1
|
Pu J, Yuan K, Tao J, Qin Y, Li Y, Fu J, Li Z, Zhou H, Tang Z, Li L, Gai X, Qin D. Glioblastoma multiforme: an updated overview of temozolomide resistance mechanisms and strategies to overcome resistance. Discov Oncol 2025; 16:731. [PMID: 40353925 PMCID: PMC12069213 DOI: 10.1007/s12672-025-02567-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Accepted: 05/05/2025] [Indexed: 05/14/2025] Open
Abstract
Glioblastoma (GBM) is an aggressive primary brain tumor with high lethality. The typical treatment regimen includes post-surgical radiotherapy and temozolomide (TMZ) chemotherapy, which helps extend survival. Nevertheless, TMZ resistance occurs in approximately 50% of patients. This resistance is primarily associated with the expression of O6-methylguanine-DNA methyltransferase (MGMT), which repairs O6-methylguanine lesions generated by TMZ and is thought to be the major mechanism of drug resistance. Additionally, the mismatch repair and base excision repair pathways play crucial roles in TMZ resistance. Emerging studies also point to drug transport mechanisms, glioma stem cells, and the heterogeneous tumor microenvironment as additional influences on TMZ resistance in gliomas. A better understanding of these mechanisms is vital for developing new treatments to improve TMZ effectiveness, such as DNA repair inhibitors, inhibitors of multidrug transporting proteins, TMZ analogs, and combination therapies targeting multiple pathways. This article discusses the main resistance mechanisms and potential strategies to counteract resistance in GBM patients, aiming to broaden the understanding of these mechanisms for future research and to explore the therapeutic effects of traditional Chinese medicines and their active components in overcoming TMZ resistance.
Collapse
Affiliation(s)
- Jianlin Pu
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming, China
- Second Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, China
| | - Kai Yuan
- Second Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, China
| | - Jian Tao
- Department of Rehabilitation Medicine, Mojiang Hani Autonomous Country Hospital of Traditional Chinese Medicine, Mojiang, China
| | - Yuliang Qin
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming, China
| | - Yongxin Li
- Department of Rehabilitation Medicine, Mojiang Hani Autonomous Country Hospital of Traditional Chinese Medicine, Mojiang, China
| | - Jing Fu
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming, China
- Second Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, China
| | - Zhong Li
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming, China
- Second Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, China
| | - Haimei Zhou
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming, China
| | - Zhengxiu Tang
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming, China
| | - Li Li
- Department of Emergency Trauma Surgery, The First People's Hospital of Yunnan Province, Kunming, China
| | - Xuesong Gai
- Department of Rehabilitation Medicine, The First People's Hospital of Yunnan Province, Kunming, China.
| | - Dongdong Qin
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming, China.
| |
Collapse
|
2
|
Wu CP, Hsiao SH, Wu YS. Perspectives on drug repurposing to overcome cancer multidrug resistance mediated by ABCB1 and ABCG2. Drug Resist Updat 2023; 71:101011. [PMID: 37865067 DOI: 10.1016/j.drup.2023.101011] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/07/2023] [Accepted: 10/08/2023] [Indexed: 10/23/2023]
Abstract
The overexpression of the human ATP-binding cassette (ABC) transporters in cancer cells is a common mechanism involved in developing multidrug resistance (MDR). Unfortunately, there are currently no approved drugs specifically designed to treat multidrug-resistant cancers, making MDR a significant obstacle to successful chemotherapy. Despite over two decades of research, developing transporter-specific inhibitors for clinical use has proven to be a challenging endeavor. As an alternative approach, drug repurposing has gained traction as a more practical method to discover clinically effective modulators of drug transporters. This involves exploring new indications for already-approved drugs, bypassing the lengthy process of developing novel synthetic inhibitors. In this context, we will discuss the mechanisms of ABC drug transporters ABCB1 and ABCG2, their roles in cancer MDR, and the inhibitors that have been evaluated for their potential to reverse MDR mediated by these drug transporters. Our focus will be on providing an up-to-date report on approved drugs tested for their inhibitory activities against these drug efflux pumps. Lastly, we will explore the challenges and prospects of repurposing already approved medications for clinical use to overcome chemoresistance in patients with high tumor expression of ABCB1 and/or ABCG2.
Collapse
Affiliation(s)
- Chung-Pu Wu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Molecular Medicine Research Center, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei 10507, Taiwan.
| | - Sung-Han Hsiao
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yu-Shan Wu
- Department of Chemistry, Tunghai University, Taichung 40704, Taiwan.
| |
Collapse
|
3
|
Lei Z, Tian Q, Teng Q, Wurpel JND, Zeng L, Pan Y, Chen Z. Understanding and targeting resistance mechanisms in cancer. MedComm (Beijing) 2023; 4:e265. [PMID: 37229486 PMCID: PMC10203373 DOI: 10.1002/mco2.265] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/05/2023] [Accepted: 03/23/2023] [Indexed: 05/27/2023] Open
Abstract
Resistance to cancer therapies has been a commonly observed phenomenon in clinical practice, which is one of the major causes of treatment failure and poor patient survival. The reduced responsiveness of cancer cells is a multifaceted phenomenon that can arise from genetic, epigenetic, and microenvironmental factors. Various mechanisms have been discovered and extensively studied, including drug inactivation, reduced intracellular drug accumulation by reduced uptake or increased efflux, drug target alteration, activation of compensatory pathways for cell survival, regulation of DNA repair and cell death, tumor plasticity, and the regulation from tumor microenvironments (TMEs). To overcome cancer resistance, a variety of strategies have been proposed, which are designed to enhance the effectiveness of cancer treatment or reduce drug resistance. These include identifying biomarkers that can predict drug response and resistance, identifying new targets, developing new targeted drugs, combination therapies targeting multiple signaling pathways, and modulating the TME. The present article focuses on the different mechanisms of drug resistance in cancer and the corresponding tackling approaches with recent updates. Perspectives on polytherapy targeting multiple resistance mechanisms, novel nanoparticle delivery systems, and advanced drug design tools for overcoming resistance are also reviewed.
Collapse
Affiliation(s)
- Zi‐Ning Lei
- PrecisionMedicine CenterScientific Research CenterThe Seventh Affiliated HospitalSun Yat‐Sen UniversityShenzhenP. R. China
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNew YorkUSA
| | - Qin Tian
- PrecisionMedicine CenterScientific Research CenterThe Seventh Affiliated HospitalSun Yat‐Sen UniversityShenzhenP. R. China
| | - Qiu‐Xu Teng
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNew YorkUSA
| | - John N. D. Wurpel
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNew YorkUSA
| | - Leli Zeng
- PrecisionMedicine CenterScientific Research CenterThe Seventh Affiliated HospitalSun Yat‐Sen UniversityShenzhenP. R. China
| | - Yihang Pan
- PrecisionMedicine CenterScientific Research CenterThe Seventh Affiliated HospitalSun Yat‐Sen UniversityShenzhenP. R. China
| | - Zhe‐Sheng Chen
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNew YorkUSA
| |
Collapse
|
4
|
Zou T, Zeng C, Qu J, Yan X, Lin Z. Rutaecarpine Increases Anticancer Drug Sensitivity in Drug-Resistant Cells through MARCH8-Dependent ABCB1 Degradation. Biomedicines 2021; 9:1143. [PMID: 34572328 PMCID: PMC8466742 DOI: 10.3390/biomedicines9091143] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/28/2021] [Accepted: 08/30/2021] [Indexed: 12/24/2022] Open
Abstract
The overexpression of adenosine triphosphate (ATP)-binding cassette (ABC) subfamily B member 1 (ABCB1; P-glycoprotein; MDR1) in some types of cancer cells is one of the mechanisms responsible for the development of multidrug resistance (MDR), which leads to the failure of chemotherapy. Therefore, it is important to inhibit the activity or reduce the expression level of ABCB1 to maintain an effective intracellular level of chemotherapeutic drugs. In this study, we found that rutaecarpine, a bioactive alkaloid isolated from Evodia Rutaecarpa, has the capacity to reverse ABCB1-mediated MDR. Our data indicated that the reversal effect of rutaecarpine was related to the attenuation of the protein level of ABCB1. Mechanistically, we demonstrated that ABCB1 is a newly discovered substrate of E3 ubiquitin ligase membrane-associated RING-CH 8 (MARCH8). MARCH8 can interact with ABCB1 and promote its ubiquitination and degradation. In short, rutaecarpine increased the degradation of ABCB1 protein by upregulating the protein level of MARCH8, thereby antagonizing ABCB1-mediated MDR. Notably, the treatment of rutaecarpine combined with other anticancer drugs exhibits a therapeutic effect on transplanted tumors. Therefore, our study provides a potential chemotherapeutic strategy of co-administrating rutaecarpine with other conventional chemotherapeutic agents to overcome MDR and improve therapeutic effect.
Collapse
Affiliation(s)
- Tingting Zou
- School of Life Sciences, Chongqing University, Chongqing 401331, China; (T.Z.); (C.Z.); (J.Q.)
| | - Cheng Zeng
- School of Life Sciences, Chongqing University, Chongqing 401331, China; (T.Z.); (C.Z.); (J.Q.)
| | - Junyan Qu
- School of Life Sciences, Chongqing University, Chongqing 401331, China; (T.Z.); (C.Z.); (J.Q.)
| | - Xiaohua Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Zhenghong Lin
- School of Life Sciences, Chongqing University, Chongqing 401331, China; (T.Z.); (C.Z.); (J.Q.)
| |
Collapse
|
5
|
Luo X, Teng QX, Dong JY, Yang DH, Wang M, Dessie W, Qin JJ, Lei ZN, Wang JQ, Qin Z, Chen ZS. Antimicrobial Peptide Reverses ABCB1-Mediated Chemotherapeutic Drug Resistance. Front Pharmacol 2020; 11:1208. [PMID: 32903706 PMCID: PMC7438908 DOI: 10.3389/fphar.2020.01208] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 07/24/2020] [Indexed: 12/12/2022] Open
Abstract
Multidrug resistance (MDR) of tumor cells to chemotherapeutic agents is the main reason for the failure of cancer chemotherapy. Overexpression of ABCB1 transporter that actively pumps various drugs out of the cells has been considered a major contributing factor for MDR. Over the past decade, many antimicrobial peptides with antitumor activity have been identified or synthesized, and some antitumor peptides have entered the clinical practice. In this study, we report that peptide HX-12C has the effect of reversing ABCB1-mediated chemotherapy resistance. In ABCB1-overexpressing cells, nontoxic dose of peptide HX-12C inhibited drug resistance and increased the effective intracellular concentration of paclitaxel and other ABCB1 substrate drugs. The mechanism study showed that peptide HX-12C stimulated ABCB1 ATPase activity without changing the expression level and localization patterns of ABCB1. Molecular docking predicted the binding modes between peptide HX-12C and ABCB1. Overall, we found that peptide HX-12C reverses ABCB1-mediated MDR through interacting with ABCB1 and blocking its function without affecting the transporter's expression and cellular localization. Our findings suggest that this antimicrobial peptide may be used as a novel prospective cancer therapeutic strategy in combination with conventional anticancer agents.
Collapse
Affiliation(s)
- Xiaofang Luo
- Research Center of Biochemical Engineering Technology, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, China
| | - Qiu-Xu Teng
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, United States
| | - Jin-Yun Dong
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| | - Dong-Hua Yang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, United States
| | - Meifeng Wang
- Research Center of Biochemical Engineering Technology, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, China
| | - Wubliker Dessie
- Research Center of Biochemical Engineering Technology, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, China
| | - Jiang-Jiang Qin
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| | - Zi-Ning Lei
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, United States
| | - Jing-Quan Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, United States
| | - Zuodong Qin
- Research Center of Biochemical Engineering Technology, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, United States
| |
Collapse
|
6
|
Krchniakova M, Skoda J, Neradil J, Chlapek P, Veselska R. Repurposing Tyrosine Kinase Inhibitors to Overcome Multidrug Resistance in Cancer: A Focus on Transporters and Lysosomal Sequestration. Int J Mol Sci 2020; 21:ijms21093157. [PMID: 32365759 PMCID: PMC7247577 DOI: 10.3390/ijms21093157] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/26/2020] [Accepted: 04/27/2020] [Indexed: 12/22/2022] Open
Abstract
Tyrosine kinase inhibitors (TKIs) are being increasingly used to treat various malignancies. Although they were designed to target aberrant tyrosine kinases, they are also intimately linked with the mechanisms of multidrug resistance (MDR) in cancer cells. MDR-related solute carrier (SLC) and ATB-binding cassette (ABC) transporters are responsible for TKI uptake and efflux, respectively. However, the role of TKIs appears to be dual because they can act as substrates and/or inhibitors of these transporters. In addition, several TKIs have been identified to be sequestered into lysosomes either due to their physiochemical properties or via ABC transporters expressed on the lysosomal membrane. Since the development of MDR represents a great concern in anticancer treatment, it is important to elucidate the interactions of TKIs with MDR-related transporters as well as to improve the properties that would prevent TKIs from diffusing into lysosomes. These findings not only help to avoid MDR, but also help to define the possible impact of combining TKIs with other anticancer drugs, leading to more efficient therapy and fewer adverse effects in patients.
Collapse
Affiliation(s)
- Maria Krchniakova
- Laboratory of Tumor Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, 61137 Brno, Czech Republic; (M.K.); (J.S.); (J.N.); (P.C.)
- International Clinical Research Center, St. Anne’s University Hospital, 65691 Brno, Czech Republic
| | - Jan Skoda
- Laboratory of Tumor Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, 61137 Brno, Czech Republic; (M.K.); (J.S.); (J.N.); (P.C.)
- International Clinical Research Center, St. Anne’s University Hospital, 65691 Brno, Czech Republic
| | - Jakub Neradil
- Laboratory of Tumor Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, 61137 Brno, Czech Republic; (M.K.); (J.S.); (J.N.); (P.C.)
- International Clinical Research Center, St. Anne’s University Hospital, 65691 Brno, Czech Republic
| | - Petr Chlapek
- Laboratory of Tumor Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, 61137 Brno, Czech Republic; (M.K.); (J.S.); (J.N.); (P.C.)
- International Clinical Research Center, St. Anne’s University Hospital, 65691 Brno, Czech Republic
| | - Renata Veselska
- Laboratory of Tumor Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, 61137 Brno, Czech Republic; (M.K.); (J.S.); (J.N.); (P.C.)
- International Clinical Research Center, St. Anne’s University Hospital, 65691 Brno, Czech Republic
- Correspondence: ; Tel.: +420-549-49-7905
| |
Collapse
|
7
|
Zhang H, Huang L, Tao L, Zhang J, Wang F, Zhang X, Fu L. Secalonic acid D induces cell apoptosis in both sensitive and ABCG2-overexpressing multidrug resistant cancer cells through upregulating c-Jun expression. Acta Pharm Sin B 2019; 9:516-525. [PMID: 31193763 PMCID: PMC6543021 DOI: 10.1016/j.apsb.2018.12.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 11/04/2018] [Accepted: 11/28/2018] [Indexed: 12/14/2022] Open
Abstract
Secalonic acid D (SAD) could inhibit cell growth in not only sensitive cells but also multidrug resistant (MDR) cells. However, the molecular mechanisms need to be elucidated. Here, we identified that SAD possessed potent cytotoxicity in 3 pairs of MDR and their parental sensitive cells including S1-MI-80 and S1, H460/MX20 and H460, MCF-7/ADR and MCF-7 cells. Furthermore, SAD induced cell G2/M phase arrest via the downregulation of cyclin B1 and the increase of CDC2 phosphorylation. Importantly, JNK pathway upregulated the expression of c-Jun in protein level and increased c-Jun phosphorylation induced by SAD, which was linked to cell apoptosis via c-Jun/Src/STAT3 pathway. To investigate the mechanisms of upregulation of c-Jun protein by SAD, the mRNA expression level and degradation of c-Jun were examined. We found that SAD did not alter the mRNA level of c-Jun but inhibited its proteasome-dependent degradation. Taken together, these results implicate that SAD induces cancer cell death through c-Jun/Src/STAT3 signaling axis by inhibiting the proteasome-dependent degradation of c-Jun in both sensitive cells and ATP-binding cassette transporter sub-family G member 2 (ABCG2)-mediated MDR cells.
Collapse
Key Words
- ABCB1, ATP-binding cassette subfamily B member 1
- ABCG2
- ABCG2, ATP-binding cassette transporter sub-family G member 2
- AP-1, activating protein-1
- Apoptosis
- CHX, cycloheximide
- HUVEC, human umbilical vein endothelial cells
- JNKs, c-Jun N-terminal kinases
- MAPKs, mitogen-activated protein kinases
- MDR, multidrug resistance
- MTT, 3-(4,5-dimethylthiazol-yl)-2,5-diphenyltetrazolium bromide
- Multidrug resistance
- NCM460, human normal colon epithelial cells
- RT-PCR, Real-time polymerase chain reaction
- SAD, Secalonic acid D
- SDS-PAGE, sodium dodecyl sulfate-polyacrylamide gel electrophoresis
- SP, side population
- Secalonic acid D
- c-Jun
Collapse
Affiliation(s)
- Hong Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangzhou 510060, China
| | - Liyan Huang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangzhou 510060, China
| | - Liyang Tao
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangzhou 510060, China
| | - Jianye Zhang
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Fang Wang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangzhou 510060, China
| | - Xu Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangzhou 510060, China
| | - Liwu Fu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangzhou 510060, China
- Corresponding author. Tel.: +86 20 87343163; fax: +86 20 87343170.
| |
Collapse
|
8
|
Stefan SM, Wiese M. Small-molecule inhibitors of multidrug resistance-associated protein 1 and related processes: A historic approach and recent advances. Med Res Rev 2018; 39:176-264. [DOI: 10.1002/med.21510] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/05/2018] [Accepted: 04/28/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Sven Marcel Stefan
- Pharmaceutical Institute; Rheinische Friedrich-Wilhelms-University; Bonn Germany
| | - Michael Wiese
- Pharmaceutical Institute; Rheinische Friedrich-Wilhelms-University; Bonn Germany
| |
Collapse
|
9
|
Wu S, Fu L. Tyrosine kinase inhibitors enhanced the efficacy of conventional chemotherapeutic agent in multidrug resistant cancer cells. Mol Cancer 2018; 17:25. [PMID: 29455646 PMCID: PMC5817862 DOI: 10.1186/s12943-018-0775-3] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 02/01/2018] [Indexed: 01/24/2023] Open
Abstract
Multidrug resistance (MDR) triggered by ATP binding cassette (ABC) transporter such as ABCB1, ABCC1, ABCG2 limited successful cancer chemotherapy. Unfortunately, no commercial available MDR modulator approved by FDA was used in clinic. Tyrosine kinase inhibitors (TKIs) have been administrated to fight against cancer for decades. Almost TKI was used alone in clinic. However, drug combinations acting synergistically to kill cancer cells have become increasingly important in cancer chemotherapy as an approach for the recurrent resistant disease. Here, we summarize the effect of TKIs on enhancing the efficacy of conventional chemotherapeutic drug in ABC transporter-mediated MDR cancer cells, which encourage to further discuss and study in clinic.
Collapse
Affiliation(s)
- Shaocong Wu
- State Key Laboratory of Oncology in South China, Guangdong Esophageal Cancer Institute; Cancer Center, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Liwu Fu
- State Key Laboratory of Oncology in South China, Guangdong Esophageal Cancer Institute; Cancer Center, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
10
|
Apolipoprotein M mediates sphingosine-1-phosphate efflux from erythrocytes. Sci Rep 2017; 7:14983. [PMID: 29118354 PMCID: PMC5678177 DOI: 10.1038/s41598-017-15043-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 10/16/2017] [Indexed: 01/25/2023] Open
Abstract
Sphingosine-1-phosphate (S1P) is a bioactive lipid implicated in e.g. angiogenesis, lymphocyte trafficking, and endothelial barrier function. Erythrocytes are a main source of plasma S1P together with platelets and endothelial cells. Apolipoprotein M (apoM) in HDL carries 70% of plasma S1P, whereas 30% is carried by albumin. The current aim was to investigate the role of apoM in export of S1P from human erythrocytes. Erythrocytes exported S1P more efficiently to HDL than to albumin, particularly when apoM was present in HDL. In contrast, export of sphingosine to HDL was unaffected by the presence of apoM. The specific ability of apoM to promote export of S1P was independent of apoM being bound in HDL particles. Treatment with MK-571, an inhibitor of the ABCC1 transporter, effectively reduced export of S1P from human erythrocytes to apoM, whereas the export was unaffected by inhibitors of ABCB1 or ATPase. Thus, ABCC1 could be involved in export of S1P from erythrocytes to apoM.
Collapse
|
11
|
Bani M, Decio A, Giavazzi R, Ghilardi C. Contribution of tumor endothelial cells to drug resistance: anti-angiogenic tyrosine kinase inhibitors act as p-glycoprotein antagonists. Angiogenesis 2017; 20:233-241. [DOI: 10.1007/s10456-017-9549-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 03/13/2017] [Indexed: 12/12/2022]
|
12
|
Abstract
Scientists have identified the impact of angiogenesis on tumor growth and survival. Among other efficient drugs, several small-molecule tyrosine kinase inhibitors (TKIs) targeting the vascular endothelial growth factor receptor (VEGFR) have been developed and have already been integrated into the treatment of various advanced malignancies. This review provides a compilation of current knowledge on the pharmacokinetic aspects of all VEGFR-TKIs already approved by the US Food and Drug Administration (FDA) and the European Medicines Agency (EMA) and of those still under investigation. Additional information on substance metabolism, potential for drug-drug interactions (DDIs), and the need for dose adaptation in patients with predominant renal and/or hepatic impairment has been included. All TKIs introduced in this review were administered orally, allowing for easy drug handling for healthcare professionals and patients. For almost all substances, the maximum plasma concentrations were reached within a short period of time. The majority of the substances showed a high plasma protein binding and their excretion occurred via the feces and, to a lesser extent, via the urine. In most cases, dose adaptation in patients with mild to moderate renal or hepatic impairment is not recommended. Cytochrome P450 (CYP) 3A4 was found to play a crucial role in the drug metabolic processes of many compounds. In order to prevent unwanted DDIs, co-administration of VEGFR TKIs together with CYP3A4 inhibitors or inducers should be avoided. Throughout all TKIs, the data indicate high inter-individual variability. The causes of this are still unclear and require further research to allow for individualization of treatment regimens.
Collapse
|
13
|
Bordinhão ALR, Evangelista AF, Oliveira RJS, Macedo T, Silveira HC, Reis RM, Marques MM. MicroRNA profiling in human breast cancer cell lines exposed to the anti-neoplastic drug cediranib. Oncol Rep 2016; 36:3197-3206. [PMID: 27748845 DOI: 10.3892/or.2016.5153] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 03/15/2016] [Indexed: 11/06/2022] Open
Abstract
Cediranib, a pan-tyrosine kinase inhibitor is showing promising results for the treatment of several solid tumours. In breast cancer, its effects remain unclear, and there are no predictive biomarkers. Several studies have examined the expression profiles of microRNAs (miRNAs) in response to different chemotherapy treatments and found that the expression patterns may be associated with the treatment response. Therefore, our aim was to evaluate the cellular behaviour and differential expression profiles of miRNAs in breast cancer cell lines exposed to cediranib. The biological effect of this drug was measured by viability, migration, invasion and cell death in in vitro assays. Signaling pathways were assessed using a human phospho-receptor tyrosine kinase array. Furthermore, using a miRNA array and quantitative real-time PCR (qRT‑PCR), we assessed the relative expression of miRNAs following cediranib treatment. The breast cancer cell lines exhibited a distinct cytotoxic response to cediranib treatment. Cediranib exposure resulted in a decrease in the cell migration and invasion of all the breast cancer cell lines. Treatment with cediranib appeared to be able to modulate the activation of several RTKs that are targets of cediranib such as EGFR and a new potential target ROR2. Furthermore, this drug was able to modulate the expression profile of different microRNAs such as miR-494, miR-923, miR-449a, miR-449b and miR-886-3 in breast cancer cell lines. These miRNAs are reported to regulate genes involved in important molecular processes, according to bioinformatics prediction tools.
Collapse
Affiliation(s)
- A L R Bordinhão
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, Brazil
| | - A F Evangelista
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, Brazil
| | - R J S Oliveira
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, Brazil
| | - T Macedo
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, Brazil
| | - H C Silveira
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, Brazil
| | - R M Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, Brazil
| | - M M Marques
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, Brazil
| |
Collapse
|
14
|
Vaidyanathan A, Sawers L, Gannon AL, Chakravarty P, Scott AL, Bray SE, Ferguson MJ, Smith G. ABCB1 (MDR1) induction defines a common resistance mechanism in paclitaxel- and olaparib-resistant ovarian cancer cells. Br J Cancer 2016; 115:431-41. [PMID: 27415012 PMCID: PMC4985349 DOI: 10.1038/bjc.2016.203] [Citation(s) in RCA: 256] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 05/26/2016] [Accepted: 06/02/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Clinical response to chemotherapy for ovarian cancer is frequently compromised by the development of drug-resistant disease. The underlying molecular mechanisms and implications for prescription of routinely prescribed chemotherapy drugs are poorly understood. METHODS We created novel A2780-derived ovarian cancer cell lines resistant to paclitaxel and olaparib following continuous incremental drug selection. MTT assays were used to assess chemosensitivity to paclitaxel and olaparib in drug-sensitive and drug-resistant cells±the ABCB1 inhibitors verapamil and elacridar and cross-resistance to cisplatin, carboplatin, doxorubicin, rucaparib, veliparib and AZD2461. ABCB1 expression was assessed by qRT-PCR, copy number, western blotting and immunohistochemical analysis and ABCB1 activity assessed by the Vybrant and P-glycoprotein-Glo assays. RESULTS Paclitaxel-resistant cells were cross-resistant to olaparib, doxorubicin and rucaparib but not to veliparib or AZD2461. Resistance correlated with increased ABCB1 expression and was reversible following treatment with the ABCB1 inhibitors verapamil and elacridar. Active efflux of paclitaxel, olaparib, doxorubicin and rucaparib was confirmed in drug-resistant cells and in ABCB1-expressing bacterial membranes. CONCLUSIONS We describe a common ABCB1-mediated mechanism of paclitaxel and olaparib resistance in ovarian cancer cells. Optimal choice of PARP inhibitor may therefore limit the progression of drug-resistant disease, while routine prescription of first-line paclitaxel may significantly limit subsequent chemotherapy options in ovarian cancer patients.
Collapse
Affiliation(s)
- Aparajitha Vaidyanathan
- Division of Cancer Research, University of Dundee, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK
| | - Lynne Sawers
- Division of Cancer Research, University of Dundee, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK
| | - Anne-Louise Gannon
- Division of Cancer Research, University of Dundee, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK
| | - Probir Chakravarty
- Bioinformatics and Biostatistics Service, Cancer Research UK, 44 Lincolns Inn Fields, London WC2A 3PX, UK
| | - Alison L Scott
- Division of Cancer Research, University of Dundee, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK
| | - Susan E Bray
- Tayside Tissue Bank, University of Dundee, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK
| | | | - Gillian Smith
- Division of Cancer Research, University of Dundee, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK
| |
Collapse
|
15
|
Vaidyanathan A, Sawers L, Gannon AL, Chakravarty P, Scott AL, Bray SE, Ferguson MJ, Smith G. ABCB1 (MDR1) induction defines a common resistance mechanism in paclitaxel- and olaparib-resistant ovarian cancer cells. Br J Cancer 2016. [PMID: 27415012 DOI: 10.1038/bjc.2016.203] [] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Clinical response to chemotherapy for ovarian cancer is frequently compromised by the development of drug-resistant disease. The underlying molecular mechanisms and implications for prescription of routinely prescribed chemotherapy drugs are poorly understood. METHODS We created novel A2780-derived ovarian cancer cell lines resistant to paclitaxel and olaparib following continuous incremental drug selection. MTT assays were used to assess chemosensitivity to paclitaxel and olaparib in drug-sensitive and drug-resistant cells±the ABCB1 inhibitors verapamil and elacridar and cross-resistance to cisplatin, carboplatin, doxorubicin, rucaparib, veliparib and AZD2461. ABCB1 expression was assessed by qRT-PCR, copy number, western blotting and immunohistochemical analysis and ABCB1 activity assessed by the Vybrant and P-glycoprotein-Glo assays. RESULTS Paclitaxel-resistant cells were cross-resistant to olaparib, doxorubicin and rucaparib but not to veliparib or AZD2461. Resistance correlated with increased ABCB1 expression and was reversible following treatment with the ABCB1 inhibitors verapamil and elacridar. Active efflux of paclitaxel, olaparib, doxorubicin and rucaparib was confirmed in drug-resistant cells and in ABCB1-expressing bacterial membranes. CONCLUSIONS We describe a common ABCB1-mediated mechanism of paclitaxel and olaparib resistance in ovarian cancer cells. Optimal choice of PARP inhibitor may therefore limit the progression of drug-resistant disease, while routine prescription of first-line paclitaxel may significantly limit subsequent chemotherapy options in ovarian cancer patients.
Collapse
Affiliation(s)
- Aparajitha Vaidyanathan
- Division of Cancer Research, University of Dundee, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK
| | - Lynne Sawers
- Division of Cancer Research, University of Dundee, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK
| | - Anne-Louise Gannon
- Division of Cancer Research, University of Dundee, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK
| | - Probir Chakravarty
- Bioinformatics and Biostatistics Service, Cancer Research UK, 44 Lincolns Inn Fields, London WC2A 3PX, UK
| | - Alison L Scott
- Division of Cancer Research, University of Dundee, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK
| | - Susan E Bray
- Tayside Tissue Bank, University of Dundee, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK
| | | | - Gillian Smith
- Division of Cancer Research, University of Dundee, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK
| |
Collapse
|
16
|
Zhou ZY, Wan LL, Yang QJ, Han YL, Li D, Lu J, Guo C. Nilotinib reverses ABCB1/P-glycoprotein-mediated multidrug resistance but increases cardiotoxicity of doxorubicin in a MDR xenograft model. Toxicol Lett 2016; 259:124-132. [PMID: 27491883 DOI: 10.1016/j.toxlet.2016.07.710] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 07/06/2016] [Accepted: 07/30/2016] [Indexed: 11/30/2022]
Abstract
The BCR-Abl tyrosine kinase inhibitor (TKI), nilotinib, was developed to surmount resistance or intolerance to imatinib in patients with Philadelphia-positive chronic myelogenous leukemia. Recent studies have shown that nilotinib induces potent sensitization to anticancer agents by blocking the functions of ABCB1/P-glycoprotein (P-gp) in multidrug resistance (MDR). However, changes in P-gp expression or function affect the cardiac disposition and prolong the presence of both doxorubicin (DOX) and doxorubicinol (DOXol) in cardiac tissue, thus, enhancing the risk of cardiotoxicity. In this study, we used a MDR xenograft model to evaluate the antitumor activity, tissue distribution and cardiotoxicity of DOX when co-administered with nilotinib. This information will provide more insight into the pharmacological role of nilotinib in MDR reversal and the risk of DOX cardiotoxicity. Our results showed that nilotinib significantly enhanced DOX cytotoxicity and increased intracellular rhodamine 123 accumulation in MG63/DOX cells in vitro and strongly enhanced DOX inhibition of growth of P-gp-overexpressing MG63/DOX cell xenografts in nude mice. Additionally, nilotinib significantly increased DOX and DOXol accumulation in serum, heart, liver and tumor tissues. Importantly, nilotinib induced a disproportionate increase in DOXol in cardiac tissue. In the co-administration group, CBR1 and AKR1A1 protein levels were significantly increased in cardiac tissue, with more severe necrosis and vacuole formation. These results indicate that nilotinib reverses P-gp- mediated MDR by blocking the efflux function and potentiates DOX-induced cardiotoxicity. These findings represent a guide for the design of future clinical trials and studies of pharmacokinetic interactions and may be useful in guiding the use of nilotinib in combination therapy of cancer in clinical practice.
Collapse
Affiliation(s)
- Zhi-Yong Zhou
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 200233 Shanghai, China; College of Medical Science, Three Gorges University, 443002 Yichang, Hubei, China
| | - Li-Li Wan
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 200233 Shanghai, China
| | - Quan-Jun Yang
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 200233 Shanghai, China
| | - Yong-Long Han
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 200233 Shanghai, China
| | - Dan Li
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 200233 Shanghai, China
| | - Jin Lu
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 200233 Shanghai, China
| | - Cheng Guo
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 200233 Shanghai, China.
| |
Collapse
|
17
|
Singh AB. Improved Antidepressant Remission in Major Depression via a Pharmacokinetic Pathway Polygene Pharmacogenetic Report. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2015; 13:150-6. [PMID: 26243841 PMCID: PMC4540033 DOI: 10.9758/cpn.2015.13.2.150] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 01/04/2015] [Accepted: 01/07/2015] [Indexed: 12/26/2022]
Abstract
Objective Major depressive disorder (MDD) is projected to be a leading cause of disability globally by 2030. Only a minority of patients remit with antidepressants. If assay of polymorphisms influencing central nervous system (CNS) bioavailability could guide prescribers to more effectively dose patients, remission rates may improve and the burden of disease from MDD reduce. Hepatic and blood brain barrier (BBB) polymorphisms appear to influence antidepressant CNS bioavailability. Methods A 12-week prospective double blind randomized genetically guided versus unguided trial of antidepressant dosing in Caucasian adults with MDD (n=148) was conducted. Results Subjects receiving genetically guided prescribing had a 2.52-fold greater chance of remission (95% confidence interval [CI]=1.71–3.73, z=4.66, p<0.0001). The number needed to genotype (NNG)=3 (95% CI=1.7–3.5) to produce an additional remission. Conclusion These data suggest that a pharmacogenetic dosing report (CNSDose®) improves antidepressant efficacy. The effect size was sufficient that translation to clinical care may arise if results are independently replicated.
Collapse
|
18
|
Xiang QF, Zhang DM, Wang JN, Zhang HW, Zheng ZY, Yu DC, Li YJ, Xu J, Chen YJ, Shang CZ. Cabozantinib reverses multidrug resistance of human hepatoma HepG2/adr cells by modulating the function of P-glycoprotein. Liver Int 2015; 35:1010-23. [PMID: 24621440 DOI: 10.1111/liv.12524] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 03/05/2014] [Indexed: 12/22/2022]
Abstract
BACKGROUND & AIMS Cabozantinib, a small-molecule multitargeted tyrosine kinase inhibitor, has entered into a phase III clinical trial for the treatment of hepatocellular carcinoma (HCC). This study assessed the mechanistic effect of cabozantinib on the reversal of P-glycoprotein (P-gp)-mediated multidrug resistance (MDR). METHODS CCK-8 assays and tumour xenografts were used to investigate the reversal of MDR in vitro and in vivo respectively. Substrate retention assays were evaluated by fluorescence microscope and flow cytometry. Western blotting was used to detect protein expression levels. mRNA expression was determined by qPCR. The ATPase activity of P-gp was investigated using Pgp-Glo(™) assay systems. The binding mechanism of cabozantinib to P-gp at the molecular level was evaluated using docking analysis. RESULTS Cabozantinib enhanced the cytotoxicity of P-gp substrate drugs in HepG2/adr and HEK293-MDR1 cells but had no effect on non-P-gp substrates. In addition, cabozantinib increased the accumulation of P-gp substrates in HepG2/adr cells but had no effect in HepG2 cells. Furthermore, cabozantinib did not alter the expression of P-gp mRNA or protein but did stimulate the activity of P-gp ATPase. The docking study indicated that cabozantinib and verapamil may partially share a binding site on P-gp. The reversal concentrations of cabozantinib did not affect the expression of MET, AKT and ERK1/2. Significantly, cabozantinib increased the inhibitory efficacy of doxorubicin in P-gp-overexpressing HepG2/adr cell xenografts in nude mice. CONCLUSION Cabozantinib reverses P-gp-mediated MDR by directly inhibiting the efflux function of P-gp, indicating that cabozantinib may help to reverse P-gp-mediated MDR in HCC and other cancer chemotherapy.
Collapse
Affiliation(s)
- Qing-feng Xiang
- Department of Hepatopancreatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Chen T, Wang C, Liu Q, Meng Q, Sun H, Huo X, Sun P, Peng J, Liu Z, Yang X, Liu K. Dasatinib reverses the multidrug resistance of breast cancer MCF-7 cells to doxorubicin by downregulating P-gp expression via inhibiting the activation of ERK signaling pathway. Cancer Biol Ther 2015; 16:106-114. [PMID: 25482933 PMCID: PMC4622436 DOI: 10.4161/15384047.2014.987062] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Revised: 10/22/2014] [Accepted: 11/09/2014] [Indexed: 12/31/2022] Open
Abstract
Multidrug resistance (MDR) is one of the major obstacles to the efficiency of cancer chemotherapy, which often results from the overexpression of drug efflux transporters such as P-glycoprotein (P-gp). In the present study, we determined the effect of dasatinib which was approved for imatinib resistant chronic myelogenous leukemia (CML) and (Ph(+)) acute lymphoblastic leukemia (ALL) treatment on P-gp-mediated MDR. Our results showed that dasatinib significantly increased the sensitivity of P-gp-overexpressing MCF-7/Adr cells to doxorubicin in MTT assays; thus lead to an enhanced cytotoxicity of doxorubicin in MCF-7/Adr cells. Additionally, dasatinib increased the intracellular accumulation, inhibited the efflux of doxorubicin in MCF-7/Adr cells, and significantly enhanced doxorubicin-induced apoptosis in MCF-7/Adr cells. Further studies showed that dasatinib altered the expression levels of mRNA, protein levels of P-gp, and the phosphorylation of signal-regulated kinase (ERK) both in time-dependent (before 24 h) and dose-dependent manners at concentrations that produced MDR reversals. In conclusion, dasatinib reverses P-gp-mediated MDR by downregulating P-gp expression, which may be partly attributed to the inhibition of ERK pathway. Dasatinib may play an important role in circumventing MDR when combined with other conventional antineoplastic drugs.
Collapse
Affiliation(s)
- Ting Chen
- Department of Clinical Pharmacology; College of Pharmacy; Dalian Medical University; Dalian, China
| | - Changyuan Wang
- Department of Clinical Pharmacology; College of Pharmacy; Dalian Medical University; Dalian, China
| | - Qi Liu
- Department of Clinical Pharmacology; College of Pharmacy; Dalian Medical University; Dalian, China
| | - Qiang Meng
- Department of Clinical Pharmacology; College of Pharmacy; Dalian Medical University; Dalian, China
| | - Huijun Sun
- Department of Clinical Pharmacology; College of Pharmacy; Dalian Medical University; Dalian, China
| | - Xiaokui Huo
- Department of Clinical Pharmacology; College of Pharmacy; Dalian Medical University; Dalian, China
| | - Pengyuan Sun
- Department of Clinical Pharmacology; College of Pharmacy; Dalian Medical University; Dalian, China
| | - Jinyong Peng
- Department of Clinical Pharmacology; College of Pharmacy; Dalian Medical University; Dalian, China
| | - Zhihao Liu
- Department of Clinical Pharmacology; College of Pharmacy; Dalian Medical University; Dalian, China
| | - Xiaobo Yang
- Department of Clinical Pharmacology; College of Pharmacy; Dalian Medical University; Dalian, China
| | - Kexin Liu
- Department of Clinical Pharmacology; College of Pharmacy; Dalian Medical University; Dalian, China
| |
Collapse
|
20
|
Clinical Relevance of Multidrug-Resistance-Proteins (MRPs) for Anticancer Drug Resistance and Prognosis. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/978-3-319-09801-2_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
21
|
Deng J, Shao J, Markowitz JS, An G. ABC Transporters in Multi-Drug Resistance and ADME-Tox of Small Molecule Tyrosine Kinase Inhibitors. Pharm Res 2014; 31:2237-55. [DOI: 10.1007/s11095-014-1389-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 04/15/2014] [Indexed: 12/31/2022]
|
22
|
Wang F, Wang XK, Shi CJ, Zhang H, Hu YP, Chen YF, Fu LW. Nilotinib enhances the efficacy of conventional chemotherapeutic drugs in CD34⁺CD38⁻ stem cells and ABC transporter overexpressing leukemia cells. Molecules 2014; 19:3356-75. [PMID: 24651611 PMCID: PMC6270868 DOI: 10.3390/molecules19033356] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 03/11/2014] [Accepted: 03/11/2014] [Indexed: 02/06/2023] Open
Abstract
Incomplete chemotherapeutic eradication of leukemic CD34⁺CD38⁻ stem cells is likely to result in disease relapse. The purpose of this study was to evaluate the effect of nilotinib on eradicating leukemia stem cells and enhancing the efficacy of chemotherapeutic agents. Our results showed that ABCB1 and ABCG2 were preferentially expressed in leukemic CD34⁺CD38⁻ cells. Nilotinib significantly enhanced the cytotoxicity of doxorubicin and mitoxantrone in CD34⁺CD38⁻ cells and led to increased apoptosis. Moreover, nilotinib strongly reversed multidrug resistance and increased the intracellular accumulation of rhodamine 123 in primary leukemic blasts overexpressing ABCB1 and/or ABCG2. Studies with ABC transporter-overexpressing carcinoma cell models confirmed that nilotinib effectively reversed ABCB1- and ABCG2-mediated drug resistance, while showed no significant reversal effect on ABCC1- and ABCC4-mediated drug resistance. Results from cytotoxicity assays showed that CD34⁺CD38⁻ cells exhibited moderate resistance (2.41-fold) to nilotinib, compared with parental K562 cells. Furthermore, nilotinib was less effective in blocking the phosphorylation of Bcr-Abl and CrkL (a substrate of Bcr-Abl kinase) in CD34⁺CD38⁻ cells. Taken together, these data suggest that nilotinib particularly targets CD34⁺CD38⁻ stem cells and MDR leukemia cells, and effectively enhances the efficacy of chemotherapeutic drugs by blocking the efflux function of ABC transporters.
Collapse
MESH Headings
- ADP-ribosyl Cyclase 1/metabolism
- ATP Binding Cassette Transporter, Subfamily B
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- ATP Binding Cassette Transporter, Subfamily G, Member 2
- ATP-Binding Cassette Transporters/genetics
- ATP-Binding Cassette Transporters/metabolism
- Animals
- Antigens, CD34/metabolism
- Antineoplastic Agents/pharmacology
- Cell Line, Tumor
- Drug Resistance, Multiple/drug effects
- Drug Resistance, Multiple/genetics
- Drug Synergism
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Gene Expression
- Humans
- Inhibitory Concentration 50
- Leukemia
- Mice
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/metabolism
- Pyrimidines/pharmacology
Collapse
Affiliation(s)
- Fang Wang
- State Key Laboratory of Oncology in Southern China, Cancer Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Xiao-Kun Wang
- State Key Laboratory of Oncology in Southern China, Cancer Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Cheng-Jun Shi
- State Key Laboratory of Oncology in Southern China, Cancer Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Hui Zhang
- State Key Laboratory of Oncology in Southern China, Cancer Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Ya-Peng Hu
- State Key Laboratory of Oncology in Southern China, Cancer Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Yi-Fan Chen
- State Key Laboratory of Oncology in Southern China, Cancer Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Li-Wu Fu
- State Key Laboratory of Oncology in Southern China, Cancer Center, Sun Yat-sen University, Guangzhou 510060, China.
| |
Collapse
|
23
|
Hu YP, Tao LY, Wang F, Zhang JY, Liang YJ, Fu LW. Secalonic acid D reduced the percentage of side populations by down-regulating the expression of ABCG2. Biochem Pharmacol 2013; 85:1619-25. [DOI: 10.1016/j.bcp.2013.04.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 03/16/2013] [Accepted: 04/03/2013] [Indexed: 12/19/2022]
|
24
|
Zhang Y, Wang Q. Sunitinib Reverse Multidrug Resistance in Gastric Cancer Cells by Modulating Stat3 and Inhibiting P-gp Function. Cell Biochem Biophys 2013; 67:575-81. [DOI: 10.1007/s12013-013-9544-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
25
|
He D, Zhao XQ, Chen XG, Fang Y, Singh S, Talele TT, Qiu HJ, Liang YJ, Wang XK, Zhang GQ, Chen ZS, Fu LW. BIRB796, the inhibitor of p38 mitogen-activated protein kinase, enhances the efficacy of chemotherapeutic agents in ABCB1 overexpression cells. PLoS One 2013; 8:e54181. [PMID: 23349819 PMCID: PMC3548808 DOI: 10.1371/journal.pone.0054181] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 12/07/2012] [Indexed: 01/07/2023] Open
Abstract
ATP-binding-cassette family membrane proteins play an important role in multidrug resistance. In this study, we investigated BIRB796, an orally active inhibitor of p38 mitogen-activated protein kinase, reversed MDR induced by ABCB1, ABCG2 and ABCC1. Our results showed that BIRB796 could reverse ABCB1-mediated MDR in both the drug selected and transfected ABCB1-overexpressing cell models, but did not enhance the efficacy of substrate-chemotherapeutical agents in ABCC1 or ABCG2 overexpression cells and their parental sensitive cells. Furthermore, BIRB796 increased the intracellular accumulation of the ABCB1 substrates, such as rhodamine 123 and doxorubicin. Moreover, BIRB796 bidirectionally mediated the ATPase activity of ABCB1, stimulating at low concentration, inhibiting at high concentration. However, BIRB796 did not alter the expression of ABCB1 both at protein and mRNA level. The down-regulation of p38 by siRNA neither affected the expression of ABCB1 nor the cytotoxic effect of paclitaxel on KBV200. The binding model of BIRB796 within the large cavity of the transmembrane region of ABCB1 may form the basis for future lead optimization studies. Importantly, BIRB796 also enhanced the effect of paclitaxel on the inhibition of growth of the ABCB1-overexpressing KBV200 cell xenografts in nude mice. Overall, we conclude that BIRB796 reverses ABCB1-mediated MDR by directly inhibiting its transport function. These findings may be useful for cancer combinational therapy with BIRB796 in the clinic.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Animals
- Antineoplastic Agents, Phytogenic/pharmacology
- Blotting, Western
- Cell Line, Tumor
- Cell Survival/drug effects
- Cell Survival/genetics
- Drug Resistance, Multiple/drug effects
- Drug Resistance, Multiple/genetics
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Drug Synergism
- Gene Expression Regulation, Neoplastic
- HEK293 Cells
- HL-60 Cells
- Humans
- MCF-7 Cells
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Naphthalenes/pharmacology
- Neoplasms/drug therapy
- Neoplasms/genetics
- Neoplasms/pathology
- Paclitaxel/pharmacology
- Protein Kinase Inhibitors/pharmacology
- Pyrazoles/pharmacology
- RNA Interference
- Reverse Transcriptase Polymerase Chain Reaction
- Xenograft Model Antitumor Assays
- p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors
- p38 Mitogen-Activated Protein Kinases/genetics
Collapse
Affiliation(s)
- Dan He
- Department of Thoracic Surgery, Affiliated Tumor Hospital, Xinjiang Medical University, Urumuqi, China
| | - Xiao-qin Zhao
- State Key Laboratory of Oncology in Southern China, Cancer Center, Sun Yat-Sen University, Guangzhou, China
| | - Xing-gui Chen
- State Key Laboratory of Oncology in Southern China, Cancer Center, Sun Yat-Sen University, Guangzhou, China
| | - Yi Fang
- State Key Laboratory of Oncology in Southern China, Cancer Center, Sun Yat-Sen University, Guangzhou, China
| | - Satyakam Singh
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, United States of America
| | - Tanaji T. Talele
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, United States of America
| | - Hui-juan Qiu
- State Key Laboratory of Oncology in Southern China, Cancer Center, Sun Yat-Sen University, Guangzhou, China
| | - Yong-ju Liang
- State Key Laboratory of Oncology in Southern China, Cancer Center, Sun Yat-Sen University, Guangzhou, China
| | - Xiao-kun Wang
- State Key Laboratory of Oncology in Southern China, Cancer Center, Sun Yat-Sen University, Guangzhou, China
| | - Guo-qing Zhang
- Department of Thoracic Surgery, Affiliated Tumor Hospital, Xinjiang Medical University, Urumuqi, China
- * E-mail: (LF); (GZ)
| | - Zhe-sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, United States of America
| | - Li-wu Fu
- State Key Laboratory of Oncology in Southern China, Cancer Center, Sun Yat-Sen University, Guangzhou, China
- * E-mail: (LF); (GZ)
| |
Collapse
|
26
|
Dy GK, Mandrekar SJ, Nelson GD, Meyers JP, Adjei AA, Ross HJ, Ansari RH, Lyss AP, Stella PJ, Schild SE, Molina JR, Adjei AA, the North Central Cancer Treatment Group. A randomized phase II study of gemcitabine and carboplatin with or without cediranib as first-line therapy in advanced non-small-cell lung cancer: North Central Cancer Treatment Group Study N0528. J Thorac Oncol 2013; 8:79-88. [PMID: 23232491 PMCID: PMC4193613 DOI: 10.1097/jto.0b013e318274a85d] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION The purpose of this study was to assess the safety and efficacy of gemcitabine and carboplatin with (arm A) or without (arm B) daily oral cediranib as first-line therapy for advanced non-small-cell lung cancer. METHODS A lead-in phase to determine the tolerability of gemcitabine 1000 mg/m on days 1 and 8, and carboplatin on day 1 at area under curve 5 administered every 21 days with cediranib 45 mg once daily was followed by a 2 (A):1 (B) randomized phase II study. The primary end point was confirmed overall response rate (ORR) with 6-month progression-free survival (PFS6) rate in arm A as secondary end point. Polymorphisms in genes encoding cediranib targets and transport were correlated with treatment outcome. RESULTS On the basis of the safety assessment, cediranib 30 mg daily was used in the phase II portion. A total of 58 and 29 evaluable patients were accrued to arms A and B. Patients in A experienced more grade 3+ nonhematologic adverse events, 71% versus 45% (p = 0.01). The ORR was 19% (A) versus 20% (B) (p = 1.0). PFS6 in A was 48% (95% confidence interval: 35%-62%), thus meeting the protocol-specified threshold of at least 40%. The median overall survival was 12.0 versus 9.9 months (p = 0.10). FGFR1 rs7012413, FGFR2 rs2912791, and VEGFR3 rs11748431 polymorphisms were significantly associated with decreased overall survival (hazard ratio 2.78-5.01, p = 0.0002-0.0095). CONCLUSIONS The trial did not meet its primary end point of ORR but met its secondary end point of PFS6. The combination with cediranib 30 mg daily resulted in increased toxicity. Pharmacogenetic analysis revealed an association of FGFR and VEGFR variants with survival.
Collapse
|
27
|
Multidrug Resistance in Cancer: A Tale of ABC Drug Transporters. RESISTANCE TO TARGETED ANTI-CANCER THERAPEUTICS 2013. [DOI: 10.1007/978-1-4614-7070-0_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
28
|
Zhu H, Liu Z, Tang L, Liu J, Zhou M, Xie F, Wang Z, Wang Y, Shen S, Hu L, Yu L. Reversal of P-gp and MRP1-mediated multidrug resistance by H6, a gypenoside aglycon from Gynostemma pentaphyllum, in vincristine-resistant human oral cancer (KB/VCR) cells. Eur J Pharmacol 2012; 696:43-53. [DOI: 10.1016/j.ejphar.2012.09.046] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 09/21/2012] [Accepted: 09/21/2012] [Indexed: 10/27/2022]
|
29
|
Zhou WJ, Zhang X, Cheng C, Wang F, Wang XK, Liang YJ, To KKW, Zhou W, Huang HB, Fu LW. Crizotinib (PF-02341066) reverses multidrug resistance in cancer cells by inhibiting the function of P-glycoprotein. Br J Pharmacol 2012; 166:1669-83. [PMID: 22233293 DOI: 10.1111/j.1476-5381.2012.01849.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Besides targeting the well-known oncogenic c-Met, crizotinib is the first oral tyrosine kinase inhibitor inhibiting anaplastic lymphoma kinase (ALK) in clinical trials for the treatment of non-small cell lung cancer. Here, we assessed the possible reversal of multidrug resistance (MDR) by crizotinib in vitro and in vivo. EXPERIMENTAL APPROACH 1-(4,5-Dimethylthiazol-2-yl)-3,5- diphenylformazan was used in vitro and xenografts in nude mice were used in vivo to investigate reversal of MDR by crizotinib. To understand the mechanisms for MDR reversal, the alterations of intracellular doxorubicin or rhodamine 123 accumulation, doxorubicin efflux, ABCB1 expression level, ATPase activity of ABCB1 and crizotinib-induced c-Met, Akt and ERK1/2 phosphorylation were examined. KEY RESULTS Crizotinib significantly enhanced the cytotoxicity of chemotherapeutic agents which are also ABCB1 substrates, in MDR cells with no effect found on sensitive cells in vitro and in vivo. Additionally, crizotinib significantly increased intracellular accumulation of rhodamine 123 and doxorubicin and inhibited the drug efflux in ABCB1-overexpressing MDR cells. Further studies showed that crizotinib enhanced the ATPase activity of ABCB1 in a concentration-dependent manner. However, expression of ABCB1 was not affected, and reversal of MDR by crizotinib was not related to the phosphorylation of c-Met, Akt or ERK1/2. Importantly, crizotinib significantly enhanced the effect of paclitaxel against KBv200 cell xenografts in nude mice. CONCLUSIONS AND IMPLICATIONS Crizotinib reversed ABCB1-mediated MDR by inhibiting ABCB1 transport function without affecting ABCB1 expression or blocking the Akt or ERK1/2 pathways. These findings are useful for planning combination chemotherapy of crizotinib with conventional chemotherapeutic drugs.
Collapse
Affiliation(s)
- Wen-jing Zhou
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Zhao XQ, Xie JD, Chen XG, Sim HM, Zhang X, Liang YJ, Singh S, Talele TT, Sun Y, Ambudkar SV, Chen ZS, Fu LW. Neratinib reverses ATP-binding cassette B1-mediated chemotherapeutic drug resistance in vitro, in vivo, and ex vivo. Mol Pharmacol 2012; 82:47-58. [PMID: 22491935 PMCID: PMC3382829 DOI: 10.1124/mol.111.076299] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 04/04/2012] [Indexed: 01/29/2023] Open
Abstract
Neratinib, an irreversible inhibitor of epidermal growth factor receptor and human epidermal receptor 2, is in phase III clinical trials for patients with human epidermal receptor 2-positive, locally advanced or metastatic breast cancer. The objective of this study was to explore the ability of neratinib to reverse tumor multidrug resistance attributable to overexpression of ATP-binding cassette (ABC) transporters. Our results showed that neratinib remarkably enhanced the sensitivity of ABCB1-overexpressing cells to ABCB1 substrates. It is noteworthy that neratinib augmented the effect of chemotherapeutic agents in inhibiting the growth of ABCB1-overexpressing primary leukemia blasts and KBv200 cell xenografts in nude mice. Furthermore, neratinib increased doxorubicin accumulation in ABCB1-overexpressing cell lines and Rhodamine 123 accumulation in ABCB1-overexpressing cell lines and primary leukemia blasts. Neratinib stimulated the ATPase activity of ABCB1 at low concentrations but inhibited it at high concentrations. Likewise, neratinib inhibited the photolabeling of ABCB1 with [(125)I]iodoarylazidoprazosin in a concentration-dependent manner (IC(50) = 0.24 μM). Neither the expression of ABCB1 at the mRNA and protein levels nor the phosphorylation of Akt was affected by neratinib at reversal concentrations. Docking simulation results were consistent with the binding conformation of neratinib within the large cavity of the transmembrane region of ABCB1, which provides computational support for the cross-reactivity of tyrosine kinase inhibitors with human ABCB1. In conclusion, neratinib can reverse ABCB1-mediated multidrug resistance in vitro, ex vivo, and in vivo by inhibiting its transport function.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- ATP-Binding Cassette Transporters/genetics
- ATP-Binding Cassette Transporters/metabolism
- Adenosine Triphosphatases/genetics
- Adenosine Triphosphatases/metabolism
- Animals
- Antineoplastic Agents/pharmacology
- Cell Line, Tumor
- Doxorubicin/pharmacology
- Drug Resistance, Multiple/drug effects
- Drug Resistance, Multiple/genetics
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- HEK293 Cells
- HL-60 Cells
- Humans
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Oncogene Protein v-akt/genetics
- Oncogene Protein v-akt/metabolism
- Phosphorylation/drug effects
- Quinolines/pharmacology
- RNA, Messenger/genetics
- Rhodamines/pharmacology
- rho-Associated Kinases/genetics
- rho-Associated Kinases/metabolism
Collapse
Affiliation(s)
- Xiao-qin Zhao
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou, 510060, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Zhang J, Zhou F, Wu X, Zhang X, Chen Y, Zha BS, Niu F, Lu M, Hao G, Sun Y, Sun J, Peng Y, Wang G. Cellular pharmacokinetic mechanisms of adriamycin resistance and its modulation by 20(S)-ginsenoside Rh2 in MCF-7/Adr cells. Br J Pharmacol 2012; 165:120-34. [PMID: 21615726 DOI: 10.1111/j.1476-5381.2011.01505.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Intracellular pharmacokinetics of anticancer drugs in multi-drug resistance (MDR) cancer cells is hugely important in the evaluation and improvement of drug efficacy. By using adriamycin as a probe drug in MDR cancer cells, we developed a cellular pharmacokinetic-pharmacodynamic (PK-PD) model to reveal the correlation between cellular pharmacokinetic properties and drug resistance. In addition, the ability of 20(S)-ginsenoside Rh2 (20(S)-Rh2) to reverse MDR was further investigated. EXPERIMENTAL APPROACH The cellular pharmacokinetics of adriamycin were analysed visually and quantitatively in human breast cancer cells MCF-7 and in adriamycin-resistant MCF-7 (MCF-7/Adr) cells. Mitochondria membrane potential was assayed to evaluate the apoptotic effect of adriamycin. Subsequently, a PK-PD model was developed via MATLAB. KEY RESULTS Visual and quantitative data of the dynamic subcellular distribution of adriamycin revealed that it accumulated in cells, especially nuclei, to a lesser and slower extent in MCF-7/Adr than in MCF-7 cells. 20(S)-Rh2 increased the rate and amount of adriamycin entering cellular/subcellular compartments in MCF-7/Adr cells through inhibition of P-glycoprotein (P-gp) activity, in turn augmenting adriamycin-induced apoptosis. The integrated PK-PD model mathematically revealed the pharmacokinetic mechanisms of adriamycin resistance in MCF-7/Adr cells and its reversal by 20(S)-Rh2. CONCLUSIONS AND IMPLICATIONS P-gp, which is overexpressed and functionally active at cellular/subcellular membranes, influences the cellular pharmacokinetic and pharmacological properties of adriamycin in MCF-7/Adr cells. Inhibition of P-gp activity represents a key mechanism by which 20(S)-Rh2 attenuates adriamycin resistance. Even more importantly, our findings provide a new strategy to explore the in-depth mechanisms of MDR and evaluate the efficacy of MDR modulators.
Collapse
Affiliation(s)
- Jingwei Zhang
- Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, Jiangsu, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Morton CL, Maris JM, Keir ST, Gorlick R, Kolb EA, Billups CA, Wu J, Smith MA, Houghton PJ. Combination testing of cediranib (AZD2171) against childhood cancer models by the pediatric preclinical testing program. Pediatr Blood Cancer 2012; 58:566-71. [PMID: 21538824 PMCID: PMC3253323 DOI: 10.1002/pbc.23159] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Accepted: 03/23/2011] [Indexed: 11/10/2022]
Abstract
BACKGROUND Cediranib (AZD2171) is a potent small molecule inhibitor of vascular endothelial growth factor (VEGF) receptors. Cediranib has demonstrated single agent activity in several adult cancers and is being studied in combination with standard cytotoxic agents in multiple disease settings. PROCEDURES Cediranib was tested in vivo against six childhood tumor xenograft models (four sarcomas, one glioblastoma, one neuroblastoma) alone or combined with cyclophosphamide (two models), vincristine (three models) or cisplatin (one model), each administered at its maximum tolerated dose, or rapamycin (six models). RESULTS The combination of cediranib with standard cytotoxic agents was superior to the cytotoxic agent used alone for a single xenograft (one of the three xenografts evaluated for the vincristine-cediranib combination). The cediranib-cyclophosphamide combination was inferior to single agent cyclophosphamide in time to event for both models studied and was significantly inferior for one of the models. Cediranib combined with rapamycin was superior to each of the agents used alone in two of the six models and was determined to be additive or supra-additive with rapamycin in four models, although the effects were not large. CONCLUSIONS Cediranib combined with cytotoxic chemotherapy agents demonstrated little or no benefit (and in one case was significantly inferior) compared to chemotherapy alone for the six pediatric cancer xenografts studied. By contrast, the combination of cediranib with rapamycin was additive or supra-additive in four of the six models in terms of prolongation of time to event, though tumor regressions were not observed for this combination.
Collapse
Affiliation(s)
| | - John M. Maris
- Children’s Hospital of Philadelphia, University of Pennsylvania School of Medicine and Abramson Family Cancer Research Institute, Philadelphia, PA
| | | | | | | | | | - Jianrong Wu
- St. Jude Children's Research Hospital, Memphis, TN
| | | | | |
Collapse
|
33
|
Shukla S, Chen ZS, Ambudkar SV. Tyrosine kinase inhibitors as modulators of ABC transporter-mediated drug resistance. Drug Resist Updat 2012; 15:70-80. [PMID: 22325423 DOI: 10.1016/j.drup.2012.01.005] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 01/12/2012] [Accepted: 01/13/2012] [Indexed: 12/23/2022]
Abstract
Tyrosine kinases (TKs) are involved in key signaling events/pathways that regulate cancer cell proliferation, apoptosis, angiogenesis and metastasis. Deregulated activity of TKs has been implicated in several types of cancers. In recent years, tyrosine kinase inhibitors (TKIs) have been developed to inhibit specific kinases whose constitutive activity results in specific cancer types. These TKIs have been found to demonstrate effective anticancer activity and some of them have been approved by the Food and Drug Administration for clinical use or are in clinical trials. However, these targeted therapeutic agents are also transported by ATP-binding cassette (ABC) transporters, resulting in altered pharmacokinetics or development of resistance to these drugs in cancer patients. This review covers the recent findings on the interactions of clinically important TKIs with ABC drug transporters. Future research efforts in the development of novel TKIs with specific targets, seeking improved activity, should consider these underlying causes of resistance to TKIs in cancer cells.
Collapse
Affiliation(s)
- Suneet Shukla
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
34
|
He M, Wei MJ. Reversing multidrug resistance by tyrosine kinase inhibitors. CHINESE JOURNAL OF CANCER 2012; 31:126-33. [PMID: 22237041 PMCID: PMC3777484 DOI: 10.5732/cjc.011.10315] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Recently, a large number of tyrosine kinase inhibitors (TKIs) have been developed as anticancer agents. These TKIs can specifically and selectively inhibit tumor cell growth and metastasis by targeting various tyrosine kinases and thereby interfering with cellular signaling pathways. The therapeutic potential of TKIs has been hindered by multidrug resistance (MDR), which is commonly caused by overexpression of ATP-binding cassette (ABC) membrane transporters. Interestingly, some TKIs have also been found to reverse MDR by directly inhibiting the function of ABC transporters and enhancing the efficacy of conventional chemotherapeutic drugs. In this review, we discuss ABC transporter-mediated MDR to TKIs and MDR reversal by TKIs.
Collapse
Affiliation(s)
- Miao He
- Department of Pharmacology, Pharmaceutical College of China Medical University, Shenyang, Liaoning 110001, P. R. China
| | | |
Collapse
|
35
|
Hanušová V, Boušová I, Skálová L. Possibilities to increase the effectiveness of doxorubicin in cancer cells killing. Drug Metab Rev 2011; 43:540-57. [DOI: 10.3109/03602532.2011.609174] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
36
|
Zhang JY, Mi YJ, Chen SP, Wang F, Liang YJ, Zheng LS, Shi CJ, Tao LY, Chen LM, Chen HB, Fu LW. Euphorbia factor L1 reverses ABCB1-mediated multidrug resistance involving interaction with ABCB1 independent of ABCB1 downregualtion. J Cell Biochem 2011; 112:1076-83. [PMID: 21308736 DOI: 10.1002/jcb.23021] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Euphorbia factor L1 (EFL1) belongs to diterpenoids of genus Euphorbia. In this article, its reversal activity against ABCB1-mediated MDR in KBv200 and MCF-7/adr cells was reported. However, EFL1 did not alter the sensitivity of KB and MCF-7 cells to chemotherapeutic agents. Meanwhile, EFL1 significantly increased accumulation of doxorubicin and rhodamine 123 in KBv200 and MCF-7/adr cells, showing no significant influence on that of KB and MCF-7 cells. Furthermore, EFL1 could enhance the ATP hydrolysis activity of ABCB1 stimulated by verapamil. At the same time, EFL1 inhibited the efflux of ABCB1 in KBv200 and MCF-7/adr cells. In addition, EFL1 did not downregulate expression of ABCB1 in KBv200 and MCF-7/adr cells either in mRNA or protein level.
Collapse
Affiliation(s)
- Jian-ye Zhang
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou 510060, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Scatena R, Bottoni P, Pontoglio A, Giardina B. Cancer stem cells: the development of new cancer therapeutics. Expert Opin Biol Ther 2011; 11:875-92. [PMID: 21463158 DOI: 10.1517/14712598.2011.573780] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Cancer stem cells (CSCs) are a subpopulation of tumor cells with indefinite proliferative potential that drive the growth of tumors. CSCs seem to provide a suitable explanation for several intriguing aspects of cancer pathophysiology. AREAS COVERED An explosion of therapeutic options for cancer treatment that selectively target CSCs has been recorded in the recent years. These include the targeting of cell-surface proteins, various activated signalling pathways, different molecules of the stem cell niche and various drug resistance mechanisms. Importantly, approaching cancer research by investigating the pathogenesis of these intriguing cancer cells is increasing the knowledge of the pathophysiology of the disease, emphasizing certain molecular mechanisms that have been partially neglected. EXPERT OPINION The characterization of the molecular phenotype of these cancer stem-like cells, associated with an accurate definition of their typical derangement in cell differentiation, can represent a fundamental advance in terms of diagnosis and therapy of cancer. Preliminary results seem to be promising but further studies are required to define the therapeutic index of this new anticancer treatment. Moreover, understanding the pathogenetic mechanisms of CSCs can expand the therapeutic applications of normal adult stem cells by reducing the risk of uncontrolled tumorigenic stem cell differentiation.
Collapse
Affiliation(s)
- Roberto Scatena
- Catholic University, Department of Laboratory Medicine, Largo A. Gemelli 8, 00168 Rome, Italy.
| | | | | | | |
Collapse
|
38
|
Effect of BIBF 1120 on reversal of ABCB1-mediated multidrug resistance. Cell Oncol (Dordr) 2011; 34:33-44. [DOI: 10.1007/s13402-010-0003-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2010] [Indexed: 10/18/2022] Open
|
39
|
Mi YJ, Liang YJ, Huang HB, Zhao HY, Wu CP, Wang F, Tao LY, Zhang CZ, Dai CL, Tiwari AK, Ma XX, Wah To KK, Ambudkar SV, Chen ZS, Fu LW. Apatinib (YN968D1) reverses multidrug resistance by inhibiting the efflux function of multiple ATP-binding cassette transporters. Cancer Res 2010; 70:7981-91. [PMID: 20876799 PMCID: PMC2969180 DOI: 10.1158/0008-5472.can-10-0111] [Citation(s) in RCA: 277] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Apatinib, a small-molecule multitargeted tyrosine kinase inhibitor, is in phase III clinical trial for the treatment of patients with non-small-cell lung cancer and gastric cancer in China. In this study, we determined the effect of apatinib on the interaction of specific antineoplastic compounds with P-glycoprotein (ABCB1), multidrug resistance protein 1 (MRP1, ABCC1), and breast cancer resistance protein (BCRP, ABCG2). Our results showed that apatinib significantly enhanced the cytotoxicity of ABCB1 or ABCG2 substrate drugs in KBv200, MCF-7/adr, and HEK293/ABCB1 cells overexpressing ABCB1 and in S1-M1-80, MCF-7/FLV1000, and HEK293/ABCG2-R2 cells overexpressing ABCG2 (wild-type). In contrast, apatinib did not alter the cytotoxicity of specific substrates in the parental cells and cells overexpressing ABCC1. Apatinib significantly increased the intracellular accumulation of rhodamine 123 and doxorubicin in the multidrug resistance (MDR) cells. Furthermore, apatinib significantly inhibited the photoaffinity labeling of both ABCB1 and ABCG2 with [(125)I]iodoarylazidoprazosin in a concentration-dependent manner. The ATPase activity of both ABCB1 and ABCG2 was significantly increased by apatinib. However, apatinib, at a concentration that produced a reversal of MDR, did not significantly alter the ABCB1 or ABCG2 protein or mRNA expression levels or the phosphorylation of AKT and extracellular signal-regulated kinase 1/2 (ERK1/2). Importantly, apatinib significantly enhanced the effect of paclitaxel against the ABCB1-resistant KBv200 cancer cell xenografts in nude mice. In conclusion, apatinib reverses ABCB1- and ABCG2-mediated MDR by inhibiting their transport function, but not by blocking the AKT or ERK1/2 pathway or downregulating ABCB1 or ABCG2 expression. Apatinib may be useful in circumventing MDR to other conventional antineoplastic drugs.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B
- ATP Binding Cassette Transporter, Subfamily B, Member 1/drug effects
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- ATP-Binding Cassette Transporters/antagonists & inhibitors
- ATP-Binding Cassette Transporters/drug effects
- Adenosine Triphosphatases/drug effects
- Adenosine Triphosphatases/metabolism
- Animals
- Breast Neoplasms
- Cell Line, Tumor
- Cell Survival/drug effects
- Doxorubicin/pharmacology
- Drug Resistance, Multiple/drug effects
- Enzyme Inhibitors/pharmacology
- Female
- Humans
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Protein-Tyrosine Kinases/antagonists & inhibitors
- Pyridines/therapeutic use
- Reverse Transcriptase Polymerase Chain Reaction
- Transplantation, Heterologous
Collapse
Affiliation(s)
- Yan-jun Mi
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou 510060, China
| | - Yong-ju Liang
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou 510060, China
| | - Hong-bing Huang
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou 510060, China
| | - Hong-yun Zhao
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou 510060, China
| | - Chung-Pu Wu
- Laboratory of Cell Biology, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | - Fang Wang
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou 510060, China
| | - Li-yang Tao
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou 510060, China
| | - Chuan-zhao Zhang
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou 510060, China
| | - Chun-Ling Dai
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou 510060, China
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, St John’s University, Jamaica, NY 11439, USA
| | - Amit K. Tiwari
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, St John’s University, Jamaica, NY 11439, USA
| | - Xiao-xu Ma
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou 510060, China
| | - Kenneth Kin Wah To
- School of Pharmacy, the Chinese University of Hong Kong, Hong Kong, P. R. China
| | - Suresh V. Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, St John’s University, Jamaica, NY 11439, USA
| | - Li-wu Fu
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou 510060, China
| |
Collapse
|
40
|
Chemosensitization of Trypanosoma congolense strains resistant to isometamidium chloride by tetracyclines and enrofloxacin. PLoS Negl Trop Dis 2010; 4:e828. [PMID: 20927189 PMCID: PMC2946901 DOI: 10.1371/journal.pntd.0000828] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Accepted: 08/26/2010] [Indexed: 11/19/2022] Open
Abstract
Background Because of the development of resistance in trypanosomes to trypanocidal drugs, the livelihood of millions of livestock keepers in sub-Saharan Africa is threatened now more than ever. The existing compounds have become virtually useless and pharmaceutical companies are not keen on investing in the development of new trypanocides. We may have found a breakthrough in the treatment of resistant trypanosomal infections, through the combination of the trypanocide isometamidium chloride (ISM) with two affordable veterinary antibiotics. Methodology/Principal Findings In a first experiment, groups of mice were inoculated with Trypanosoma congolense strains resistant to ISM and either left untreated or treated with (i) tetracycline, (ii) ISM or (iii) the combination of the antibiotic and the trypanocide. Survival analysis showed that there was a significant effect of treatment and resistance to treatment on the survival time. The groups treated with ISM (with or without antibiotic) survived significantly longer than the groups that were not treated with ISM (P<0.01). The group treated with the combination trypanocide/antibiotic survived significantly longer than the group treated with ISM (P<0.01). In a second experiment, groups of cattle were inoculated with the same resistant trypanosome strain and treated with (i) ISM, (ii) ISM associated with oxytetracycline or (iii) ISM associated with enrofloxacine. All animals treated with ISM became parasitaemic. In the groups treated with ISM-oxytetracycline and ISM-enrofloxacine, 50% of the animals were cured. Animals from the groups treated with a combination trypanocide/antibiotic presented a significantly longer prepatent period than animals treated with ISM (p<0.001). The impact of the disease on the haematocrit was low in all ISM treated groups. Yet, it was lower in the groups treated with the combination trypanocide/antibiotic (p<0.01). Conclusions/Significance After optimization of the administration protocol, this new therapeutic combination could constitute a promising treatment for livestock infected with drug resistant T. congolense. African Animal Trypanosomiasis causes the death of 3 million head of cattle each year. The annual economic losses as a result of the disease are estimated to be 4.5 billion US dollars. Trypanosomes are transmitted by tsetse flies and can infect a wide range of hosts from wildlife to domestic animals. This study is dealing with Trypanosoma congolense, which is one of the very prevalent parasites affecting livestock of poor African rural communities, decreasing the milk and meat production but also reducing the fitness of cattle that is used as draught power. Infected animals can only be treated by three compounds, i.e., diminazene, isometamidium and ethidium. These three products have been in use for more than a half century and it is thus not surprising to observe treatment failures. In some areas, the trypanosomes circulating have developed resistance to the three drugs leaving the farmers with no further options. As pharmaceutical companies are not keen on investing efforts and money in the development of new veterinary drugs for this low-budget market, our idea was to render an old ineffective drug effective again by combining it with existing potentiating compounds that are available and affordable for the livestock keeper.
Collapse
|
41
|
Mi YJ, Liang YJ, Huang HB, Zhao HY, Wu CP, Wang F, Tao LY, Zhang CZ, Dai CL, Tiwari AK, Ma XX, To KKW, Ambudkar SV, Chen ZS, Fu LW. Apatinib (YN968D1) reverses multidrug resistance by inhibiting the efflux function of multiple ATP-binding cassette transporters. Cancer Res 2010. [PMID: 20876799 DOI: 10.1158/0008-5472.can- 10-0111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Apatinib, a small-molecule multitargeted tyrosine kinase inhibitor, is in phase III clinical trial for the treatment of patients with non-small-cell lung cancer and gastric cancer in China. In this study, we determined the effect of apatinib on the interaction of specific antineoplastic compounds with P-glycoprotein (ABCB1), multidrug resistance protein 1 (MRP1, ABCC1), and breast cancer resistance protein (BCRP, ABCG2). Our results showed that apatinib significantly enhanced the cytotoxicity of ABCB1 or ABCG2 substrate drugs in KBv200, MCF-7/adr, and HEK293/ABCB1 cells overexpressing ABCB1 and in S1-M1-80, MCF-7/FLV1000, and HEK293/ABCG2-R2 cells overexpressing ABCG2 (wild-type). In contrast, apatinib did not alter the cytotoxicity of specific substrates in the parental cells and cells overexpressing ABCC1. Apatinib significantly increased the intracellular accumulation of rhodamine 123 and doxorubicin in the multidrug resistance (MDR) cells. Furthermore, apatinib significantly inhibited the photoaffinity labeling of both ABCB1 and ABCG2 with [(125)I]iodoarylazidoprazosin in a concentration-dependent manner. The ATPase activity of both ABCB1 and ABCG2 was significantly increased by apatinib. However, apatinib, at a concentration that produced a reversal of MDR, did not significantly alter the ABCB1 or ABCG2 protein or mRNA expression levels or the phosphorylation of AKT and extracellular signal-regulated kinase 1/2 (ERK1/2). Importantly, apatinib significantly enhanced the effect of paclitaxel against the ABCB1-resistant KBv200 cancer cell xenografts in nude mice. In conclusion, apatinib reverses ABCB1- and ABCG2-mediated MDR by inhibiting their transport function, but not by blocking the AKT or ERK1/2 pathway or downregulating ABCB1 or ABCG2 expression. Apatinib may be useful in circumventing MDR to other conventional antineoplastic drugs.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B
- ATP Binding Cassette Transporter, Subfamily B, Member 1/drug effects
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- ATP-Binding Cassette Transporters/antagonists & inhibitors
- ATP-Binding Cassette Transporters/drug effects
- Adenosine Triphosphatases/drug effects
- Adenosine Triphosphatases/metabolism
- Animals
- Breast Neoplasms
- Cell Line, Tumor
- Cell Survival/drug effects
- Doxorubicin/pharmacology
- Drug Resistance, Multiple/drug effects
- Enzyme Inhibitors/pharmacology
- Female
- Humans
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Protein-Tyrosine Kinases/antagonists & inhibitors
- Pyridines/therapeutic use
- Reverse Transcriptase Polymerase Chain Reaction
- Transplantation, Heterologous
Collapse
Affiliation(s)
- Yan-Jun Mi
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Sierra JR, Cepero V, Giordano S. Molecular mechanisms of acquired resistance to tyrosine kinase targeted therapy. Mol Cancer 2010; 9:75. [PMID: 20385023 PMCID: PMC2864216 DOI: 10.1186/1476-4598-9-75] [Citation(s) in RCA: 175] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Accepted: 04/12/2010] [Indexed: 02/07/2023] Open
Abstract
In recent years, tyrosine kinases (TKs) have been recognized as central players and regulators of cancer cell proliferation, apoptosis, and angiogenesis, and are therefore considered suitable potential targets for anti-cancer therapies. Several strategies for targeting TKs have been developed, the most successful being monoclonal antibodies and small molecule tyrosine kinase inhibitors. However, increasing evidence of acquired resistance to these drugs has been documented, and extensive preclinical studies are ongoing to try to understand the molecular mechanisms by which cancer cells are able to bypass their inhibitory activity.This review intends to present the most recently identified molecular mechanisms that mediate acquired resistance to tyrosine kinase inhibitors, identified through the use of in vitro models or the analysis of patient samples. The knowledge obtained from these studies will help to design better therapies that prevent and overcome resistance to treatment in cancer patients.
Collapse
Affiliation(s)
- J Rafael Sierra
- Institute for Cancer Research and Treatment, University of Torino Medical School, 10060 Candiolo (Torino), Italy
| | | | | |
Collapse
|
43
|
Anticancer effect and structure-activity analysis of marine products isolated from metabolites of mangrove fungi in the South China Sea. Mar Drugs 2010; 8:1094-105. [PMID: 20479969 PMCID: PMC2866477 DOI: 10.3390/md8041094] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Revised: 03/22/2010] [Accepted: 03/30/2010] [Indexed: 12/24/2022] Open
Abstract
Marine-derived fungi provide plenty of structurally unique and biologically active secondary metabolites. We screened 87 marine products from mangrove fungi in the South China Sea for anticancer activity by MTT assay. 14% of the compounds (11/86) exhibited a potent activity against cancer in vitro. Importantly, some compounds such as compounds 78 and 81 appeared to be promising for treating cancer patients with multidrug resistance, which should encourage more efforts to isolate promising candidates for further development as clinically useful chemotherapeutic drugs. Furthermore, DNA intercalation was not involved in their anticancer activities, as determined by DNA binding assay. On the other hand, the structure-activity analysis indicated that the hydroxyl group was important for their cytotoxic activity and that bulky functional groups such as phenyl rings could result in a loss of biological activity, which will direct the further development of marine product-based derivatives.
Collapse
|