1
|
Mitsiades IR, Onozato M, Iafrate AJ, Hicks D, Gülhan DC, Sgroi DC, Rheinbay E. ERBB2/HOXB13 co-amplification with interstitial loss of BRCA1 defines a unique subset of breast cancers. Breast Cancer Res 2024; 26:185. [PMID: 39695741 DOI: 10.1186/s13058-024-01943-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 12/03/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND The HOXB13/IL17RB gene expression biomarker has been shown to predict response to adjuvant and extended endocrine therapy in patients with early-stage ER+ HER2- breast tumors. HOXB13 gene expression is the primary determinant driving the prognostic and endocrine treatment-predictive performance of the biomarker. Currently, there is limited data on HOXB13 expression in HER2+ and ER- breast cancers. Herein, we studied the expression of HOXB13 in large cohorts of HER2+ and ER- breast cancers. METHODS We investigated gene expression, genomic copy number, mutational signatures, and clinical outcome data in the TGGA and METABRIC breast cancer cohorts. Genomic-based gene amplification data was validated with tri-colored fluorescence in situ hybridization. RESULTS In the TCGA breast cancer cohort, HOXB13 gene expression was significantly higher in HER2+ versus HER2- breast cancers, and its expression was also significantly higher in the ER- versus ER+ breast cancers. HOXB13 is frequently co-gained or co-amplified with ERBB2. Joint copy gains of HOXB13 and ERBB2 occurred with low-level co-gains or high-level co-amplifications (co-amp), the latter of which is associated with an interstitial loss that includes the tumor suppressor BRCA1. ERBB2/HOXB13 co-amp tumors with interstitial BRCA1 loss exhibit a mutational signature associated with APOBEC deaminase activity and copy number signatures associated with chromothripsis and genomic instability. Among ERBB2-amplified tumors of different tissue origins, ERBB2/HOXB13 co-amp with a BRCA1 loss appeared to be enriched in breast cancer compared to other tumor types. Lastly, patients with ERBB2/HOXB13 co-amplified and BRCA1 lost tumors displayed a significantly shorter progression-free survival (PFS) than those with ERBB2-only amplifications. The difference in PFS was restricted to the ER- subset patients and this difference in PFS was not solely driven by HOXB13 gene expression. CONCLUSIONS HOXB13 is frequently co-gained with ERBB2 at both low-copy number level or as complex high-level amplification with relative BRCA1 loss. ERBB2/HOXB13 amplified, BRCA1-lost tumors are strongly enriched in breast cancer, and patients with such breast tumors experience a shortened PFS.
Collapse
Affiliation(s)
- Irene Rin Mitsiades
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA, 02129, USA
| | - Maristela Onozato
- Vertex Pharmaceuticals, Preclinical Safety Assessment, Pathology, 316 Northern Ave, Boston, MA, 02210, USA
| | - A John Iafrate
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA, 02129, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Daniel Hicks
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA, 02129, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Harvard Medical School, Boston, MA, 02115, USA
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, USA
| | - Doğa C Gülhan
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA, 02129, USA
- The Broad Institute or MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Dennis C Sgroi
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA, 02129, USA.
- Department of Pathology, Massachusetts General Hospital, Boston, MA, 02114, USA.
- Harvard Medical School, Boston, MA, 02115, USA.
| | - Esther Rheinbay
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA, 02129, USA.
- The Broad Institute or MIT and Harvard, Cambridge, MA, USA.
- Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
2
|
Nynca A, Swigonska S, Molcan T, Petroff BK, Ciereszko RE. Molecular Action of Tamoxifen in the Ovaries of Rats with Mammary Neoplasia. Int J Mol Sci 2023; 24:15767. [PMID: 37958751 PMCID: PMC10649132 DOI: 10.3390/ijms242115767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/20/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Tamoxifen (TAM) is a drug commonly used in patients with breast cancer. The anticancer effect of TAM occurs via its ability to antagonize estrogen-dependent growth of mammary epithelial cells. Previously, we demonstrated that TAM prevented the chemotherapy-induced loss of ovarian follicular reserves in both cancer-free rats and rats with cancer. Such follicular loss is a main cause of infertility in young women treated for cancer. The current study was undertaken to discover the molecules and intracellular pathways involved in the action of TAM in the ovaries of rats with mammary tumors. To meet this goal we used transcriptomic (RNA-Seq) and proteomic (2D-DIGE/MS) approaches. TAM inhibited the expression of genes and lncRNAs involved in ovarian steroidogenesis. Moreover, TAM altered the expression of genes related to primordial follicle activation or arrest. In addition, proteomic screening indicated the importance of basic metabolic processes in the ovarian actions of TAM. Although simple extrapolation of these data to humans is not possible, the results of this study emphasize the need to explore the ability of TAM to affect ovarian function in women undergoing cancer treatment.
Collapse
Affiliation(s)
- Anna Nynca
- Department of Animal Anatomy and Physiology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland;
| | - Sylwia Swigonska
- Laboratory of Molecular Diagnostics, University of Warmia and Mazury in Olsztyn, 10-720 Olsztyn, Poland;
| | - Tomasz Molcan
- Molecular Biology Laboratory, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-243 Olsztyn, Poland;
| | - Brian K. Petroff
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI 48910, USA;
| | - Renata E. Ciereszko
- Department of Animal Anatomy and Physiology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland;
- Laboratory of Molecular Diagnostics, University of Warmia and Mazury in Olsztyn, 10-720 Olsztyn, Poland;
| |
Collapse
|
3
|
Blakely B, Shin S, Jin K. Overview of the therapeutic strategies for ER positive breast cancer. Biochem Pharmacol 2023; 212:115552. [PMID: 37068524 PMCID: PMC10394654 DOI: 10.1016/j.bcp.2023.115552] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/30/2023] [Accepted: 04/10/2023] [Indexed: 04/19/2023]
Abstract
Estrogen Receptor is the driving transcription factor in about 75% of all breast cancers, which is the target of endocrine therapies, but drug resistance is a common clinical problem. ESR1 point mutations at the ligand binding domain are frequently identified in metastatic tumor and ctDNA (Circulating tumor DNA) derived from ER positive breast cancer patients with endocrine therapies. Although endocrine therapy and CDK4/6 inhibitor therapy have demonstrated preclinical and clinical benefits for breast cancer, the development of resistance remains a significant challenge and the detailed mechanisms, and potential therapeutic targets in advanced breast cancer yet to be revealed. Since a crosstalk between tumor and tumor microenvironment (TME) plays an important role to grow tumor and metastasis, this effect could serve as key regulators in the resistance of endocrine therapy and the transition of breast cancer cells to metastasis. In this article, we have reviewed recent progress in endocrine therapy and the contribution of TME to ER positive breast cancer.
Collapse
Affiliation(s)
- Brianna Blakely
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Science, Albany, NY, United States
| | - Seobum Shin
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Science, Albany, NY, United States
| | - Kideok Jin
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Science, Albany, NY, United States.
| |
Collapse
|
4
|
du Plessis M, Fourie C, Stone W, Engelbrecht AM. The impact of endocrine disrupting compounds and carcinogens in wastewater: Implications for breast cancer. Biochimie 2023; 209:103-115. [PMID: 36775066 DOI: 10.1016/j.biochi.2023.02.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/12/2023]
Abstract
The incidence of breast cancer is often associated with geographic variation which indicates that a person's surrounding environment can be an important etiological factor in cancer development. Environmental risk factors can include exposure to sewage- or wastewater, which consist of a complex mixture of pathogens, mutagens and carcinogens. Wastewater contains primarily carbonaceous, nitrogenous and phosphorus compounds, however it can also contain trace amounts of chemical pollutants including toxic metal cations, hydrocarbons and pesticides. More importantly, the contamination of drinking water by wastewater is a potential source of exposure to mammary carcinogens and endocrine disrupting compounds. Organic solvents and other pollutants often found in wastewater have been detected in various tissues, including breast and adipose tissues. Furthermore, these pollutants such as phenolic compounds in some detergents and plastics, as well as parabens and pesticides can mimic estrogen. High estrogen levels are a well-established risk factor for estrogen-receptor (ER) positive breast cancer. Therefore, exposure to wastewater is a risk factor for the initiation, progression and metastasis of breast cancer. Carcinogens present in wastewater can promote tumourigenesis through various mechanisms, including the formation of DNA adducts, gene mutations and oxidative stress. Lastly, the presence of endocrine disrupting compounds in wastewater can have negative implications for ER-positive breast cancers, where these molecules can activate ERα to promote cell proliferation, survival and metastasis. As such, strategies should be implemented to limit exposure, such as providing funding into treatment technologies and implementation of regulations that limit the production and use of these potentially harmful chemicals.
Collapse
Affiliation(s)
- Manisha du Plessis
- Department of Physiological Sciences, Faculty of Natural Sciences, Stellenbosch University, Stellenbosch, 7600, South Africa.
| | - Carla Fourie
- Department of Physiological Sciences, Faculty of Natural Sciences, Stellenbosch University, Stellenbosch, 7600, South Africa.
| | - Wendy Stone
- Stellenbosch University Water Institute, Faculty of Science, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Anna-Mart Engelbrecht
- Department of Physiological Sciences, Faculty of Natural Sciences, Stellenbosch University, Stellenbosch, 7600, South Africa; African Cancer Institute (ACI), Department of Global Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg Campus, South Africa
| |
Collapse
|
5
|
Nwosu IO, Piccolo SR. A systematic review of datasets that can help elucidate relationships among gene expression, race, and immunohistochemistry-defined subtypes in breast cancer. Cancer Biol Ther 2021; 22:417-429. [PMID: 34412551 DOI: 10.1080/15384047.2021.1953902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Scholarly requirements have led to a massive increase of transcriptomic data in the public domain, with millions of samples available for secondary research. We identified gene-expression datasets representing 10,214 breast-cancer patients in public databases. We focused on datasets that included patient metadata on race and/or immunohistochemistry (IHC) profiling of the ER, PR, and HER-2 proteins. This review provides a summary of these datasets and describes findings from 32 research articles associated with the datasets. These studies have helped to elucidate relationships between IHC, race, and/or treatment options, as well as relationships between IHC status and the breast-cancer intrinsic subtypes. We have also identified broad themes across the analysis methodologies used in these studies, including breast cancer subtyping, deriving predictive biomarkers, identifying differentially expressed genes, and optimizing data processing. Finally, we discuss limitations of prior work and recommend future directions for reusing these datasets in secondary analyses.
Collapse
Affiliation(s)
| | - Stephen R Piccolo
- Department of Biology, Brigham Young University, Provo, Utah, United States
| |
Collapse
|
6
|
La Camera G, Gelsomino L, Caruso A, Panza S, Barone I, Bonofiglio D, Andò S, Giordano C, Catalano S. The Emerging Role of Extracellular Vesicles in Endocrine Resistant Breast Cancer. Cancers (Basel) 2021; 13:cancers13051160. [PMID: 33800302 PMCID: PMC7962645 DOI: 10.3390/cancers13051160] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Two-thirds of breast cancer patients present an estrogen receptor–positive tumor at diagnosis, and the main treatment options for these patients are endocrine therapies such as aromatase inhibitors, selective modulators of estrogen receptor activity or selective estrogen receptor down-regulators. Although endocrine therapies have high efficacy in early-stage breast cancers, the failure of the therapeutic response to these hormonal treatments remains the major clinical challenge. Recently, extracellular vesicles (EVs) have emerged as a novel mechanism of drug resistance. Indeed, EVs isolated from tumor and stromal cells act as key messengers in intercellular communications able to propagate traits of resistance and/or educate the microenvironment to sustain a breast cancer resistant phenotype. Understanding the EV-mediated molecular mechanisms involved in hormonal resistance can provide the rationale for novel and effective treatment modalities and allow for the identification of potential biomarkers to monitor therapy response in ER-positive breast cancer patients. Abstract Breast cancer is the most common solid malignancy diagnosed in females worldwide, and approximately 70% of these tumors express estrogen receptor α (ERα), the main biomarker of endocrine therapy. Unfortunately, despite the use of long-term anti-hormone adjuvant treatment, which has significantly reduced patient mortality, resistance to the endocrine treatments often develops, leading to disease recurrence and limiting clinical benefits. Emerging evidence indicates that extracellular vesicles (EVs), nanosized particles that are released by all cell types and responsible for local and systemic intercellular communications, might represent a newly identified mechanism underlying endocrine resistance. Unraveling the role of EVs, released by transformed cells during the tumor evolution under endocrine therapy, is still an open question in the cancer research area and the molecular mechanisms involved should be better defined to discover alternative therapeutic approaches to overcome resistance. In this review, we will provide an overview of recent findings on the involvement of EVs in sustaining hormonal resistance in breast cancer and discuss opportunities for their potential use as biomarkers to monitor the therapeutic response and disease progression.
Collapse
Affiliation(s)
- Giusi La Camera
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, CS, Italy; (G.L.C.); (L.G.); (A.C.); (S.P.); (I.B.); (D.B.); (S.A.)
| | - Luca Gelsomino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, CS, Italy; (G.L.C.); (L.G.); (A.C.); (S.P.); (I.B.); (D.B.); (S.A.)
| | - Amanda Caruso
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, CS, Italy; (G.L.C.); (L.G.); (A.C.); (S.P.); (I.B.); (D.B.); (S.A.)
| | - Salvatore Panza
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, CS, Italy; (G.L.C.); (L.G.); (A.C.); (S.P.); (I.B.); (D.B.); (S.A.)
| | - Ines Barone
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, CS, Italy; (G.L.C.); (L.G.); (A.C.); (S.P.); (I.B.); (D.B.); (S.A.)
| | - Daniela Bonofiglio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, CS, Italy; (G.L.C.); (L.G.); (A.C.); (S.P.); (I.B.); (D.B.); (S.A.)
- Centro Sanitario, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, CS, Italy
| | - Sebastiano Andò
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, CS, Italy; (G.L.C.); (L.G.); (A.C.); (S.P.); (I.B.); (D.B.); (S.A.)
- Centro Sanitario, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, CS, Italy
| | - Cinzia Giordano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, CS, Italy; (G.L.C.); (L.G.); (A.C.); (S.P.); (I.B.); (D.B.); (S.A.)
- Centro Sanitario, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, CS, Italy
- Correspondence: (C.G.); (S.C.); Tel.: +39-0984-496216 (C.G.); +39-0984-496207 (S.C.)
| | - Stefania Catalano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, CS, Italy; (G.L.C.); (L.G.); (A.C.); (S.P.); (I.B.); (D.B.); (S.A.)
- Centro Sanitario, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, CS, Italy
- Correspondence: (C.G.); (S.C.); Tel.: +39-0984-496216 (C.G.); +39-0984-496207 (S.C.)
| |
Collapse
|
7
|
Alkhanjaf AAM, Raggiaschi R, Crawford M, Pinto G, Godovac‐Zimmermann J. Moonlighting Proteins and Cardiopathy in the Spatial Response of MCF-7 Breast Cancer Cells to Tamoxifen. Proteomics Clin Appl 2019; 13:e1900029. [PMID: 31282103 PMCID: PMC6771495 DOI: 10.1002/prca.201900029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 07/03/2019] [Indexed: 01/18/2023]
Abstract
BACKGROUND The purpose of this study is to apply quantitative high-throughput proteomics methods to investigate dynamic aspects of protein changes in nucleocytoplasmic distribution of proteins and of total protein abundance for MCF-7 cells exposed to tamoxifen (Tam) in order to reveal the agonistic and antagonistic roles of the drug. EXPERIMENTAL DESIGN The MS-based global quantitative proteomics with the analysis of fractions enriched in target subcellular locations is applied to measure the changes in total abundance and in the compartmental abundance/distribution between the nucleus and cytoplasm for several thousand proteins differentially expressed in MCF-7 cells in response to Tam stimulation. RESULTS The response of MCF-7 cells to the Tam treatment shows significant changes in subcellular abundance rather than in their total abundance. The bioinformatics study reveals the relevance of moonlighting proteins and numerous pathways involved in Tam response of MCF-7 including some of which may explain the agonistic and antagonistic roles of the drug. CONCLUSIONS The results indicate possible protective role of Tam against cardiovascular diseases as well as its involvement in G-protein coupled receptors pathways that enhance breast tissue proliferation.
Collapse
Affiliation(s)
- Abdulrab Ahmed M. Alkhanjaf
- Proteomics and Molecular Cell DynamicsDivision of MedicineSchool of Life and Medical SciencesUniversity College LondonNW3 2PFLondonUK
- Molecular Biotechnology, Department of Clinical Laboratory SciencesCollege of Applied Medical sciencesNajran UniversityNajran61441Saudi Arabia
| | - Roberto Raggiaschi
- Proteomics and Molecular Cell DynamicsDivision of MedicineSchool of Life and Medical SciencesUniversity College LondonNW3 2PFLondonUK
| | - Mark Crawford
- Proteomics and Molecular Cell DynamicsDivision of MedicineSchool of Life and Medical SciencesUniversity College LondonNW3 2PFLondonUK
| | - Gabriella Pinto
- Proteomics and Molecular Cell DynamicsDivision of MedicineSchool of Life and Medical SciencesUniversity College LondonNW3 2PFLondonUK
- Department of Chemical SciencesUniversity of Naples Federico II80126NaplesItaly
| | - Jasminka Godovac‐Zimmermann
- Proteomics and Molecular Cell DynamicsDivision of MedicineSchool of Life and Medical SciencesUniversity College LondonNW3 2PFLondonUK
| |
Collapse
|
8
|
Alkhanjaf AAM, Raggiaschi R, Crawford M, Pinto G, Godovac-Zimmermann J. Moonlighting Proteins and Cardiopathy in the Spatial Response of MCF-7 Breast Cancer Cells to Tamoxifen. PROTEOMICS. CLINICAL APPLICATIONS 2019. [PMID: 31282103 DOI: 10.1002/prca.201900029,] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND The purpose of this study is to apply quantitative high-throughput proteomics methods to investigate dynamic aspects of protein changes in nucleocytoplasmic distribution of proteins and of total protein abundance for MCF-7 cells exposed to tamoxifen (Tam) in order to reveal the agonistic and antagonistic roles of the drug. EXPERIMENTAL DESIGN The MS-based global quantitative proteomics with the analysis of fractions enriched in target subcellular locations is applied to measure the changes in total abundance and in the compartmental abundance/distribution between the nucleus and cytoplasm for several thousand proteins differentially expressed in MCF-7 cells in response to Tam stimulation. RESULTS The response of MCF-7 cells to the Tam treatment shows significant changes in subcellular abundance rather than in their total abundance. The bioinformatics study reveals the relevance of moonlighting proteins and numerous pathways involved in Tam response of MCF-7 including some of which may explain the agonistic and antagonistic roles of the drug. CONCLUSIONS The results indicate possible protective role of Tam against cardiovascular diseases as well as its involvement in G-protein coupled receptors pathways that enhance breast tissue proliferation.
Collapse
Affiliation(s)
- Abdulrab Ahmed M Alkhanjaf
- Proteomics and Molecular Cell Dynamics, Division of Medicine, School of Life and Medical Sciences, University College London, NW3 2PF, London, UK.,Molecular Biotechnology, Department of Clinical Laboratory Sciences, College of Applied Medical sciences, Najran University, Najran, 61441, Saudi Arabia
| | - Roberto Raggiaschi
- Proteomics and Molecular Cell Dynamics, Division of Medicine, School of Life and Medical Sciences, University College London, NW3 2PF, London, UK
| | - Mark Crawford
- Proteomics and Molecular Cell Dynamics, Division of Medicine, School of Life and Medical Sciences, University College London, NW3 2PF, London, UK
| | - Gabriella Pinto
- Proteomics and Molecular Cell Dynamics, Division of Medicine, School of Life and Medical Sciences, University College London, NW3 2PF, London, UK.,Department of Chemical Sciences, University of Naples Federico II, 80126, Naples, Italy
| | - Jasminka Godovac-Zimmermann
- Proteomics and Molecular Cell Dynamics, Division of Medicine, School of Life and Medical Sciences, University College London, NW3 2PF, London, UK
| |
Collapse
|
9
|
Tamoxifen and pregnancy: an absolute contraindication? Breast Cancer Res Treat 2019; 175:17-25. [PMID: 30707336 DOI: 10.1007/s10549-019-05154-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 01/28/2019] [Indexed: 10/27/2022]
Abstract
PURPOSE Breast cancer is the most common malignancy among young women of reproductive age. Adjuvant treatment with tamoxifen reduces the risk of recurrence in hormone-sensitive breast cancer. However, the use of tamoxifen is considered contraindicated during pregnancy, because of a limited number of case reports demonstrating potential adverse effects on the fetus. The objective of this report is to give a more broad overview of the available data on the effect of tamoxifen exposure during pregnancy. METHODS A literature review was performed using PubMed and the databases of the Netherlands Pharmacovigilance Centre Lareb and of the International Network on Cancer, Infertility, and Pregnancy. RESULTS A total of 238 cases of tamoxifen use during pregnancy were found. Of the 167 pregnancies with known outcome, 21 were complicated by an abnormal fetal development. The malformations described were non-specific and the majority of cases concerned healthy infants despite exposure to tamoxifen. CONCLUSION There seems to be an increased risk of fetal abnormalities when taking tamoxifen during pregnancy (12.6% in contrast to 3.9% in the general population), but the evidence is limited and no causal relationship could be established. The possible disadvantage of postponing or discontinuing tamoxifen for the maternal prognosis is unclear. Patients should be counseled about the use of tamoxifen during pregnancy instead of presenting it as being absolutely contraindicated.
Collapse
|
10
|
BCL2L12: a multiply spliced gene with independent prognostic significance in breast cancer. ACTA ACUST UNITED AC 2018; 57:276-287. [DOI: 10.1515/cclm-2018-0272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 09/06/2018] [Indexed: 11/15/2022]
Abstract
Abstract
Background
Alternative splicing is a key process in carcinogenesis and, from a clinical aspect, holds great promises, as alternatively spliced variants have emerged as an untapped source of diagnostic and prognostic markers. Our aim was to assess the prognostic value of three recently recognized splice variants of the apoptosis-related gene, BCL2L12, in breast cancer (BC).
Methods
Total RNA was extracted from breast samples (150 BC and 80 tumor-adjacent normal tissues) and, following cDNA synthesis, a variant-specific qPCR was performed for the expressional quantification of BCL2L12 v.1, v.2 and v.4 transcript variants. Extensive statistical analysis, including bootstrap resampling and internal validation, was conducted in order to evaluate the associations of v.1, v.2 and v.4 expression with patients’ clinopathological and survival data.
Results
All examined BCL2L12 variants were significantly upregulated in BC specimens compared to their non-cancerous counterpart (v.1, p<0.001; v.2, p=0.009; v.4, p=0.004). Increased BCL2L12 v.4 mRNA expression was associated with markers of unfavorable prognosis namely, advanced tumor grade (p=0.002), ER- (p=0.015)/PR- (p<0.001) negativity, Ki-67-positivity (p=0.007) and high NPI (Nottingham prognostic index) score (p=0.033). Moreover, v.4 was significantly overexpressed in women with triple negative BC (TNBC) and HER2-positive tumors compared to those harboring luminal tumors (p<0.001). Survival analysis disclosed that BCL2L12 v.2 overexpression, as a continuous variable ([HR]=0.45, 95% CI=0.17–0.82, p=0.010), is a strong and independent marker of favorable prognosis for BC patients. Interestingly, v.2 retains its prognostic value in patients with Grade II/III ([HR]=0.21, 95% CI=0.05–0.57, p=0.006) or HER2-positive/TNBC tumors ([HR]=0.25, 95% CI=0.05–0.74, p=0.042).
Conclusions
BCL2L12 v.1, v.2, v.4 are aberrantly expressed in BC. Their expressional analysis by cost-effective molecular methods could provide a novel molecular tool for BC management.
Collapse
|
11
|
Estrogen promotes progression of hormone-dependent breast cancer through CCL2-CCR2 axis by upregulation of Twist via PI3K/AKT/NF-κB signaling. Sci Rep 2018; 8:9575. [PMID: 29934505 PMCID: PMC6015029 DOI: 10.1038/s41598-018-27810-6] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 06/11/2018] [Indexed: 02/07/2023] Open
Abstract
The chemokine (C-C motif) ligand 2 (CCL2) with its cognate receptor chemokine (C-C motif) receptor 2 (CCR2) plays important roles in tumor invasion and metastasis. However, the mechanisms and mediators for autocrine CCL2 and CCL2-CCR2 axis remain elusive in breast cancer. Here we examined the levels of CCL2 in 4 breast cancer cell lines along with 57 human breast cancer specimens and found them significantly increased with presence of 17β-estradiol (E2) in estrogen receptor (ER)-positive breast cancer cells, while anti-estrogen treatment weakened this enhancement. CCL2 expression positively correlated with Twist staining and aggressiveness of breast cancer. Estrogen exposure facilitated the proliferation, invasion and metastasis of hormone-dependent breast cancer and promoted angiogenesis via the increased secretion of CCL2 in vitro and in vivo, which could be suppressed by disruption of CCL2-CCR2 axis with CCR2 antagonist RS102895. Knockdown of Twist in MCF-7 cells significantly inhibited E2-induced CCL2 production, indicating an essential role of Twist in CCL2 regulation under estrogenic condition. Our data show the hormonal regulation on CCL2-CCR2 axis is associated with enhanced Twist expression via activation of ERα and PI3K/AKT/NF-κB signaling. Thus, CCL2-CCR2 axis may represent as a novel therapeutic target eagerly needed for hormone-dependent breast cancer.
Collapse
|
12
|
Kruse V, Van de Wiele C, Borms M, Maes A, Pottel H, Sathekge M, Cocquyt V. CA 15.3 measurements for separating FDG PET/CT positive from negative findings in breast carcinoma recurrence. Nuklearmedizin 2018; 53:131-8. [DOI: 10.3413/nukmed-0634-13-12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 05/13/2014] [Indexed: 02/04/2023]
Abstract
SummaryIn breast cancer CA 15.3 is considered the tumour marker of choice. CA 15.3 is directly related to the disease extent and to hormone status (estrogen receptor ER+/ ER-, progesterone receptor PR+/PR-). This study was designed to assess the impact of disease extent, hormone receptor and HER2-status, and circulating blood volume on the area-under the ROC-curve of CA 15.3 to separate FDG PET positive from negative findings. Patients, methods: We retrospectively evaluated 379 FDG PET/CT examinations performed in 80 patients with breast cancer. Blood volumes were derived using the formulas by Nadler and multiplied by their corresponding CA 15.3 measurement. Results: ROC-curve analysis revealed an AUC of 0.695 (p = 0.0001) for CA 15.3 to separate FDG PET positive from negative findings. AUC measurements to separate normal scan find-ings from loco-regional disease and meta- static disease were 0.527 (p = 0.587) and 0.732 (p = 0.0001), respectively. AUC measurements for CA 15.3 to separate positive from negative FDG PET findings, in ER+ and ER- patients, were respectively 0.772 (p = 0.0001) and 0.596 (p = 0.143). AUC measurements for CA 15.3 to separate positive from negative FDG PET findings, in PR+ and PR- patients, were respectively 0.675 (p = 0.0001) and 0.694 (p = 0.0001). In HER2-positive and -negative patients, the AUC measurements were respectively 0.594 (p = 0.178) and 0.701 (p = 0.0001) to separate positive from negative FDG PET findings. Conclusion: The AUC for CA 15.3 measurements to separate FDG PET positive from negative findings in breast cancer patients with suspected recurrence proved to be directly related to the extent of the recurrent disease and hormone receptor status and inversely related to HER2-status. Correcting CA 15.3 measurements for blood volumes did not impact the AUC.
Collapse
|
13
|
Tsuboi K, Nagatomo T, Gohno T, Higuchi T, Sasaki S, Fujiki N, Kurosumi M, Takei H, Yamaguchi Y, Niwa T, Hayashi SI. Single CpG site methylation controls estrogen receptor gene transcription and correlates with hormone therapy resistance. J Steroid Biochem Mol Biol 2017; 171:209-217. [PMID: 28412323 DOI: 10.1016/j.jsbmb.2017.04.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 03/14/2017] [Accepted: 04/06/2017] [Indexed: 12/19/2022]
Abstract
Hormone therapy is the most effective treatment for patients with estrogen receptor α-positive breast cancers. However, although resistance occurs during treatment in some cases and often reflects changed estrogen receptor α status, the relationship between changes in estrogen receptor α expression and resistance to therapy are poorly understood. In this study, we identified a mechanism for altered estrogen receptor α expression during disease progression and acquired hormone therapy resistance in aromatase inhibitor-resistant breast cancer cell lines. Subsequently, we investigated promoter switching and DNA methylation status of the estrogen receptor α promoter, and found marked changes of methylation at a single CpG site (CpG4) in resistant cells. In addition, luciferase reporter assays showed reduced transcriptional activity from this methylated CpG site. This CpG region was also completely conserved among species, suggesting that it acts as a methylation-sensitive Ets-2 transcription factor binding site, as confirmed using chromatin immunoprecipitation assays. In estrogen receptor α-positive tumors, CpG4 methylation levels were inversely correlated with estrogen receptor α expression status, suggesting that single CpG site plays an important role in the regulation of estrogen receptor α transcription.
Collapse
Affiliation(s)
- Kouki Tsuboi
- Department of Molecular and Functional Dynamics, Graduate School of Medicine, Tohoku University, Aoba-ku, Sendai, 980-8575, Japan
| | - Takamasa Nagatomo
- Department of Molecular and Functional Dynamics, Graduate School of Medicine, Tohoku University, Aoba-ku, Sendai, 980-8575, Japan
| | - Tatsuyuki Gohno
- Department of Molecular and Functional Dynamics, Graduate School of Medicine, Tohoku University, Aoba-ku, Sendai, 980-8575, Japan
| | - Toru Higuchi
- Department of Molecular and Functional Dynamics, Graduate School of Medicine, Tohoku University, Aoba-ku, Sendai, 980-8575, Japan
| | - Shunta Sasaki
- Department of Molecular and Functional Dynamics, Graduate School of Medicine, Tohoku University, Aoba-ku, Sendai, 980-8575, Japan
| | - Natsu Fujiki
- Department of Molecular and Functional Dynamics, Graduate School of Medicine, Tohoku University, Aoba-ku, Sendai, 980-8575, Japan
| | - Masafumi Kurosumi
- Department of Pathology, Saitama Cancer Center, Ina-machi, Saitama, 362-0806, Japan
| | - Hiroyuki Takei
- Division of Breast Surgery, Saitama Cancer Center, Ina-machi, Saitama, 362-0806, Japan
| | - Yuri Yamaguchi
- Resarch Institute for Clinical Oncology, Saitama Cancer Center, Ina-machi, Saitama, 362-0806, Japan
| | - Toshifumi Niwa
- Department of Molecular and Functional Dynamics, Graduate School of Medicine, Tohoku University, Aoba-ku, Sendai, 980-8575, Japan
| | - Shin-Ichi Hayashi
- Department of Molecular and Functional Dynamics, Graduate School of Medicine, Tohoku University, Aoba-ku, Sendai, 980-8575, Japan; Center for Regulatory Epigenome and Diseases, Graduate School of Medicine, Tohoku University, Aoba-ku, Sendai, 980-8575, Japan.
| |
Collapse
|
14
|
Reinert T, Saad ED, Barrios CH, Bines J. Clinical Implications of ESR1 Mutations in Hormone Receptor-Positive Advanced Breast Cancer. Front Oncol 2017; 7:26. [PMID: 28361033 PMCID: PMC5350138 DOI: 10.3389/fonc.2017.00026] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 02/14/2017] [Indexed: 12/21/2022] Open
Abstract
Hormone receptor-positive breast cancer is the most frequent breast cancer subtype. Endocrine therapy (ET) targeting the estrogen receptor (ER) pathway represents the main initial therapeutic approach. The major strategies include estrogen deprivation and the use of selective estrogen modulators or degraders, which show efficacy in the management of metastatic and early-stage disease. However, clinical resistance associated with progression of disease remains a significant therapeutic challenge. Mutations of the ESR1 gene, which encodes the ER, have been increasingly recognized as an important mechanism of ET resistance, with a prevalence that ranges from 11 to 39%. The majority of these mutations are located within the ligand-binding domain and result in an estrogen-independent constitutive activation of the ER and, therefore, resistance to estrogen deprivation therapy such as aromatase inhibition. ESR1 mutations, most often detected from liquid biopsies, have been consistently associated with a worse outcome and are being currently evaluated as a potential biomarker to guide therapeutic decisions. At the same time, targeted therapy directed to ESR1-mutated clones is an appealing concept with preclinical and clinical work in progress.
Collapse
Affiliation(s)
- Tomas Reinert
- Hospital de Câncer Mãe de Deus, Universidade Federal do Rio Grande do Sul , Porto Alegre , Brazil
| | | | | | - José Bines
- Instituto Nacional de Câncer , Rio de Janeiro , Brazil
| |
Collapse
|
15
|
Xiong R, Zhao J, Gutgesell LM, Wang Y, Lee S, Karumudi B, Zhao H, Lu Y, Tonetti DA, Thatcher GRJ. Novel Selective Estrogen Receptor Downregulators (SERDs) Developed against Treatment-Resistant Breast Cancer. J Med Chem 2017; 60:1325-1342. [PMID: 28117994 DOI: 10.1021/acs.jmedchem.6b01355] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Resistance to the selective estrogen receptor modulator tamoxifen and to aromatase inhibitors that lower circulating estradiol occurs in up to 50% of patients, generally leading to an endocrine-independent ER+ phenotype. Selective ER downregulators (SERDs) are able to ablate ER and thus, theoretically, to prevent survival of both endocrine-dependent and -independent ER+ tumors. The clinical SERD fulvestrant is hampered by intramuscular administration and undesirable pharmacokinetics. Novel SERDs were designed using the 6-OH-benzothiophene (BT) scaffold common to arzoxifene and raloxifene. Treatment-resistant (TR) ER+ cell lines (MCF-7:5C and MCF-7:TAM1) were used for optimization, followed by validation in the parent endocrine-dependent cell line (MCF-7:WS8), in 2D and 3D cultures, using ERα in-cell westerns, ERE-luciferase, and cell viability assays, with 2 (GDC-0810/ARN-810) used for comparison. Two BT SERDs with superior in vitro activity to 2 were studied for bioavailability and shown to cause regression of a TR, endocrine-independent ER+ xenograft superior to that with 2.
Collapse
Affiliation(s)
- Rui Xiong
- Department of Medicinal Chemistry & Pharmacognosy, ‡Department of Biopharmaceutical Sciences, University of Illinois College of Pharmacy, University of Illinois at Chicago , 833 S. Wood St., Chicago, Illinois 60612, United States
| | - Jiong Zhao
- Department of Medicinal Chemistry & Pharmacognosy, ‡Department of Biopharmaceutical Sciences, University of Illinois College of Pharmacy, University of Illinois at Chicago , 833 S. Wood St., Chicago, Illinois 60612, United States
| | - Lauren M Gutgesell
- Department of Medicinal Chemistry & Pharmacognosy, ‡Department of Biopharmaceutical Sciences, University of Illinois College of Pharmacy, University of Illinois at Chicago , 833 S. Wood St., Chicago, Illinois 60612, United States
| | - Yueting Wang
- Department of Medicinal Chemistry & Pharmacognosy, ‡Department of Biopharmaceutical Sciences, University of Illinois College of Pharmacy, University of Illinois at Chicago , 833 S. Wood St., Chicago, Illinois 60612, United States
| | - Sue Lee
- Department of Medicinal Chemistry & Pharmacognosy, ‡Department of Biopharmaceutical Sciences, University of Illinois College of Pharmacy, University of Illinois at Chicago , 833 S. Wood St., Chicago, Illinois 60612, United States
| | - Bhargava Karumudi
- Department of Medicinal Chemistry & Pharmacognosy, ‡Department of Biopharmaceutical Sciences, University of Illinois College of Pharmacy, University of Illinois at Chicago , 833 S. Wood St., Chicago, Illinois 60612, United States
| | - Huiping Zhao
- Department of Medicinal Chemistry & Pharmacognosy, ‡Department of Biopharmaceutical Sciences, University of Illinois College of Pharmacy, University of Illinois at Chicago , 833 S. Wood St., Chicago, Illinois 60612, United States
| | - Yunlong Lu
- Department of Medicinal Chemistry & Pharmacognosy, ‡Department of Biopharmaceutical Sciences, University of Illinois College of Pharmacy, University of Illinois at Chicago , 833 S. Wood St., Chicago, Illinois 60612, United States
| | - Debra A Tonetti
- Department of Medicinal Chemistry & Pharmacognosy, ‡Department of Biopharmaceutical Sciences, University of Illinois College of Pharmacy, University of Illinois at Chicago , 833 S. Wood St., Chicago, Illinois 60612, United States
| | - Gregory R J Thatcher
- Department of Medicinal Chemistry & Pharmacognosy, ‡Department of Biopharmaceutical Sciences, University of Illinois College of Pharmacy, University of Illinois at Chicago , 833 S. Wood St., Chicago, Illinois 60612, United States
| |
Collapse
|
16
|
Pagani O. Endocrine Therapies in the Adjuvant and Advanced Disease Settings. Breast Cancer 2017. [DOI: 10.1007/978-3-319-48848-6_45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
17
|
Radhi S. Molecular Changes During Breast Cancer and Mechanisms of Endocrine Therapy Resistance. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 144:539-562. [PMID: 27865467 DOI: 10.1016/bs.pmbts.2016.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Estrogen receptors (ERs) are expressed in 75% of breast cancers. ERs and their estrogen ligands play a key role in the development and progression of breast cancer. ERs have a genomic activity involving direct modulation of expression of genes vital to cell growth and survival by their classic nuclear receptors. The nongenomic activity is mediated by membrane receptor tyrosine kinases that activate signaling pathways resulting in activation of ER pathway modulators. Endocrine therapies inhibit the growth promoting activity of estrogen. ERs-positive breast cancers can exhibit de novo or acquired endocrine resistance. The mechanisms of endocrine therapy resistance are complex include deregulation of ER pathway, growth factor receptor signaling, cell cycle machinery, and tumor microenvironment. In this chapter, we will review the literature on the biology of ERs, the postulated mechanisms of endocrine therapy resistance, and their clinical implications.
Collapse
Affiliation(s)
- S Radhi
- Texas Tech University Health Science Center, Lubbock, TX, United States.
| |
Collapse
|
18
|
Wrobel K, Zhao YC, Kulkoyluoglu E, Chen KLA, Hieronymi K, Holloway J, Li S, Ray T, Ray PS, Landesman Y, Lipka AE, Smith RL, Madak-Erdogan Z. ERα-XPO1 Cross Talk Controls Tamoxifen Sensitivity in Tumors by Altering ERK5 Cellular Localization. Mol Endocrinol 2016; 30:1029-1045. [PMID: 27533791 PMCID: PMC5045498 DOI: 10.1210/me.2016-1101] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Accepted: 08/12/2016] [Indexed: 12/22/2022] Open
Abstract
Most breast cancer deaths occur in women with recurrent, estrogen receptor (ER)-α(+), metastatic tumors. There is a critical need for therapeutic approaches that include novel, targetable mechanism-based strategies by which ERα (+) tumors can be resensitized to endocrine therapies. The objective of this study was to validate a group of nuclear transport genes as potential biomarkers to predict the risk of endocrine therapy failure and to evaluate the inhibition of XPO1, one of these genes as a novel means to enhance the effectiveness of endocrine therapies. Using advanced statistical methods, we found that expression levels of several of nuclear transport genes including XPO1 were associated with poor survival and predicted recurrence of tamoxifen-treated breast tumors in human breast cancer gene expression data sets. In mechanistic studies we showed that the expression of XPO1 determined the cellular localization of the key signaling proteins and the response to tamoxifen. We demonstrated that combined targeting of XPO1 and ERα in several tamoxifen-resistant cell lines and tumor xenografts with the XPO1 inhibitor, Selinexor, and tamoxifen restored tamoxifen sensitivity and prevented recurrence in vivo. The nuclear transport pathways have not previously been implicated in the development of endocrine resistance, and given the need for better strategies for selecting patients to receive endocrine modulatory reagents and improving therapy response of relapsed ERα(+) tumors, our findings show great promise for uncovering the role these pathways play in reducing cancer recurrences.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents, Hormonal/pharmacology
- Biological Transport/drug effects
- Biological Transport/genetics
- Breast Neoplasms/drug therapy
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Cell Line, Tumor
- Cell Nucleus/drug effects
- Cell Nucleus/genetics
- Cell Nucleus/metabolism
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Estrogen Receptor alpha/genetics
- Estrogen Receptor alpha/metabolism
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Expression Regulation, Neoplastic/genetics
- Humans
- Karyopherins/genetics
- Karyopherins/metabolism
- MCF-7 Cells
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Mitogen-Activated Protein Kinase 7/genetics
- Mitogen-Activated Protein Kinase 7/metabolism
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Signal Transduction/drug effects
- Signal Transduction/genetics
- Tamoxifen/pharmacology
- Exportin 1 Protein
Collapse
Affiliation(s)
- Kinga Wrobel
- Department of Food Science and Human Nutrition (K.W., Y.C.Z., E.K., K.H., Z.M.-E.), Division of Nutritional Sciences (K.L.A.C., Z.M.-E.), University of Illinois at Urbana-Champaign, Departments of Surgery (P.S.R.) and Bioengineering (P.S.R.), Interdisciplinary Health Sciences Institute (P.S.R.), and Division of Surgical Oncology (P.S.R.), Carle Cancer Center, and Departments of Crop Sciences (A.E.L.) and Pathobiology (R.L.S.), College of Veterinary Medicine, Urbana, Illinois 61801; (J.H.), Arlington, Massachusetts; Onconostic Technologies Inc (S.L., T.R., P.S.R.), Urbana, Illinois 61820; Karyopharm Therapeutics (Y.L.), Newton, Massachusetts 02459; and Cancer Community Illinois (Z.M.-E.), Urbana, Illinois 61801
| | - Yiru Chen Zhao
- Department of Food Science and Human Nutrition (K.W., Y.C.Z., E.K., K.H., Z.M.-E.), Division of Nutritional Sciences (K.L.A.C., Z.M.-E.), University of Illinois at Urbana-Champaign, Departments of Surgery (P.S.R.) and Bioengineering (P.S.R.), Interdisciplinary Health Sciences Institute (P.S.R.), and Division of Surgical Oncology (P.S.R.), Carle Cancer Center, and Departments of Crop Sciences (A.E.L.) and Pathobiology (R.L.S.), College of Veterinary Medicine, Urbana, Illinois 61801; (J.H.), Arlington, Massachusetts; Onconostic Technologies Inc (S.L., T.R., P.S.R.), Urbana, Illinois 61820; Karyopharm Therapeutics (Y.L.), Newton, Massachusetts 02459; and Cancer Community Illinois (Z.M.-E.), Urbana, Illinois 61801
| | - Eylem Kulkoyluoglu
- Department of Food Science and Human Nutrition (K.W., Y.C.Z., E.K., K.H., Z.M.-E.), Division of Nutritional Sciences (K.L.A.C., Z.M.-E.), University of Illinois at Urbana-Champaign, Departments of Surgery (P.S.R.) and Bioengineering (P.S.R.), Interdisciplinary Health Sciences Institute (P.S.R.), and Division of Surgical Oncology (P.S.R.), Carle Cancer Center, and Departments of Crop Sciences (A.E.L.) and Pathobiology (R.L.S.), College of Veterinary Medicine, Urbana, Illinois 61801; (J.H.), Arlington, Massachusetts; Onconostic Technologies Inc (S.L., T.R., P.S.R.), Urbana, Illinois 61820; Karyopharm Therapeutics (Y.L.), Newton, Massachusetts 02459; and Cancer Community Illinois (Z.M.-E.), Urbana, Illinois 61801
| | - Karen Lee Ann Chen
- Department of Food Science and Human Nutrition (K.W., Y.C.Z., E.K., K.H., Z.M.-E.), Division of Nutritional Sciences (K.L.A.C., Z.M.-E.), University of Illinois at Urbana-Champaign, Departments of Surgery (P.S.R.) and Bioengineering (P.S.R.), Interdisciplinary Health Sciences Institute (P.S.R.), and Division of Surgical Oncology (P.S.R.), Carle Cancer Center, and Departments of Crop Sciences (A.E.L.) and Pathobiology (R.L.S.), College of Veterinary Medicine, Urbana, Illinois 61801; (J.H.), Arlington, Massachusetts; Onconostic Technologies Inc (S.L., T.R., P.S.R.), Urbana, Illinois 61820; Karyopharm Therapeutics (Y.L.), Newton, Massachusetts 02459; and Cancer Community Illinois (Z.M.-E.), Urbana, Illinois 61801
| | - Kadriye Hieronymi
- Department of Food Science and Human Nutrition (K.W., Y.C.Z., E.K., K.H., Z.M.-E.), Division of Nutritional Sciences (K.L.A.C., Z.M.-E.), University of Illinois at Urbana-Champaign, Departments of Surgery (P.S.R.) and Bioengineering (P.S.R.), Interdisciplinary Health Sciences Institute (P.S.R.), and Division of Surgical Oncology (P.S.R.), Carle Cancer Center, and Departments of Crop Sciences (A.E.L.) and Pathobiology (R.L.S.), College of Veterinary Medicine, Urbana, Illinois 61801; (J.H.), Arlington, Massachusetts; Onconostic Technologies Inc (S.L., T.R., P.S.R.), Urbana, Illinois 61820; Karyopharm Therapeutics (Y.L.), Newton, Massachusetts 02459; and Cancer Community Illinois (Z.M.-E.), Urbana, Illinois 61801
| | - Jamie Holloway
- Department of Food Science and Human Nutrition (K.W., Y.C.Z., E.K., K.H., Z.M.-E.), Division of Nutritional Sciences (K.L.A.C., Z.M.-E.), University of Illinois at Urbana-Champaign, Departments of Surgery (P.S.R.) and Bioengineering (P.S.R.), Interdisciplinary Health Sciences Institute (P.S.R.), and Division of Surgical Oncology (P.S.R.), Carle Cancer Center, and Departments of Crop Sciences (A.E.L.) and Pathobiology (R.L.S.), College of Veterinary Medicine, Urbana, Illinois 61801; (J.H.), Arlington, Massachusetts; Onconostic Technologies Inc (S.L., T.R., P.S.R.), Urbana, Illinois 61820; Karyopharm Therapeutics (Y.L.), Newton, Massachusetts 02459; and Cancer Community Illinois (Z.M.-E.), Urbana, Illinois 61801
| | - Sarah Li
- Department of Food Science and Human Nutrition (K.W., Y.C.Z., E.K., K.H., Z.M.-E.), Division of Nutritional Sciences (K.L.A.C., Z.M.-E.), University of Illinois at Urbana-Champaign, Departments of Surgery (P.S.R.) and Bioengineering (P.S.R.), Interdisciplinary Health Sciences Institute (P.S.R.), and Division of Surgical Oncology (P.S.R.), Carle Cancer Center, and Departments of Crop Sciences (A.E.L.) and Pathobiology (R.L.S.), College of Veterinary Medicine, Urbana, Illinois 61801; (J.H.), Arlington, Massachusetts; Onconostic Technologies Inc (S.L., T.R., P.S.R.), Urbana, Illinois 61820; Karyopharm Therapeutics (Y.L.), Newton, Massachusetts 02459; and Cancer Community Illinois (Z.M.-E.), Urbana, Illinois 61801
| | - Tania Ray
- Department of Food Science and Human Nutrition (K.W., Y.C.Z., E.K., K.H., Z.M.-E.), Division of Nutritional Sciences (K.L.A.C., Z.M.-E.), University of Illinois at Urbana-Champaign, Departments of Surgery (P.S.R.) and Bioengineering (P.S.R.), Interdisciplinary Health Sciences Institute (P.S.R.), and Division of Surgical Oncology (P.S.R.), Carle Cancer Center, and Departments of Crop Sciences (A.E.L.) and Pathobiology (R.L.S.), College of Veterinary Medicine, Urbana, Illinois 61801; (J.H.), Arlington, Massachusetts; Onconostic Technologies Inc (S.L., T.R., P.S.R.), Urbana, Illinois 61820; Karyopharm Therapeutics (Y.L.), Newton, Massachusetts 02459; and Cancer Community Illinois (Z.M.-E.), Urbana, Illinois 61801
| | - Partha Sarathi Ray
- Department of Food Science and Human Nutrition (K.W., Y.C.Z., E.K., K.H., Z.M.-E.), Division of Nutritional Sciences (K.L.A.C., Z.M.-E.), University of Illinois at Urbana-Champaign, Departments of Surgery (P.S.R.) and Bioengineering (P.S.R.), Interdisciplinary Health Sciences Institute (P.S.R.), and Division of Surgical Oncology (P.S.R.), Carle Cancer Center, and Departments of Crop Sciences (A.E.L.) and Pathobiology (R.L.S.), College of Veterinary Medicine, Urbana, Illinois 61801; (J.H.), Arlington, Massachusetts; Onconostic Technologies Inc (S.L., T.R., P.S.R.), Urbana, Illinois 61820; Karyopharm Therapeutics (Y.L.), Newton, Massachusetts 02459; and Cancer Community Illinois (Z.M.-E.), Urbana, Illinois 61801
| | - Yosef Landesman
- Department of Food Science and Human Nutrition (K.W., Y.C.Z., E.K., K.H., Z.M.-E.), Division of Nutritional Sciences (K.L.A.C., Z.M.-E.), University of Illinois at Urbana-Champaign, Departments of Surgery (P.S.R.) and Bioengineering (P.S.R.), Interdisciplinary Health Sciences Institute (P.S.R.), and Division of Surgical Oncology (P.S.R.), Carle Cancer Center, and Departments of Crop Sciences (A.E.L.) and Pathobiology (R.L.S.), College of Veterinary Medicine, Urbana, Illinois 61801; (J.H.), Arlington, Massachusetts; Onconostic Technologies Inc (S.L., T.R., P.S.R.), Urbana, Illinois 61820; Karyopharm Therapeutics (Y.L.), Newton, Massachusetts 02459; and Cancer Community Illinois (Z.M.-E.), Urbana, Illinois 61801
| | - Alexander Edward Lipka
- Department of Food Science and Human Nutrition (K.W., Y.C.Z., E.K., K.H., Z.M.-E.), Division of Nutritional Sciences (K.L.A.C., Z.M.-E.), University of Illinois at Urbana-Champaign, Departments of Surgery (P.S.R.) and Bioengineering (P.S.R.), Interdisciplinary Health Sciences Institute (P.S.R.), and Division of Surgical Oncology (P.S.R.), Carle Cancer Center, and Departments of Crop Sciences (A.E.L.) and Pathobiology (R.L.S.), College of Veterinary Medicine, Urbana, Illinois 61801; (J.H.), Arlington, Massachusetts; Onconostic Technologies Inc (S.L., T.R., P.S.R.), Urbana, Illinois 61820; Karyopharm Therapeutics (Y.L.), Newton, Massachusetts 02459; and Cancer Community Illinois (Z.M.-E.), Urbana, Illinois 61801
| | - Rebecca Lee Smith
- Department of Food Science and Human Nutrition (K.W., Y.C.Z., E.K., K.H., Z.M.-E.), Division of Nutritional Sciences (K.L.A.C., Z.M.-E.), University of Illinois at Urbana-Champaign, Departments of Surgery (P.S.R.) and Bioengineering (P.S.R.), Interdisciplinary Health Sciences Institute (P.S.R.), and Division of Surgical Oncology (P.S.R.), Carle Cancer Center, and Departments of Crop Sciences (A.E.L.) and Pathobiology (R.L.S.), College of Veterinary Medicine, Urbana, Illinois 61801; (J.H.), Arlington, Massachusetts; Onconostic Technologies Inc (S.L., T.R., P.S.R.), Urbana, Illinois 61820; Karyopharm Therapeutics (Y.L.), Newton, Massachusetts 02459; and Cancer Community Illinois (Z.M.-E.), Urbana, Illinois 61801
| | - Zeynep Madak-Erdogan
- Department of Food Science and Human Nutrition (K.W., Y.C.Z., E.K., K.H., Z.M.-E.), Division of Nutritional Sciences (K.L.A.C., Z.M.-E.), University of Illinois at Urbana-Champaign, Departments of Surgery (P.S.R.) and Bioengineering (P.S.R.), Interdisciplinary Health Sciences Institute (P.S.R.), and Division of Surgical Oncology (P.S.R.), Carle Cancer Center, and Departments of Crop Sciences (A.E.L.) and Pathobiology (R.L.S.), College of Veterinary Medicine, Urbana, Illinois 61801; (J.H.), Arlington, Massachusetts; Onconostic Technologies Inc (S.L., T.R., P.S.R.), Urbana, Illinois 61820; Karyopharm Therapeutics (Y.L.), Newton, Massachusetts 02459; and Cancer Community Illinois (Z.M.-E.), Urbana, Illinois 61801
| |
Collapse
|
19
|
Akkiprik M, Nicorici D, Cogdell D, Jia YJ, Hategan A, Tabus I, Yli-Harja O, Y D, Sahin A, Zhang W. Dissection of Signaling Pathways in Fourteen Breast Cancer Cell Lines Using Reverse-Phase Protein Lysate Microarray. Technol Cancer Res Treat 2016; 5:543-51. [PMID: 17121430 DOI: 10.1177/153303460600500601] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Signal transduction pathways play a crucial role in breast cancer development, progression, and response to different therapies. A major problem in breast cancer therapy is the heterogeneity among different tumor types and cell lines commonly used in preclinical studies. To characterize the signaling pathways of some of the commonly used breast cancer cell lines and dissect the relationship among a number of pathways and some key genetic and molecular events in breast cancer development, such as p53 mutation, ErbB2 expression, and estrogen receptor (ER)/progesterone receptor (PR) status, we performed pathway profiling of 14 breast cancer cell lines by measuring the expression and phosphorylation status of 40 different cell signaling proteins with 53 specific antibodies using a protein lysate array. Cluster analysis of the expression data showed that there was close clustering of phosphatidylinositol 3-kinase, Akt, mammalian target of rapamycin (mTOR), Src, and platelet-derived growth factor receptor β (PDGFRβ) in all of the cell lines. The most differentially expressed proteins between ER- and PR-positive and ER- and PR-negative breast cells were mTOR, Akt (pThr308), PDGFRβ, PDGFRβ (pTyr751), panSrc, Akt (pSer473), insulin-like growth factor-binding protein 5 (IGFBP5), Src (pTyr418), mTOR (pSer2448), and IGFBP2. Many apoptotic proteins, such as apoptosis-inducing factor, IGFBP3, bad, bax, and cleaved caspase 9, were overexpressed in mutant p53-carrying breast cancer cells. Hexokinase isoenzyme 1, ND2, and c-kit were the most differentially expressed proteins in high and low ErbB2-expressing breast cancer cells. This study demonstrated that ER/PR status, ErbB2 expression, and p53 status are major molecules that impact downstream signaling pathways.
Collapse
Affiliation(s)
- M Akkiprik
- Department of Pathology, Unit 85, The University of Texas, M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Wartalski K, Knet-Seweryn M, Hoja-Lukowicz D, Tabarowski Z, Duda M. Androgen receptor-mediated non-genomic effects of vinclozolin on porcine ovarian follicles and isolated granulosa cells: Vinclozolin and non-genomic effects in porcine ovarian follicles. Acta Histochem 2016; 118:377-86. [PMID: 27094116 DOI: 10.1016/j.acthis.2016.03.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/16/2016] [Accepted: 03/22/2016] [Indexed: 01/08/2023]
Abstract
The present study investigated the influence of the androgen receptor (AR) agonists testosterone (T) and dihydrotestosterone (DHT), and vinclozolin (Vnz), a fungicide with antiandrogenic activity, on non-genomic signal transduction within ovarian follicles. Porcine granulosa cells (GCs) isolated from mature follicles were cultured for 48h. For the last 24h of culture, they were exposed to T (10(-7)M), DHT (10(-7)M), Vnz (1.4×10(-5)M), T and Vnz (T+Vnz), or DHT and Vnz (DHT+Vnz) at the same concentrations. To better imitate in vivo conditions, whole follicles (4-6mm in diameter) were incubated (24h) in an organ culture system with the same factors. Expression of AR mRNA and protein was determined by real-time PCR and western blot analyses. To demonstrate AR localization in cultured GCs and whole follicles, immunocytochemistry and immunohistochemistry were performed, respectively. To elucidate the possible non-genomic action of Vnz in GCs, protein expression and the activity of ERK1/2 and Akt kinases were determined by western blot and ELISA analyses. The immunocytochemistry and immunohistochemistry results showed that exposure of GCs and follicles to Vnz resulted in cytoplasmic and perinuclear AR localization. Real-time PCR and western blot analysis showed that AR mRNA and protein expression increased (P≤0.001) in GC cultures after combined treatment with an androgen and Vnz. In whole follicles, such treatment also increased AR mRNA with a decrease in the respective protein expression (P≤0.001). Moreover, addition of T or DHT with Vnz increased the activity of ERK1/2 and Akt kinases in cultured GCs (P≤0.001). The results suggest a novel mechanism for Vnz action in porcine ovarian follicles on both AR mRNA and protein levels. Thus, this environmental antiandrogen activates non-genomic signaling pathways, as indicated by the increased activity of both investigated kinases observed within minutes of Vnz addition. Given the widespread presence of Vnz in the environment, elucidation of its non-genomic action should be the subject of studies on female fertility.
Collapse
|
21
|
Nikolai BC, Lanz RB, York B, Dasgupta S, Mitsiades N, Creighton CJ, Tsimelzon A, Hilsenbeck SG, Lonard DM, Smith CL, O'Malley BW. HER2 Signaling Drives DNA Anabolism and Proliferation through SRC-3 Phosphorylation and E2F1-Regulated Genes. Cancer Res 2016; 76:1463-75. [PMID: 26833126 PMCID: PMC4794399 DOI: 10.1158/0008-5472.can-15-2383] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 11/22/2015] [Indexed: 12/29/2022]
Abstract
Approximately 20% of early-stage breast cancers display amplification or overexpression of the ErbB2/HER2 oncogene, conferring poor prognosis and resistance to endocrine therapy. Targeting HER2(+) tumors with trastuzumab or the receptor tyrosine kinase (RTK) inhibitor lapatinib significantly improves survival, yet tumor resistance and progression of metastatic disease still develop over time. Although the mechanisms of cytosolic HER2 signaling are well studied, nuclear signaling components and gene regulatory networks that bestow therapeutic resistance and limitless proliferative potential are incompletely understood. Here, we use biochemical and bioinformatic approaches to identify effectors and targets of HER2 transcriptional signaling in human breast cancer. Phosphorylation and activity of the Steroid Receptor Coactivator-3 (SRC-3) is reduced upon HER2 inhibition, and recruitment of SRC-3 to regulatory elements of endogenous genes is impaired. Transcripts regulated by HER2 signaling are highly enriched with E2F1 binding sites and define a gene signature associated with proliferative breast tumor subtypes, cell-cycle progression, and DNA replication. We show that HER2 signaling promotes breast cancer cell proliferation through regulation of E2F1-driven DNA metabolism and replication genes together with phosphorylation and activity of the transcriptional coactivator SRC-3. Furthermore, our analyses identified a cyclin-dependent kinase (CDK) signaling node that, when targeted using the CDK4/6 inhibitor palbociclib, defines overlap and divergence of adjuvant pharmacologic targeting. Importantly, lapatinib and palbociclib strictly block de novo synthesis of DNA, mostly through disruption of E2F1 and its target genes. These results have implications for rational discovery of pharmacologic combinations in preclinical models of adjuvant treatment and therapeutic resistance.
Collapse
Affiliation(s)
- Bryan C Nikolai
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Rainer B Lanz
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Brian York
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Subhamoy Dasgupta
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Nicholas Mitsiades
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas. Department of Medicine, Baylor College of Medicine, Houston, Texas. Center for Drug Discovery, Baylor College of Medicine, Houston, Texas
| | - Chad J Creighton
- Department of Medicine, Baylor College of Medicine, Houston, Texas. Dan L. Duncan Cancer Center Division of Biostatistics, Baylor College of Medicine, Houston, Texas
| | - Anna Tsimelzon
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - Susan G Hilsenbeck
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - David M Lonard
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Carolyn L Smith
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Bert W O'Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas.
| |
Collapse
|
22
|
De Andrade JP, Park JM, Gu VW, Woodfield GW, Kulak MV, Lorenzen AW, Wu VT, Van Dorin SE, Spanheimer PM, Weigel RJ. EGFR Is Regulated by TFAP2C in Luminal Breast Cancer and Is a Target for Vandetanib. Mol Cancer Ther 2016; 15:503-11. [PMID: 26832794 DOI: 10.1158/1535-7163.mct-15-0548-t] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 12/27/2015] [Indexed: 12/20/2022]
Abstract
Expression of TFAP2C in luminal breast cancer is associated with reduced survival and hormone resistance, partially explained through regulation of RET. TFAP2C also regulates EGFR in HER2 breast cancer. We sought to elucidate the regulation and functional role of EGFR in luminal breast cancer. We used gene knockdown (KD) and treatment with a tyrosine kinase inhibitor (TKI) in cell lines and primary cancer isolates to determine the role of RET and EGFR in regulation of p-ERK and tumorigenesis. KD of TFAP2C decreased expression of EGFR in a panel of luminal breast cancers, and chromatin immunoprecipitation sequencing (ChIP-seq) confirmed that TFAP2C targets the EGFR gene. Stable KD of TFAP2C significantly decreased cell proliferation and tumor growth, mediated in part through EGFR. While KD of RET or EGFR reduced proliferation (31% and 34%, P < 0.01), combined KD reduced proliferation greater than either alone (52% reduction, P < 0.01). The effect of the TKI vandetanib on proliferation and tumor growth response of MCF-7 cells was dependent upon expression of TFAP2C, and dual KD of RET and EGFR eliminated the effects of vandetanib. The response of primary luminal breast cancers to TKIs assessed by ERK activation established a correlation with expression of RET and EGFR. We conclude that TFAP2C regulates EGFR in luminal breast cancer. Response to vandetanib was mediated through the TFAP2C target genes EGFR and RET. Vandetanib may provide a therapeutic effect in luminal breast cancer, and RET and EGFR can serve as molecular markers for response.
Collapse
Affiliation(s)
| | - Jung M Park
- Department of Surgery, University of Iowa, Iowa City, Iowa
| | - Vivian W Gu
- Department of Surgery, University of Iowa, Iowa City, Iowa
| | | | | | | | - Vincent T Wu
- Department of Surgery, University of Iowa, Iowa City, Iowa
| | | | | | | |
Collapse
|
23
|
Ma H, Gollahon LS. ERα Mediates Estrogen-Induced Expression of the Breast Cancer Metastasis Suppressor Gene BRMS1. Int J Mol Sci 2016; 17:ijms17020158. [PMID: 26821020 PMCID: PMC4783892 DOI: 10.3390/ijms17020158] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 01/13/2016] [Accepted: 01/18/2016] [Indexed: 12/21/2022] Open
Abstract
Recently, estrogen has been reported as putatively inhibiting cancer cell invasion and motility. This information is in direct contrast to the paradigm of estrogen as a tumor promoter. However, data suggests that the effects of estrogen are modulated by the receptor isoform with which it interacts. In order to gain a clearer understanding of the role of estrogen in potentially suppressing breast cancer metastasis, we investigated the regulation of estrogen and its receptor on the downstream target gene, breast cancer metastasis suppressor 1 (BRMS1) in MCF-7, SKBR3, TTU-1 and MDA-MB-231 breast cancer cells. Our results showed that estrogen increased the transcription and expression of BRMS1 in the ERα positive breast cancer cell line, MCF-7. Additionally, the ERα specific agonist PPT also induced the transcription and expression of BRMS1. However, the two remaining estrogen receptor (ER) subtype agonists had no effect on BRMS1 expression. In order to further examine the influence of ERα on BRMS1 expression, ERα expression was knocked down using siRNA (siERα). Western blot analysis showed that siERα reduced estrogen-induced and PPT-induced BRMS1 expression. In summary, this study demonstrates estrogen, via its α receptor, positively regulates the expression of BRMS1, providing new insight into a potential inhibitory effect of estrogen on metastasis suppression.
Collapse
Affiliation(s)
- Hongtao Ma
- Department of Biological Sciences, Texas Tech University, 2901 Main St. Suite 108, Lubbock, TX 79409, USA.
| | - Lauren S Gollahon
- Department of Biological Sciences, Texas Tech University, 2901 Main St. Suite 108, Lubbock, TX 79409, USA.
| |
Collapse
|
24
|
Sinha D, Sarkar N, Biswas J, Bishayee A. Resveratrol for breast cancer prevention and therapy: Preclinical evidence and molecular mechanisms. Semin Cancer Biol 2016; 40-41:209-232. [PMID: 26774195 DOI: 10.1016/j.semcancer.2015.11.001] [Citation(s) in RCA: 177] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 11/13/2015] [Accepted: 11/23/2015] [Indexed: 12/22/2022]
Abstract
Globally, breast cancer is the most frequently diagnosed cancer among women. The major unresolved problems with metastatic breast cancer is recurrence after receiving objective response to chemotherapy, drug-induced side effects of first line chemotherapy and delayed response to second line of treatment. Unfortunately, very few options are available as third line treatment. It is clear that under such circumstances there is an urgent need for new and effective drugs. Phytochemicals are among the most promising chemopreventive treatment options for the management of cancer. Resveratrol (3,5,4'-trihydroxy-trans-stilbene), a non-flavonoid polyphenol present in several dietary sources, including grapes, berries, soy beans, pomegranate and peanuts, has been shown to possess a wide range of health benefits through its effect on a plethora of molecular targets.The present review encompasses the role of resveratrol and its natural/synthetic analogue in the light of their efficacy against tumor cell proliferation, metastasis, epigenetic alterations and for induction of apoptosis as well as sensitization toward chemotherapeutic drugs in various in vitro and in vivo models of breast cancer. The roles of resveratrol as a phytoestrogen, an aromatase inhibitor and in stem cell therapy as well as adjuvent treatment are also discussed. This review explores the full potential of resveratrol in breast cancer prevention and treatment with current limitations, challenges and future directions of research.
Collapse
Affiliation(s)
- Dona Sinha
- Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata 700 026, India.
| | - Nivedita Sarkar
- Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata 700 026, India
| | - Jaydip Biswas
- Clinical and Translational Research, Chittaranjan National Cancer Institute, Kolkata 700 026, India
| | - Anupam Bishayee
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin Health Sciences Institute, Miami, FL 33169, USA.
| |
Collapse
|
25
|
Xiong R, Patel HK, Gutgesell LM, Zhao J, Delgado-Rivera L, Pham TND, Zhao H, Carlson K, Martin T, Katzenellenbogen JA, Moore TW, Tonetti DA, Thatcher GRJ. Selective Human Estrogen Receptor Partial Agonists (ShERPAs) for Tamoxifen-Resistant Breast Cancer. J Med Chem 2015; 59:219-237. [PMID: 26681208 DOI: 10.1021/acs.jmedchem.5b01276] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Almost 70% of breast cancers are estrogen receptor α (ERα) positive. Tamoxifen, a selective estrogen receptor modulator (SERM), represents the standard of care for many patients; however, 30-50% develop resistance, underlining the need for alternative therapeutics. Paradoxically, agonists at ERα such as estradiol (E2) have demonstrated clinical efficacy in patients with heavily treated breast cancer, although side effects in gynecological tissues are unacceptable. A drug that selectively mimics the actions of E2 in breast cancer therapy but minimizes estrogenic effects in other tissues is a novel, therapeutic alternative. We hypothesized that a selective human estrogen receptor partial agonist (ShERPA) at ERα would provide such an agent. Novel benzothiophene derivatives with nanomolar potency in breast cancer cell cultures were designed. Several showed partial agonist activity, with potency of 0.8-76 nM, mimicking E2 in inhibiting growth of tamoxifen-resistant breast cancer cell lines. Three ShERPAs were tested and validated in xenograft models of endocrine-independent and tamoxifen-resistant breast cancer, and in contrast to E2, ShERPAs did not cause significant uterine growth.
Collapse
Affiliation(s)
- Rui Xiong
- Department of Medicinal Chemistry & Pharmacognosy, University of Illinois at Chicago, 833 S Wood St, Chicago, Illinois 60612
| | - Hitisha K Patel
- Department of Medicinal Chemistry & Pharmacognosy, University of Illinois at Chicago, 833 S Wood St, Chicago, Illinois 60612
| | - Lauren M Gutgesell
- Department of Medicinal Chemistry & Pharmacognosy, University of Illinois at Chicago, 833 S Wood St, Chicago, Illinois 60612
| | - Jiong Zhao
- Department of Medicinal Chemistry & Pharmacognosy, University of Illinois at Chicago, 833 S Wood St, Chicago, Illinois 60612
| | - Loruhama Delgado-Rivera
- Department of Medicinal Chemistry & Pharmacognosy, University of Illinois at Chicago, 833 S Wood St, Chicago, Illinois 60612
| | - Thao N D Pham
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago, 833 S Wood St, Chicago, Illinois 60612
| | - Huiping Zhao
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago, 833 S Wood St, Chicago, Illinois 60612
| | - Kathryn Carlson
- Department of Chemistry, University of Illinois, Urbana Champaign, 600 South Mathews Avenue, Urbana, IL 61801
| | - Teresa Martin
- Department of Chemistry, University of Illinois, Urbana Champaign, 600 South Mathews Avenue, Urbana, IL 61801
| | - John A Katzenellenbogen
- Department of Chemistry, University of Illinois, Urbana Champaign, 600 South Mathews Avenue, Urbana, IL 61801
| | - Terry W Moore
- Department of Medicinal Chemistry & Pharmacognosy, University of Illinois at Chicago, 833 S Wood St, Chicago, Illinois 60612
| | - Debra A Tonetti
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago, 833 S Wood St, Chicago, Illinois 60612
| | - Gregory R J Thatcher
- Department of Medicinal Chemistry & Pharmacognosy, University of Illinois at Chicago, 833 S Wood St, Chicago, Illinois 60612
| |
Collapse
|
26
|
Ali A, Creevey L, Hao Y, McCartan D, O'Gaora P, Hill A, Young L, McIlroy M. Prosaposin activates the androgen receptor and potentiates resistance to endocrine treatment in breast cancer. Breast Cancer Res 2015; 17:123. [PMID: 26341737 PMCID: PMC4560928 DOI: 10.1186/s13058-015-0636-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 08/20/2015] [Indexed: 01/23/2023] Open
Abstract
Introduction HOX genes play vital roles in growth and development, however, atypical redeployment of these genes is often associated with steroidal adaptability in endocrine cancers. We previously identified HOXC11 to be an indicator of poor response to hormonal therapy in breast cancer. In this study we aimed to elucidate genes regulated by HOXC11 in the endocrine resistant setting. Methods RNA-sequencing paired with transcription factor motif-mapping was utilised to identify putative HOXC11 target genes in endocrine resistant breast cancer. Validation and functional evaluation of the target gene, prosaposin (PSAP), was performed in a panel of endocrine sensitive and resistant breast cancer cell lines. The clinical significance of this finding was explored in clinical cohorts at both mRNA and protein level. Results PSAP was shown to be regulated by HOXC11 in both tamoxifen and aromatase inhibitor (AI) resistant cell lines. Transcript levels of HOXC11 and PSAP correlated strongly in samples of primary breast tumours (r = 0.7692, n = 51). PSAP has previously been reported to activate androgen receptor (AR) in prostate cancer cells. In a panel of breast cancer cell lines it was shown that endocrine resistant cells exhibit innately elevated levels of AR compared to their endocrine sensitive counterparts. Here, we demonstrate that stimulation with PSAP can drive AR recruitment to a hormone response element (HRE) in AI resistant breast cancer cells. Functionally, PSAP promotes cell migration and invasion only in AI resistant cells and not in their endocrine sensitive counterparts. In a cohort of breast cancer patients (n = 34), elevated serum levels of PSAP were found to associate significantly with poor response to endocrine treatment (p = 0.04). Meta-analysis of combined PSAP and AR mRNA are indicative of poor disease-free survival in endocrine treated breast cancer patients (hazard ratio (HR): 2.2, P = 0.0003, n = 661). Conclusion The HOXC11 target gene, PSAP, is an AR activator which facilitates adaptation to a more invasive phenotype in vitro. These findings have particular relevance to the development of resistance to AI therapy which is an emerging clinical issue. PSAP is a secreted biomarker which has potential in identifying patients failing to exhibit sustained response to hormonal treatment. Electronic supplementary material The online version of this article (doi:10.1186/s13058-015-0636-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Azlena Ali
- Endocrine Oncology Research, Department of Surgery, Royal College of Surgeons in Ireland, St. Stephens Green, Dublin 2, Ireland. .,Department of Surgery, Beaumont Hospital, Dublin 9, Ireland.
| | - Laura Creevey
- Endocrine Oncology Research, Department of Surgery, Royal College of Surgeons in Ireland, St. Stephens Green, Dublin 2, Ireland.
| | - Yuan Hao
- School of Medicine and Medical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland.
| | - Damian McCartan
- Endocrine Oncology Research, Department of Surgery, Royal College of Surgeons in Ireland, St. Stephens Green, Dublin 2, Ireland.
| | - Peadar O'Gaora
- School of Medicine and Medical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland.
| | - Arnold Hill
- Endocrine Oncology Research, Department of Surgery, Royal College of Surgeons in Ireland, St. Stephens Green, Dublin 2, Ireland. .,Department of Surgery, Beaumont Hospital, Dublin 9, Ireland.
| | - Leonie Young
- Endocrine Oncology Research, Department of Surgery, Royal College of Surgeons in Ireland, St. Stephens Green, Dublin 2, Ireland.
| | - Marie McIlroy
- Endocrine Oncology Research, Department of Surgery, Royal College of Surgeons in Ireland, St. Stephens Green, Dublin 2, Ireland.
| |
Collapse
|
27
|
Nardone A, De Angelis C, Trivedi MV, Osborne CK, Schiff R. The changing role of ER in endocrine resistance. Breast 2015; 24 Suppl 2:S60-6. [PMID: 26271713 DOI: 10.1016/j.breast.2015.07.015] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Estrogen receptor (ER) is expressed in approximately 70% of newly diagnosed breast tumors. Although endocrine therapy targeting ER is highly effective, intrinsic or acquired resistance is common, significantly jeopardizing treatment outcomes and minimizing overall survival. Even in the presence of endocrine resistance, a continued role of ER signaling is suggested by several lines of clinical and preclinical evidence. Indeed, inhibition or down-regulation of ER reduces tumor growth in preclinical models of acquired endocrine resistance, and many patients with recurrent ER+ breast tumors progressing on one type of ER-targeted treatment still benefit from sequential endocrine treatments that target ER by a different mechanism. New insights into the nature and biology of ER have revealed several mechanisms sustaining altered ER signaling in endocrine-resistant tumors, including deregulated growth factor receptor signaling that results in ligand-independent ER activation, unbalanced ER co-regulator activity, and genomic alterations involving the ER gene ESR1. Therefore, biopsies of recurrent lesions are needed to assess the changes in epi/genomics and signaling landscape of ER and associated pathways in order to tailor therapies to effectively overcome endocrine resistance. In addition, more completely abolishing the levels and activity of ER and its co-activators, in combination with selected signal transduction inhibitors or agents blocking the upstream or downstream targets of the ER pathway, may provide a better therapeutic strategy in combating endocrine resistance.
Collapse
Affiliation(s)
- Agostina Nardone
- Lester and Sue Smith Breast Center, Baylor College of Medicine, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, USA; Department of Medicine, Baylor College of Medicine, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, USA
| | - Carmine De Angelis
- Lester and Sue Smith Breast Center, Baylor College of Medicine, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, USA; Department of Medicine, Baylor College of Medicine, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, USA; Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Italy
| | - Meghana V Trivedi
- Lester and Sue Smith Breast Center, Baylor College of Medicine, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, USA; Department of Medicine, Baylor College of Medicine, USA; Department of Pharmacy Practice and Translational Research, University of Houston, College of Pharmacy, Houston, TX 77030, USA
| | - C Kent Osborne
- Lester and Sue Smith Breast Center, Baylor College of Medicine, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, USA; Department of Medicine, Baylor College of Medicine, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, USA
| | - Rachel Schiff
- Lester and Sue Smith Breast Center, Baylor College of Medicine, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, USA; Department of Medicine, Baylor College of Medicine, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, USA.
| |
Collapse
|
28
|
Mechanisms of lapatinib resistance in HER2-driven breast cancer. Cancer Treat Rev 2015; 41:877-83. [PMID: 26276735 DOI: 10.1016/j.ctrv.2015.08.001] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 07/30/2015] [Accepted: 08/03/2015] [Indexed: 12/19/2022]
Abstract
Targeted therapies have been approved for various malignancies but the acquisition of resistance remains a substantial challenge in the clinical management of advanced cancers. Twenty-five per cent of breast cancers overexpress ErbB2/HER2, which confers a more aggressive phenotype and is associated with a poor prognosis. HER2-targeting therapies (trastuzumab, pertuzumab, TDM1 and lapatinib) are available, but a significant fraction of HER2-positive breast cancers eventually relapse or progress. This suggests that acquired or intrinsic resistance enables escape from HER2 inhibition. This review focuses on mechanisms of intrinsic/acquired resistance to lapatinib identified in preclinical and clinical studies. A better understanding of these mechanisms could lead to novel predictive markers of lapatinib response and to novel therapeutic strategies for breast cancer patients.
Collapse
|
29
|
Abstract
Approximately 70% of breast cancers are oestrogen receptor α (ER) positive, and are, therefore, treated with endocrine therapies. However, about 25% of patients with primary disease and almost all patients with metastases will present with or eventually develop endocrine resistance. Despite the magnitude of this clinical challenge, the mechanisms underlying the development of resistance remain largely unknown. In the past 2 years, several studies unveiled gain-of-function mutations in ESR1, the gene encoding the ER, in approximately 20% of patients with metastatic ER-positive disease who received endocrine therapies, such as tamoxifen and aromatase inhibitors. These mutations are clustered in a 'hotspot' within the ligand-binding domain (LBD) of the ER and lead to ligand-independent ER activity that promotes tumour growth, partial resistance to endocrine therapy, and potentially enhanced metastatic capacity; thus, ER LBD mutations might account for a mechanism of acquired endocrine resistance in a substantial fraction of patients with metastatic disease. In general, the absence of detectable ESR1 mutations in patients with treatment-naive disease, and the correlation between the frequency of patients with tumours harbouring these mutations and the number of endocrine treatments received suggest that, under selective treatment pressure, clonal expansion of rare mutant clones occurs, leading to resistance. Preclinical and clinical development of rationale-based novel therapeutic strategies that inhibit these ER mutants has the potential to substantially improve treatment outcomes. We discuss the contribution of ESR1 mutations to the development of acquired resistance to endocrine therapy, and evaluate how mutated ER can be detected and targeted to overcome resistance and improve patient outcomes.
Collapse
|
30
|
Witzel I, Müller V. Targeted Therapies in Breast Cancer: New Approaches and Old Challenges. Breast Care (Basel) 2015; 10:157-8. [PMID: 26557819 DOI: 10.1159/000431067] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Isabell Witzel
- Dept. of Gynecology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Volkmar Müller
- Dept. of Gynecology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
31
|
Non-tumorigenic epithelial cells secrete MCP-1 and other cytokines that promote cell division in breast cancer cells by activating ERα via PI3K/Akt/mTOR signaling. Int J Biochem Cell Biol 2014; 53:281-94. [DOI: 10.1016/j.biocel.2014.05.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 05/09/2014] [Accepted: 05/19/2014] [Indexed: 01/19/2023]
|
32
|
Morrison G, Fu X, Shea M, Nanda S, Giuliano M, Wang T, Klinowska T, Osborne CK, Rimawi MF, Schiff R. Therapeutic potential of the dual EGFR/HER2 inhibitor AZD8931 in circumventing endocrine resistance. Breast Cancer Res Treat 2014; 144:263-72. [PMID: 24554387 PMCID: PMC4030601 DOI: 10.1007/s10549-014-2878-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 02/08/2014] [Indexed: 01/14/2023]
Abstract
Modest up-regulation of either HER-ligands or receptors has been implicated in acquired endocrine resistance. AZD8931, a dual tyrosine kinase inhibitor (TKI) of epithelial growth factor receptor (EGFR)/HER2, has been shown to more effectively block ligand-dependent HER signaling than the HER TKIs lapatinib or gefitinib. We therefore examined the effect of AZD8931 in ER-positive/HER2-negative breast cancer cells with acquired resistance to tamoxifen, where there is ligand up-regulation associated with HER pathway activation. RNA-seq ligand profiling and levels of HER receptors and signaling by western blotting were conducted in ER+ MCF7 and T47D parental cells and their Tam-resistant derivatives (TamRes). In vitro cell growth and apoptosis and HER ligand-stimulated signaling were measured in response to endocrine and HER TKIs. For studies in vivo, transplantable MCF7/TamRes xenografts were treated with tamoxifen or fulvestrant, either alone or in combination with AZD8931. AZD8931 only minimally enhanced endocrine sensitivity in MCF7 parental cells, but showed a greater effect in the T47D parental model. AZD8931 combined with either tamoxifen or fulvestrant inhibited cell growth more than lapatinib in T47D TamRes cells, and was also significantly, though modestly, more potent in MCF7 TamRes cells. In both TamRes models, AZD8931 significantly inhibited cell proliferation and induced apoptosis. Under ligand-stimulated conditions, AZD8931 more potently inhibited HER signaling than lapatinib or gefitinib. AZD8931 also significantly delayed the growth of MCF7 TamRes xenografts in the presence of tamoxifen or fulvestrant. The strongest inhibition was achieved with a fulvestrant and AZD8931 combination, though no tumor regression was observed. This study provides evidence that AZD8931 has greater inhibitory efficacy in tamoxifen-resistant settings than in an endocrine therapy naïve setting. The absence of tumor regression, however, suggests that additional escape pathways contribute to resistant growth and will need to be targeted to fully circumvent tamoxifen resistance.
Collapse
Affiliation(s)
- Gladys Morrison
- Lester and Sue Smith Breast Center and Dan L Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030
- Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas 77030
| | - Xiaoyong Fu
- Lester and Sue Smith Breast Center and Dan L Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030
| | - Marty Shea
- Lester and Sue Smith Breast Center and Dan L Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030
| | - Sarmistha Nanda
- Lester and Sue Smith Breast Center and Dan L Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030
| | - Mario Giuliano
- Lester and Sue Smith Breast Center and Dan L Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030
| | - Tao Wang
- Lester and Sue Smith Breast Center and Dan L Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030
| | | | - C. Kent Osborne
- Lester and Sue Smith Breast Center and Dan L Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030
- Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas 77030
- Department of Medicine, Baylor College of Medicine, Houston, Texas 77030
| | - Mothaffar F. Rimawi
- Lester and Sue Smith Breast Center and Dan L Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030
- Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas 77030
- Department of Medicine, Baylor College of Medicine, Houston, Texas 77030
| | - Rachel Schiff
- Lester and Sue Smith Breast Center and Dan L Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030
- Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas 77030
- Department of Medicine, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
33
|
Epigenetics of estrogen receptor signaling: role in hormonal cancer progression and therapy. Cancers (Basel) 2013; 3:1691-707. [PMID: 21814622 PMCID: PMC3147309 DOI: 10.3390/cancers3021691] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Estrogen receptor (ERα) signaling plays a key role in hormonal cancer progression. ERα is a ligand-dependent transcription factor that modulates gene transcription via recruitment to the target gene chromatin. Emerging evidence suggests that ERα signaling has the potential to contribute to epigenetic changes. Estrogen stimulation is shown to induce several histone modifications at the ERα target gene promoters including acetylation, phosphorylation and methylation via dynamic interactions with histone modifying enzymes. Deregulation of enzymes involved in the ERα-mediated epigenetic pathway could play a vital role in ERα driven neoplastic processes. Unlike genetic alterations, epigenetic changes are reversible, and hence offer novel therapeutic opportunities to reverse ERα driven epigenetic changes. In this review, we summarize current knowledge on mechanisms by which ERα signaling potentiates epigenetic changes in cancer cells via histone modifications.
Collapse
|
34
|
Significance of PELP1/HDAC2/miR-200 regulatory network in EMT and metastasis of breast cancer. Oncogene 2013; 33:3707-16. [PMID: 23975430 PMCID: PMC3935988 DOI: 10.1038/onc.2013.332] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 05/25/2013] [Accepted: 06/19/2013] [Indexed: 02/07/2023]
Abstract
Tumor metastasis is the leading cause of death among breast cancer patients. PELP1 is a nuclear receptor coregulator that is upregulated during breast cancer progression to metastasis and is an independent prognostic predictor of shorter survival of breast cancer patients. Here, we show that PELP1 modulates expression of metastasis-influencing microRNAs (miRs) to promote cancer metastasis. Whole genome miR array analysis using PELP1 over expressing and under expressing model cells revealed that miR-200a and miR-141 levels inversely correlated with PELP1 expression. Consistent with this, PELP1 knockdown resulted in lower expression of miR-200a target genes ZEB1 and ZEB2. PELP1 knockdown significantly reduced tumor growth and metastasis compared with parental cells in an orthotopic xenograft tumor model. Furthermore, re-introduction of miR-200a and miR-141 mimetics into PELP1 overexpressing cells reversed PELP1 target gene expression, decreased PELP1 driven migration/invasion in vitro, and significantly reduced in vivo metastatic potential in a preclinical model of experimental metastasis. Our results demonstrated that PELP1 binds to miR-200a and miR-141 promoters and regulates their expression by recruiting chromatin modifier HDAC2 as revealed by ChIP, siRNA and HDAC inhibitor assays. Taken together, our results suggest that PELP1 regulates tumor metastasis by controlling the expression and functions of the tumor metastasis suppressors miR-200a and miR-141.
Collapse
|
35
|
Pais A, Biton IE, Margalit R, Degani H. Characterization of estrogen-receptor-targeted contrast agents in solution, breast cancer cells, and tumors in vivo. Magn Reson Med 2013; 70:193-206. [PMID: 22887470 PMCID: PMC4547469 DOI: 10.1002/mrm.24442] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 06/10/2012] [Accepted: 07/05/2012] [Indexed: 12/27/2022]
Abstract
The estrogen receptor (ER) is a major prognostic biomarker of breast cancer, currently determined in surgical specimens by immunohistochemistry. Two new ER-targeted probes, pyridine-tetra-acetate-Gd chelate (PTA-Gd) conjugated either to 17β-estradiol (EPTA-Gd) or to tamoxifen (TPTA-Gd), were explored as contrast agents for molecular imaging of ER. In solution, both probes exhibited a micromolar ER binding affinity, fast water exchange rate (∼10(7) s(-1)), and water proton-relaxivity of 4.7-6.8 mM(-1) s(-1). In human breast cancer cells, both probes acted as estrogen agonists and enhanced the water protons T1 relaxation rate and relaxivity in ER-positive as compared to ER-negative cells, with EPTA-Gd showing a higher ER-specific relaxivity than TPTA-Gd. In studies of breast cancer tumors in vivo, EPTA-Gd induced the highest enhancement in ER-positive tumors as compared to ER-negative tumors and muscle tissue, enabling in vivo detection of ER. TPTA-Gd demonstrated the highest enhancement in muscle tissue indicating nonspecific interaction of this agent with muscle components. The extracellular contrast agents, PTA-Gd and GdDTPA, showed no difference in the perfusion capacity of ER-positive and -negative tumors confirming the specific interaction of EPTA-Gd with ER. These findings lay a basis for the molecular imaging of the ER using EPTA-Gd as a template for further developments.
Collapse
Affiliation(s)
- Adi Pais
- Department of Biological Regulation, Weizmann Institute of
Science, Rehovot, Israel
| | - Inbal Eti Biton
- Department of Veterinary Resources, Weizmann Institute of
Science, Rehovot, Israel
| | - Raanan Margalit
- Department of Biological Regulation, Weizmann Institute of
Science, Rehovot, Israel
| | - Hadassa Degani
- Department of Biological Regulation, Weizmann Institute of
Science, Rehovot, Israel
| |
Collapse
|
36
|
Lau WM, Doucet M, Huang D, Weber KL, Kominsky SL. CITED2 modulates estrogen receptor transcriptional activity in breast cancer cells. Biochem Biophys Res Commun 2013; 437:261-6. [PMID: 23811274 DOI: 10.1016/j.bbrc.2013.06.063] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 06/18/2013] [Indexed: 02/07/2023]
Abstract
Cbp/p300-interacting transactivator with Glu/Asp-rich carboxy-terminal domain 2 (CITED2) is a member of the CITED family of non-DNA binding transcriptional co-activators of the p300/CBP-mediated transcription complex. Previously, we identified CITED2 as being overexpressed in human breast tumors relative to normal mammary epithelium. Upon further investigation within the estrogen receptor (ER)-positive subset of these breast tumor samples, we found that CITED2 mRNA expression was elevated in those associated with poor survival. In light of this observation, we investigated the effect of elevated CITED2 levels on ER function. While ectopic overexpression of CITED2 in three ER-positive breast cancer cell lines (MCF-7, T47D, and CAMA-1) did not alter cell proliferation in complete media, growth was markedly enhanced in the absence of exogenous estrogen. Correspondingly, cells overexpressing CITED2 demonstrated reduced sensitivity to the growth inhibitory effects of the selective estrogen receptor modulator, 4-hydroxytamoxifen. Subsequent studies revealed that basal ER transcriptional activity was elevated in CITED2-overexpressing cells and was further increased upon the addition of estrogen. Similarly, basal and estrogen-induced expression of the ER-regulated genes trefoil factor 1 (TFF1) and progesterone receptor (PGR) was higher in cells overexpressing CITED2. Concordant with this observation, ChIP analysis revealed higher basal levels of CITED2 localized to the TFF-1 and PGR promoters in cells with ectopic overexpression of CITED2, and these levels were elevated further in response to estrogen stimulation. Taken together, these data indicate that CITED2 functions as a transcriptional co-activator of ER in breast cancer cells and that its increased expression in tumors may result in estrogen-independent ER activation, thereby reducing estrogen dependence and response to anti-estrogen therapy.
Collapse
Affiliation(s)
- Wen Min Lau
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | | | |
Collapse
|
37
|
Maruyama K, Nakamura M, Tomoshige S, Sugita K, Makishima M, Hashimoto Y, Ishikawa M. Structure-activity relationships of bisphenol A analogs at estrogen receptors (ERs): discovery of an ERα-selective antagonist. Bioorg Med Chem Lett 2013; 23:4031-6. [PMID: 23768907 DOI: 10.1016/j.bmcl.2013.05.067] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 05/17/2013] [Accepted: 05/20/2013] [Indexed: 11/19/2022]
Abstract
Our multi-template approach for drug discovery, focusing on protein targets with similar fold structures, has yielded lead compounds for various targets. We have also shown that a diphenylmethane skeleton can serve as a surrogate for a steroid skeleton. Here, on the basis of those ideas, we hypothesized that the diphenylmethane derivative bisphenol A (BPA) would bind to the ligand-binding domain of estrogen receptors (ERs) in a similar manner to estradiol and act as a steroid surrogate. To test this idea, we synthesized a series of BPA analogs and evaluated their structure-activity relationships, focusing on agonistic/antagonistic activities at ERs and ERα/ERβ subtype selectivity. Among the compounds examined, 18 was found to be a potent ERα-antagonist with high selectivity over ERβ and androgen receptor under our assay conditions. A computational docking study suggested that 18 would bind to the antagonistic conformation of ERα. ERα-selective antagonists, such as 18, are candidate agents for treatment of breast cancer.
Collapse
Affiliation(s)
- Keisuke Maruyama
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Tokyo 113-0032, Japan
| | | | | | | | | | | | | |
Collapse
|
38
|
Perez White B, Molloy ME, Zhao H, Zhang Y, Tonetti DA. Extranuclear ERα is associated with regression of T47D PKCα-overexpressing, tamoxifen-resistant breast cancer. Mol Cancer 2013; 12:34. [PMID: 23634843 PMCID: PMC3661391 DOI: 10.1186/1476-4598-12-34] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 04/26/2013] [Indexed: 01/22/2023] Open
Abstract
Background Prior to the introduction of tamoxifen, high dose estradiol was used to treat breast cancer patients with similar efficacy as tamoxifen, albeit with some undesirable side effects. There is renewed interest to utilize estradiol to treat endocrine resistant breast cancers, especially since findings from several preclinical models and clinical trials indicate that estradiol may be a rational second-line therapy in patients exhibiting resistance to tamoxifen and/or aromatase inhibitors. We and others reported that breast cancer patients bearing protein kinase C alpha (PKCα)- expressing tumors exhibit endocrine resistance and tumor aggressiveness. Our T47D:A18/PKCα preclinical model is tamoxifen-resistant, hormone-independent, yet is inhibited by 17β-estradiol (E2) in vivo. We previously reported that E2-induced T47D:A18/PKCα tumor regression requires extranuclear ERα and interaction with the extracellular matrix. Methods T47D:A18/PKCα cells were grown in vitro using two-dimensional (2D) cell culture, three-dimensional (3D) Matrigel and in vivo by establishing xenografts in athymic mice. Immunofluoresence confocal microscopy and co-localization were applied to determine estrogen receptor alpha (ERα) subcellular localization. Co-immunoprecipitation and western blot were used to examine interaction of ERα with caveolin-1. Results We report that although T47D:A18/PKCα cells are cross-resistant to raloxifene in cell culture and in Matrigel, raloxifene induces regression of tamoxifen-resistant tumors. ERα rapidly translocates to extranuclear sites during T47D:A18/PKCα tumor regression in response to both raloxifene and E2, whereas ERα is primarily localized in the nucleus in proliferating tumors. E2 treatment induced complete tumor regression whereas cessation of raloxifene treatment resulted in tumor regrowth accompanied by re-localization of ERα to the nucleus. T47D:A18/neo tumors that do not overexpress PKCα maintain ERα in the nucleus during tamoxifen-mediated regression. An association between ERα and caveolin-1 increases in tumors regressing in response to E2. Conclusions Extranuclear ERα plays a role in the regression of PKCα-overexpressing tamoxifen-resistant tumors. These studies underline the unique role of extranuclear ERα in E2- and raloxifene-induced tumor regression that may have implications for treatment of endocrine-resistant PKCα-expressing tumors encountered in the clinic.
Collapse
Affiliation(s)
- Bethany Perez White
- Department of Biopharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, 833 S, Wood Street, Chicago, IL 60611, USA
| | | | | | | | | |
Collapse
|
39
|
Denkert C, Loibl S, Kronenwett R, Budczies J, von Törne C, Nekljudova V, Darb-Esfahani S, Solbach C, Sinn B, Petry C, Müller B, Hilfrich J, Altmann G, Staebler A, Roth C, Ataseven B, Kirchner T, Dietel M, Untch M, von Minckwitz G. RNA-based determination of ESR1 and HER2 expression and response to neoadjuvant chemotherapy. Ann Oncol 2013; 24:632-9. [DOI: 10.1093/annonc/mds339] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
40
|
Maynadier M, Chambon M, Basile I, Gleizes M, Nirde P, Gary-Bobo M, Garcia M. Estrogens promote cell-cell adhesion of normal and malignant mammary cells through increased desmosome formation. Mol Cell Endocrinol 2012; 364:126-33. [PMID: 22963885 DOI: 10.1016/j.mce.2012.08.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 08/24/2012] [Accepted: 08/27/2012] [Indexed: 11/26/2022]
Abstract
The association of estrogen receptor alpha (ERα) expression with differentiated breast tumors presenting a lower metastasis risk could be explained by the estrogen modulation of cell adhesion, motility and invasiveness. Since desmosomes play a crucial role in cell-cell adhesion and may interfere in tumor progression, we studied their regulation by estrogens in human breast cancer and normal mammary cells. Estrogens increased the formation of desmosomes in normal and malignant cells. Furthermore, four desmosomal proteins (desmocollin, γ-catenin, plakophilin and desmoplakin) appeared significantly up-regulated by estrogens in three ERα-expressing cancer cell lines and this effect was reversed by a pure antiestrogen. Finally, silencing of ERα or desmoplakin expression by specific siRNA revealed that estrogen-modulated desmosomal proteins are essential for the estrogenic control of intercellular adhesion. This estrogen modulation of desmosome formation could contribute to the lower invasiveness of ERα-positive tumors and to the integrity of epithelial layers in estrogen target tissues.
Collapse
Affiliation(s)
- Marie Maynadier
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, Université Montpellier 1, Université Montpellier 2, Montpellier, France
| | | | | | | | | | | | | |
Collapse
|
41
|
High levels of arachidonic acid and peroxisome proliferator-activated receptor-alpha in breast cancer tissues are associated with promoting cancer cell proliferation. J Nutr Biochem 2012; 24:274-81. [PMID: 22902323 DOI: 10.1016/j.jnutbio.2012.06.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 06/05/2012] [Accepted: 06/05/2012] [Indexed: 12/30/2022]
Abstract
Fatty acids are endogenous ligands of peroxisome proliferator-activated receptor-alpha (PPARα), which is linked to the regulation of fatty acid uptake, lipid metabolism and breast cancer cell growth. This study was designed to screen candidate fatty acids from breast cancer tissue and to investigate the effects of these candidate fatty acids on PPARα expression, cell growth and cell cycle progression in breast cancer cell lines. One breast cancer tissue and one reference tissue were each taken from 30 individual breasts to examine for fatty acid composition and PPARα expression. The cancer cell lines MDA-MB-231 (ER-), MCF-7 (ER++++) and BT-474 (ER++) were used to explore the mechanisms regulating cell proliferation. We found that arachidonic acid (AA) and PPARα were highly expressed in the breast cancer tissues. AA stimulated the growth of all three breast cancer cells in a time- and dose-dependent manner. The growth stimulatory effect of AA was associated with PPARα activation, and the most potent effect was found in MCF-7 cells. The stimulation of cell proliferation by AA was accompanied by the increased expression of cyclin E, a reduced population of G1 phase cells, and a faster G1/S phase transition. In contrast, AA had no effects on the levels of CDK2, CDK4, cyclin D1, p27, Bcl-2 and Bax. Our results demonstrate that high levels of AA and PPARα expression in human breast cancer tissues are associated with ER-overexpressed breast cancer cell proliferation, which is involved in activating PPARα, stimulating cyclin E expression, and promoting faster G1/S transition.
Collapse
|
42
|
Schuler M, Awada A, Harter P, Canon JL, Possinger K, Schmidt M, De Grève J, Neven P, Dirix L, Jonat W, Beckmann MW, Schütte J, Fasching PA, Gottschalk N, Besse-Hammer T, Fleischer F, Wind S, Uttenreuther-Fischer M, Piccart M, Harbeck N. A phase II trial to assess efficacy and safety of afatinib in extensively pretreated patients with HER2-negative metastatic breast cancer. Breast Cancer Res Treat 2012; 134:1149-59. [PMID: 22763464 PMCID: PMC3409367 DOI: 10.1007/s10549-012-2126-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 05/28/2012] [Indexed: 11/27/2022]
Abstract
Afatinib (BIBW 2992) is an ErbB-family blocker that irreversibly inhibits signaling from all relevant ErbB-family dimers. Afatinib has demonstrated preclinical activity in human epidermal growth factor receptor HER2 (ErbB2)-positive and triple-negative xenograft models of breast cancer, and clinical activity in phase I studies. This was a multicenter phase II study enrolling patients with HER2-negative metastatic breast cancer progressing following no more than three lines of chemotherapy. No prior epidermal growth factor receptor-targeted therapy was allowed. Patients received 50-mg afatinib once daily until disease progression. Tumor assessment was performed at every other 28-day treatment course. The primary endpoint was clinical benefit (CB) for ≥4 treatment courses in triple-negative (Cohort A) metastatic breast cancer (TNBC) and objective responses measured by Response Evaluation Criteria in Solid Tumors in patients with HER2-negative, estrogen receptor-positive, and/or progesterone receptor-positive breast cancer (Cohort B). Fifty patients received treatment, including 29 patients in Cohort A and 21 patients in Cohort B. No objective responses were observed in either cohort. Median progression-free survival was 7.4 and 7.7 weeks in Cohorts A and B, respectively. Three patients with TNBC had stable disease for ≥4 treatment courses, one of them for 12 courses (median 26.3 weeks; range 18.9–47.9 weeks). The most frequently observed afatinib-associated adverse events (AEs) were gastrointestinal and skin-related side effects, which were manageable by symptomatic treatment and dose reductions. Afatinib pharmacokinetics were comparable to those observed in previously reported phase I trials. In conclusion, afatinib had limited activity in HER2-negative breast cancer. AEs were generally manageable and mainly affected the skin and the gastrointestinal tract.
Collapse
Affiliation(s)
- Martin Schuler
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Vesuna F, Lisok A, Kimble B, Domek J, Kato Y, van der Groep P, Artemov D, Kowalski J, Carraway H, van Diest P, Raman V. Twist contributes to hormone resistance in breast cancer by downregulating estrogen receptor-α. Oncogene 2012; 31:3223-34. [PMID: 22056872 PMCID: PMC3276743 DOI: 10.1038/onc.2011.483] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 09/14/2011] [Accepted: 09/15/2011] [Indexed: 11/30/2022]
Abstract
The role of estrogen receptor-α (ER) in breast cancer development, and as a primary clinical marker for breast cancer prognosis, has been well documented. In this study, we identified the oncogenic protein, TWIST1 (Twist), which is overexpressed in high-grade breast cancers, as a potential negative regulator of ER expression. Functional characterization of ER regulation by Twist was performed using Twist low (MCF-7, T-47D) and Twist high (Hs 578T, MDA-MB-231, MCF-7/Twist) expressing cell lines. All Twist high expressing cell lines exhibited low ER transcript and protein levels. By chromatin immunoprecipitation and promoter assays, we demonstrated that Twist could directly bind to E-boxes in the ER promoter and significantly downregulate ER promoter activity in vitro. Functionally, Twist overexpression caused estrogen-independent proliferation of breast cells, and promoted hormone resistance to the selective estrogen receptor modulator tamoxifen and selective estrogen receptor down-regulator fulvestrant. Importantly, this effect was reversible on downregulating Twist. In addition, orthotopic tumors generated in mice using MCF-7/Twist cells were resistant to tamoxifen. These tumors had high vascular volume and permeability surface area, as determined by magnetic resonance imaging (MRI). Mechanistically, Twist recruited DNA methyltransferase 3B (DNMT3B) to the ER promoter, leading to a significantly higher degree of ER promoter methylation compared with parental cells. Furthermore, we demonstrated by co-immunoprecipitation that Twist interacted with histone deacetylase 1 (HDAC1) at the ER promoter, causing histone deacetylation and chromatin condensation, further reducing ER transcript levels. Functional re-expression of ER was achieved using the demethylating agent, 5-azacytidine, and the HDAC inhibitor, valproic acid. Finally, an inverse relationship was observed between Twist and ER expression in human breast tumors. In summary, the regulation of ER by Twist could be an underlying mechanism for the loss of ER activity observed in breast tumors, and may contribute to the generation of hormone-resistant, ER-negative breast cancer.
Collapse
Affiliation(s)
- F Vesuna
- Russell H Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21250, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
|
45
|
Aiyer HS, Warri AM, Woode DR, Hilakivi-Clarke L, Clarke R. Influence of berry polyphenols on receptor signaling and cell-death pathways: implications for breast cancer prevention. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:5693-708. [PMID: 22300613 PMCID: PMC3383353 DOI: 10.1021/jf204084f] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Breast cancer is the most commonly diagnosed cancer among women worldwide. Many women have become more aware of the benefits of increasing fruit consumption, as part of a healthy lifestyle, for the prevention of cancer. The mechanisms by which fruits, including berries, prevent breast cancer can be partially explained by exploring their interactions with pathways known to influence cell proliferation and evasion of cell-death. Two receptor pathways, estrogen receptor (ER) and tyrosine kinase receptors, especially the epidermal growth factor receptor (EGFR) family, are drivers of cell proliferation and play a significant role in the development of both primary and recurrent breast cancer. There is strong evidence to show that several phytochemicals present in berries such as cyanidin, delphinidin, quercetin, kaempferol, ellagic acid, resveratrol, and pterostilbene interact with and alter the effects of these pathways. Furthermore, they also induce cell death (apoptosis and autophagy) via their influence on kinase signaling. This review summarizes in vitro data regarding the interaction of berry polyphenols with the specific receptors and the mechanisms by which they induce cell death. This paper also presents in vivo data of primary breast cancer prevention by individual compounds and whole berries. Finally, a possible role for berries and berry compounds in the prevention of breast cancer and a perspective on the areas that require further research are presented.
Collapse
Affiliation(s)
- Harini S Aiyer
- Georgetown University School of Medicine, Vincent T. Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Road NW, W401, Research Bldg, Washington, D.C. 20057
- Corresponding author: Harini S. Aiyer, PhD (Tel: 202-687-4060; Fax: 202-687-7505; )
| | - Anni M Warri
- Georgetown University School of Medicine, Vincent T. Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Road NW, W401, Research Bldg, Washington, D.C. 20057
| | - Denzel R Woode
- Columbia University, 5992 Lerner Hall, New York, NY 10027
| | - Leena Hilakivi-Clarke
- Georgetown University School of Medicine, Vincent T. Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Road NW, W401, Research Bldg, Washington, D.C. 20057
| | - Robert Clarke
- Georgetown University School of Medicine, Vincent T. Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Road NW, W401, Research Bldg, Washington, D.C. 20057
| |
Collapse
|
46
|
Bartella V, Rizza P, Barone I, Zito D, Giordano F, Giordano C, Catalano S, Mauro L, Sisci D, Panno ML, Fuqua SAW, Andò S. Estrogen receptor beta binds Sp1 and recruits a corepressor complex to the estrogen receptor alpha gene promoter. Breast Cancer Res Treat 2012; 134:569-81. [PMID: 22622808 DOI: 10.1007/s10549-012-2090-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 05/03/2012] [Indexed: 02/06/2023]
Abstract
Human estrogen receptors alpha and beta are crucially involved in the regulation of mammary growth and development. Normal breast tissues display a relative higher expression of ER beta than ER alpha, which drastically changes during breast tumorogenesis. Thus, it is reasonable to suggest that a dysregulation of the two estrogen receptor subtypes may induce breast cancer development. However, the molecular mechanisms underlying the potential opposing roles played by the two estrogen receptors on tumor cell growth remain to be elucidated. In the present study, we have demonstrated that ER beta overexpression in breast cancer cells decreases cell proliferation and down-regulates ER alpha mRNA and protein content, along with a concomitant repression of estrogen-regulated genes. Transient transfection experiments, using a vector containing the human ER alpha promoter region, showed that elevated levels of ER beta down-regulated basal ER alpha promoter activity. Furthermore, site-directed mutagenesis and deletion analysis revealed that the proximal GC-rich motifs at -223 and -214 are critical for the ER beta-induced ER alpha down-regulation in breast cancer cells. This occurred through ER beta-Sp1 protein-protein interactions within the ER alpha promoter region and the recruitment of a corepressor complex containing the nuclear receptor corepressor NCoR, accompanied by hypoacetylation of histone H4 and displacement of RNA-polymerase II. Silencing of NCoR gene expression by RNA interference reversed the down-regulatory effects of ER beta on ER alpha gene expression and cell proliferation. Our results provide evidence for a novel mechanism by which overexpression of ER beta through NCoR is able to down regulate ER alpha gene expression, thus blocking ER alpha's driving role on breast cancer cell growth.
Collapse
Affiliation(s)
- V Bartella
- Department of Pharmaco-Biology, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, CS, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Role of ERRF, a novel ER-related nuclear factor, in the growth control of ER-positive human breast cancer cells. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 180:1189-1201. [PMID: 22341523 DOI: 10.1016/j.ajpath.2011.11.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 11/08/2011] [Accepted: 11/17/2011] [Indexed: 12/21/2022]
Abstract
Whereas estrogen-estrogen receptor α (ER) signaling plays an important role in breast cancer growth, it is also necessary for the differentiation of normal breast epithelial cells. How this functional conversion occurs, however, remains unknown. Based on a genome-wide sequencing study that identified mutations in several breast cancer genes, we examined some of the genes for mutations, expression levels, and functional effects on cell proliferation and tumorigenesis. We present the data for C1orf64 or ER-related factor (ERRF) from 31 cell lines and 367 primary breast cancer tumors. Whereas mutation of ERRF was infrequent (1 of 79 or 1.3%), its expression was up-regulated in breast cancer, and the up-regulation was more common in lower-stage tumors. In addition, increased ERRF expression was significantly associated with ER and/or progesterone receptor (PR) positivity, which was still valid in human epidermal growth factor receptor 2 (HER2)-negative tumors. In ER-positive tumors, ERRF expression was inversely correlated with HER2 status. Furthermore, higher ERRF protein expression was significantly associated with better disease-free survival and overall survival, particularly in ER- and/or PR-positive and HER2-negative tumors (luminal A subtype). Functionally, knockdown of ERRF in two ER-positive breast cancer cell lines, T-47D and MDA-MB-361, suppressed cell growth in vitro and tumorigenesis in xenograft models. These results suggest that ERRF plays a role in estrogen-ER-mediated growth of breast cancer cells and could, thus, be a potential therapeutic target.
Collapse
|
48
|
Cutrupi S, Reineri S, Panetto A, Grosso E, Caizzi L, Ricci L, Friard O, Agati S, Scatolini M, Chiorino G, Lykkesfeldt AE, De Bortoli M. Targeting of the adaptor protein Tab2 as a novel approach to revert tamoxifen resistance in breast cancer cells. Oncogene 2012; 31:4353-61. [PMID: 22249258 DOI: 10.1038/onc.2011.627] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Pharmacological resistance is a serious threat to the clinical success of hormone therapy for breast cancer. The antiproliferative response to antagonistic drugs such as tamoxifen (Tam) critically depends on the recruitment of NCoR/SMRT corepressors to estrogen receptor alpha (ERα) bound to estrogen target genes. Under certain circumstances, as demonstrated in the case of interleukin-1β (IL-1β) treatment, the protein Tab2 interacts with ERα/NCoR and causes dismissal of NCoR from these genes, leading to loss of the antiproliferative response. In Tam-resistant (TamR) ER-positive breast cancer cells, we observed that Tab2 presents a shift in mobility on sodium dodecyl sulfate--PAGE (SDS-PAGE) similar to that seen in MCF7 wt upon stimulation with IL-1β, suggesting constitutive activation. Accordingly, TamR treatment with Tab2-specific short interfering RNA, restored the antiproliferative response to Tam in these cells. As Tab2 is known to directly interact with the N-terminal domain of ERα, we synthesized a peptide composed of a 14-aa motif of this domain, which effectively competes with ERα/Tab2 interaction in pull-down and co-immunoprecipitation experiments, fused to the carrier TAT peptide to allow internalization. Treatment of TamR cells with this peptide resulted in partial recovery of the antiproliferative response to Tam, suggesting a strategy to revert pharmacological resistance in breast cancer. Silencing of Tab2 in TamR cells by siRNA caused modulation of a gene set related to the control of cell cycle and extensively connected to BRCA1 in a functional network. These genes were able to discern two groups of patients, from a published data set of Tam-treated breast cancer profiles, with significantly different disease-free survival. Altogether, our data implicate Tab2 as a mediator of resistance to endocrine therapy and as a potential new target to reverse pharmacological resistance and potentiate antiestrogen action.
Collapse
Affiliation(s)
- S Cutrupi
- Center for Molecular Systems Biology, University of Turin, Turin, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Pais A, Gunanathan C, Margalit R, Biton IE, Yosepovich A, Milstein D, Degani H. In vivo magnetic resonance imaging of the estrogen receptor in an orthotopic model of human breast cancer. Cancer Res 2011; 71:7387-97. [PMID: 22042793 DOI: 10.1158/0008-5472.can-11-1226] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Histologic overexpression of the estrogen receptor α (ER) is a well-established prognostic marker in breast cancer. Noninvasive imaging techniques that could detect ER overexpression would be useful in a variety of settings where patients' biopsies are problematic to obtain. This study focused on developing, by in vivo MRI, strategies to measure the level of ER expression in an orthotopic mouse model of human breast cancer. Specifically, novel ER-targeted contrast agents based on pyridine-tetra-acetate-Gd(III) chelate (PTA-Gd) conjugated to 17β-estradiol (EPTA-Gd) or to tamoxifen (TPTA-Gd) were examined in ER-positive or ER-negative tumors. Detection of specific interactions of EPTA-Gd with ER were documented that could differentiate ER-positive and ER-negative tumors. In vivo competition experiments confirmed that the enhanced detection capability of EPTA-Gd was based specifically on ER targeting. In contrast, PTA-Gd acted as an extracellular probe that enhanced ER detection similarly in either tumor type, confirming a similar vascular perfusion efficiency in ER-positive and ER-negative tumors in the model. Finally, TPTA-Gd accumulated selectively in muscle and could not preferentially identify ER-positive tumors. Together, these results define a novel MRI probe that can permit selective noninvasive imaging of ER-positive tumors in vivo.
Collapse
Affiliation(s)
- Adi Pais
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | | | |
Collapse
|
50
|
Braems G, Denys H, De Wever O, Cocquyt V, Van den Broecke R. Use of tamoxifen before and during pregnancy. Oncologist 2011; 16:1547-51. [PMID: 22020212 DOI: 10.1634/theoncologist.2011-0121] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
For premenopausal patients with receptor-positive early breast cancer, administration of tamoxifen for 5 years constitutes the main adjuvant endocrine therapy. During pregnancy, tamoxifen and its metabolites interact with rapidly growing and developing embryonic or fetal tissues. Information about tamoxifen and pregnancy was gathered by searching PubMed. In addition, we had access to the records of the pharmaceutical company AstraZeneca. Because these observations are retrospective and other therapies and diagnostic measures are possible confounders, a causal relationship was not established between tamoxifen treatment and pregnancy outcome. The records from AstraZeneca documented three live births with congenital anomalies and four live births without congenital anomalies related to tamoxifen treatment before pregnancy. Tamoxifen therapy during pregnancy resulted in 16 live births with congenital malformations and a total of 122 live births without malformations. The 122 live births without malformations included 85 patients from a prevention trial that did not record a single anomaly, whereas the AstraZeneca Safety Database alone reported 11 babies with congenital malformations of 44 live births. Additionally, there were: 12 spontaneous abortions, 17 terminations of pregnancy without known fetal defects, six terminations of pregnancy with fetal defects, one stillbirth without fetal defects, two stillbirths with fetal defects, and 57 unknown outcomes. The relatively high frequency of severe congenital abnormalities indicates that reliable birth control during tamoxifen treatment is mandatory. After tamoxifen use, a washout period of 2 months is advisable based on the known half-life of tamoxifen. In case of an inadvertent pregnancy, risks and options should be discussed.
Collapse
Affiliation(s)
- Geert Braems
- Department of Gynecologic Oncology, Ghent University Hospital, Ghent, Belgium.
| | | | | | | | | |
Collapse
|