Novartis Campus Physical Garden (WSJ 177) 2.14 Basel CH‐4002 Switzerland
| | - Josbert M. Metselaar
- Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic Aachen D‐52074 Germany
- Institute for Biomedical Engineering, Faculty of Medicine RWTH Aachen University Aachen D‐52074 Germany
| | - Simon Drescher
- Phospholipid Research Center Im Neuenheimer Feld 515 Heidelberg D‐69120 Germany
| | - Alfred Fahr
- Professor Emeritus, Pharmaceutical Technology Friedrich‐Schiller‐University Jena Jena Germany
| |
Collapse
|
11
|
Opportunities and challenges of fatty acid conjugated therapeutics. Chem Phys Lipids 2021; 236:105053. [PMID: 33484709 DOI: 10.1016/j.chemphyslip.2021.105053] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/20/2020] [Accepted: 01/16/2021] [Indexed: 01/03/2023]
Abstract
Instability, poor cellular uptake and unfavorable pharmacokinetics and biodistribution of many therapeutic molecules require modification in their physicochemical properties. The conjugation of these APIs with fatty acids has demonstrated an enhancement in their lipophilicity and stability. The improvement in the formulations that resulted from the conjugation of a drug with a fatty acid includes increased half-life, enhanced cellular uptake and retention, targeted tumor delivery, reduced chemoresistance in cancer, and improved blood-brain-barrier (BBB) penetration. In this review, various therapeutic molecules, including small molecules, peptides and oligonucleotides, that have been conjugated with fatty acid have been thoroughly discussed along with various conjugation strategies. The application of nano-system based delivery is gaining a lot of attention due to its ability to provide controlled drug release, targeting and reducing the extent of side effects. This review also covers various nano-carriers that have been utilized for the delivery of fatty acid drug conjugates. The enhanced lipophilicity of the drug-fatty acid conjugate has shown to enhance the affinity of the drug towards these carriers, thereby increasing the entrapment efficiency and formulation performance.
Collapse
|
12
|
Paroha S, Verma J, Dubey RD, Dewangan RP, Molugulu N, Bapat RA, Sahoo PK, Kesharwani P. Recent advances and prospects in gemcitabine drug delivery systems. Int J Pharm 2021; 592:120043. [DOI: 10.1016/j.ijpharm.2020.120043] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/17/2020] [Accepted: 10/29/2020] [Indexed: 12/13/2022]
|
13
|
Shi Z, Song Q, Göstl R, Herrmann A. Mechanochemical activation of disulfide-based multifunctional polymers for theranostic drug release. Chem Sci 2020; 12:1668-1674. [PMID: 34163927 PMCID: PMC8179261 DOI: 10.1039/d0sc06054b] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Drug delivery systems responsive to physicochemical stimuli allow spatiotemporal control over drug activity to overcome limitations of systemic drug administration. Alongside, the non-invasive real-time tracking of drug release and uptake remains challenging as pharmacophore and reporter function are rarely unified within one molecule. Here, we present an ultrasound-responsive release system based on the mechanochemically induced 5-exo-trig cyclization upon scission of disulfides bearing cargo molecules attached via β-carbonate linker within the center of a water soluble polymer. In this bifunctional theranostic approach, we release one reporter molecule per drug molecule to quantitatively track drug release and distribution within the cell in real-time. We use N-butyl-4-hydroxy-1,8-naphthalimide and umbelliferone as fluorescent reporter molecules to accompany the release of camptothecin and gemcitabine as clinically employed anticancer agents. The generality of this approach paves the way for the theranostic release of a variety of probes and drugs by ultrasound. A theranostic approach for the mechanochemically induced release of drugs is presented to track drug release and uptake in real-time.![]()
Collapse
Affiliation(s)
- Zhiyuan Shi
- DWI - Leibniz Institute for Interactive Materials Forckenbeckstr. 50 52056 Aachen Germany .,Institute of Technical and Macromolecular Chemistry, RWTH Aachen University Worringerweg 1 52074 Aachen Germany
| | - Qingchuan Song
- DWI - Leibniz Institute for Interactive Materials Forckenbeckstr. 50 52056 Aachen Germany .,Institute of Technical and Macromolecular Chemistry, RWTH Aachen University Worringerweg 1 52074 Aachen Germany
| | - Robert Göstl
- DWI - Leibniz Institute for Interactive Materials Forckenbeckstr. 50 52056 Aachen Germany
| | - Andreas Herrmann
- DWI - Leibniz Institute for Interactive Materials Forckenbeckstr. 50 52056 Aachen Germany .,Institute of Technical and Macromolecular Chemistry, RWTH Aachen University Worringerweg 1 52074 Aachen Germany.,Zernike Institute for Advanced Materials, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| |
Collapse
|
14
|
Improving plasma stability and antitumor effect of gemcitabine via PEGylated liposome prepared by active drug loading. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101538] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Qi N, Zhang Y, Tang X, Li A. Cationic/Anionic Polyelectrolyte (PLL/PGA) Coated Vesicular Phospholipid Gels (VPGs) Loaded with Cytarabine for Sustained Release and Anti-glioma Effects. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:1825-1836. [PMID: 32494124 PMCID: PMC7229786 DOI: 10.2147/dddt.s248362] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/09/2020] [Indexed: 11/23/2022]
Abstract
Background Cationic and anionic polymer-modified nanoparticles offer promising properties for the drug and gene delivery. Our study uses cationic/anionic polyelectrolyte coated vesicular phospholipid gels (VPGs) loaded with cytarabine (Ara-C) that enhance in vitro and in vivo anti-glioma effects. Methods Sodium cholesteryl sulfate (SCS) or octadecylamine (ODA) incorporated in a phospholipids phase were used to prepare charged VPGs, and cationic ε-polylysine (PLL) coated VPGs (PLL-SCS VPGs) and anionic γ-polyglutamic acid (PGA) coated VPGs (PGA-ODA VPGs) were prepared via electrostatic interactions, respectively. The morphology, particle size, zeta potential, rheology properties, and in vitro release were then characterized. The in vitro cytotoxicity and cellular uptake were evaluated on U87-MG glioma cells. The in vivo antitumor effects were studied on BALB/c nude mice bearing a right flank U87-MG glioma model. Results The TEM images and physicochemical properties of cationic/anionic polyelectrolyte coated VPGs exhibited that polymers covered on the vesicular surface. The results of rheologic property analysis showed that cationic/anionic polyelectrolyte coated VPGs enhanced the viscosity of uncoated VPGs. The in vitro release experiments revealed that cationic/anionic polyelectrolyte coated VPGs kept Ara-C sustained release up to 18 days. Specially, compared with PLL-SCS VPGs, PGA-ODA VPGs demonstrated higher in vitro cytotoxicity and cellular uptake efficiency in U87-MG glioma cells, and enhanced in vivo antitumor effects when subcutaneously injected around the tumor. No severe toxicity appeared in the right flank U87-MG glioma model of BALB/c nude mice. Conclusion Anionic γ-PGA coated VPGs were superior to cationic PLL coated VPGs in terms of improving the anti-glioma effect for local delivery.
Collapse
Affiliation(s)
- Na Qi
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, People's Republic of China.,Department of Pharmacy, Guilin Medical University, Guilin 541004, People's Republic of China
| | - Yu Zhang
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Xing Tang
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Aimin Li
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, People's Republic of China
| |
Collapse
|
16
|
Biodistribution and Pharmacokinetic Study of Gemcitabine Hydrochloride Loaded Biocompatible Iron-Based Metal Organic Framework. J Inorg Organomet Polym Mater 2019. [DOI: 10.1007/s10904-019-01417-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Li PW, Luo S, Xiao LY, Tian BL, Wang L, Zhang ZR, Zeng YC. A novel gemcitabine derivative-loaded liposome with great pancreas-targeting ability. Acta Pharmacol Sin 2019; 40:1448-1456. [PMID: 31015736 DOI: 10.1038/s41401-019-0227-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 03/14/2019] [Indexed: 02/05/2023]
Abstract
Gemcitabine (Gem) is a standard first-line treatment for pancreatic cancer (PC). However, its chemotherapeutic efficacy is hampered by various limitations such as short half-life, metabolic inactivation, and lack of tumor localizing. We previously synthesized a lipophilic Gem derivative (Gem formyl hexadecyl ester, GemC16) that exhibited improved antitumor activity in vitro. In this study, a target ligand N,N-dimethyl-1,3-propanediamine was conjugated to 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[hydroxyl succinimidyl (polyethylene glycol-2000)] (DSPE-PEG-NHS) to form DSPE-PEG-2N. Then, pancreas-targeting liposomes (2N-LPs) were prepared using the film dispersion-ultrasonic method. GemC16-loaded 2N-LPs displayed near-spherical shapes with an average size distribution of 157.2 nm (polydispersity index (PDI) = 0.201). The encapsulation efficiency of GemC16 was up to 97.3% with a loading capacity of 8.9%. In human PC cell line (BxPC-3) and rat pancreatic acinar cell line (AR42J), cellular uptake of 2N-LPs was significantly enhanced compared with that of unmodified PEG-LPs. 2N-LPs exhibited more potent in vitro cytotoxicity against BxPC-3 and AR42J cell lines than PEG-LPs. After systemic administration in mice, 2N-LPs remarkably increased drug distribution in the pancreas. In an orthotopic tumor mouse model of PC, GemC16-bearing liposomes were more effective in preventing tumor growth than free GemC16. Among these treatments, 2N-LPs showed the best curative effect. Together, 2N-LPs represent a promising nanocarrier to achieve pancreas-targeting drug delivery, and this work would provide new ideas for the chemotherapy of PC.
Collapse
|
18
|
Maity G, Ghosh A, Gupta V, Haque I, Sarkar S, Das A, Dhar K, Bhavanasi S, Gunewardena SS, Von Hoff DD, Mallik S, Kambhampati S, Banerjee SK, Banerjee S. CYR61/CCN1 Regulates dCK and CTGF and Causes Gemcitabine-resistant Phenotype in Pancreatic Ductal Adenocarcinoma. Mol Cancer Ther 2019; 18:788-800. [PMID: 30787177 DOI: 10.1158/1535-7163.mct-18-0899] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/30/2018] [Accepted: 01/30/2019] [Indexed: 02/03/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) develops extrinsic- and intrinsic-resistant phenotypes to prevent chemotherapies from entering into the cells by promoting desmoplastic reactions (DR) and metabolic malfunctions of the drugs. It is well established that these responses are also associated with pancreatic cancer cells' gemcitabine resistance. However, the mechanism by which these resistant pathways function in the pancreatic cancer cells remains poorly understood. In these studies, we show that CYR61/CCN1 signaling plays a vital role in making pancreatic cancer cells resistant to gemcitabine in vitro and also in a tumor xenograft model. We proved that the catastrophic effect of gemcitabine could significantly be increased in gemcitabine-resistant PDAC cells when CYR61/CCN1 is depleted, while this effect can be suppressed in gemcitabine-sensitive neoplastic cells by treating them with CYR61/CCN1 recombinant protein. Ironically, nontransformed pancreatic cells, which are sensitive to gemcitabine, cannot be resistant to gemcitabine by CYR61/CCN1 protein treatment, showing a unique feature of CYR61/CCN signaling that only influences PDAC cells to become resistant. Furthermore, we demonstrated that CYR61/CCN1 suppresses the expression of the gemcitabine-activating enzyme deoxycytidine kinase (dCK) while it induces the expression of a DR-promoting factor CTGF (connective tissue growth factor) in pancreatic cancer cells in vitro and in vivo Thus, the previously described mechanisms (dCK and CTGF pathways) for gemcitabine resistance may be two novel targets for CYR61/CCN1 to protect pancreatic cancer cells from gemcitabine. Collectively, these studies reveal a novel paradigm in which CYR61/CCN1regulates both extrinsic and intrinsic gemcitabine resistance in PDAC cells by employing unique signaling pathways.
Collapse
Affiliation(s)
- Gargi Maity
- Cancer Research Unit, VA Medical Center, Kansas City, Missouri
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Arnab Ghosh
- Cancer Research Unit, VA Medical Center, Kansas City, Missouri.
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Vijayalaxmi Gupta
- Cancer Research Unit, VA Medical Center, Kansas City, Missouri
- Department of Ob/Gyn, University of Kansas Medical Center, Kansas City, Kansas
| | - Inamul Haque
- Cancer Research Unit, VA Medical Center, Kansas City, Missouri
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Sandipto Sarkar
- Cancer Research Unit, VA Medical Center, Kansas City, Missouri
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Amlan Das
- Cancer Research Unit, VA Medical Center, Kansas City, Missouri
| | - Kakali Dhar
- Cancer Research Unit, VA Medical Center, Kansas City, Missouri
| | - Sneha Bhavanasi
- Cancer Research Unit, VA Medical Center, Kansas City, Missouri
| | - Sumedha S Gunewardena
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas
| | - Daniel D Von Hoff
- The Translational Genomics Research Institute (TGen), Phoenix, Arizona
| | - Sanku Mallik
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota
| | - Suman Kambhampati
- Cancer Research Unit, VA Medical Center, Kansas City, Missouri
- The Sarah Cannon Cancer Center at HCA Midwest Health, Kansas City, Missouri
| | - Sushanta K Banerjee
- Cancer Research Unit, VA Medical Center, Kansas City, Missouri.
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Snigdha Banerjee
- Cancer Research Unit, VA Medical Center, Kansas City, Missouri.
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
19
|
Breitsamer M, Winter G. Vesicular phospholipid gels as drug delivery systems for small molecular weight drugs, peptides and proteins: State of the art review. Int J Pharm 2018; 557:1-8. [PMID: 30572079 DOI: 10.1016/j.ijpharm.2018.12.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/10/2018] [Accepted: 12/12/2018] [Indexed: 10/27/2022]
Abstract
Lipid-based drug delivery has been investigated for a long time when it comes to liposomes and solid-lipid implants or solid-lipid nanoparticles. The promising, characteristic properties of these systems have led to the development of newer lipid-based drug delivery systems for the sustained release of drugs like liposomes for sustained delivery of substances, DepoFoam™ technology, phospholipid-based phase separation gels and vesicular phospholipid gels. Vesicular phospholipid gels (VPGs) are highly concentrated, viscous dispersions of high amounts of phospholipids in aqueous drug solution. The easy, solvent-free manufacturing process, high biocompatibility and various applications, as depot formulation for the sustained delivery of drugs and as a storage form of small unilamellar vesicles make VPGs highly attractive as drug carriers. Over the last years, the solvent free preparation process has advanced from high pressure homogenization to dual centrifugation (DC). Thereby a very simple one step process has been established for the preparation of VPGs. The semisolid VPG was first described in 1997 by Brandl et al. Since then, many formulations have been developed, encapsulating small molecular weight drugs like 5-FU (2003), cetrorelix (2005), cytarabine (2012) and exenatide (2015). In 2010, the first pharmaceutical protein, erythropoietin, was encapsulated in VPGs and sustained release of the substance was shown in vitro. In 2015, G-CSF was encapsulated in VPGs and tested in vivo for rotator cuff repair in a rat model and for PEGylated IFN-β-1b sustained release from vesicular phospholipid gels was demonstrated in vitro. Further, a very elegant administration technique for VPGs via needle-free injection was established. However this promising drug delivery system does still leave space for improvement and optimization. This review summarizes information about lipid-based depot systems in general and focuses on the historical development of VPGs. It emphasizes the advantages and drawbacks of VPGs as drug delivery device. Additionally, novel preparation methods and applications of VPGs will be discussed. A focus will be set on delivery of pharmaceutical proteins and peptides.
Collapse
Affiliation(s)
- Michaela Breitsamer
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-Universität München, Munich, Germany.
| | - Gerhard Winter
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
20
|
Poly (l-glutamic acid)-g-methoxy poly (ethylene glycol)-gemcitabine conjugate improves the anticancer efficacy of gemcitabine. Int J Pharm 2018; 550:79-88. [PMID: 30138704 DOI: 10.1016/j.ijpharm.2018.08.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 07/28/2018] [Accepted: 08/18/2018] [Indexed: 02/06/2023]
Abstract
Gemcitabine is widely used for anticancer therapy. However, its short blood circulation time and poor stability greatly impair its application. To solve this problem, we prepared a poly (l-glutamic acid)-g-methoxy poly (ethylene glycol)-gemcitabine conjugate (l-Gem) with a 14.3 wt% drug-loading content. l-Gem showed concentration- and time-dependent cytotoxicity towards 4T1, LLC, MIA PaCa-2 and A2780 in vitro. Pharmacokinetic and biodistribution studies indicated that l-Gem had remarkably enhanced blood stability, prolonged blood circulation time and greatly improved selective tumor distribution compared with free gemcitabine. The area under the concentration-time curve from zero to infinity [AUC(0-∞)] of l-Gem in plasma was 43-fold higher than that of free gemcitabine. The AUC(0-∞) of the inactive metabolite, 2'-deoxy-2',2'-difluorouridine in the l-Gem group was ∼20% of that observed in the free gemcitabine group. The drug tumor accumulation ratio in the l-Gem group relative to the free gemcitabine group was 9.9 at 36 h, while the tumor AUC ratio was 15.8. Testing on Balb/C mice bearing the 4T1 tumor further demonstrated that l-Gem had significantly higher anticancer efficacy than free gemcitabine in vivo. These findings indicated that l-Gem has great potential for cancer treatment.
Collapse
|
21
|
Zhan W, Wang CH. Convection enhanced delivery of liposome encapsulated doxorubicin for brain tumour therapy. J Control Release 2018; 285:212-229. [PMID: 30009891 DOI: 10.1016/j.jconrel.2018.07.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 06/04/2018] [Accepted: 07/02/2018] [Indexed: 10/28/2022]
Abstract
Convection enhanced delivery is promising to overcome the blood brain barrier. However, the treatment is less efficient in clinic due to the rapid elimination of small molecular drugs in brain tumours. In this study, numerical simulation is applied to investigate the convection enhanced delivery of liposome encapsulated doxorubicin under various conditions, based on a 3-D brain tumour model that is reconstructed from magnetic resonance images. Treatment efficacy is evaluated in terms of the tumour volume where the free doxorubicin concentration is above LD90. Simulation results denote that intracerebral infusion is effective in increasing the interstitial fluid velocity and inhibiting the fluid leakage from blood around the infusion site. Comparisons with direct doxorubicin infusion demonstrate the advantages of liposomes in enhancing the doxorubicin accumulation and penetration in the brain tumour. Delivery outcomes are determined by both the intratumoural environment and properties of therapeutic agents. The treatment efficacy can be improved by either increasing the liposome solution concentration and infusion rate, administrating liposomes in the tumour with normalised microvasculature density, or using liposomes with low vascular permeability. The delivery is less sensitive to liposome diffusivity in the examined range (E-11~E-7 cm2/s) as convective transport is dominative in determining the liposome migration. Drug release rate is able to be optimised by keeping a trade-off between enhancing the drug penetration and providing sufficient free doxorubicin for effective cell killing. Results from this study can be used to improve the regimen of CED treatments.
Collapse
Affiliation(s)
- Wenbo Zhan
- Department of Mechanical Engineering, Imperial College London, South Kensington Campus, London, United Kingdom.
| | - Chi-Hwa Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore.
| |
Collapse
|
22
|
Zhang H, Sun Z, Wang K, Li N, Chen H, Tan X, Li L, He Z, Sun J. Multifunctional Tumor-Targeting Cathepsin B-Sensitive Gemcitabine Prodrug Covalently Targets Albumin in Situ and Improves Cancer Therapy. Bioconjug Chem 2018; 29:1852-1858. [DOI: 10.1021/acs.bioconjchem.8b00223] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Huicong Zhang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, No. 59 Mailbox, No. 103 Wenhua Road, Shenyang, Liaoning 110016, P. R. China
| | - Zhisu Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, No. 59 Mailbox, No. 103 Wenhua Road, Shenyang, Liaoning 110016, P. R. China
| | - Kuanglei Wang
- Wuyi University, Jiangmen, Guangdong 529020, P. R. China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen, Guangdong 529080, P. R. China
| | - Na Li
- Clinical Pharmacy, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| | - Hongxiang Chen
- Center for Drug Evaluation, China Food and Drug Administration, Beijing 100022, P. R. China
| | - Xiao Tan
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| | - Lingxiao Li
- School of Pharmacy, Queen’s University of Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, U.K
- School of Pharmacy, China Medical University, Shenyang, Liaoning 110013, P. R. China
| | - Zhonggui He
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, No. 59 Mailbox, No. 103 Wenhua Road, Shenyang, Liaoning 110016, P. R. China
| | - Jin Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, No. 59 Mailbox, No. 103 Wenhua Road, Shenyang, Liaoning 110016, P. R. China
| |
Collapse
|
23
|
Dai JT, Zhang Y, Li HC, Deng YH, Elzatahry AA, Alghamdi A, Fu DL, Jiang YJ, Zhao DY. Enhancement of gemcitabine against pancreatic cancer by loading in mesoporous silica vesicles. CHINESE CHEM LETT 2017; 28:531-536. [DOI: 10.1016/j.cclet.2016.11.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
24
|
Dubey RD, Klippstein R, Wang JTW, Hodgins N, Mei KC, Sosabowski J, Hider RC, Abbate V, Gupta PN, Al-Jamal KT. Novel Hyaluronic Acid Conjugates for Dual Nuclear Imaging and Therapy in CD44-Expressing Tumors in Mice In Vivo. Nanotheranostics 2017; 1:59-79. [PMID: 29071179 PMCID: PMC5646725 DOI: 10.7150/ntno.17896] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 11/28/2016] [Indexed: 12/13/2022] Open
Abstract
Hyaluronic acid, a natural CD44 receptor ligand, has attracted attention in the past years as a macromolecular delivery of anticancer agents to cancer. At the same time, the clinical applications of Gemcitabine (Gem) have been hindered by its short biological half-life, high dose and development of drug resistance. This work reports the synthesis of a hyaluronic acid (HA) conjugate for nuclear imaging, and in vivo Gem delivery to CD44-expressing solid tumors in mice. HA was individually conjugated, via amide coupling, to Gem (HA-Gem), 4'-(aminomethyl)fluorescein hydrochloride (HA-4'-AMF) or tris(hydroxypyridinone) amine (HA-THP) for cancer therapy, in vitro tracking or single photon emission computed tomography/computed tomography (SPECT/CT) imaging, respectively. Gem conjugation to HA was directly confirmed by nuclear magnetic resonance (1H NMR), gel permeation chromatography (GPC) and UV-visible spectrometry, or indirectly by a nucleoside transporter inhibition study. Gem conjugation to HA improved its plasma stability, reduced blood hemolysis and resulted in delayed cytotoxicity in vitro. Uptake inhibition studies in colon CT26 and pancreatic PANC-1 cells, by flow cytometry, revealed that uptake of fluorescent HA conjugate is CD44 receptor and macropinocytosis-dependent. Gamma scintigraphy and SPECT/CT imaging confirmed the relatively prolonged blood circulation profile and uptake in CT26 (1.5 % ID/gm) and PANC-1 (1 % ID/gm) subcutaneous tumors at 24 h after intravenous injection in mice. Four injections of HA-Gem at ~15 mg/kg, over a 28-day period, resulted in significant delay in CT26 tumor growth and prolonged mice survival compared to the free drug. This study reports for the first time dual nuclear imaging and drug delivery (Gem) of HA conjugates to solid tumors in mice. The conjugates show great potential in targeting, imaging and killing of CD44-over expressing cells in vivo. This work is likely to open new avenues for the application of HA-based macromolecules in the field of image-guided delivery in oncology.
Collapse
Affiliation(s)
- Ravindra Dhar Dubey
- Formulation & Drug Delivery Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-180001, India
| | - Rebecca Klippstein
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, London SE19NH, United Kingdom
| | - Julie Tzu-Wen Wang
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, London SE19NH, United Kingdom
| | - Naomi Hodgins
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, London SE19NH, United Kingdom
| | - Kuo-Ching Mei
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, London SE19NH, United Kingdom
| | - Jane Sosabowski
- Centre for Molecular Oncology, Bart's Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Robert C Hider
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, London SE19NH, United Kingdom
| | - Vincenzo Abbate
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, London SE19NH, United Kingdom
| | - Prem N Gupta
- Formulation & Drug Delivery Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-180001, India
| | - Khuloud T Al-Jamal
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, London SE19NH, United Kingdom
| |
Collapse
|
25
|
Sgarlata C, D’Urso L, Consiglio G, Grasso G, Satriano C, Forte G. pH sensitive functionalized graphene oxide as a carrier for delivering gemcitabine: A computational approach. COMPUT THEOR CHEM 2016. [DOI: 10.1016/j.comptc.2016.09.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
26
|
Dubey RD, Saneja A, Gupta PK, Gupta PN. Recent advances in drug delivery strategies for improved therapeutic efficacy of gemcitabine. Eur J Pharm Sci 2016; 93:147-62. [PMID: 27531553 DOI: 10.1016/j.ejps.2016.08.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 08/09/2016] [Accepted: 08/10/2016] [Indexed: 02/07/2023]
Abstract
Gemcitabine (2',2'-difluoro-2'-deoxycytidine; dFdC) is an efficacious anticancer agent acting against a wide range of solid tumors, including pancreatic, non-small cell lung, bladder, breast, ovarian, thyroid and multiple myelomas. However, short plasma half-life due to metabolism by cytidine deaminase necessitates administration of high dose, which limits its medical applicability. Further, due to its hydrophilic nature, it cannot traverse cell membranes by passive diffusion and, therefore, enters via nucleoside transporters that may lead to drug resistance. To circumvent these limitations, macromolecular prodrugs and nanocarrier-based formulations of Gemcitabine are gaining wide recognition. The nanoformulations based approaches by virtue of their controlled release and targeted delivery have proved to improve bioavailability, increase therapeutic efficacy and reduce adverse effects of the drug. Furthermore, the combination of Gemcitabine with other anticancer agents as well as siRNAs using nanocarriers has also been investigated in order to enhance its therapeutic potential. This review deals with challenges and recent advances in the delivery of Gemcitabine with particular emphasis on macromolecular prodrugs and nanomedicines.
Collapse
Affiliation(s)
- Ravindra Dhar Dubey
- Formulation & Drug Delivery Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-Tawi 180001, India
| | - Ankit Saneja
- Formulation & Drug Delivery Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-Tawi 180001, India
| | - Prasoon K Gupta
- Natural Product Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-Tawi 180001, India.
| | - Prem N Gupta
- Formulation & Drug Delivery Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-Tawi 180001, India.
| |
Collapse
|
27
|
Ferreira RV, Martins TMDM, Goes AM, Fabris JD, Cavalcante LCD, Outon LEF, Domingues RZ. Thermosensitive gemcitabine-magnetoliposomes for combined hyperthermia and chemotherapy. NANOTECHNOLOGY 2016; 27:085105. [PMID: 26820520 DOI: 10.1088/0957-4484/27/8/085105] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The combination of magnetic hyperthermia therapy with the controlled release of chemotherapeutic agents in tumors may be an efficient therapeutic with few side effects because the bioavailability, tolerance and amount of the drug can be optimized. Here, we prepared magnetoliposomes consisting of magnetite nanoparticle cores and the anticancer drug gemcitabine encapsulated by a phospholipid bilayer. The potential of these magnetoliposomes for controlled drug release and cancer treatment via hyperthermic behavior was investigated. The magnetic nanoparticle encapsulation efficiency was dependent on the initial amount of magnetite nanoparticles present at the encapsulation stage; the best formulation was 66%. We chose this formulation to characterize the physicochemical properties of the magnetoliposomes and to encapsulate gemcitabine. The mean particle size and distribution were determined by dynamic light scattering (DLS), and the zeta potential was measured. The magnetoliposome formulations all had acceptable characteristics for systemic administration, with a mean size of approximately 150 nm and a polydispersity index <0.2. The magnetoliposomes were stable in aqueous suspension for at least one week, as determined by DLS. Temperature increases due to the dissipation energy of magnetoliposome suspensions subjected to an applied alternating magnetic field (AMF) were measured at different magnetic field intensities, and the values were appropriated for cancer treatments. The drug release profile at 37 °C showed that 17% of the gemcitabine was released after 72 h. Drug release from magnetoliposomes exposed to an AMF for 5 min reached 70%.
Collapse
Affiliation(s)
- Roberta V Ferreira
- Department of Material 5Engineering, Federal Center of Technological Education of Minas Gerais, Brazil
| | | | | | | | | | | | | |
Collapse
|
28
|
Mondal G, Kumar V, Shukla SK, Singh PK, Mahato RI. EGFR-Targeted Polymeric Mixed Micelles Carrying Gemcitabine for Treating Pancreatic Cancer. Biomacromolecules 2015; 17:301-13. [PMID: 26626700 DOI: 10.1021/acs.biomac.5b01419] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The objective of this study was to design GE11 peptide (YHWYGYTPQNVI) linked micelles of poly(ethylene glycol)-block-poly(2-methyl-2-carboxyl-propylene carbonate-graft-gemcitabine-graft-dodecanol (PEG-b-PCC-g-GEM-g-DC) for enhanced stability and target specificity of gemcitabine (GEM) to EGFR-positive pancreatic cancer cells. GE11-PEG-PCD/mPEG-b-PCC-g-GEM-g-DC mixed micelles showed EGFR-dependent enhanced cellular uptake, and cytotoxicity as compared to scrambled peptide HW12-PEG-PCD/mPEG-b-PCC-g-GEM-g-DC mixed micelles and unmodified mPEG-b-PCC-g-GEM-g-DC micelles. Importantly, GE11-linked mixed micelles preferentially accumulated in orthotopic pancreatic tumor and tumor vasculature at 24 h post systemic administration. GE11-linked mixed micelles inhibited orthotopic pancreatic tumor growth compared to HW12-linked mixed micelles, unmodified mPEG-b-PCC-g-GEM-g-DC micelles, and free GEM formulations. Tumor growth inhibition was mediated by apoptosis of tumor cells and endothelial cells as determined by immunohistochemical staining. In summary, GE11-linked mixed micelles is a promising approach to treat EGFR overexpressing cancers.
Collapse
Affiliation(s)
- Goutam Mondal
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center , Omaha, Nebraska 68198, United States
| | - Virender Kumar
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center , Omaha, Nebraska 68198, United States
| | - Surendra K Shukla
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center , Omaha, Nebraska United States
| | - Pankaj K Singh
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center , Omaha, Nebraska United States
| | - Ram I Mahato
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center , Omaha, Nebraska 68198, United States
| |
Collapse
|
29
|
Hylander BL, Sen A, Beachy SH, Pitoniak R, Ullas S, Gibbs JF, Qiu J, Prey JD, Fetterly GJ, Repasky EA. Tumor priming by Apo2L/TRAIL reduces interstitial fluid pressure and enhances efficacy of liposomal gemcitabine in a patient derived xenograft tumor model. J Control Release 2015; 217:160-9. [PMID: 26342663 DOI: 10.1016/j.jconrel.2015.08.047] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 08/10/2015] [Accepted: 08/24/2015] [Indexed: 12/20/2022]
Abstract
Interstitial fluid pressure (IFP) is elevated in tumors and high IFP, a negative cancer prognosticator, is known to limit the uptake and efficacy of anti-tumor therapeutics. Approaches that alter the tumor microenvironment and enhance uptake of therapeutics are collectively referred to as tumor "priming". Here we show that the cytotoxic biological therapy Apo2L/TRAIL can prime the tumor microenvironment and significantly lower IFP in three different human tumor xenograft models (Colo205, MiaPaca-2 and a patient gastrointestinal adenocarcinoma tumor xenograft). We found that a single dose of Apo2L/TRAIL resulted in a wave of apoptosis which reached a maximum at 8h post-treatment. Apoptotic debris subsequently disappeared concurrent with an increase in macrophage infiltration. By 24h post-treatment, treated tumors appeared less condensed with widening of the stromal areas which increased at 48 and 72h. Analysis of tumor vasculature demonstrated a significant increase in overall vessel size at 48 and 72h although the number of vessels did not change. Notably, IFP was significantly reduced in these tumors by 48h after Apo2L/TRAIL treatment. Administration of gemcitabine at this time resulted in increased tumor uptake of both gemcitabine and liposomal gemcitabine and significantly improved anti-tumor efficacy of liposomal gemcitabine. These results suggest that Apo2L/TRAIL has a potential as a tumor priming agent and provides a rationale for developing a sequencing schema for combination therapy such that an initial dose of Apo2L/TRAIL would precede administration of gemcitabine or other therapies.
Collapse
Affiliation(s)
- Bonnie L Hylander
- Dept. of Immunology, Roswell Park Cancer Institute, Buffalo, NY, USA.
| | - Arindam Sen
- Dept. of Immunology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Sarah H Beachy
- Dept. of Cell Stress, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Rose Pitoniak
- Dept. of Immunology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Soumya Ullas
- Dept. of Cell Stress, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - John F Gibbs
- Dept. of Surgical Oncology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Jingxin Qiu
- Dept. of Pathology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Joshua D Prey
- Dept. of Medicine, Roswell Park Cancer Institute, Buffalo, NY, USA
| | | | | |
Collapse
|
30
|
Shah SM, Ashtikar M, Jain AS, Makhija DT, Nikam Y, Gude RP, Steiniger F, Jagtap AA, Nagarsenker MS, Fahr A. LeciPlex, invasomes, and liposomes: A skin penetration study. Int J Pharm 2015; 490:391-403. [PMID: 26002568 DOI: 10.1016/j.ijpharm.2015.05.042] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 05/14/2015] [Accepted: 05/15/2015] [Indexed: 11/18/2022]
Abstract
The present study compares three vesicular systems, cationic LeciPlex, invasomes, and conventional liposomes for their ability to deliver drugs deep into the skin. Skin penetration ability of the three vesicular systems was studied for two drugs namely idebenone (antioxidant/anticancer) and azelaic acid (antiacne). All systems showed sizes in nanometer range with small polydispersity indices. Vesicular systems were characterized by CryoTEM studies to understand the differences in morphology of the vesicular systems. Ex vivo human skin penetration studies suggested a pattern in penetration of drugs in different layers of the skin: LeciPlex showed higher penetration for idebenone whereas invasomes showed higher penetration of azelaic acid. Ex vivo study using a fluorescent dye (DiI) was performed to understand the differences in the penetration behavior of the three vesicular systems on excised human skin. In vitro cytotoxicity studies on B16F10 melanoma cell lines revealed, when loaded with idebenone, LeciPlex formulations had the superior activity followed by invasomes and liposomes. In vitro antimicrobial study of azelaic acid loaded systems on Propionibacterium acne revealed high antimicrobial activity for DDAB leciplex followed by almost equal activity for invasomes and CTAB LeciPlex followed by liposomes. Whereas antiacne efficacy study in rats for azelaic acid loaded systems, invasomes exhibited the best antiacne efficacy followed by liposomes and LeciPlex.
Collapse
Affiliation(s)
- Sanket M Shah
- Department of Pharmaceutics, Bombay College of Pharmacy, Kalina, Santacruz (East), 400098 Mumbai, India
| | - Mukul Ashtikar
- Friedrich-Schiller-Universität Jena, Institut für Pharmazie, Lehrstuhl für Pharmazeutische Technologie, Lessingstraße 8, 07743 Jena, Germany
| | - Ankitkumar S Jain
- Department of Pharmaceutics, Bombay College of Pharmacy, Kalina, Santacruz (East), 400098 Mumbai, India
| | - Dinesh T Makhija
- Department of Pharmacology, Bombay College of Pharmacy, Kalina, Santacruz (East), 400098 Mumbai, India
| | - Yuvraj Nikam
- Advanced Centre for Treatment, Research and Education in Cancer, Kharghar, 410210 Navi Mumbai, India
| | - Rajiv P Gude
- Advanced Centre for Treatment, Research and Education in Cancer, Kharghar, 410210 Navi Mumbai, India
| | - Frank Steiniger
- Elektronenmikroskopisches Zentrum, Universitätsklinikum Jena, Ziegelmühlenweg 1, D07743 Jena, Germany
| | - Aarti A Jagtap
- Department of Pharmacology, Bombay College of Pharmacy, Kalina, Santacruz (East), 400098 Mumbai, India
| | - Mangal S Nagarsenker
- Department of Pharmaceutics, Bombay College of Pharmacy, Kalina, Santacruz (East), 400098 Mumbai, India.
| | - Alfred Fahr
- Friedrich-Schiller-Universität Jena, Institut für Pharmazie, Lehrstuhl für Pharmazeutische Technologie, Lessingstraße 8, 07743 Jena, Germany
| |
Collapse
|
31
|
Core-shell nanoparticulate formulation of gemcitabine: lyophilization, stability studies, and in vivo evaluation. Drug Deliv Transl Res 2014; 4:439-51. [DOI: 10.1007/s13346-014-0206-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
32
|
Fritz T, Hirsch M, Richter FC, Müller SS, Hofmann AM, Rusitzka KAK, Markl J, Massing U, Frey H, Helm M. Click Modification of Multifunctional Liposomes Bearing Hyperbranched Polyether Chains. Biomacromolecules 2014; 15:2440-8. [DOI: 10.1021/bm5003027] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Thomas Fritz
- Institute
of Pharmacy and Biochemistry, Johannes Gutenberg-University Mainz, Staudingerweg
5, 55122 Mainz, Germany
| | - Markus Hirsch
- Institute
of Pharmacy and Biochemistry, Johannes Gutenberg-University Mainz, Staudingerweg
5, 55122 Mainz, Germany
| | - Felix C. Richter
- Institute
of Pharmacy and Biochemistry, Johannes Gutenberg-University Mainz, Staudingerweg
5, 55122 Mainz, Germany
| | - Sophie S. Müller
- Institute
of Organic Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, 55122 Mainz, Germany
- Graduate School MAINZ, Staudingerweg
9, 55128 Mainz, Germany
| | - Anna M. Hofmann
- Institute
of Organic Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, 55122 Mainz, Germany
| | - Kristiane A. K. Rusitzka
- Institute
of Zoology, Johannes Gutenberg-University Mainz, J.-J. Becher-Weg
7, 55122 Mainz, Germany
| | - Jürgen Markl
- Institute
of Zoology, Johannes Gutenberg-University Mainz, J.-J. Becher-Weg
7, 55122 Mainz, Germany
| | - Ulrich Massing
- Department
of Clinical Research, Tumor Biology Center, 79106 Freiburg, Germany
| | - Holger Frey
- Institute
of Organic Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, 55122 Mainz, Germany
| | - Mark Helm
- Institute
of Pharmacy and Biochemistry, Johannes Gutenberg-University Mainz, Staudingerweg
5, 55122 Mainz, Germany
| |
Collapse
|
33
|
Sustained delivery of cytarabine-loaded vesicular phospholipid gels for treatment of xenografted glioma. Int J Pharm 2014; 472:48-55. [PMID: 24914829 DOI: 10.1016/j.ijpharm.2014.06.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 05/23/2014] [Accepted: 06/06/2014] [Indexed: 11/23/2022]
Abstract
This study described the development of vesicular phospholipid gels (VPGs) for sustained delivery of cytarabine (Ara-C) for the treatment of xenografted glioma. Ara-C-loaded VPGs in the state of a semisolid phospholipid dispersion looked like numerous vesicles tightly packing together under the freeze-fracture electron microscopy (FF-TEM), their release profiles displayed sustained drug release up to 384 h in vitro. The biodistribution of Ara-C in the rat brain showed that Ara-C-loaded VPGs could maintain therapeutic concentrations up to 5mm distance from the implantation site in brain tissue within 28 days. At the same time, fluorescence micrograph confirmed drug distribution in brain tissue visually. Furthermore, after single administration, Ara-C-loaded VPGs group significantly inhibited the U87-MG glioma growth in right flank in comparison with Ara-C solution (p<0.01). It was explained that the entrapped drug in VPGs could avoid degradation from cytidine deaminase and sustained release of drug from Ara-C-loaded VPGs could maintain the effective therapeutic levels for a long time around the tumor. In conclusion, Ara-C-loaded VPGs, with the properties of sustained release, high penetration capacity, nontoxicity and no shape restriction of the surgical cavity, are promising local delivery systems for post-surgical sustained chemotherapy against glioma.
Collapse
|
34
|
Multifunctional polymersomes for cytosolic delivery of gemcitabine and doxorubicin to cancer cells. Biomaterials 2014; 35:6482-97. [PMID: 24797878 DOI: 10.1016/j.biomaterials.2014.04.026] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 04/08/2014] [Indexed: 11/20/2022]
Abstract
Although liposomes are widely used as carriers of drugs and imaging agents, they suffer from a lack of stability and the slow release of the encapsulated contents at the targeted site. Polymersomes (vesicles of amphiphilic polymers) are considerably more stable compared to liposomes; however, they also demonstrate a slow release for the encapsulated contents, limiting their efficacy as a drug-delivery tool. As a solution, we prepared and characterized echogenic polymersomes, which are programmed to release the encapsulated drugs rapidly when incubated with cytosolic concentrations of glutathione. These vesicles encapsulated air bubbles inside and efficiently reflected diagnostic-frequency ultrasound. Folate-targeted polymersomes showed an enhanced uptake by breast and pancreatic-cancer cells in a monolayer as well as in three-dimensional spheroid cultures. Polymersomes encapsulated with the anticancer drugs gemcitabine and doxorubicin showed significant cytotoxicity to these cells. With further improvements, these vesicles hold the promise to serve as multifunctional nanocarriers, offering a triggered release as well as diagnostic ultrasound imaging.
Collapse
|
35
|
Gemcitabine Treatment of Rat Soft Tissue Sarcoma with Phosphatidyldiglycerol-Based Thermosensitive Liposomes. Pharm Res 2014; 31:2276-86. [DOI: 10.1007/s11095-014-1322-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 01/28/2014] [Indexed: 01/12/2023]
|
36
|
Elnaggar YSR, El-Refaie WM, El-Massik MA, Abdallah OY. Lecithin-based nanostructured gels for skin delivery: an update on state of art and recent applications. J Control Release 2014; 180:10-24. [PMID: 24531009 DOI: 10.1016/j.jconrel.2014.02.004] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 02/04/2014] [Accepted: 02/06/2014] [Indexed: 12/18/2022]
Abstract
Conventional carriers for skin delivery encounter obstacles of drug leakage, scanty permeation and low entrapment efficiency. Phospholipid nanogels have recently been recognized as prominent delivery systems to circumvent such obstacles and impart easier application. The current review provides an overview on different types of lecithin nanostructured gels, with particular emphasis on liposomal versus microemulsion gelled systems. Liposomal gels investigated encompassed classic liposomal hydrogel, modified liposomal gels (e.g. Transferosomal, Ethosomal, Pro-liposomal and Phytosomal gels), Microgel in liposomes (M-i-L) and Vesicular phospholipid gel (VPG). Microemulsion gelled systems encompassed Lecithin microemulsion-based organogels (LMBGs), Pluronic lecithin organogels (PLOs) and Lecithin-stabilized microemulsion-based hydrogels. All systems were reviewed regarding matrix composition, state of art, characterization and updated applications. Different classes of lecithin nanogels exhibited crucial impact on transdermal delivery regarding drug permeation, drug loading and stability aspects. Future perspectives of this theme issue are discussed based on current laboratory studies.
Collapse
Affiliation(s)
- Yosra S R Elnaggar
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
| | - Wessam M El-Refaie
- Department of Pharmaceutics, Faculty of Pharmacy and Drug Manufacturing, Pharos University in Alexandria, Alexandria, Egypt
| | - Magda A El-Massik
- Department of Pharmaceutics, Faculty of Pharmacy and Drug Manufacturing, Pharos University in Alexandria, Alexandria, Egypt
| | - Ossama Y Abdallah
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
37
|
Chitkara D, Mittal A, Behrman SW, Kumar N, Mahato RI. Self-assembling, amphiphilic polymer-gemcitabine conjugate shows enhanced antitumor efficacy against human pancreatic adenocarcinoma. Bioconjug Chem 2013; 24:1161-73. [PMID: 23758084 DOI: 10.1021/bc400032x] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The therapeutic efficacy of gemcitabine is severely compromised due to its rapid plasma metabolism. Moreover, its hydrophilicity poses a challenge for its efficient entrapment in nanosized delivery systems and to provide a sustained release profile. In this study, gemcitabine was covalently conjugated to poly(ethylene glycol)-block-poly(2-methyl-2-carboxyl-propylene carbonate) (PEG-PCC) which could self-assemble into micelles of 23.6 nm. These micelles afforded protection to gemcitabine from plasma metabolism as evident by negligible amount of gemcitabine and its metabolite dFdU detected in the plasma after 24 h. A controlled release of gemcitabine from the micelles was observed with 53.89% drug release in 10 days in the presence of protease enzyme Cathepsin B. Gemcitabine conjugated micelles were cytotoxic, showed internalization, and induced cell apoptosis in MIA PaCa-2 and L3.6pl pancreatic cancer cell lines. These micelles efficiently inhibited tumor growth when injected intravenously into MIA PaCa-2 cell derived xenograft tumor bearing NSG mice at a dose of 40 mg/kg in terms of reduced tumor volume and tumor weight (0.38 g vs 0.58 g). TUNEL assay revealed that gemcitabine conjugated micelles induced a much higher extent of apoptosis in the tumor tissues compared to free gemcitabine. In conclusion, gemcitabine conjugated micelles were able to enhance the drug payload, protect it from rapid plasma metabolism, and provide a sustained release and showed enhanced antitumor activity, and thus have the potential to provide a better therapeutic alternative for treating pancreatic cancer.
Collapse
Affiliation(s)
- Deepak Chitkara
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | | | | | | | |
Collapse
|
38
|
Maiti S, Park N, Han JH, Jeon HM, Lee JH, Bhuniya S, Kang C, Kim JS. Gemcitabine–Coumarin–Biotin Conjugates: A Target Specific Theranostic Anticancer Prodrug. J Am Chem Soc 2013; 135:4567-72. [DOI: 10.1021/ja401350x] [Citation(s) in RCA: 250] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Sukhendu Maiti
- Department of Chemistry, Korea University, Seoul, 136-701, Korea
| | - Nayoung Park
- Department of Chemistry, Korea University, Seoul, 136-701, Korea
| | - Ji Hye Han
- The School of East-West Medical
Science, Kyung Hee University, Yongin,
446-701, Korea
| | - Hyun Mi Jeon
- The School of East-West Medical
Science, Kyung Hee University, Yongin,
446-701, Korea
| | - Jae Hong Lee
- Department of Chemistry, Korea University, Seoul, 136-701, Korea
| | | | - Chulhun Kang
- The School of East-West Medical
Science, Kyung Hee University, Yongin,
446-701, Korea
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul, 136-701, Korea
| |
Collapse
|
39
|
Dalla Pozza E, Lerda C, Costanzo C, Donadelli M, Dando I, Zoratti E, Scupoli MT, Beghelli S, Scarpa A, Fattal E, Arpicco S, Palmieri M. Targeting gemcitabine containing liposomes to CD44 expressing pancreatic adenocarcinoma cells causes an increase in the antitumoral activity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:1396-404. [PMID: 23384419 DOI: 10.1016/j.bbamem.2013.01.020] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 01/25/2013] [Accepted: 01/28/2013] [Indexed: 12/15/2022]
Abstract
Pancreatic adenocarcinoma is often diagnosed when metastatic events have occurred. The early spread of circulating cancer cells expressing the CD44 receptor may play a crucial role in this process. In this study, we have investigated the cellular delivery ability and both in vitro and in vivo anti-tumoral activity of liposomes conjugated with two different low molecular weight hyaluronic acids (HA 4.8kDa and HA 12kDa), the primary ligand of CD44, and containing a lipophilic gemcitabine (GEM) pro-drug. By confocal microscopy and flow cytometry analyses, we demonstrate that the cellular uptake into a highly CD44-expressing pancreatic adenocarcinoma cell line is higher with HA-conjugated (12kDa>4.8kDa) than non-conjugated liposomes. Consistently, in vitro cytotoxic assays display an increased sensitivity towards GEM containing HA-liposomes, compared to non-conjugated liposomes. Conversely, CD44 non-expressing normal cells show a similar uptake and in vitro cytotoxicity with both HA-conjugated and non-conjugated liposomes. Furthermore, we demonstrate that the HA-liposomes are taken up into the cells via lipid raft-mediated endocytosis. All the liposome formulations containing GEM show a higher antitumoral activity than free GEM in a mouse xenograft tumor model of human pancreatic adenocarcinoma. The 12kDa HA-liposomes have the strongest efficiency, while non-conjugated liposomes and the 4.8kDa HA-liposomes are similarly active. Taken together, our results provide a strong rationale for further development of HA-conjugated liposomes to treat pancreatic adenocarcinoma.
Collapse
Affiliation(s)
- Elisa Dalla Pozza
- Department of Life and Reproduction Sciences, University of Verona, Verona, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Federico C, Morittu VM, Britti D, Trapasso E, Cosco D. Gemcitabine-loaded liposomes: rationale, potentialities and future perspectives. Int J Nanomedicine 2012; 7:5423-36. [PMID: 23139626 PMCID: PMC3490684 DOI: 10.2147/ijn.s34025] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
This review describes the strategies used in recent years to improve the biopharmaceutical properties of gemcitabine, a nucleoside analog deoxycytidine antimetabolite characterized by activity against many kinds of tumors, by means of liposomal devices. The main limitation of using this active compound is the rapid inactivation of deoxycytidine deaminase following administration in vivo. Consequently, different strategies based on its encapsulation/complexation in innovative vesicular colloidal carriers have been investigated, with interesting results in terms of increased pharmacological activity, plasma half-life, and tumor localization, in addition to decreased side effects. This review focuses on the specific approaches used, based on the encapsulation of gemcitabine in liposomes, with particular attention to the results obtained during the last 5 years. These approaches represent a valid starting point in the attempt to obtain a novel, commercializable drug formulation as already achieved for liposomal doxorubicin (Doxil®, Caelyx®).
Collapse
Affiliation(s)
- Cinzia Federico
- Department of Health Sciences, Building of BioSciences, University Magna Græcia of Catanzaro, Campus Universitario S Venuta, Germaneto, Italy.
| | | | | | | | | |
Collapse
|
41
|
Paolino D, Licciardi M, Celia C, Giammona G, Fresta M, Cavallaro G. Folate-targeted supramolecular vesicular aggregates as a new frontier for effective anticancer treatment in in vivo model. Eur J Pharm Biopharm 2012; 82:94-102. [PMID: 22705641 DOI: 10.1016/j.ejpb.2012.06.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 05/31/2012] [Accepted: 06/01/2012] [Indexed: 12/25/2022]
Abstract
Supramolecular vesicular aggregates (SVAs), made up by self-assembling liposomes and polyasparthydrazide co-polymers conjugated to folic acid molecules were extensively investigated in this manuscript as potential active targeting formulation for anticancer drug delivery. Folate-targeted systems (FT-SVAs) were used to treat breast cancer and to further proof the potential in vivo administration of these systems for the therapeutic treatment for several aggressive solid tumors. The physicochemical and technological parameters of FT-SVAs are suitable for their potential in vivo administration. The chemotherapeutic activity of GEM-loaded FT-SVAs was increased during in vivo experiments. NOD-SCID mice bearing MCF-7 human xenograft is used as breast cancer model. The measurement of the volume and weight of tumor masses decreased when animal models are treated by using GEM-loaded FT-SVAs, compared to data obtained by using GEM-loaded mPEG-SUVs and the free form of GEM. An almost complete regression of the tumor (≈ 0.2 cm(3)) was observed in NOD-SCID mice bearing MCF-7 human xenografts treated by GEM-loaded FT-SVAs due to the noticeable improvement of GEM pharmacokinetic parameters provided by FT-SVAs with respect to native anticancer drug. The obtained data showed that supramolecular systems could represent an innovative drug delivery system by self-assembling liposomes and biocompatible polymers to be potentially used for anticancer treatment.
Collapse
Affiliation(s)
- Donatella Paolino
- Department of Health Sciences, University Magna Græcia of Catanzaro, Germaneto-Catanzaro, Italy
| | | | | | | | | | | |
Collapse
|
42
|
Jiang Y, DiVittore NA, Kaiser JM, Shanmugavelandy SS, Fritz JL, Heakal Y, Tagaram HRS, Cheng H, Cabot MC, Staveley-O'Carroll KF, Tran MA, Fox TE, Barth BM, Kester M. Combinatorial therapies improve the therapeutic efficacy of nanoliposomal ceramide for pancreatic cancer. Cancer Biol Ther 2011; 12:574-85. [PMID: 21795855 DOI: 10.4161/cbt.12.7.15971] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Poor prognosis cancers, such as pancreatic cancer, represent inherent challenges for ceramide-based nanotherapeutics due to metabolic pathways, which neutralize ceramide to less toxic or pro-oncogenic metabolites. We have recently developed a novel 80 nanometer diameter liposomal formulation that incorporates 30 molar percent C6-ceramide, a bioactive lipid that is pro-apoptotic to many cancer cells, but not to normal cells. In this manuscript, we evaluated the efficacy of combining nanoliposomal C6-ceramide (Lip-C6) with either gemcitabine or an inhibitor of glucosylceramide synthase. We first assessed the biological effect of Lip-C6 in PANC-1 cells, a gemcitabine-resistant human pancreatic cancer cell line, and found that low doses alone did not induce cell toxicity. However, cytotoxicity was achieved by combining Lip-C6 with either non-toxic sub-therapeutic concentrations of gemcitabine or with the glucosylceramide synthase inhibitor D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP). Furthermore, these combinations with Lip-C6 cooperatively inhibited PANC-1 tumor growth in vivo. Mechanistically, Lip-C6 inhibited pro-survival Akt and Erk signaling, whereas the nucleoside analog gemcitabine did not. Furthermore, by including PDMP within the nanoliposomes, which halted ceramide neutralization as evidenced by LC-MS3, the cytotoxic effects of Lip-C6 were enhanced. Collectively, we have demonstrated that nanoliposomal ceramide can be an effective anti-pancreatic cancer therapeutic in combination with gemcitabine or an inhibitor of ceramide neutralization.
Collapse
Affiliation(s)
- Yixing Jiang
- Department of Medicine, Penn State College of Medicine; Hershey, PA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Lee SM, Song Y, Hong BJ, MacRenaris KW, Mastarone DJ, O'Halloran TV, Meade TJ, Nguyen ST. Modular polymer-caged nanobins as a theranostic platform with enhanced magnetic resonance relaxivity and pH-responsive drug release. Angew Chem Int Ed Engl 2011; 49:9960-4. [PMID: 21082634 DOI: 10.1002/anie.201004867] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Sang-Min Lee
- Department of Chemistry and the Center of Cancer Nanotechnology Excellence, Northwestern University, 2145 Sheridan Rd. Evanston, IL 60208-3113, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Arias JL, Reddy LH, Othman M, Gillet B, Desmaële D, Zouhiri F, Dosio F, Gref R, Couvreur P. Squalene based nanocomposites: a new platform for the design of multifunctional pharmaceutical theragnostics. ACS NANO 2011; 5:1513-21. [PMID: 21275408 DOI: 10.1021/nn1034197] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
This study reports the design of a novel theragnostic nanomedicine which combines (i) the ability to target a prodrug of gemcitabine to an experimental solid tumor under the influence of a magnetic field with (ii) the imaging of the targeted tumoral nodule. This concept is based on the inclusion of magnetite nanocrystals into nanoparticles (NPs) constructed by self-assembling molecules of the squalenoyl gemcitabine (SQgem) bioconjugate. The nanocomposites are characterized by an unusually high drug loading, a significant magnetic susceptibility, and a low burst release. When injected to the L1210 subcutaneous mice tumor model, these magnetite/SQgem NPs were magnetically guided, and they displayed considerably greater anticancer activity than the other anticancer treatments (magnetite/SQgem NPs nonmagnetically guided, SQgem NPs, or gemcitabine free in solution). The histology and immunohistochemistry investigation of the tumor biopsies clearly evidenced the therapeutic superiority of the magnetically guided nanocomposites, while Prussian blue staining confirmed their accumulation at the tumor periphery. The superior therapeutic activity and enhanced tumor accumulation has been successfully visualized using T(2)-weighted imaging in magnetic resonance imaging (MRI). This concept was further enlarged by (i) the design of squalene-based NPs containing the T(1) Gd(3+) contrast agent instead of magnetite and (ii) the application to other anticancer squalenoyls, such as, cisplatin, doxorubicin, and paclitaxel. Thus, by combining different anticancer medicines as well as contrast imaging agents in NPs, we open the door toward generic conceptual framework for cancer treatment and diagnosis. This new theragnostic nanotechnology platform is expected to have important applications in cancer therapy.
Collapse
Affiliation(s)
- José L Arias
- Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Granada, 18071-Granada, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Mohs AM, Provenzale JM. Applications of nanotechnology to imaging and therapy of brain tumors. Neuroimaging Clin N Am 2010; 20:283-92. [PMID: 20708547 DOI: 10.1016/j.nic.2010.04.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
In the past decade, numerous advances in the understanding of brain tumor physiology, tumor imaging, and tumor therapy have been attained. In some cases, these advances have resulted from refinements of pre-existing technologies (eg, improvements of contrast-enhanced magnetic resonance imaging). In other instances, advances have resulted from development of novel technologies. The development of nanomedicine (ie, applications of nanotechnology to the field of medicine) is an example of the latter. In this review, the authors explain the principles that underlay nanoparticle design and function as well as the means by which nanoparticles can be used for imaging and therapy of brain tumors.
Collapse
Affiliation(s)
- Aaron M Mohs
- Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, 101 Woodruff Circle Northeast, Suite 2007, Atlanta, GA 30322, USA
| | | |
Collapse
|
46
|
Lee SM, Song Y, Hong BJ, MacRenaris KW, Mastarone DJ, O'Halloran TV, Meade TJ, Nguyen ST. Modular Polymer-Caged Nanobins as a Theranostic Platform with Enhanced Magnetic Resonance Relaxivity and pH-Responsive Drug Release. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.201004867] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
47
|
Pili B, Reddy LH, Bourgaux C, Lepêtre-Mouelhi S, Desmaële D, Couvreur P. Liposomal squalenoyl-gemcitabine: formulation, characterization and anticancer activity evaluation. NANOSCALE 2010; 2:1521-1526. [PMID: 20820745 DOI: 10.1039/c0nr00132e] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
A new prodrug of gemcitabine, based on the covalent coupling of squalene to gemcitabine (GemSQ), has been designed to enhance the anticancer activity of gemcitabine, a nucleoside analogue active against a wide variety of tumors. In the present study, the feasibility of encapsulating GemSQ into liposomes either PEGylated or non-PEGylated has been investigated. The in vivo anticancer activity of these formulations has been tested on subcutaneous grafted L1210wt leukemia model and compared to that of free gemcitabine. The liposomal GemSQ appears to be a potential delivery system for the effective treatment of tumors.
Collapse
Affiliation(s)
- Barbara Pili
- Université Paris-Sud XI, UMR CNRS 8612, 5 rue J.B. Clément, 92290, Châtenay-Malabry, France
| | | | | | | | | | | |
Collapse
|
48
|
Pignatello R, Vicari L, Pistarà V, Musumeci T, Gulisano M, Puglisi G. Synthesis and in vitro cytotoxic activity on human anaplastic thyroid cancer cells of lipoamino acid conjugates of gemcitabine. Drug Dev Res 2010. [DOI: 10.1002/ddr.20374] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
49
|
Trickler WJ, Khurana J, Nagvekar AA, Dash AK. Chitosan and glyceryl monooleate nanostructures containing gemcitabine: potential delivery system for pancreatic cancer treatment. AAPS PharmSciTech 2010; 11:392-401. [PMID: 20238190 DOI: 10.1208/s12249-010-9393-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Accepted: 02/16/2010] [Indexed: 11/30/2022] Open
Abstract
The objectives of this study are to enhance cellular accumulation of gemcitabine with chitosan/glyceryl monooleate (GMO) nanostructures, and to provide significant increase in cell death of human pancreatic cancer cells in vitro. The delivery system was prepared by a multiple emulsion solvent evaporation method. The nanostructure topography, size, and surface charge were determined by atomic force microscopy (AFM), and a zetameter. The cellular accumulation, cellular internalization and cytotoxicity of the nanostructures were evaluated by HPLC, confocal microscopy, or MTT assay in Mia PaCa-2 and BxPC-3 cells. The average particle diameter for 2% and 4% (w/w) drug loaded delivery system were 382.3 +/- 28.6 nm, and 385.2 +/- 16.1 nm, respectively with a surface charge of +21.94 +/- 4.37 and +21.23 +/- 1.46 mV. The MTT cytotoxicity dose-response studies revealed the placebo at/or below 1 mg/ml has no effect on MIA PaCa-2 or BxPC-3 cells. The delivery system demonstrated a significant decrease in the IC50 (3 to 4 log unit shift) in cell survival for gemcitabine nanostructures at 72 and 96 h post-treatment when compared with a solution of gemcitabine alone. The nanostructure reported here can be resuspended in an aqueous medium that demonstrate increased effective treatment compared with gemcitabine treatment alone in an in vitro model of human pancreatic cancer. The drug delivery system demonstrates capability to entrap both hydrophilic and hydrophobic compounds to potentially provide an effective treatment option in human pancreatic cancer.
Collapse
|
50
|
|