1
|
Biswas S, Mondal M, Pakhira S, Ghosh R, Samanta P, Basu J, Bhowmik A, Hajra S, Saha P. Attenuation of paclitaxel-induced toxicities by polyphenolic natural compound rutin through inhibition of apoptosis and activation of NRF2/ARE signaling pathways. Food Chem Toxicol 2025; 200:115408. [PMID: 40154830 DOI: 10.1016/j.fct.2025.115408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/21/2025] [Accepted: 03/21/2025] [Indexed: 04/01/2025]
Abstract
Paclitaxel is the first microtubule-stabilizing drug widely used as an antineoplastic agent. Hepatotoxicity, nephrotoxicity and myeloid suppression may lead to secondary malignancy which is an important adverse effect of paclitaxel-therapy. In this study, we have evaluated the potential protective role of natural flavonoid rutin against paclitaxel-induced toxicities in BALB/cmice. Paclitaxel was administered intraperitoneally (in alternate days at a dose of 8.5 mg/kg b. w.) and rutin was given every day by oral gavages (20 mg/kg b. w.) in BALB/c mice. Results showed that administration of paclitaxel significantly (P < 0.05) increased the generation of ROS and NO in bone marrow, liver and kidney tissues. In contrast, co-administration of rutin and paclitaxel significantly (p < 0.05) reduced the intracellular ROS and NO levels, reversed the toxic effects of paclitaxel through NRF2-mediated activation of antioxidant response element (ARE) pathway and upregulated activity of several phase-II antioxidant enzymes. Furthermore, rutin treatment inhibited apoptosis by downregulated expression of Bax, caspase-3 and cPARP in bone marrow, liver and kidney tissues. Additionally, the chemoprotective potential of rutin was confirmed by histopathological analysis. Thus, our results suggest that co-administration of rutin may serve as a promising preventive strategy against paclitaxel induced toxicities and indicate its future use as an adjuvant in chemotherapy.
Collapse
Affiliation(s)
- Souradeep Biswas
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, 700 026, West Bengal, India.
| | - Mrinmoyee Mondal
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, 700 026, West Bengal, India
| | - Shampa Pakhira
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, 700 026, West Bengal, India
| | - Rituparna Ghosh
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, 700 026, West Bengal, India
| | - Priya Samanta
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, 700 026, West Bengal, India
| | - Jhinuk Basu
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, 700 026, West Bengal, India
| | - Arijit Bhowmik
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, 700 026, West Bengal, India
| | - Subhadip Hajra
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, 700 026, West Bengal, India
| | - Prosenjit Saha
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, 700 026, West Bengal, India.
| |
Collapse
|
2
|
Lou Z, Mu C, Corpstein CD, Li T. In vivo deposition of poorly soluble drugs. Adv Drug Deliv Rev 2024; 211:115358. [PMID: 38851590 DOI: 10.1016/j.addr.2024.115358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/12/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024]
Abstract
Administered drug molecules, whether dissolved or solubilized, have the potential to precipitate and accumulate as solid forms in tissues and cells within the body. This phase transition can significantly impact the pharmacokinetics of treatment. It is thus crucial to gain an understanding of how drug solubility/permeability, drug formulations and routes of administration affect in vivo behaviors of drug deposition. This review examines literature reports on the drug deposition in tissues and cells of poorly water-soluble drugs, as well as underlying physical mechanisms that lead to precipitation. Our work particularly highlights drug deposition in macrophages and the subcellular fate of precipitated drugs. We also propose a tissue permeability-based classification framework to evaluate precipitation potentials of poorly soluble drugs in major organs and tissues. The impact on pharmacokinetics is further discussed and needs to be considered in developing drug delivery systems. Finally, bioimaging techniques that are used to examine aggregated states and the intracellular trafficking of absorbed drugs are summarized.
Collapse
Affiliation(s)
- Zhaohuan Lou
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Zhejiang, Hangzhou 310053, China; Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47906, USA
| | - Chaofeng Mu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Zhejiang, Hangzhou 310053, China
| | - Clairissa D Corpstein
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47906, USA
| | - Tonglei Li
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47906, USA.
| |
Collapse
|
3
|
de Castilhos J, Tillmanns K, Blessing J, Laraño A, Borisov V, Stein-Thoeringer CK. Microbiome and pancreatic cancer: time to think about chemotherapy. Gut Microbes 2024; 16:2374596. [PMID: 39024520 PMCID: PMC11259062 DOI: 10.1080/19490976.2024.2374596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/26/2024] [Indexed: 07/20/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer characterized by late diagnosis, rapid progression, and a high mortality rate. Its complex biology, characterized by a dense, stromal tumor environment with an immunosuppressive milieu, contributes to resistance against standard treatments like chemotherapy and radiation. This comprehensive review explores the dynamic role of the microbiome in modulating chemotherapy efficacy and outcomes in PDAC. It delves into the microbiome's impact on drug metabolism and resistance, and the interaction between microbial elements, drugs, and human biology. We also highlight the significance of specific bacterial species and microbial enzymes in influencing drug action and the immune response in the tumor microenvironment. Cutting-edge methodologies, including artificial intelligence, low-biomass microbiome analysis and patient-derived organoid models, are discussed, offering insights into the nuanced interactions between microbes and cancer cells. The potential of microbiome-based interventions as adjuncts to conventional PDAC treatments are discussed, paving the way for personalized therapy approaches. This review synthesizes recent research to provide an in-depth understanding of how the microbiome affects chemotherapy efficacy. It focuses on elucidating key mechanisms and identifying existing knowledge gaps. Addressing these gaps is crucial for enhancing personalized medicine and refining cancer treatment strategies, ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Juliana de Castilhos
- Translational Microbiome Research, Internal Medicine I and M3 Research Center, University Hospital Tuebingen, Tübingen, Germany
- Cluster of Excellence “Controlling Microbes to Fight Infections” (CMFI), University of Tuebingen, Tübingen, Germany
| | - Katharina Tillmanns
- Translational Microbiome Research, Internal Medicine I and M3 Research Center, University Hospital Tuebingen, Tübingen, Germany
- Cluster of Excellence “Controlling Microbes to Fight Infections” (CMFI), University of Tuebingen, Tübingen, Germany
| | - Jana Blessing
- Translational Microbiome Research, Internal Medicine I and M3 Research Center, University Hospital Tuebingen, Tübingen, Germany
- Cluster of Excellence “Controlling Microbes to Fight Infections” (CMFI), University of Tuebingen, Tübingen, Germany
| | - Arnelyn Laraño
- Translational Microbiome Research, Internal Medicine I and M3 Research Center, University Hospital Tuebingen, Tübingen, Germany
- Cluster of Excellence “Controlling Microbes to Fight Infections” (CMFI), University of Tuebingen, Tübingen, Germany
| | - Vadim Borisov
- Translational Microbiome Research, Internal Medicine I and M3 Research Center, University Hospital Tuebingen, Tübingen, Germany
- Cluster of Excellence “Controlling Microbes to Fight Infections” (CMFI), University of Tuebingen, Tübingen, Germany
| | - Christoph K. Stein-Thoeringer
- Translational Microbiome Research, Internal Medicine I and M3 Research Center, University Hospital Tuebingen, Tübingen, Germany
- Cluster of Excellence “Controlling Microbes to Fight Infections” (CMFI), University of Tuebingen, Tübingen, Germany
| |
Collapse
|
4
|
Fu R, Wang J, Chen C, Liu Y, Zhao L, Lu D. Transcriptomic and Metabolomic Analyses Provide Insights into the Pathogenic Mechanism of the Rice False Smut Pathogen Ustilaginoidea virens. Int J Mol Sci 2023; 24:10805. [PMID: 37445981 DOI: 10.3390/ijms241310805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/18/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Rice false smut, caused by the fungal pathogen Ustilaginoidea virens, is a worldwide rice fungal disease. However, the molecular mechanism of the pathogenicity of the fungus U. virens remains unclear. To understand the molecular mechanism of pathogenesis of the fungus U. virens, we performed an integrated analysis of the transcriptome and metabolome of strongly (S) and weakly (W) virulent strains both before and after the infection of panicles. A total of 7932 differential expressed genes (DEGs) were identified using transcriptome analysis. Gene ontology (GO) and metabolic pathway enrichment analysis indicated that amino acid metabolism, autophagy-yeast, MAPK signaling pathway-yeast, and starch and sucrose metabolism were closely related to the pathogenicity of U. virens. Genes related to pathogenicity were significantly upregulated in the strongly virulent strain, and were ATG, MAPK, STE, TPS, and NTH genes. However, genes involved in the negative regulation of pathogenesis were significantly downregulated and contained TOR kinase, TORC1, and autophagy-related protein genes. Metabolome analysis identified 698 differentially accumulated metabolites (DAMs), including 13 categories of organic acids and derivatives, lipids and lipid-like molecules, organoheterocyclic compounds. The significantly enriched pathways of DAMs mainly included amino acids and carbohydrates, and they accumulated after infection by the S strain. To understand the relevance of DEGs and DAMs in the pathogenicity of U. virens, transcriptomic and metabolomic data were integrated and analyzed. These results further confirmed that the pathogenesis of U. virens was regulated by DEGs and DAMs related to these four pathways, involving arginine and proline metabolism, lysine biosynthesis, alanine, aspartate and glutamate metabolism, and starch and sugar metabolism. Therefore, we speculate that the pathogenicity of U. virens is closely related to the accumulation of amino acids and carbohydrates, and to the changes in the expression of related genes.
Collapse
Affiliation(s)
- Rongtao Fu
- Institute of Plant Protection, Sichuan Academy of Agricultural Science, 20# Jingjusi Road, Chengdu 610066, China
- Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture, Chengdu 610066, China
| | - Jian Wang
- Institute of Plant Protection, Sichuan Academy of Agricultural Science, 20# Jingjusi Road, Chengdu 610066, China
- Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture, Chengdu 610066, China
| | - Cheng Chen
- Institute of Plant Protection, Sichuan Academy of Agricultural Science, 20# Jingjusi Road, Chengdu 610066, China
- Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture, Chengdu 610066, China
| | - Yao Liu
- Environment-Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Crop Research Institute, Sichuan Academy of Agricultural Science, Chengdu 610066, China
| | - Liyu Zhao
- Institute of Plant Protection, Sichuan Academy of Agricultural Science, 20# Jingjusi Road, Chengdu 610066, China
| | - Daihua Lu
- Institute of Plant Protection, Sichuan Academy of Agricultural Science, 20# Jingjusi Road, Chengdu 610066, China
- Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture, Chengdu 610066, China
| |
Collapse
|
5
|
Metabolomics and transcriptomics unravel the mechanism of browning resistance in Agaricus bisporus. PLoS One 2022; 17:e0255765. [PMID: 35294444 PMCID: PMC8926301 DOI: 10.1371/journal.pone.0255765] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 03/02/2022] [Indexed: 12/03/2022] Open
Abstract
Agaricus bisporus is widely consumed on the world market. The easy browning of mushroom surface is one of the most intuitive factors affecting consumer purchase. A certain cognition on browning mechanism has been made after years of research. At present, people slow down the browning of mushrooms mainly by improving preservation methods. In addition, breeding is also a reliable way. In the production practice, we have identified some browning-resistant varieties, and we selected a browning-resistant variety to compare with an ordinary variety to reveal the resistance mechanism. Using transcriptomics and metabolomics, the differences in gene expression and metabolite levels were revealed, respectively. The results showed that differentially expressed genes (DEGs) like AbPPO4, AbPPO3 and AbPPO2 were differently expressed and these DEGs were involved in many pathways related to browning. The expression of AbPPO expression play an important role in the browning of A. bisporus and multiple PPO family members are involved in the regulation of browning. However, the resistance to browning cannot be judged only by the expression level of AbPPOs. For metabolomics, most of the different metabolites were organic acids. These organic acids had a higher level in anti-browning (BT) than easy-browning varieties (BS), although the profile was very heterogeneous. On the contrary, the content of trehalose in BS was significantly higher than that in BT. Higher organic acids decreased pH and further inhibited PPO activity. In addition, the BS had a higher content of trehalose, which might play roles in maintaining PPO activity. The difference of browning resistance between BS and BT is mainly due to the differential regulation mechanism of PPO.
Collapse
|
6
|
Hsiao CH, Zhao J, Gao S, Farhan N, Wang Y, Li C, Chow DSL. Development and validation of a rapid and sensitive UPLC-MS/MS assay for simultaneous quantification of paclitaxel and cyclopamine in mouse whole blood and tissue samples. Biomed Chromatogr 2019; 33:e4518. [PMID: 30805953 DOI: 10.1002/bmc.4518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 02/08/2019] [Accepted: 02/20/2019] [Indexed: 02/03/2023]
Abstract
The prominent stromal compartment surrounds pancreatic ductal adenocarcinoma and protects the tumor cells from chemo- or radiotherapy. We hypothesized that our nano formulation carrying cyclopamine (CPA, stroma modulator) and paclitaxel (PTX, antitumor agent) could increase the permeation of PTX through the stromal compartment and improve the intratumoral delivery of PTX. In the present study a sensitive, reliable UPLC-MS/MS method was developed and validated to quantify PTX and CPA simultaneously in mouse whole blood, pancreas, liver and spleen samples. Docetaxel was used as the internal standard. The method demonstrated a linear range of 0.5-2000 ng/mL for whole blood and tissue homogenates for both PTX and CPA. The accuracy and precision of the assay were all within ±15%. Matrix effects for both analytes were within 15%. Recoveries from whole blood, liver, spleen and pancreas homogenates were 92.7-105.2% for PTX and 72.8-99.7% for CPA. The stability was within ±15% in all test biomatrices. The validated method met the acceptance criteria according to US Food and Drug Administration regulatory guidelines. The method was successfully applied to support a pharmacokinetic and biodistribution study for PTX and CPA in mice biomatrices.
Collapse
Affiliation(s)
- Cheng-Hui Hsiao
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX, USA
| | - Jun Zhao
- Department of Cancer systems imaging, The University of Texas MD Anderson, Houston, TX, USA
| | - Song Gao
- Department of Pharmaceutical and Environmental Health Sciences, Texas Southern University, Houston, TX, USA
| | - Nashid Farhan
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX, USA
| | - Yang Wang
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX, USA
| | - Chun Li
- Department of Cancer systems imaging, The University of Texas MD Anderson, Houston, TX, USA
| | - Diana S-L Chow
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX, USA
| |
Collapse
|
7
|
Zou J, Li Z, Deng H, Hao J, Ding R, Zhao M. TMEM213 as a novel prognostic and predictive biomarker for patients with lung adenocarcinoma after curative resection: a study based on bioinformatics analysis. J Thorac Dis 2019; 11:3399-3410. [PMID: 31559044 DOI: 10.21037/jtd.2019.08.01] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Background Lung cancer is the leading cause of cancer-related death worldwide. Few effective biomarkers for lung adenocarcinoma have been adapted for clinical practice to assist in prognosis evaluation and treatment plan implementation. Our study's goal was to find a new biological marker associated with the prognosis of lung adenocarcinoma after curative resection and the benefit of adjuvant chemotherapy (ACT). Methods Using the clinical information and RNA-Seq expression from The Cancer Genome Atlas (TCGA) database, prognostic genes were screened out and analyzed by Subpopulation Treatment Effect Pattern Plot (STEPP) in GSE42127 to filter out the drug-related gene. The relationship between the gene expression and clinicopathological parameters was assessed in the TCGA database. The prognostic significance was evaluated by Cox proportional hazards (PHs) regression analysis with 1,000 bootstrap replications. Gene set enrichment analysis (GSEA) was performed using high-throughput RNA sequencing data in TCGA and functional gene sets derived from the Molecular Signatures Database (MSigDB). Results A total of 297 prognostic genes were analyzed by STEPP in GSE42127. The results indicated a beneficial effect of adjuvant paclitaxel-carboplatin in patients with high TMEM213 expression. Its expression correlated with gender (P=0.013), and Kaplan-Meier analysis showed that patients with high TMEM213 expression had significantly longer overall survival (OS) (P=0.014, 0.027, and 0.000). Multivariate analysis showed TMEM213 to be an independent predictor for improved OS of patients (P=0.020), and the result was verified with the bootstrapping methodology and online "Kaplan-Meier Plotter" database analysis. Moreover, enriched pathway analysis indicated that TMEM213 expression was associated with the two gene sets of KEGG_DRUG_METABOLISM_CYTOCHROME_P450 and KEGG_ABC_TRANSPORTERS. Conclusions Based on bioinformatics analysis, we found that TMEM213 expression independently predicted better OS for lung adenocarcinoma. Patients in the high TMEM213 group appear to benefit more from adjuvant paclitaxel-carboplatin, but this needs further validation.
Collapse
Affiliation(s)
- Jiayun Zou
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang 110001, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang 110001, China.,Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110000, China
| | - Zhi Li
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang 110001, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang 110001, China
| | - Hao Deng
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Junli Hao
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang 110001, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang 110001, China
| | - Rui Ding
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang 110001, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang 110001, China
| | - Mingfang Zhao
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang 110001, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang 110001, China
| |
Collapse
|
8
|
Piekos SC, Chen L, Wang P, Shi J, Yaqoob S, Zhu HJ, Ma X, Zhong XB. Consequences of Phenytoin Exposure on Hepatic Cytochrome P450 Expression during Postnatal Liver Maturation in Mice. Drug Metab Dispos 2018; 46:1241-1250. [PMID: 29884652 PMCID: PMC6053591 DOI: 10.1124/dmd.118.080861] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 06/01/2018] [Indexed: 12/15/2022] Open
Abstract
The induction of cytochrome P450 (P450) enzymes in response to drug treatment is a significant contributing factor to drug-drug interactions, which may reduce therapeutic efficacy and/or cause toxicity. Since most studies on P450 induction are performed in adults, enzyme induction at neonatal, infant, and adolescent ages is not well understood. Previous work defined the postnatal ontogeny of drug-metabolizing P450s in human and mouse livers; however, there are limited data on the ontogeny of the induction potential of each enzyme in response to drug treatment. Induction of P450s at the neonatal age may also cause permanent alterations in P450 expression in adults. The goal of this study was to investigate the short- and long-term effects of phenytoin treatment on mRNA and protein expressions and enzyme activities of CYP2B10, 2C29, 3A11, and 3A16 at different ages during postnatal liver maturation in mice. Induction of mRNA immediately following phenytoin treatment appeared to depend on basal expression of the enzyme at a specific age. While neonatal mice showed the greatest fold changes in CYP2B10, 2C29, and 3A11 mRNA expression following treatment, the levels of induced protein expression and enzymatic activity were much lower than that of induced levels in adults. The expression of fetal CYP3A16 was repressed by phenytoin treatment. Neonatal treatment with phenytoin did not permanently induce enzyme expression in adulthood. Taken together, our data suggest that inducibility of drug-metabolizing P450s is much lower in neonatal mice than it is in adults and neonatal induction by phenytoin is not permanent.
Collapse
Affiliation(s)
- Stephanie C Piekos
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (S.C.P., L.C., S.Y., X.-b.Z.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania (P.W., X.M.); and Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, Michigan (J.S., H.-J.Z.)
| | - Liming Chen
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (S.C.P., L.C., S.Y., X.-b.Z.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania (P.W., X.M.); and Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, Michigan (J.S., H.-J.Z.)
| | - Pengcheng Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (S.C.P., L.C., S.Y., X.-b.Z.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania (P.W., X.M.); and Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, Michigan (J.S., H.-J.Z.)
| | - Jian Shi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (S.C.P., L.C., S.Y., X.-b.Z.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania (P.W., X.M.); and Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, Michigan (J.S., H.-J.Z.)
| | - Sharon Yaqoob
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (S.C.P., L.C., S.Y., X.-b.Z.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania (P.W., X.M.); and Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, Michigan (J.S., H.-J.Z.)
| | - Hao-Jie Zhu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (S.C.P., L.C., S.Y., X.-b.Z.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania (P.W., X.M.); and Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, Michigan (J.S., H.-J.Z.)
| | - Xiaochao Ma
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (S.C.P., L.C., S.Y., X.-b.Z.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania (P.W., X.M.); and Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, Michigan (J.S., H.-J.Z.)
| | - Xiao-Bo Zhong
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (S.C.P., L.C., S.Y., X.-b.Z.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania (P.W., X.M.); and Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, Michigan (J.S., H.-J.Z.)
| |
Collapse
|
9
|
Wang Y, Huang X, Zhong MZ, Lu RH, Xia ZA, Fan R, Liu B, Huang W, Gan PP. Pretreatment of Shaoyao Gancao Decoction () alters pharmacokinetics of intravenous paclitaxel in rats. Chin J Integr Med 2016; 23:70-75. [PMID: 27679442 DOI: 10.1007/s11655-016-2619-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To investigate the effect of Shaoyao Gancao Decoction (, SGD) on the pharmacokinetics of intravenously administered paclitaxel in rats. METHODS Paclitaxel was intravenously administered to rats (3 mg/kg) with or without the concomitant administration of SGD (752 mg/kg, a single day or 14 consecutive days pretreatment). The paclitaxel in the serum was quantified using a simple and rapid ultra performance liquid chromatography (UPLC) method for the pharmacokinetic study. The pharmacokinetic parameters were calculated via a non-compartment model using the computer program DAS 2.0. RESULTS The pharmacokinetic parameters of paclitaxel were significantly altered in response to 14 consecutive days of pretreatment with SGD. The area under the curve (AUC0-t, from 4 820±197 to 4 205±186 ng·mL-1·-1) and AUC0-∞ (from 5 237±280 to 4 514±210 ng·mL-1·-1) significantly decreased in response to the 14-day pretreatment with SGD. The values of Vdss (L/kg) were 10.74±1.08 and 9.35±0.49, those of CL (L/kg) were 0.67±0.03 and 0.57±0.03 and the t1/2 (h) values were 11.17±0.84 and 11.32±0.93, respectively, for the 14-day SGD pretreatment and intravenous paclitaxel alone. The AUC0-t and AUC0-∞ values decreased by 13% and 14% (P<0.01), respectively. The area under the curve decreased signifificantly (P<0.01), and the total clearance increased by 1.2-fold (P<0.01), after 14 consecutive days of pretreatment with SGD. A single-day pretreatment with SGD did not signifificantly affect the pharmacokinetic parameters of paclitaxel. CONCLUSIONS SGD administration for 14 consecutive days increased the metabolism of paclitaxel, while a 1-day pretreatment had little effect. The results would contribute important information to the study on interaction between Chinese medicines and chemotherapy and also help to utilize SGD better in the adjunctive therapy of cancer patients.
Collapse
Affiliation(s)
- Yang Wang
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Medicine and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Xi Huang
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Medicine and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Mei-Zuo Zhong
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Ruo-Huang Lu
- Department of Stomatology, the Third Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Zi-An Xia
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Medicine and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Rong Fan
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Medicine and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Bo Liu
- Department of geriatrics, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Wei Huang
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Medicine and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Ping-Ping Gan
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
10
|
Li Q, Ma Z, Liu Y, Kan X, Wang C, Su B, Li Y, Zhang Y, Wang P, Luo Y, Na D, Wang L, Zhang G, Zhu X, Wang L. Low doses of paclitaxel enhance liver metastasis of breast cancer cells in the mouse model. FEBS J 2016; 283:2836-52. [DOI: 10.1111/febs.13767] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 05/13/2016] [Accepted: 05/30/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Qi Li
- Institute of Chinese Materia Medica; China Academy of Chinese Medical Sciences; Beijing China
| | - Zhuang Ma
- Department of Immunology; Center for Human Disease Genomics; School of Basic Medical Science; Peking University Health Science Centre; Beijing China
| | - Yinhua Liu
- Surgery Department; Peking University First Hospital; Beijing China
| | - Xiaoxi Kan
- Institute of Chinese Materia Medica; China Academy of Chinese Medical Sciences; Beijing China
| | - Changjun Wang
- Department of Immunology; Center for Human Disease Genomics; School of Basic Medical Science; Peking University Health Science Centre; Beijing China
| | - Bingnan Su
- Department of Immunology; Center for Human Disease Genomics; School of Basic Medical Science; Peking University Health Science Centre; Beijing China
| | - Yuchen Li
- Department of Immunology; Center for Human Disease Genomics; School of Basic Medical Science; Peking University Health Science Centre; Beijing China
| | - Yingmei Zhang
- Department of Immunology; Center for Human Disease Genomics; School of Basic Medical Science; Peking University Health Science Centre; Beijing China
| | - Pingzhang Wang
- Department of Immunology; Center for Human Disease Genomics; School of Basic Medical Science; Peking University Health Science Centre; Beijing China
| | - Yang Luo
- Department of Immunology; Center for Human Disease Genomics; School of Basic Medical Science; Peking University Health Science Centre; Beijing China
| | - Daxiang Na
- Department of Immunology; Center for Human Disease Genomics; School of Basic Medical Science; Peking University Health Science Centre; Beijing China
| | - Lanlan Wang
- Department of Immunology; Center for Human Disease Genomics; School of Basic Medical Science; Peking University Health Science Centre; Beijing China
| | - Guoying Zhang
- Department of Immunology; Center for Human Disease Genomics; School of Basic Medical Science; Peking University Health Science Centre; Beijing China
| | - Xiaoxin Zhu
- Institute of Chinese Materia Medica; China Academy of Chinese Medical Sciences; Beijing China
| | - Lu Wang
- Department of Immunology; Center for Human Disease Genomics; School of Basic Medical Science; Peking University Health Science Centre; Beijing China
| |
Collapse
|
11
|
Tien YC, Liu K, Pope C, Wang P, Ma X, Zhong XB. Dose of Phenobarbital and Age of Treatment at Early Life are Two Key Factors for the Persistent Induction of Cytochrome P450 Enzymes in Adult Mouse Liver. Drug Metab Dispos 2015; 43:1938-45. [PMID: 26400395 PMCID: PMC4658495 DOI: 10.1124/dmd.115.066316] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 09/21/2015] [Indexed: 02/01/2023] Open
Abstract
Drug treatment of neonates and infants and its long-term consequences on drug responses have emerged in recent years as a major challenge for health care professionals. In the current study, we use phenobarbital as a model drug and mouse as an in vivo model to demonstrate that the dose of phenobarbital and age of treatment are two key factors for the persistent induction of gene expression and consequential increases of enzyme activities of Cyp2b, Cyp2c, and Cyp3a in adult livers. We show that phenobarbital treatment at early life of day 5 after birth with a low dose (<100 mg/kg) does not change expression and enzyme activities of Cyp2b, Cyp2c, and Cyp3a in adult mouse liver, whereas phenobarbital treatment with a high dose (>200 mg/kg) significantly increases expression and enzyme activities of these P450s in adult liver. We also demonstrate that phenobarbital treatment before day 10 after birth, but not at later ages, significantly increases mRNAs, proteins, and enzyme activities of the tested P450s. Such persistent induction of P450 gene expression and enzyme activities in adult livers by phenobarbital treatment only occurs within a sensitive age window early in life. The persistent induction in gene expression and enzyme activities is higher in female mice than in male mice for Cyp2b10 but not for Cyp2c29 and Cyp3a11. These results will stimulate studies to evaluate the long-term impacts of drug treatment with different doses at neonatal and infant ages on drug metabolism, therapeutic efficacy, and drug-induced toxicity throughout the rest of life.
Collapse
Affiliation(s)
- Yun-Chen Tien
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (Y.C.T., C.P., X.B.Z.); and Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania (K.L., P.W., X.M.)
| | - Ke Liu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (Y.C.T., C.P., X.B.Z.); and Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania (K.L., P.W., X.M.)
| | - Chad Pope
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (Y.C.T., C.P., X.B.Z.); and Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania (K.L., P.W., X.M.)
| | - Pengcheng Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (Y.C.T., C.P., X.B.Z.); and Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania (K.L., P.W., X.M.)
| | - Xiaochao Ma
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (Y.C.T., C.P., X.B.Z.); and Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania (K.L., P.W., X.M.)
| | - Xiao-bo Zhong
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (Y.C.T., C.P., X.B.Z.); and Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania (K.L., P.W., X.M.)
| |
Collapse
|
12
|
Banerjee I, Behera A, De K, Chattopadhyay S, Sachdev SS, Sarkar B, Ganguly S, Misra M. Synthesis, characterization, biodistribution and scintigraphy of 99mTc-paclitaxel: a potential tracer of paclitaxel. J Radioanal Nucl Chem 2014. [DOI: 10.1007/s10967-014-3825-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
13
|
Granada JF, Stenoien M, Buszman PP, Tellez A, Langanki D, Kaluza GL, Leon MB, Gray W, Jaff MR, Schwartz RS. Mechanisms of tissue uptake and retention of paclitaxel-coated balloons: impact on neointimal proliferation and healing. Open Heart 2014; 1:e000117. [PMID: 25332821 PMCID: PMC4189287 DOI: 10.1136/openhrt-2014-000117] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 05/05/2014] [Accepted: 05/28/2014] [Indexed: 01/08/2023] Open
Abstract
Background The efficacy of paclitaxel-coated balloons (PCB) for restenosis prevention has been demonstrated in humans. However, the mechanism of action for sustained drug retention and biological efficacy following single-time drug delivery is still unknown. Methods and results The pharmacokinetic profile and differences in drug concentration (vessel surface vs arterial wall) of two different paclitaxel coating formulations (3 µg/mm2) displaying opposite solubility characteristics (CC=crystalline vs AC=amorphous) were tested in vivo and compared with paclitaxel-eluting stents (PES). Also, the biological effect of both PCB formulations on vascular healing was tested in the porcine coronary injury model. One hour following balloon inflation, both formulations achieved similar arterial paclitaxel levels (CC=310 vs AC=245 ng/mg; p=NS). At 24 h, the CC maintained similar tissue concentrations, whereas the AC tissue levels declined by 99% (p<0.01). At this time point, arterial levels were 20-fold (CC) and 5-fold (AC) times higher compared to the PES group (p<0.05). At 28 days, arterial levels retained were 9.2% (CC) and 0.04% (AC, p<0.01) of the baseline levels. Paclitaxel concentration on the vessel surface was higher in the CC at 1 (CC=36.7% vs AC=13.1%, p<0.05) and 7 days (CC=38.4% vs AC=11%, p<0.05). In addition, the CC induced higher levels of neointimal inhibition, fibrin deposition and delayed healing compared with the AC group. Conclusions The presence of paclitaxel deposits on the vessel surface driving diffusion into the arterial tissue in a time-dependent fashion supports the mechanism of action of PCB. This specific pharmacokinetic behaviour influences the patterns of neointimal formation and healing.
Collapse
Affiliation(s)
- Juan F Granada
- Skirball Center for Cardiovascular Research, Cardiovascular Research Foundation , Orangeburg, New York , USA
| | - Mark Stenoien
- MEDRAD Interventional , Indianola, Pennsylvania , USA
| | - Piotr P Buszman
- Skirball Center for Cardiovascular Research, Cardiovascular Research Foundation , Orangeburg, New York , USA
| | - Armando Tellez
- Skirball Center for Cardiovascular Research, Cardiovascular Research Foundation , Orangeburg, New York , USA
| | - Dan Langanki
- MEDRAD Interventional , Indianola, Pennsylvania , USA
| | - Greg L Kaluza
- Skirball Center for Cardiovascular Research, Cardiovascular Research Foundation , Orangeburg, New York , USA
| | - Martin B Leon
- Columbia University Medical Center, Center for Interventional Vascular Therapy, New York Presbyterian Hospital , New York, New York , USA
| | - William Gray
- Columbia University Medical Center, Center for Interventional Vascular Therapy, New York Presbyterian Hospital , New York, New York , USA
| | - Michael R Jaff
- Harvard Medical School, Massachusetts General Hospital , Boston, Massachusetts , USA
| | - Robert S Schwartz
- Minneapolis Heart Institute and Foundation, Abbott Northwestern Hospital , Minneapolis, Minnesota , USA
| |
Collapse
|
14
|
5,6-EET is released upon neuronal activity and induces mechanical pain hypersensitivity via TRPA1 on central afferent terminals. J Neurosci 2012; 32:6364-72. [PMID: 22553041 DOI: 10.1523/jneurosci.5793-11.2012] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Epoxyeicosatrienoic acids (EETs) are cytochrome P450-epoxygenase-derived metabolites of arachidonic acid that act as endogenous signaling molecules in multiple biological systems. Here we have investigated the specific contribution of 5,6-EET to transient receptor potential (TRP) channel activation in nociceptor neurons and its consequence for nociceptive processing. We found that, during capsaicin-induced nociception, 5,6-EET levels increased in dorsal root ganglia (DRGs) and the dorsal spinal cord, and 5,6-EET is released from activated sensory neurons in vitro. 5,6-EET potently induced a calcium flux (100 nm) in cultured DRG neurons that was completely abolished when TRPA1 was deleted or inhibited. In spinal cord slices, 5,6-EET dose dependently enhanced the frequency, but not the amplitude, of spontaneous EPSCs (sEPSCs) in lamina II neurons that also responded to mustard oil (allyl isothiocyanate), indicating a presynaptic action. Furthermore, 5,6-EET-induced enhancement of sEPSC frequency was abolished in TRPA1-null mice, suggesting that 5,6-EET presynaptically facilitated spinal cord synaptic transmission by TRPA1. Finally, in vivo intrathecal injection of 5,6-EET caused mechanical allodynia in wild-type but not TRPA1-null mice. We conclude that 5,6-EET is synthesized on the acute activation of nociceptors and can produce mechanical hypersensitivity via TRPA1 at central afferent terminals in the spinal cord.
Collapse
|
15
|
Preclinical pharmacokinetic analysis of felotaxel (SHR110008), a novel derivative of docetaxel, in rats and its protein binding ability in vitro. Biomed Pharmacother 2012; 66:98-102. [DOI: 10.1016/j.biopha.2011.11.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 11/09/2011] [Indexed: 11/18/2022] Open
|
16
|
Overcoming drug resistance by regulating nuclear receptors. Adv Drug Deliv Rev 2010; 62:1257-64. [PMID: 20691230 DOI: 10.1016/j.addr.2010.07.008] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 07/21/2010] [Accepted: 07/23/2010] [Indexed: 12/12/2022]
Abstract
Drug resistance involves multiple mechanisms. Multidrug resistance (MDR) is the leading cause of treatment failure in cancer therapy. Elevated levels of MDR proteins [members of the ATP-binding cassette (ABC) transporter family] increase cellular efflux and decrease the effectiveness of chemotherapeutic agents. As a salvage approach to overcome drug resistance, inhibitors of MDR proteins have been developed, but have had limited success mainly due to undesired toxicities. Nuclear receptors (NRs), including pregnane X receptor (PXR), regulate the expression of proteins (including MDR proteins) involved in drug metabolism and drug clearance, suggesting that it is possible to overcome drug resistance by regulating NR. This review discusses the progress in the development of MDR inhibitors, with a focus on MDR1 inhibitors. Recent development of PXR antagonists to pharmacologically modulate PXR is also reviewed. The review proposes that selectively preventing the elevation of MDR levels by regulating NRs rather than non-selectively inhibiting the MDR activity by using MDR inhibitors can be a less toxic approach to overcome drug resistance during cancer therapy.
Collapse
|
17
|
Zhang S, Sagawa K, Arnold RD, Tseng E, Wang X, Morris ME. Interactions between the flavonoid biochanin A and P-glycoprotein substrates in rats: In vitro and in vivo. J Pharm Sci 2010; 99:430-41. [DOI: 10.1002/jps.21827] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
18
|
Chen Y, Goldstein JA. The transcriptional regulation of the human CYP2C genes. Curr Drug Metab 2009; 10:567-78. [PMID: 19702536 PMCID: PMC2808111 DOI: 10.2174/138920009789375397] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Accepted: 07/14/2009] [Indexed: 01/09/2023]
Abstract
In humans, four members of the CYP2C subfamily (CYP2C8, CYP2C9, CYP2C18, and CYP2C19) metabolize more than 20% of all therapeutic drugs as well as a number of endogenous compounds. The CYP2C enzymes are found predominantly in the liver, where they comprise approximately 20% of the total cytochrome P450. A variety of xenobiotics such as phenobarbital, rifampicin, and hyperforin have been shown to induce the transcriptional expression of CYP2C genes in primary human hepatocytes and to increase the metabolism of CYP2C substrates in vivo in man. This induction can result in drug-drug interactions, drug tolerance, and therapeutic failure. Several drug-activated nuclear receptors including CAR, PXR, VDR, and GR recognize drug responsive elements within the 5' flanking promoter region of CYP2C genes to mediate the transcriptional upregulation of these genes in response to xenobiotics and steroids. Other nuclear receptors and transcriptional factors including HNF4alpha, HNF3gamma, C/EBPalpha and more recently RORs, have been reported to regulate the constitutive expression of CYP2C genes in liver. The maximum transcriptional induction of CYP2C genes appears to be achieved through a coordinative cross-talk between drug responsive nuclear receptors, hepatic factors, and coactivators. The transcriptional regulatory mechanisms of the expression of CYP2C genes in extrahepatic tissues has received less study, but these may be altered by perturbations from pathological conditions such as ischemia as well as some of the receptors mentioned above.
Collapse
Affiliation(s)
- Yuping Chen
- Laboratory of Pharmacology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709
| | - Joyce A. Goldstein
- Laboratory of Pharmacology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709
| |
Collapse
|
19
|
Koshiba H, Hosokawa K, Mori T, Kubo A, Watanabe A, Honjo H. Intravenous paclitaxel is specifically retained in human gynecologic carcinoma tissues in vivo. Int J Gynecol Cancer 2009; 19:484-8. [PMID: 19509540 DOI: 10.1111/igc.0b013e3181a130db] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Paclitaxel and carboplatin are commonly used and well-tolerated agents for gynecologic malignancies. The persistence of platinum in human tissues for 14 days and the long-term retention of platinum in tissues for up to 17 months have been reported. Paclitaxel remains in human uterine cervical cancer tissues for 6 days. These findings prompted us to determine the retention of paclitaxel and carboplatin in human uterine cervical carcinoma, endometrial carcinoma, ovarian carcinoma, and pelvic lymph nodes to establish baseline parameters and guide the development of more effective treatment interventions. Thirty patients with uterine or ovarian carcinomas were treated with intravenous weekly paclitaxel-carboplatin chemotherapy before surgery. The concentrations of these agents in carcinoma tissue, normal cervical, myometrial and ovarian tissues, and pelvic lymph nodes were measured 5 days after the final administration. Paclitaxel was specifically retained in cervical, endometrial, and ovarian carcinoma tissues but was not detected in lymph nodes. In contrast to paclitaxel, carboplatin was readily detectable with similar levels in all tumor-associated and normal host tissues. In addition, a low paclitaxel concentration in cervical carcinoma tissue was significantly associated with short progression-free survival and overall survival. Further studies are needed to clarify the tissue distribution of anticancer drugs in humans and promote optimal treatment strategies enhancing paclitaxel lymphatic targeting.
Collapse
Affiliation(s)
- Hisato Koshiba
- Department of Obstetrics and Gynecology, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kamigyoku, Kyoto, Japan.
| | | | | | | | | | | |
Collapse
|
20
|
Hosten B, Abbara C, Petit B, Dauvin A, Bourasset F, Farinotti R, Gonin P, Bonhomme-Faivre L. Effect of interleukin-2 pretreatment on paclitaxel absorption and tissue disposition after oral and intravenous administration in mice. Drug Metab Dispos 2008; 36:1729-35. [PMID: 18508881 DOI: 10.1124/dmd.107.019091] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
The aim of the present study was to investigate the effects of recombinant interleukin (rIL)-2 treatment on paclitaxel (PLX) pharmacokinetics in the plasma and tissue of Lewis lung carcinoma-bearing mice (lung tissues and s.c. tumors). PLX pharmacokinetics studies were conducted after oral and i.v. administration of 15 and 4 mg/kg, respectively, either alone or after 3 days of rIL-2 pretreatment. The noncompartmental approach was used to determine the mean pharmacokinetic parameters using WinNonlin software (Pharsight, Mountain View, CA). The influence of rIL-2 pretreatment on physiological P-glycoprotein (P-gp) expression in lung and intestine was investigated by Western blot analysis. After oral administration of PLX, areas under the curve (AUC) in plasma, lung, and s.c. tumors were significantly higher (2.98, 2.66, and 3.41-fold, respectively) in the rIL-2 + PLX group as compared with the PLX group. However, no significant effect of rIL-2 pretreatment was observed in plasma or lung following i.v. administration of PLX. PLX AUC in s.c. tumors was significantly higher (1.37-fold) with rIL-2 pretreatment as compared with the PLX-alone group after i.v. injection. Pretreatment with rIL-2 appeared to have no effect on PLX plasma terminal half-life when PLX was administered orally or i.v. However, prolongation of PLX terminal half-life estimated from lung and s.c. tumors data had been observed. Increased PLX tissue absorption in the rIL-2-pretreated group may be explained by a decrease of P-gp expression in the intestines and lung or decreased functionality due to rIL-2. Oral administration allowed the targeted tissues a much higher PLX exposure as compared with i.v. administration.
Collapse
Affiliation(s)
- Benoît Hosten
- Unité Propre de Recherche et de l'Enseignement Supérieur, Equipe d'Accueil 2706, Faculty of Pharmaceutical Sciences, Université Paris Sud XI, Châtenay Malabry, France
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Wang H, Huang H, Li H, Teotico DG, Sinz M, Baker SD, Staudinger J, Kalpana G, Redinbo MR, Mani S. Activated pregnenolone X-receptor is a target for ketoconazole and its analogs. Clin Cancer Res 2007; 13:2488-95. [PMID: 17438109 DOI: 10.1158/1078-0432.ccr-06-1592] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Variations in biotransformation and elimination of microtubule-binding drugs are a major cause of unpredictable side effects during cancer therapy. Because the orphan receptor, pregnenolone X-receptor (PXR), coordinately regulates the expression of paclitaxel metabolizing and transport enzymes, controlling this process could improve therapeutic outcome. EXPERIMENTAL DESIGN In vitro RNA-, protein-, and transcription-based assays in multiple cell lines derived from hepatocytes and PXR wild-type and null mouse studies were employed to show the effects of ketoconazole and its analogues on ligand-activated PXR-mediated gene transcription and translation. RESULTS The transcriptional activation of genes regulating biotransformation and transport by the liganded human nuclear xenobiotic receptor, PXR, was inhibited by the commonly used antifungal ketoconazole and related azole analogs. Mutations at the AF-2 surface of the human PXR ligand-binding domain indicate that ketoconazole may interact with specific residues outside the ligand-binding pocket. Furthermore, in contrast to that observed in PXR (+/+) mice, genetic loss of PXR results in increased (preserved) blood levels of paclitaxel. CONCLUSIONS These studies show that some azole compounds repress the coordinated activation of genes involved in drug metabolism by blocking PXR activation. Because loss of PXR maintains blood levels of paclitaxel upon chronic dosing, ketoconazole analogues may also serve to preserve paclitaxel blood levels on chronic dosing of drugs. Our observations may facilitate new strategies to improve the clinical efficacy of drugs and to reduce therapeutic side effects.
Collapse
Affiliation(s)
- Hongwei Wang
- Albert Einstein Cancer Center, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Lee MD, Ayanoglu E, Gong L. Drug-induced changes in P450 enzyme expression at the gene expression level: a new dimension to the analysis of drug-drug interactions. Xenobiotica 2007; 36:1013-80. [PMID: 17118918 DOI: 10.1080/00498250600861785] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Drug-drug interactions (DDIs) caused by direct chemical inhibition of key drug-metabolizing cytochrome P450 enzymes by a co-administered drug have been well documented and well understood. However, many other well-documented DDIs cannot be so readily explained. Recent investigations into drug and other xenobiotic-mediated expression changes of P450 genes have broadened our understanding of drug metabolism and DDI. In order to gain additional information on DDI, we have integrated existing information on drugs that are substrates, inhibitors, or inducers of important drug-metabolizing P450s with new data on drug-mediated expression changes of the same set of cytochrome P450s from a large-scale microarray gene expression database of drug-treated rat tissues. Existing information on substrates and inhibitors has been updated and reorganized into drug-cytochrome P450 matrices in order to facilitate comparative analysis of new information on inducers and suppressors. When examined at the gene expression level, a total of 119 currently marketed drugs from 265 examined were found to be cytochrome P450 inducers, and 83 were found to be suppressors. The value of this new information is illustrated with a more detailed examination of the DDI between PPARalpha agonists and HMG-CoA reductase inhibitors. This paper proposes that the well-documented, but poorly understood, increase in incidence of rhabdomyolysis when a PPARalpha agonist is co-administered with a HMG-CoA reductase inhibitor is at least in part the result of PPARalpha-induced general suppression of drug metabolism enzymes in liver. The authors believe this type of information will provide insights to other poorly understood DDI questions and stimulate further laboratory and clinical investigations on xenobiotic-mediated induction and suppression of drug metabolism.
Collapse
Affiliation(s)
- M D Lee
- Iconix Biosciences, Mountain View, CA 94043, USA.
| | | | | |
Collapse
|
23
|
Frapolli R, Marangon E, Zaffaroni M, Colombo T, Falcioni C, Bagnati R, Simone M, D'Incalci M, Manzotti C, Fontana G, Morazzoni P, Zucchetti M. Pharmacokinetics and metabolism in mice of IDN 5390 (13-(N-Boc-3-i-butylisoserinoyl)-C-7,8-seco-10-deacetylbaccatin III), a new oral c-seco-taxane derivative with antiangiogenic property effective on paclitaxel-resistant tumors. Drug Metab Dispos 2006; 34:2028-35. [PMID: 16963486 DOI: 10.1124/dmd.106.012153] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
IDN 5390 (13-(N-Boc-3-i-butylisoserinoyl)-C-7,8-seco-10-deacetylbaccatin III) is a new taxane, derived from 7,8-C-seco-10-deacetylbaccatin, selected for its ability to inhibit angiogenesis, mainly by acting on endothelial cell motility, and for its selective activity on class III beta-tubulin. In vivo, IDN 5390 shows activity against paclitaxel-sensitive and -resistant tumors when administered on a prolonged, continuous dosage schedule. We studied the pharmacokinetics and bioavailabilty of the drug in mice after single and repeated oral treatment. IDN 5390 was rapidly absorbed after oral administration, with good bioavailability (43%). After intravenous injection, it was extensively distributed in tissue, mainly the liver, kidney, and heart, with low but persistent levels in brain. The kinetics appear dose-dependent with a clearance of 2.6, 1.4, and 0.9 l/kg at, respectively, 60, 90, and 120 mg/kg, and a half-life 24, 36, and 54 min. After prolonged daily oral doses given for 2 weeks, we found that there was a decrease in drug availability; i.e., the area under the concentration-time curve value after p.o. daily administration on day 14 was 2-fold lower than that on day 1. Metabolism plays a major role in elimination of the drug, and at least 12 metabolites were identified in feces and urine. The percentage excreted as metabolites after an oral dose (42%) was higher than that after the i.v. dose (33%), suggesting a first-pass effect. Four metabolites were found in plasma at detectable levels; one of them, with restored taxane scaffold, is a species 3 times more potent than IDN 5390, possibly contributing to the observed anti-tumor activity.
Collapse
Affiliation(s)
- R Frapolli
- Laboratory of Cancer Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri, Via Eritrea, 62, 20157 Milano, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Labrie P, Maddaford SP, Lacroix J, Catalano C, Lee DKH, Rakhit S, Gaudreault RC. In vitro activity of novel dual action MDR anthranilamide modulators with inhibitory activity at CYP-450. Bioorg Med Chem 2006; 14:7972-87. [PMID: 16904325 DOI: 10.1016/j.bmc.2006.07.055] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Revised: 07/11/2006] [Accepted: 07/26/2006] [Indexed: 10/24/2022]
Abstract
Synthesis and in vitro cytotoxicity assays of new anthranilamide MDR modulators have been performed to assess their inhibition potency of the P-glycoprotein (P-gp) transporter. The aromatic spacer group between nitrogen atoms (N1 and N2) in the known inhibitor XR9576 was replaced with a flexible alkyl chain of 2 to 6 carbon atoms in length. 6,7-Dimethoxy-1,2,3,4-tetrahydroisoquinoline and their open-chain N-methylhomoveratrylamine counterparts were shown to be potent P-gp inhibitors. The maximal inhibition was obtained when using an ethyl or propyl spacer. Several compounds were more potent than verapamil and intrinsically less cytotoxic than XR9576. In addition, in vitro metabolism studies of 23a with a subset of human CYP-450 isoforms revealed that, unlike XR9576, 23a inhibited CYP3A4, an enzyme that colocalizes with P-gp in the intestine and contributes to tumor cell chemoresistance by enhancing the biodisposition of anticancer drugs such as paclitaxel toward metabolism. In this context, 22a might be a suitable candidate for further drug development.
Collapse
Affiliation(s)
- Philippe Labrie
- Instituts de Biomateriaux et des Biotechnologies, Hopital St-François d'Assise, Laval University, Que., Canada G1L 3L5.
| | | | | | | | | | | | | |
Collapse
|
25
|
Mould DR, Fleming GF, Darcy KM, Spriggs D. Population analysis of a 24-h paclitaxel infusion in advanced endometrial cancer: a gynaecological oncology group study. Br J Clin Pharmacol 2006; 62:56-70. [PMID: 16842379 PMCID: PMC1885077 DOI: 10.1111/j.1365-2125.2006.02718.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2005] [Accepted: 05/19/2006] [Indexed: 01/10/2023] Open
Abstract
AIMS To examine determinants of paclitaxel disposition and the association between paclitaxel exposure and toxicity or survival in patients with advanced stage or recurrent endometrial cancer treated with doxorubicin plus paclitaxel. METHODS A limited sampling scheme was used to examine the population pharmacokinetics of paclitaxel in 160 patients from one arm of a randomized Phase III trial of doxorubicin plus paclitaxel or cisplatin. Four plasma samples per patient were collected at approximately 0, 3, 22 and 27 h after the first 24-h infusion of paclitaxel and submitted to the Gynecological Oncology Group (GOG) Pharmacology Core Laboratory. Total paclitaxel concentrations were quantified by LC/MS and paclitaxel disposition was examined using NONMEM. Paclitaxel exposure was evaluated for associations with toxicity or survival. RESULTS Patient weight, age and serum glutamic-oxaloacetic transaminase level were determinants of paclitaxel clearance (clearance increased 0.437 l h-1 kg-1; decreased 0.223 l h-1 year-1 and 0.105 l h-1 IU-1). Bayesian shrinkage was minimal for this parameter. In different measures of paclitaxel exposure, AUC was most predictive of toxicity, with higher AUC associated with granulocytopenia [probability of 1% at AUC=1 to 22% at AUC=4 microg l-1 h-1 for performance status (PS)=0]. PS was more strongly associated with survival than disease stage and higher paclitaxel AUC was associated with worse survival irrespective of PS and stage. CONCLUSIONS Paclitaxel AUC is an independent predictor of granulocytopenia and survival in patients with advanced stage or recurrent endometrial cancer. Future studies are needed to validate the latter finding. This study confirms the appropriateness of evaluating pharmacokinetics and pharmacodynamics in multicentre oncology trials.
Collapse
Affiliation(s)
- Diane R Mould
- Projections Research, Inc.Phoenixville, PA
- Department of Medicine, University of ChicagoChicago, IL
- Gynecological Oncology Group, Statistical and Data Center, Roswell Park Cancer InstituteBuffalo, USA
- Solid Tumor Oncology, Winthrop Rockefeller Chair of Medical Oncology, Memorial Sloan Kettering Cancer CenterNew York, NY, USA
| | - Gini F Fleming
- Department of Medicine, University of ChicagoChicago, IL
| | - Kathleen M Darcy
- Gynecological Oncology Group, Statistical and Data Center, Roswell Park Cancer InstituteBuffalo, USA
| | - David Spriggs
- Solid Tumor Oncology, Winthrop Rockefeller Chair of Medical Oncology, Memorial Sloan Kettering Cancer CenterNew York, NY, USA
| |
Collapse
|