1
|
Squeri G, Passerini L, Ferro F, Laudisa C, Tomasoni D, Deodato F, Donati MA, Gasperini S, Aiuti A, Bernardo ME, Gentner B, Naldini L, Annoni A, Biffi A, Gregori S. Targeting a Pre-existing Anti-transgene T Cell Response for Effective Gene Therapy of MPS-I in the Mouse Model of the Disease. Mol Ther 2019; 27:1215-1227. [PMID: 31060789 PMCID: PMC6612662 DOI: 10.1016/j.ymthe.2019.04.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/12/2019] [Accepted: 04/14/2019] [Indexed: 11/18/2022] Open
Abstract
Mucopolysaccharidosis type I (MPS-I) is a severe genetic disease caused by a deficiency of the alpha-L-iduronidase (IDUA) enzyme. Ex vivo hematopoietic stem cell (HSC) gene therapy is a promising therapeutic approach for MPS-I, as demonstrated by preclinical studies performed in naive MPS-I mice. However, after enzyme replacement therapy (ERT), several MPS-I patients develop anti-IDUA immunity that may jeopardize ex vivo gene therapy efficacy. Here we treat MPS-I mice with an artificial immunization protocol to mimic the ERT effect in patients, and we demonstrate that IDUA-corrected HSC engraftment is impaired in pre-immunized animals by IDUA-specific CD8+ T cells spared by pre-transplant irradiation. Conversely, humoral anti-IDUA immunity does not impact on IDUA-corrected HSC engraftment. The inclusion of lympho-depleting agents in pre-transplant conditioning of pre-immunized hosts allowes rescue of IDUA-corrected HSC engraftment, which is proportional to CD8+ T cell eradication. Overall, these data demonstrate the relevance of pre-existing anti-transgene T cell immunity on ex vivo HSC gene therapy, and they suggest the application of tailored immune-depleting treatments, as well as a deeper immunological characterization of patients, to safeguard the therapeutic effects of ex vivo HSC gene therapy in immunocompetent hosts.
Collapse
Affiliation(s)
- Giorgia Squeri
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; International PhD Program in Molecular Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Laura Passerini
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Francesca Ferro
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Gene Therapy Program, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA 02115, USA; Program for Gene Therapy in Rare Diseases, Department of Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Cecilia Laudisa
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Daniela Tomasoni
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Federica Deodato
- Division of Metabolic Disease, Bambino Gesù Children's Hospital IRCSS, 00165 Rome, Italy
| | - Maria Alice Donati
- Metabolic and Neuromuscular Unit, Meyer Children Hospital-University of Florence, 50139 Florence, Italy
| | - Serena Gasperini
- Pediatric Department, Fondazione MBBM San Gerardo Hospital, 20900 Monza, Italy
| | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Maria Ester Bernardo
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Bernhard Gentner
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Luigi Naldini
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Andrea Annoni
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Alessandra Biffi
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Gene Therapy Program, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA 02115, USA; Program for Gene Therapy in Rare Diseases, Department of Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Silvia Gregori
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.
| |
Collapse
|
2
|
Edgar LJ, Kawasaki N, Nycholat CM, Paulson JC. Targeted Delivery of Antigen to Activated CD169 + Macrophages Induces Bias for Expansion of CD8 + T Cells. Cell Chem Biol 2019; 26:131-136.e4. [PMID: 30393066 PMCID: PMC6338492 DOI: 10.1016/j.chembiol.2018.10.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/24/2018] [Accepted: 10/05/2018] [Indexed: 12/20/2022]
Abstract
Macrophages (MØs) expressing the endocytic sialic acid-binding immunoglobulin-like lectin 1 (siglec-1, CD169, sialoadhesin) are known to be adept at antigen capture-primarily due to their strategic location within lymphatic tissues. Antigen concentrated in these cells can be harnessed to induce potent anti-tumor/anti-pathogen cytotoxic (CD8+) T cell responses. Here, we describe a chemical platform that exploits the CD169-mediated antigen capture pathway for biased priming of antigen-specific CD4+ or CD8+ T cells in vivo. In the absence of a toll-like receptor (TLR) agonist, antigen delivery through CD169 produced robust CD4+ T cell priming only. However, simultaneous treatment with targeted antigen and a TLR7 agonist induced CD8+ T cell priming, with concomitant suppression of the CD4+ T cell response. We exploited these observations to manipulate the activation ratio of CD4+/CD8+ T cells in the same animal. These findings represent a unique chemical strategy for targeting CD169+ macrophages to modulate antigen-specific T cell immunity.
Collapse
Affiliation(s)
- Landon J Edgar
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Norihito Kawasaki
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Corwin M Nycholat
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - James C Paulson
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
3
|
Brooks N, Hsu J, Esparon S, Pouniotis D, Pietersz GA. Immunogenicity of a Tripartite Cell Penetrating Peptide Containing a MUC1 Variable Number of Tandem Repeat (VNTR) and A T Helper Epitope. Molecules 2018; 23:molecules23092233. [PMID: 30200528 PMCID: PMC6225367 DOI: 10.3390/molecules23092233] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 08/29/2018] [Accepted: 08/30/2018] [Indexed: 12/11/2022] Open
Abstract
Peptide-based vaccines for cancer have many advantages however, for optimization these immunogens should incorporate peptide epitopes that induce CD8, as well as CD4 responses, antibody and long term immunity. Cell penetrating peptides (CPP) with a capacity of cytosolic delivery have been used to deliver antigenic peptides and proteins to antigen presenting cells to induce cytotoxic T cell, helper T cell and humoral responses in mice. For this study, a tripartite CPP including a mucin 1 (MUC1) variable number of tandem repeat (VNTR) containing multiple T cell epitopes and tetanus toxoid universal T helper epitope peptide (tetCD4) was synthesised (AntpMAPMUC1tet) and immune responses investigated in mice. Mice vaccinated with AntpMAPMUC1tet + CpG show enhanced antigen-specific interferon-gamma (IFN-γ) and IL-4 T cell responses compared with AntpMAPMUC1tet vaccination alone and induced a Th1 response, characterised by a higher ratio of IgG2a antibody/IgG1 antibodies. Furthermore, vaccination generated long term MUC1-specific antibody and T cell responses and delayed growth of MUC1+ve tumours in mice. This data demonstrates the efficient delivery of branched multiple antigen peptides incorporating CPP and that the addition of CpG augments immune responses.
Collapse
Affiliation(s)
- Nicole Brooks
- School of Medical Sciences, RMIT University, Plenty Road, Bundoora 3083, Victoria, Australia.
| | - Jennifer Hsu
- Bio-Organic and Medicinal Chemistry Laboratory, Burnet Institute, 85 Commercial Rd, Melbourne 3004, Australia.
- Dendritic Cell Biology and Therapeutics Group, ANZAC Medical Research Institute, Institute of Haematology, Royal Prince Alfred Hospital, Missenden Rd, Camperdown, NSW 2050, Australia.
| | - Sandra Esparon
- Bio-Organic and Medicinal Chemistry Laboratory, Burnet Institute, 85 Commercial Rd, Melbourne 3004, Australia.
| | - Dodie Pouniotis
- School of Medical Sciences, RMIT University, Plenty Road, Bundoora 3083, Victoria, Australia.
| | - Geoffrey A Pietersz
- Bio-Organic and Medicinal Chemistry Laboratory, Burnet Institute, 85 Commercial Rd, Melbourne 3004, Australia.
- Department of Pathology, University of Melbourne, Parkville, Victoria 3010, Australia.
- Department of Immunology, Monash University, Clayton, Victoria 3800, Australia.
- Baker Heart and Diabetes Institute, Melbourne 3004, Australia.
- College of Health and Biomedicine, Victoria University, Melbourne 3021, Australia.
| |
Collapse
|
4
|
Abstract
Antigen cross-presentation is an adaptation of the cellular process of loading MHC-I molecules with endogenous peptides during their biosynthesis within the endoplasmic reticulum. Cross-presented peptides derive from internalized proteins, microbial pathogens, and transformed or dying cells. The physical separation of internalized cargo from the endoplasmic reticulum, where the machinery for assembling peptide-MHC-I complexes resides, poses a challenge. To solve this problem, deliberate rewiring of organelle communication within cells is necessary to prepare for cross-presentation, and different endocytic receptors and vesicular traffic patterns customize the emergent cross-presentation compartment to the nature of the peptide source. Three distinct pathways of vesicular traffic converge to form the ideal cross-presentation compartment, each regulated differently to supply a unique component that enables cross-presentation of a diverse repertoire of peptides. Delivery of centerpiece MHC-I molecules is the critical step regulated by microbe-sensitive Toll-like receptors. Defining the subcellular sources of MHC-I and identifying sites of peptide loading during cross-presentation remain key challenges.
Collapse
Affiliation(s)
- J Magarian Blander
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA; .,Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, and Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| |
Collapse
|
5
|
Dolasia K, Bisht MK, Pradhan G, Udgata A, Mukhopadhyay S. TLRs/NLRs: Shaping the landscape of host immunity. Int Rev Immunol 2017; 37:3-19. [PMID: 29193992 DOI: 10.1080/08830185.2017.1397656] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Innate immune system provides the first line of defense against pathogenic organisms. It has a varied and large collection of molecules known as pattern recognition receptors (PRRs) which can tackle the pathogens promptly and effectively. Toll-like receptors (TLRs) and NOD-like receptors (NLRs) are members of the PRR family that recognize pathogen associated molecular patterns (PAMPs) and play pivotal roles to mediate defense against infections from bacteria, fungi, virus and various other pathogens. In this review, we discuss the critical roles of TLRs and NLRs in the regulation of host immune-effector functions such as cytokine production, phagosome-lysosome fusion, inflammasome activation, autophagy, antigen presentation, and B and T cell immune responses that are known to be essential for mounting a protective immune response against the pathogens. This review may be helpful to design TLRs/NLRs based immunotherapeutics to control various infections and pathophysiological disorders.
Collapse
Affiliation(s)
- Komal Dolasia
- a Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting and Diagnostics (CDFD) , Tuljaguda Complex, Nampally, Hyderabad , India
| | - Manoj K Bisht
- a Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting and Diagnostics (CDFD) , Tuljaguda Complex, Nampally, Hyderabad , India
| | - Gourango Pradhan
- a Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting and Diagnostics (CDFD) , Tuljaguda Complex, Nampally, Hyderabad , India
| | - Atul Udgata
- a Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting and Diagnostics (CDFD) , Tuljaguda Complex, Nampally, Hyderabad , India
| | - Sangita Mukhopadhyay
- a Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting and Diagnostics (CDFD) , Tuljaguda Complex, Nampally, Hyderabad , India
| |
Collapse
|
6
|
Blander JM. The comings and goings of MHC class I molecules herald a new dawn in cross-presentation. Immunol Rev 2017; 272:65-79. [PMID: 27319343 DOI: 10.1111/imr.12428] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
MHC class I (MHC-I) molecules are the centerpieces of cross-presentation. They are loaded with peptides derived from exogenous sources and displayed on the plasma membrane to communicate with CD8 T cells, relaying a message of tolerance or attack. The study of cross-presentation has been focused on the relative contributions of the vacuolar versus cytosolic pathways of antigen processing and the location where MHC-I molecules are loaded. While vacuolar processing generates peptides loaded onto vacuolar MHC-I molecules, how and where exogenous peptides generated by the proteasome and transported by TAP meet MHC-I molecules for loading has been a matter of debate. The source and trafficking of MHC-I molecules in dendritic cells have largely been ignored under the expectation that these molecules came from the Endoplasmic reticulum (ER) or the plasma membrane. New studies reveal a concentrated pool of MHC-I molecules in the endocytic recycling compartment (ERC). These pools are rapidly mobilized to phagosomes carrying microbial antigens, and in a signal-dependent manner under the control of Toll-like receptors. The phagosome becomes a dynamic hub receiving traffic from multiple sources, the ER-Golgi intermediate compartment for delivering the peptide-loading machinery and the ERC for deploying MHC-I molecules that alert CD8 T cells of infection.
Collapse
Affiliation(s)
- J Magarian Blander
- Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
7
|
Gause KT, Wheatley AK, Cui J, Yan Y, Kent SJ, Caruso F. Immunological Principles Guiding the Rational Design of Particles for Vaccine Delivery. ACS NANO 2017; 11:54-68. [PMID: 28075558 DOI: 10.1021/acsnano.6b07343] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Despite the immense public health successes of immunization over the past century, effective vaccines are still lacking for globally important pathogens such as human immunodeficiency virus, malaria, and tuberculosis. Exciting recent advances in immunology and biotechnology over the past few decades have facilitated a shift from empirical to rational vaccine design, opening possibilities for improved vaccines. Some of the most important advancements include (i) the purification of subunit antigens with high safety profiles, (ii) the identification of innate pattern recognition receptors (PRRs) and cognate agonists responsible for inducing immune responses, and (iii) developments in nano- and microparticle fabrication and characterization techniques. Advances in particle engineering now allow highly tunable physicochemical properties of particle-based vaccines, including composition, size, shape, surface characteristics, and degradability. Enhanced collaborative efforts between researchers in immunology and materials science are expected to rise to next-generation vaccines. This process will be significantly aided by a greater understanding of the immunological principles guiding vaccine antigenicity, immunogenicity, and efficacy. With specific emphasis on PRR-targeted adjuvants and particle physicochemical properties, this review aims to provide an overview of the current literature to guide and focus rational particle-based vaccine design efforts.
Collapse
Affiliation(s)
- Katelyn T Gause
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Adam K Wheatley
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity , Parkville, Victoria 3010, Australia
| | - Jiwei Cui
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Yan Yan
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Stephen J Kent
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity , Parkville, Victoria 3010, Australia
| | - Frank Caruso
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| |
Collapse
|
8
|
Tanaka T, Kajiwara T, Kutomi G, Kurotaki T, Saito K, Kanaseki T, Tsukahara T, Hirohashi Y, Torigoe T, Hirata K, Okamoto Y, Sato N, Tamura Y. CpG-A stimulates Hsp72 secretion from plasmacytoid dendritic cells, facilitating cross-presentation. Immunol Lett 2015; 167:34-40. [PMID: 26141624 DOI: 10.1016/j.imlet.2015.06.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Revised: 06/16/2015] [Accepted: 06/17/2015] [Indexed: 11/19/2022]
Abstract
Plasmacytoid dendritic cells (pDCs) are the main producers of IFN-α in response to unmethylated DNA molecules, including cytosine guanine dinucleotide (CpG)-DNA in vivo. pDCs specifically express toll-like receptor (TLR) 9 and are therefore able to recognize the unmethylated DNAs. It has recently been shown that not only conventional DCs (cDCs) but also pDCs efficiently cross-present exogenous antigens after TLR9 activation. However, the precise molecular mechanism has remained unclear. Here, we show that pDCs secreted heat shock protein 72 (Hsp72) in response to CpG-A administration in a TLR9-dependent manner. Extracellular Hsp72 bound to an Hsp90-peptide complex and enhanced binding of Hsp90-peptide complex to pDC, resulting in efficient cross-presentation. Our experiments therefore suggest a mechanism for orchestration of immune responses by stimulation of pDCs with CpG-A.
Collapse
Affiliation(s)
- Tsutomu Tanaka
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan; United Graduate School of Veterinary Sciences, Yamaguchi University, Yamaguchi, Japan
| | - Toshimitsu Kajiwara
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Goro Kutomi
- Department of Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takehiro Kurotaki
- Department of Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Keita Saito
- Department of Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takayuki Kanaseki
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tomohide Tsukahara
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yoshihiko Hirohashi
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Toshihiko Torigoe
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Koichi Hirata
- Department of Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yoshiharu Okamoto
- Joint Department of Veterinary Medicine, Tottori University, Tottori, Japan
| | - Noriyuki Sato
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yasuaki Tamura
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan; Department of Molecular Therapeutics, Center for Food & Medical Innovation, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
9
|
Cerovic V, Houston SA, Westlund J, Utriainen L, Davison ES, Scott CL, Bain CC, Joeris T, Agace WW, Kroczek RA, Mowat AM, Yrlid U, Milling SWF. Lymph-borne CD8α+ dendritic cells are uniquely able to cross-prime CD8+ T cells with antigen acquired from intestinal epithelial cells. Mucosal Immunol 2015; 8:38-48. [PMID: 24850430 PMCID: PMC4156465 DOI: 10.1038/mi.2014.40] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 04/18/2014] [Indexed: 02/04/2023]
Abstract
Cross-presentation of cellular antigens is crucial for priming CD8(+) T cells, and generating immunity to intracellular pathogens--particularly viruses. It is unclear which intestinal phagocytes perform this function in vivo. To address this, we examined dendritic cells (DCs) from the intestinal lymph of IFABP-tOVA 232-4 mice, which express ovalbumin in small intestinal epithelial cells (IECs). Among lymph DCs (LDCs) only CD103(+) CD11b(-) CD8α(+) DCs cross-present IEC-derived ovalbumin to CD8(+) OT-I T cells. Similarly, in the mesenteric lymph nodes (MLNs), cross-presentation of IEC-ovalbumin was limited to the CD11c(+) MHCII(hi) CD8α(+) migratory DCs, but absent from all other subsets, including the resident CD8α(hi) DCs. Crucially, delivery of purified CD8α(+) LDCs, but not other LDC subsets, into the MLN subcapsular lymphatic sinus induced proliferation of ovalbumin-specific, gut-tropic CD8(+) T cells in vivo. Finally, in 232-4 mice treated with R848, CD8α(+) LDCs were uniquely able to cross-prime interferon γ-producing CD8(+) T cells and drive their migration to the intestine. Our results clearly demonstrate that migrating CD8α(+) intestinal DCs are indispensable for cross-presentation of cellular antigens and, in conditions of inflammation, for the initial differentiation of effector CD8(+) T cells. They may therefore represent an important target for the development of antiviral vaccinations.
Collapse
Affiliation(s)
- V Cerovic
- Centre for Immunobiology, Institute for Infection, Immunity & Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK,()
| | - S A Houston
- Centre for Immunobiology, Institute for Infection, Immunity & Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - J Westlund
- Department of Medical Microbiology and Immunology, University of Gothenburg, Gothenburg, Sweden
| | - L Utriainen
- Centre for Immunobiology, Institute for Infection, Immunity & Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - E S Davison
- Centre for Immunobiology, Institute for Infection, Immunity & Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - C L Scott
- Centre for Immunobiology, Institute for Infection, Immunity & Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - C C Bain
- Centre for Immunobiology, Institute for Infection, Immunity & Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - T Joeris
- Immunology Section, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - W W Agace
- Immunology Section, Department of Experimental Medical Science, Lund University, Lund, Sweden,Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - R A Kroczek
- Department of Molecular Immunology, Robert Koch-Institute, Berlin, Germany
| | - A M Mowat
- Centre for Immunobiology, Institute for Infection, Immunity & Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - U Yrlid
- Department of Medical Microbiology and Immunology, University of Gothenburg, Gothenburg, Sweden
| | - S WF Milling
- Centre for Immunobiology, Institute for Infection, Immunity & Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
10
|
Kumar P, Tyagi R, Das G, Bhaskar S. Mycobacterium indicus pranii and Mycobacterium bovis BCG lead to differential macrophage activation in Toll-like receptor-dependent manner. Immunology 2014; 143:258-68. [PMID: 24766519 DOI: 10.1111/imm.12306] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 03/26/2014] [Accepted: 04/22/2014] [Indexed: 11/30/2022] Open
Abstract
Mycobacterium indicus pranii (MIP) is an atypical mycobacterial species possessing strong immunomodulatory properties. It is a potent vaccine candidate against tuberculosis, promotes Th1 immune response and protects mice from tumours. In previous studies, we demonstrated higher protective efficacy of MIP against experimental tuberculosis as compared with bacillus Calmette-Guérin (BCG). Since macrophages play an important role in the pathology of mycobacterial diseases and cancer, in the present study, we evaluated the MIP in live and killed form for macrophage activation potential, compared it with BCG and investigated the underlying mechanisms. High levels of tumour necrosis factor-α, interleukin-12p40 (IL-12p40), IL-6 and nitric oxide were produced by MIP-stimulated macrophages as compared with BCG-stimulated macrophages. Prominent up-regulation of co-stimulatory molecules CD40, CD80 and CD86 was also observed in response to MIP. Loss of response in MyD88-deficient macrophages showed that both MIP and BCG activate the macrophages in a MyD88-dependent manner. MyD88 signalling pathway culminates in nuclear factor-κB/activator protein-1 (NF-κB/AP-1) activation and higher activation of NF-κB/AP-1 was observed in response to MIP. With the help of pharmacological inhibitors and Toll-like receptor (TLR) -deficient macrophages, we observed the role of TLR2, TLR4 and intracellular TLRs in MIP-mediated macrophage activation. Stimulation of HEK293 cells expressing TLR2 in homodimeric or heterodimeric form showed that MIP has a distinctly higher level of TLR2 agonist activity compared with BCG. Further experiments suggested that TLR2 ligands are well exposed in MIP whereas they are obscured in BCG. Our findings establish the higher macrophage activation potential of MIP compared with BCG and delineate the underlying mechanism.
Collapse
Affiliation(s)
- Pawan Kumar
- National Institute of Immunology, New Delhi, India
| | | | | | | |
Collapse
|
11
|
Mantegazza AR, Magalhaes JG, Amigorena S, Marks MS. Presentation of phagocytosed antigens by MHC class I and II. Traffic 2012; 14:135-52. [PMID: 23127154 DOI: 10.1111/tra.12026] [Citation(s) in RCA: 162] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 11/01/2012] [Accepted: 11/06/2012] [Indexed: 12/15/2022]
Abstract
Phagocytosis provides innate immune cells with a mechanism to take up and destroy pathogenic bacteria, apoptotic cells and other large particles. In some cases, however, peptide antigens from these particles are preserved for presentation in association with major histocompatibility complex (MHC) class I or class II molecules in order to stimulate antigen-specific T cells. Processing and presentation of antigens from phagosomes presents a number of distinct challenges relative to antigens internalized by other means; while bacterial antigens were among the first discovered to be presented to T cells, analyses of the cellular mechanisms by which peptides from phagocytosed antigens assemble with MHC molecules and by which these complexes are then expressed at the plasma membrane have lagged behind those of conventional model soluble antigens. In this review, we cover recent advances in our understanding of these processes, including the unique cross-presentation of phagocytosed antigens by MHC class I molecules, and in their control by signaling modalities in phagocytic cells.
Collapse
Affiliation(s)
- Adriana R Mantegazza
- Department of Pathology & Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
12
|
CD8+ T cell immunodominance in lymphocytic choriomeningitis virus infection is modified in the presence of toll-like receptor agonists. J Virol 2011; 85:13224-33. [PMID: 21957295 DOI: 10.1128/jvi.05996-11] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Currently, we have limited understanding of how Toll-like receptor (TLR) engagement by microbial products influences the immune response during a concurrent virus infection. In this study, we established that dual TLR2 plus TLR3 (designated TLR2+3) stimulation alters the immunodominance hierarchies of lymphocytic choriomeningitis virus (LCMV) epitopes by reducing NP396-specific CD8+ T cell responses and shifting it to a subdominant position. The shift in immunodominance occurred due to a reduction in antigen uptake and the reduced cross-presentation of NP396, a major LCMV immunodominant epitope that is efficiently cross-presented. Moreover, the altered immunodominance was dependent on TLR stimulation occurring at the site of infection. Finally, as lipopolysaccharide failed to induce the same phenomenon, the data suggest that these findings are dependent not only on the dual engagement of the TRIF/MyD88 pathways but also on how TLR agonists activate antigen-presenting cells. Taken together, our data demonstrate a novel role for TLR ligands in regulating antiviral CD8+ T cell responses due to the regulation of the cross-presentation of cell-associated antigens.
Collapse
|
13
|
Mandell RB, Flick R, Staplin WR, Kaniewski LD, Carzoli AK, Manuszak RP, Wang J, Rossi GR, Vahanian NN, Link CJ. The αGal HyperAcute(®) Technology: enhancing immunogenicity of antiviral vaccines by exploiting the natural αGal-mediated zoonotic blockade. Zoonoses Public Health 2011; 56:391-406. [PMID: 19486321 DOI: 10.1111/j.1863-2378.2008.01191.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The αGal HyperAcute(®) Technology exploits a robust zoonotic blockade to enhance potency of antiviral vaccines. Naturally acquired immunity against the common αGal epitope [galactose-alpha(1,3)-galactose-beta(1,4)N-acetylglucosamine-R (Gal-α(1,3)-Gal-β(1,4)-GlcNAc-R)] is facilitated by the loss of a key enzyme in the epitope's biosynthetic pathway. As human cells are devoid of this epitope, chronic stimulus from gut flora leads to high levels of circulating anti-αGal antibodies and the development of a robust immune pathway. As the αGal epitope is immediately recognized as foreign, the naturally acquired αGal immune pathway in humans serves as a strong barrier to zoonotic infection. The αGal HyperAcute(®) Technology takes advantage of this natural process to facilitate the rapid presentation of modified antigens to antigen-presenting cells, leading to a strong immune response. The evolutionary immunity to αGal ensures that the presence of αGal epitopes on antigens will lead to a robust immune response involving cross-activation of T(H)1 immunity, characterized by cytokine secretion and increased phagocytic activity, and T(H)2 immunity characterized by high antibody titres. αGal epitopes can be applied to antiviral vaccines by biological, enzymatic or chemical means. Several detection methods that directly and indirectly verify αGal addition are discussed. Enhanced immunogenicity (humoral and cellular) of αGal-modified vaccines is shown for several antiviral vaccine candidates. αGal modification of antiviral vaccine components leads to enhanced immunogenicity. The existing body of literature describing the utility of αGal epitopes as a safe and robust immunostimulatory and -modulatory agent in humans supports the basis for applying the αGal HyperAcute(®) Technology to the improvement of antiviral vaccines, both new and currently approved.
Collapse
Affiliation(s)
- R B Mandell
- BioProtection Systems Corporation, Ames, IA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Licciardi PV, Underwood JR. Plant-derived medicines: A novel class of immunological adjuvants. Int Immunopharmacol 2011; 11:390-8. [DOI: 10.1016/j.intimp.2010.10.014] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 10/17/2010] [Accepted: 10/19/2010] [Indexed: 11/26/2022]
|
15
|
Kotsougiani D, Pioch M, Prior B, Heppert V, Hänsch GM, Wagner C. Activation of T Lymphocytes in Response to Persistent Bacterial Infection: Induction of CD11b and of Toll-Like Receptors on T Cells. Int J Inflam 2010; 2010:526740. [PMID: 21151520 PMCID: PMC2989653 DOI: 10.4061/2010/526740] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Accepted: 02/01/2010] [Indexed: 12/25/2022] Open
Abstract
T cell activation is invariably associated with virus infections, but activation of T cells is also noted, for example, in patients with persistent bacterial infections with intracellular pathogens or localised bacterial biofilms. The latter is characterised by a destructive inflammatory process. Massive infiltration of leukocytes, predominantly of polymorphonuclear neutrophils (PMNs) and of T lymphocytes, is seen. While PMN influx into sites of bacterial infection is in line with their role as "first-line defence" a role of T cells in bacterial infection has not yet been delineated. We now found evidence for activation and expansion of peripheral blood T cells and an upregulation of Toll-like receptors 1, 2, and 4 on small portions of T cells. T cells recovered from the infected site were terminally differentiated and produced interferon gamma, a cytokine known to enhance functions of phagocytic cells, leading to the conclusion that infiltrated T cells support the local immuner defence.
Collapse
|
16
|
Amigorena S, Savina A. Intracellular mechanisms of antigen cross presentation in dendritic cells. Curr Opin Immunol 2010; 22:109-17. [PMID: 20171863 DOI: 10.1016/j.coi.2010.01.022] [Citation(s) in RCA: 190] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Revised: 01/27/2010] [Accepted: 01/27/2010] [Indexed: 10/19/2022]
Abstract
The induction of most CD8+ T cell responses by dendritic cells (DCs) requires the presentation of peptides from internalized antigen by class I MHC molecules. Increasing number of reports have shown that cross presentation is involved in transplant rejection, in immune responses to viral infections, in certain autoimmune diseases and cancer. The precise role of cross presentation in the initiation of immune responses in vivo, however, remains a matter of debate. This ongoing controversy is, at least in part, due to a lack of understanding of the molecular machinery that determine cross presentation pathways in terms of cell biology. The present review aims to summarize recent insights and advances that help enlighten the intracellular steps of antigen cross presentation in DCs.
Collapse
Affiliation(s)
- Sebastian Amigorena
- INSERM U932, Institut Curie, Immunity and Cancer Laboratory, F-75245 Paris Cedex 05, France.
| | | |
Collapse
|
17
|
Mycophenolic Acid Impedes the Antigen Presenting and Lymph Node Homing Capacities of Human Blood Myeloid Dendritic Cells. Transplantation 2009; 88:504-13. [DOI: 10.1097/tp.0b013e3181b0e608] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
18
|
Blander JM. Phagocytosis and antigen presentation: a partnership initiated by Toll-like receptors. Ann Rheum Dis 2008; 67 Suppl 3:iii44-9. [PMID: 19022813 DOI: 10.1136/ard.2008.097964] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Professional phagocytes play an important role in the clearance of microbial pathogens and apoptotic cells. Many receptors are involved in this process, some with signalling capabilities, some without. Increasing evidence now shows a previously unappreciated regulatory component to phagocytosis exerted by the concomitant engagement of signalling receptors. The engagement of Toll-like receptors (TLRs) during phagocytosis of microbial pathogens is the best characterised example. Here, a brief overview is presented of the findings that TLRs exert positive and phagosome autonomous control on both the kinetics and outcomes of phagosome maturation. Although phagosomes could mature in the absence of TLR signals, they did so at a slower constitutive rate. Engagement of TLRs from another phagosome or from the plasma membrane did not affect the constitutive maturation of phagosomes devoid of TLR ligands. This was also reflected in the superior ability of phagosomes carrying TLR ligands to contribute peptides to major histocompatibility complex (MHC) class II molecules. Thus, TLR control of antigen presentation favours the presentation of microbial antigens within the context of T-lymphocyte costimulatory molecule expression. This current work aims to identify whether TLRs exert similar control on the presentation of phagocytosed antigens within MHC class I molecules, a process referred to as cross-presentation.
Collapse
Affiliation(s)
- J Magarian Blander
- Department of Medicine, Mount Sinai School of Medicine, Immunology Institute, New York, USA.
| |
Collapse
|
19
|
Nierkens S, den Brok MH, Sutmuller RPM, Grauer OM, Bennink E, Morgan ME, Figdor CG, Ruers TJM, Adema GJ. In vivo colocalization of antigen and CpG [corrected] within dendritic cells is associated with the efficacy of cancer immunotherapy. Cancer Res 2008; 68:5390-6. [PMID: 18593941 DOI: 10.1158/0008-5472.can-07-6023] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Immunostimulatory cytidyl guanosyl (CpG) motifs are of great interest as cancer vaccine adjuvants. They act as potent inducers of Th1 responses, including the activation of cytotoxic CD8(+) T lymphocytes (CTL). Whereas animal models have provided clear evidence that CpG enhances antitumor immunity, clinical trials in humans have thus far been less successful. Applying cryosurgery as an instant in situ tumor destruction technique, we now show that timing of CpG administration crucially affects colocalization of antigen and CpG within EEA-1(+) and LAMP-1(+) compartments within dendritic cells in vivo. Moreover, antigen/CpG colocalization is directly correlated with antigen cross-presentation, the presence of CTL, and protective antitumor immunity. Thus, failure or success of CpG as a vaccine adjuvant may depend on colocalization of antigen/CpG inside DCs and hence on the timing of CpG administration. These data might aid in the design of future immunotherapeutic strategies for cancer patients.
Collapse
Affiliation(s)
- Stefan Nierkens
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, the Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Maturation of monocyte-derived dendritic cells with Toll-like receptor 3 and 7/8 ligands combined with prostaglandin E2 results in high interleukin-12 production and cell migration. Cancer Immunol Immunother 2008; 57:1589-97. [PMID: 18322684 PMCID: PMC2522299 DOI: 10.1007/s00262-008-0489-2] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2007] [Accepted: 02/12/2008] [Indexed: 12/18/2022]
Abstract
Dendritic cells (DC) are professional antigen-presenting cells of the immune system that play a key role in regulating T cell-based immunity. In vivo, the capacity of DC to activate T cells depends on their ability to migrate to the T cell areas of lymph nodes as well as on their maturation state. Depending on their cytokine-secreting profile, DC are able to skew the immune response in a specific direction. In particular, IL-12p70 producing DC drive T cells towards a T helper 1 type response. A serious disadvantage of current clinical grade ex vivo generated monocyte-derived DC is the poor IL-12p70 production. We have investigated the effects of Toll-like receptor (TLR)-mediated maturation on ex vivo generated human monocyte-derived DC. We demonstrate that in contrast to cytokine-matured DC, DC matured with poly(I:C) (TLR3 ligand) and/or R848 (TLR7/8 ligand) are able to produce vast amounts of IL-12p70, but exhibit a reduced migratory capacity. The addition of prostaglandin E2 (PGE2) improved the migratory capacity of TLR-ligand matured DC while maintaining their IL-12p70 production upon T cell encounter. We propose a novel clinical grade maturation protocol in which TLR ligands poly(I:C) and R848 are combined with PGE2 to generate DC with both high migratory capacity and IL-12p70 production upon T cell encounter.
Collapse
|
21
|
Abstract
Antigen presentation by professional antigen-presenting cells (pAPCs) to cytotoxic CD8(+) T cells can occur via two processing routes - the direct and cross-presentation pathways. Cross-presentation of exogenous antigens in the context of major histocompatibility complex (MHC) class I molecules has recently attracted a lot of research interest because it may prove crucial for vaccine development. This alternative pathway has been implicated in priming CD8(+) T-cell responses to pathogens as well as tumours in vivo (cross-priming). In cross-presentation, the internalized antigens can be processed through diverse intracellular routes. As many unresolved questions regarding the molecular basis that controls the cross-priming process still exist, it is essential to explore the various elements involved therein, to better elucidate this pathway. In this review, we summarize current data that explore how the source and nature of antigens could affect their cross-presentation. Moreover, we will discuss and outline how recent advances regarding pAPCs' properties have increased our appreciation of the complex nature of the cross-priming pathway in vivo. In conclusion, we contemplate how the direct and cross-presentation pathways can function to allow the immune system to deal efficiently with diverse pathogens.
Collapse
Affiliation(s)
- S Basta
- Department of Microbiology & Immunology, Queen's University, Kingston, ON, Canada.
| | | |
Collapse
|
22
|
Wang LF, Hsu CJ, Miaw SC, Chiu HC, Liu CY, Yu HS. Cross-priming with an epicutaneously introduced soluble protein antigen generates Tc1 cells. Eur J Immunol 2007; 36:2904-11. [PMID: 17048268 DOI: 10.1002/eji.200535770] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Epicutaneous sensitization with a protein antigen was demonstrated to induce a predominant type 2 CD4 T cell response with high IgE production in mice. On the other hand, its CD8 T cell responses have not been addressed probably partly because of the generally accepted concept that cross-priming of soluble protein is an inefficient process. Here, we used an established patch-applied murine model to demonstrate that cross-priming with an epicutaneously introduced soluble protein antigen, though inefficient, generated mainly Tc1 cells, but not Tc2 cells. In the presence of an irritant or hapten, the efficiency of this cross-priming process could be enhanced and more Tc1 cells were generated. CpG oligonucleotides also promote the generation of Tc1 cells. In contrast, lipopolysaccharide and poly (inosinic-cytidylic) acid [poly (I:C)] have no effect. Together, these results provide supportive evidence of the epicutaneous sensitization of human cutaneous lymphocyte-associated antigen-positive CD8 T cells found in the peripheral blood or tissues of patients. The surprising observation of the type 1 character of the generated CD8 T cells will also help us to better understand the complicated pathogenesis of atopic and cutaneous inflammatory diseases.
Collapse
Affiliation(s)
- Li-Fang Wang
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
23
|
Wagner C, Heck D, Lautenschläger K, Iking-Konert C, Heppert V, Wentzensen A, Hänsch GM. T lymphocytes in implant-associated posttraumatic osteomyelitis: Identification of cytotoxic T effector cells at the site of infection. Shock 2006; 25:241-6. [PMID: 16552355 DOI: 10.1097/01.shk.0000192119.68295.14] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In implant-associated posttraumatic osteomyelitis, a massive infiltration of leukocytes into the infected site is seen. As described previously, the most infiltrated cells were highly activated polymorphonuclear neutrophils. In addition, a considerable T-cell infiltrate was noted. Whereas our previous work was mainly concerned with the phenotypical and functional characterization of the polymorphonuclear neutrophils, we now analyzed T lymphocytes of 32 patients with implant-associated posttraumatic osteomyelitis. We found evidence for an expansion of CD8 T cells in the peripheral blood of the patients and for an infiltration of these cells into the infected site. Further analysis of the surface-receptor pattern by three-color cytofluorometry revealed that the majority of these cells belonged to the cytotoxic-effector phenotype. Of note is that cytotoxic T cells are generally associated with virus infection. Thus, the detection of those cells in patients with bacterial infection was rather unexpected and points to a novel, not yet appreciated, role of CD8 T cells also in the defense of bacterial infections.
Collapse
|
24
|
Durrant LG, Ramage JM. Development of cancer vaccines to activate cytotoxic T lymphocytes. Expert Opin Biol Ther 2006; 5:555-63. [PMID: 15934833 DOI: 10.1517/14712598.5.4.555] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Cancer vaccines have been shown to stimulate cytotoxic T lymphocyte (CTL) responses in a variety of cancer patients. However, the response is often of low frequency and moderate avidity, and does not result in objective clinical responses. This is related to the target antigens, which are usually over-expressed self-antigens that elicit tolerogenic and regulatory immune responses, resulting in deletion or inactivation of high-avidity T cells. Although moderate-avidity T cells can be efficient killers, tumours are often poor targets as they express a variety of molecules to protect them from cell-mediated immunity. Adoptive transfer of large numbers of high-avidity T cells has been shown to induce regression of bulky disease, proving that immune responses can effectively eradicate tumours. New approaches that target activated dendritic cells in vivo, resulting in cross-presentation of CTL epitopes and release of cytokines that suppress regulatory T cells, have resulted in the production of T cells with sufficient avidity to kill tumour target cells. These approaches in combination with regimes, such as cytokine therapy, chemotherapy or radiotherapy, that modulate effector costimulatory expression on tumour targets may result in more effective second-generation cancer vaccines.
Collapse
Affiliation(s)
- L G Durrant
- University of Nottingham, Institute of Infections, Immunity and Inflammation, Department of Clinical Oncology, City Hospital, Hucknall Road, NG5 1PB, UK.
| | | |
Collapse
|
25
|
Shen L, Rock KL. Priming of T cells by exogenous antigen cross-presented on MHC class I molecules. Curr Opin Immunol 2005; 18:85-91. [PMID: 16326087 DOI: 10.1016/j.coi.2005.11.003] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2005] [Accepted: 11/24/2005] [Indexed: 01/12/2023]
Abstract
Cross-presentation is the process whereby bone-marrow-derived antigen-presenting cells acquire, process and present exogenous antigen as peptides bound to MHC class I molecules to CD8(+) T cells. Professional antigen-presenting cells acquire cell-associated antigen predominantly in the form of protein, then process and present antigenic peptides on their surface MHC class I molecules via several mechanisms and efficiently cross-prime naïve CD8(+) T cells in vivo. This pathway is of considerable interest because it has an important role in the immune surveillance of tissues for pathogens and cancers.
Collapse
Affiliation(s)
- Lianjun Shen
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | |
Collapse
|