1
|
Lin YC, Chang YJ, Gau SS, Lo CM, Yang RB. SCUBE2 regulates adherens junction dynamics and vascular barrier function during inflammation. Cardiovasc Res 2024; 120:1636-1649. [PMID: 38870316 DOI: 10.1093/cvr/cvae132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/22/2024] [Accepted: 05/03/2024] [Indexed: 06/15/2024] Open
Abstract
AIMS SCUBE2 (signal peptide-CUB-epidermal growth factor-like domain-containing protein 2) is a secreted or membrane-bound protein originally identified from endothelial cells (ECs). Our previous work showed that SCUBE2 forms a complex with E-cadherin and stabilizes epithelial adherens junctions (AJs) to promote epithelial phenotypes. However, it remains unclear whether SCUBE2 also interacts with vascular endothelial (VE)-cadherin and modulates EC barrier function. In this study, we investigated whether and how SCUBE2 in ECs regulates vascular barrier maintenance. METHODS AND RESULTS We showed that SCUBE2 colocalized and interacted with VE-cadherin and VE-protein tyrosine phosphatase (VE-PTP) within EC AJs. Furthermore, SCUBE2 knockdown disrupted EC AJs and increased EC permeability. Expression of EC SCUBE2 was suppressed at both mRNA and protein levels via the nuclear factor-κB signalling pathway in response to pro-inflammatory cytokines or permeability-inducing agents. In line with these findings, EC-specific deletion of Scube2 (EC-KO) in mice impaired baseline barrier function and worsened vascular leakiness of peripheral capillaries after local injection of histamine or vascular endothelial growth factor. EC-KO mice were also sensitive to pulmonary vascular hyperpermeability and leucocyte infiltration in response to acute endotoxin- or influenza virus-induced systemic inflammation. Meanwhile, EC-specific SCUBE2-overexpressing mice were protected from these effects. Molecular studies suggested that SCUBE2 acts as a scaffold molecule enabling VE-PTP to dephosphorylate VE-cadherin, which prevents VE-cadherin internalization and stabilizes EC AJs. As such, loss of SCUBE2 resulted in hyperphosphorylation of VE-cadherin at tyrosine 685, which led to its endocytosis, thus destabilizing EC AJs and reducing barrier function. All of these effects were exacerbated by inflammatory insults. CONCLUSION We found that SCUBE2 contributes to vascular integrity by recruiting VE-PTP to dephosphorylate VE-cadherin and stabilize AJs, thereby promoting EC barrier function. Moreover, our data suggest that genetic overexpression or pharmacological up-regulation of SCUBE2 may help to prevent vascular leakage and oedema in inflammatory diseases.
Collapse
Affiliation(s)
- Yuh-Charn Lin
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Ya-Jen Chang
- Institute of Biomedical Sciences, Academia Sinica, 128 Academia Rd., Sec. 2, Taipei 115201, Taiwan
| | - Shiang-Shin Gau
- Institute of Biomedical Sciences, Academia Sinica, 128 Academia Rd., Sec. 2, Taipei 115201, Taiwan
- Graduate School of Biostudies, Kyoto University, Kyoto 6068501, Japan
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 6068501, Japan
| | - Chun-Min Lo
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Ruey-Bing Yang
- Institute of Biomedical Sciences, Academia Sinica, 128 Academia Rd., Sec. 2, Taipei 115201, Taiwan
- Biomedical Translation Research Center, Academia Sinica, 99, Ln. 130, Academia Rd., Sec. 1, Taipei 115201, Taiwan
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, 250 Wuxing St., Taipei 110301, Taiwan
| |
Collapse
|
2
|
Bezze A, Mattioda C, Ciardelli G, Mattu C. Harnessing cells to improve transport of nanomedicines. Eur J Pharm Biopharm 2024; 203:114446. [PMID: 39122052 DOI: 10.1016/j.ejpb.2024.114446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/18/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Efficient tumour treatment is hampered by the poor selectivity of anticancer drugs, resulting in scarce tumour accumulation and undesired off-target effects. Nano-sized drug-delivery systems in the form of nanoparticles (NPs) have been proposed to improve drug distribution to solid tumours, by virtue of their ability of passive and active tumour targeting. Despite these advantages, literature studies indicated that less than 1% of the administered NPs can successfully reach the tumour mass, highlighting the necessity for more efficient drug transporters in cancer treatment. Living cells, such as blood cells, circulating immune cells, platelets, and stem cells, are often found as an infiltrating component in most solid tumours, because of their ability to naturally circumvent immune recognition, bypass biological barriers, and reach inaccessible tissues through innate tropism and active motility. Therefore, the tumour-homing ability of these cells can be harnessed to design living cell carriers able to improve the transport of drugs and NPs to tumours. Albeit promising, this approach is still in its beginnings and suffers from difficult scalability, high cost, and poor reproducibility. In this review, we present an overview of the most common cell transporters of drugs and NPs, and we discuss how different cell types interact with biological barriers to deliver cargoes of various natures to tumours. Finally, we analyse the different techniques used to load drugs or NPs in living cells and discuss their advantages and disadvantages.
Collapse
Affiliation(s)
- Andrea Bezze
- Politecnico di Torino - DIMEAS, C.so Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Carlotta Mattioda
- Politecnico di Torino - DIMEAS, C.so Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Gianluca Ciardelli
- Politecnico di Torino - DIMEAS, C.so Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Clara Mattu
- Politecnico di Torino - DIMEAS, C.so Duca degli Abruzzi 24, 10129 Torino, Italy.
| |
Collapse
|
3
|
Paul O, Akolia IK, Qin Tao J, Jain N, Louneva N, Montone KT, Fisher AB, Rajapakse CS, Bermudez C, Chatterjee S. Reactive oxygen species in endothelial signaling in COVID-19: Protective role of the novel peptide PIP-2. PLoS One 2024; 19:e0289854. [PMID: 38771750 PMCID: PMC11108150 DOI: 10.1371/journal.pone.0289854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 04/02/2024] [Indexed: 05/23/2024] Open
Abstract
INTRODUCTION Recent research suggests that endothelial activation plays a role in coronavirus disease 2019 (COVID-19) pathogenesis by promoting a pro-inflammatory state. However, the mechanism by which the endothelium is activated in COVID-19 remains unclear. OBJECTIVE To investigate the mechanism by which COVID-19 activates the pulmonary endothelium and drives pro-inflammatory phenotypes. HYPOTHESIS The "inflammatory load or burden" (cytokine storm) of the systemic circulation activates endothelial NADPH oxidase 2 (NOX2) which leads to the production of reactive oxygen species (ROS) by the pulmonary endothelium. Endothelial ROS subsequently activates pro-inflammatory pathways. METHODS The inflammatory burden of COVID-19 on the endothelial network, was recreated in vitro, by exposing human pulmonary microvascular endothelial cells (HPMVEC) to media supplemented with serum from COVID-19 affected individuals (sera were acquired from patients with COVID-19 infection that eventually died. Sera was isolated from blood collected at admission to the Intensive Care Unit of the Hospital of the University of Pennsylvania). Endothelial activation, inflammation and cell death were assessed in HPMVEC treated with serum either from patients with COVID-19 or from healthy individuals. Activation was monitored by measuring NOX2 activation (Rac1 translocation) and ROS production; inflammation (or appearance of a pro-inflammatory phenotype) was monitored by measuring the induction of moieties such as intercellular adhesion molecule (ICAM-1), P-selectin and the NLRP3 inflammasome; cell death was measured via SYTOX™ Green assays. RESULTS Endothelial activation (i.e., NOX2 activation and subsequent ROS production) and cell death were significantly higher in the COVID-19 model than in healthy samples. When HPMVEC were pre-treated with the novel peptide PIP-2, which blocks NOX2 activation (via inhibition of Ca2+-independent phospholipase A2, aiPLA2), significant abrogation of ROS was observed. Endothelial inflammation and cell death were also significantly blunted. CONCLUSIONS The endothelium is activated during COVID-19 via cytokine storm-driven NOX2-ROS activation, which causes a pro-inflammatory phenotype. The concept of endothelial NOX2-ROS production as a unifying pathophysiological axis in COVID-19 raises the possibility of using PIP-2 to maintain vascular health.
Collapse
Affiliation(s)
- Oindrila Paul
- Institute for Environmental Medicine and Department of Physiology, Philadelphia, Pennsylvania, United States of America
| | - Isha K. Akolia
- Institute for Environmental Medicine and Department of Physiology, Philadelphia, Pennsylvania, United States of America
| | - Jian Qin Tao
- Institute for Environmental Medicine and Department of Physiology, Philadelphia, Pennsylvania, United States of America
| | - Nikita Jain
- Institute for Environmental Medicine and Department of Physiology, Philadelphia, Pennsylvania, United States of America
| | - Natalia Louneva
- Peroxitech Inc., Philadelphia, Pennsylvania, United States of America
| | - Kathleen T. Montone
- Department of Pathology, Philadelphia, Pennsylvania, United States of America
| | - Aron B. Fisher
- Peroxitech Inc., Philadelphia, Pennsylvania, United States of America
| | - Chamith S. Rajapakse
- Department of Radiology, Philadelphia, Pennsylvania, United States of America
- Department of Orthopedic Surgery, Philadelphia, Pennsylvania, United States of America
| | - Christian Bermudez
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Shampa Chatterjee
- Institute for Environmental Medicine and Department of Physiology, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
4
|
Lv H, Zong Q, Chen C, Lv G, Xiang W, Xing F, Jiang G, Yan B, Sun X, Ma Y, Wang L, Wu Z, Cui X, Wang H, Yang W. TET2-mediated tumor cGAS triggers endothelial STING activation to regulate vasculature remodeling and anti-tumor immunity in liver cancer. Nat Commun 2024; 15:6. [PMID: 38177099 PMCID: PMC10766952 DOI: 10.1038/s41467-023-43743-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 11/17/2023] [Indexed: 01/06/2024] Open
Abstract
Induction of tumor vascular normalization is a crucial measure to enhance immunotherapy efficacy. cGAS-STING pathway is vital for anti-tumor immunity, but its role in tumor vasculature is unclear. Herein, using preclinical liver cancer models in Cgas/Sting-deficient male mice, we report that the interdependence between tumor cGAS and host STING mediates vascular normalization and anti-tumor immune response. Mechanistically, TET2 mediated IL-2/STAT5A signaling epigenetically upregulates tumor cGAS expression and produces cGAMP. Subsequently, cGAMP is transported via LRRC8C channels to activate STING in endothelial cells, enhancing recruitment and transendothelial migration of lymphocytes. In vivo studies in male mice also reveal that administration of vitamin C, a promising anti-cancer agent, stimulates TET2 activity, induces tumor vascular normalization and enhances the efficacy of anti-PD-L1 therapy alone or in combination with IL-2. Our findings elucidate a crosstalk between tumor and vascular endothelial cells in the tumor immune microenvironment, providing strategies to enhance the efficacy of combinational immunotherapy for liver cancer.
Collapse
Affiliation(s)
- Hongwei Lv
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200438, China
- National Center for Liver Cancer, Naval Medical University (Second Military Medical University), Shanghai, 201805, China
- Cancer Research Center, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Qianni Zong
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200438, China
- National Center for Liver Cancer, Naval Medical University (Second Military Medical University), Shanghai, 201805, China
| | - Cian Chen
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200438, China
- National Center for Liver Cancer, Naval Medical University (Second Military Medical University), Shanghai, 201805, China
| | - Guishuai Lv
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200438, China
- National Center for Liver Cancer, Naval Medical University (Second Military Medical University), Shanghai, 201805, China
| | - Wei Xiang
- Cancer Research Center, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Fuxue Xing
- Cancer Research Center, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Guoqing Jiang
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, 225000, China
| | - Bing Yan
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, 225000, China
| | - Xiaoyan Sun
- Hospital of Zhengzhou University, Zhengzhou, Henan, 450000, China
| | - Yue Ma
- Cancer Research Center, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Liang Wang
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200438, China
- National Center for Liver Cancer, Naval Medical University (Second Military Medical University), Shanghai, 201805, China
| | - Zixin Wu
- Cancer Research Center, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Xiuliang Cui
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200438, China
- National Center for Liver Cancer, Naval Medical University (Second Military Medical University), Shanghai, 201805, China
| | - Hongyang Wang
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200438, China.
- National Center for Liver Cancer, Naval Medical University (Second Military Medical University), Shanghai, 201805, China.
- Cancer Research Center, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China.
- Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Shanghai, 200438, China.
- Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer, Ministry of Education, Shanghai, 200438, China.
| | - Wen Yang
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200438, China.
- National Center for Liver Cancer, Naval Medical University (Second Military Medical University), Shanghai, 201805, China.
- Cancer Research Center, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China.
- Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Shanghai, 200438, China.
- Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer, Ministry of Education, Shanghai, 200438, China.
| |
Collapse
|
5
|
Jeong S, Choe YH, Kim YM, Hyun YM. Evaluation of Vascular Permeability in Inflamed Vessels of the Cremaster Muscle in Live Mice. Methods Mol Biol 2024; 2711:13-20. [PMID: 37776445 DOI: 10.1007/978-1-0716-3429-5_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2023]
Abstract
Inflammation in vascular structures due to external factors such as injury or infection inevitably leads to blood leakage. Therefore, measuring blood infiltrated into tissue may serve as an indication for the extent of an inflammatory reaction or injury. There are various methods of confirming vascular permeability in vivo and in vitro; for example, using a blood vessel permeable dye, the dye efflux can be quantitatively measured with a spectrophotometer. Although the aforementioned commonly used methods can measure leaked dye without difficulty, substantial limitations exist regarding the time points of blood leakage that can be measured. Here, we describe the details of a novel protocol to identify and analyze the real-time progression of blood leakage in vivo. This method, by combining existing methods with real-time imaging, is expected to immensely improve the visualization and evaluation of vascular permeability.
Collapse
Affiliation(s)
- Soi Jeong
- Department of Anatomy, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Young Ho Choe
- Department of Anatomy, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Young Min Kim
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Young-Min Hyun
- Department of Anatomy, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
6
|
Tiruppathi C, Wang DM, Ansari MO, Bano S, Tsukasaki Y, Mukhopadhyay A, Joshi JC, Loch C, Niessen HWM, Malik AB. Ubiquitin ligase CHFR mediated degradation of VE-cadherin through ubiquitylation disrupts endothelial adherens junctions. Nat Commun 2023; 14:6582. [PMID: 37852964 PMCID: PMC10584835 DOI: 10.1038/s41467-023-42225-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/04/2023] [Indexed: 10/20/2023] Open
Abstract
Vascular endothelial cadherin (VE-cadherin) expressed at endothelial adherens junctions (AJs) is vital for vascular integrity and endothelial homeostasis. Here we identify the requirement of the ubiquitin E3-ligase CHFR as a key mechanism of ubiquitylation-dependent degradation of VE-cadherin. CHFR was essential for disrupting the endothelium through control of the VE-cadherin protein expression at AJs. We observe augmented expression of VE-cadherin in endothelial cell (EC)-restricted Chfr knockout (ChfrΔEC) mice. We also observe abrogation of LPS-induced degradation of VE-cadherin in ChfrΔEC mice, suggesting the pathophysiological relevance of CHFR in regulating the endothelial junctional barrier in inflammation. Lung endothelial barrier breakdown, inflammatory neutrophil extravasation, and mortality induced by LPS were all suppressed in ChfrΔEC mice. We find that the transcription factor FoxO1 is a key upstream regulator of CHFR expression. These findings demonstrate the requisite role of the endothelial cell-expressed E3-ligase CHFR in regulating the expression of VE-cadherin, and thereby endothelial junctional barrier integrity.
Collapse
Affiliation(s)
- Chinnaswamy Tiruppathi
- Department of Pharmacology and Regenerative Medicine and The Center of Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL, USA.
| | - Dong-Mei Wang
- Department of Pharmacology and Regenerative Medicine and The Center of Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL, USA
| | - Mohammad Owais Ansari
- Department of Pharmacology and Regenerative Medicine and The Center of Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL, USA
| | - Shabana Bano
- Department of Pharmacology and Regenerative Medicine and The Center of Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL, USA
| | - Yoshikazu Tsukasaki
- Department of Pharmacology and Regenerative Medicine and The Center of Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL, USA
| | - Amitabha Mukhopadhyay
- Department of Pharmacology and Regenerative Medicine and The Center of Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL, USA
| | - Jagdish C Joshi
- Department of Pharmacology and Regenerative Medicine and The Center of Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL, USA
| | | | - Hans W M Niessen
- Department of Pathology, VU University Medical Center, Amsterdam, the Netherlands
| | - Asrar B Malik
- Department of Pharmacology and Regenerative Medicine and The Center of Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL, USA.
| |
Collapse
|
7
|
Britzen-Laurent N, Weidinger C, Stürzl M. Contribution of Blood Vessel Activation, Remodeling and Barrier Function to Inflammatory Bowel Diseases. Int J Mol Sci 2023; 24:ijms24065517. [PMID: 36982601 PMCID: PMC10051397 DOI: 10.3390/ijms24065517] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Inflammatory bowel diseases (IBDs) consist of a group of chronic inflammatory disorders with a complex etiology, which represent a clinical challenge due to their often therapy-refractory nature. In IBD, inflammation of the intestinal mucosa is characterized by strong and sustained leukocyte infiltration, resulting in the loss of epithelial barrier function and subsequent tissue destruction. This is accompanied by the activation and the massive remodeling of mucosal micro-vessels. The role of the gut vasculature in the induction and perpetuation of mucosal inflammation is receiving increasing recognition. While the vascular barrier is considered to offer protection against bacterial translocation and sepsis after the breakdown of the epithelial barrier, endothelium activation and angiogenesis are thought to promote inflammation. The present review examines the respective pathological contributions of the different phenotypical changes observed in the microvascular endothelium during IBD, and provides an overview of potential vessel-specific targeted therapy options for the treatment of IBD.
Collapse
Affiliation(s)
- Nathalie Britzen-Laurent
- Division of Surgical Research, Department of Surgery, Translational Research Center, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054 Erlangen, Germany
- Correspondence:
| | - Carl Weidinger
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, 12203 Berlin, Germany
| | - Michael Stürzl
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054 Erlangen, Germany
- Division of Molecular and Experimental Surgery, Translational Research Center, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| |
Collapse
|
8
|
Shen SH, Wang RL, Yuan Q, Jian LY, Guo HH, Li HS, Liu XP, Huang RF. The roles of AMPK/mTOR autophagy pathway in the acute kidney injury-induced acute lung injury. CHINESE J PHYSIOL 2023; 66:73-84. [PMID: 37082995 DOI: 10.4103/cjop.cjop-d-22-00122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023] Open
Abstract
Acute kidney injury (AKI) is one of the most challenging clinical problems in kidney disease due to serious complications and high mortality rate, which can lead to acute lung injury (ALI) through inflammatory reactions and oxidative stress. Adenosine monophosphate-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) pathway has been reported to be involved in the development of renal ischemia-reperfusion through autophagy and it remains unclear whether AMPK/mTOR pathway has an effect on the AKI-induced ALI. In this study, we aimed to investigate the effects of autophagy-related AMPK/mTOR signaling pathway on inflammatory factors and oxidative stress in an AKI-induced ALI model. The 48 male Sprague-Dawley rats were divided into four groups randomly: (i) sham, (ii) ischemia/reperfusion injury (IRI), (iii) IRI + rapamycin (RA), and (iv) IRI + 3-methyladenine (3-MA). Unilateral flank incisions were made and right kidneys were excised. The left kidney was subjected to 60 min of ischemia followed by 12, 24, 48, and 72 h of reperfusion. The levels of Scr, blood urea nitrogen (BUN), Wet/Dry ratio, indexes of inflammation, and oxidative stress were assayed. Histological examinations were performed. The protein expression of AMPK, mTOR, LC3-II/LC3-I ratio, and Beclin-1, ULK1 was evaluated by western blotting and immunohistochemistry. Compared to the rats from the sham group, IRI rats showed significantly pulmonary damage after AKI with increased Scr, BUN, Wet/Dry ratio, indexes of inflammation, and oxidative stress. The expression of AMPK, LC3-II/LC3-I ratio, Beclin-1, and ULK1 and were increased, while p62 and mTOR were decreased. In addition, RA treatment significantly attenuated lung injury by promoting autophagy through the activation of the AMPK/mTOR pathway, and 3-MA treatment exhibited adverse effects inversely. Therefore, the activation of the AMPK/mTOR pathway after renal IRI induction could significantly attenuate kidney injury and following AKI-induced ALI by inducing autophagy, which alienates inflammation, oxidative stress, and apoptosis.
Collapse
Affiliation(s)
- Si-Heng Shen
- Department of Nephropathy, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Ruo-Lin Wang
- Department of Nephropathy, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Qi Yuan
- Department of Nephropathy, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Lu-Yong Jian
- Department of Nephropathy, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Hua-Hui Guo
- Department of Nephropathy, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - He-Sheng Li
- Department of Nephropathy, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Xue-Pin Liu
- Department of Nephropathy, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Ren-Fa Huang
- Department of Nephropathy, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, China
| |
Collapse
|
9
|
Sharma D, Kaur G, Bisen S, Sharma A, Ibrahim AS, Singh NK. IL-33 via PKCμ/PRKD1 Mediated α-Catenin Phosphorylation Regulates Endothelial Cell-Barrier Integrity and Ischemia-Induced Vascular Leakage. Cells 2023; 12:703. [PMID: 36899839 PMCID: PMC10001418 DOI: 10.3390/cells12050703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/13/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Angiogenesis, neovascularization, and vascular remodeling are highly dynamic processes, where endothelial cell-cell adhesion within the vessel wall controls a range of physiological processes, such as growth, integrity, and barrier function. The cadherin-catenin adhesion complex is a key contributor to inner blood-retinal barrier (iBRB) integrity and dynamic cell movements. However, the pre-eminent role of cadherins and their associated catenins in iBRB structure and function is not fully understood. Using a murine model of oxygen-induced retinopathy (OIR) and human retinal microvascular endothelial cells (HRMVECs), we try to understand the significance of IL-33 on retinal endothelial barrier disruption, leading to abnormal angiogenesis and enhanced vascular permeability. Using electric cell-substrate impedance sensing (ECIS) analysis and FITC-dextran permeability assay, we observed that IL-33 at a 20 ng/mL concentration induced endothelial-barrier disruption in HRMVECs. The adherens junction (AJs) proteins play a prominent role in the selective diffusion of molecules from the blood to the retina and in maintaining retinal homeostasis. Therefore, we looked for the involvement of adherens junction proteins in IL-33-mediated endothelial dysfunction. We observed that IL-33 induces α-catenin phosphorylation at serine/threonine (Ser/Thr) residues in HRMVECs. Furthermore, mass-spectroscopy (MS) analysis revealed that IL-33 induces the phosphorylation of α-catenin at Thr654 residue in HRMVECs. We also observed that PKCμ/PRKD1-p38 MAPK signaling regulates IL-33-induced α-catenin phosphorylation and retinal endothelial cell-barrier integrity. Our OIR studies revealed that genetic deletion of IL-33 resulted in reduced vascular leakage in the hypoxic retina. We also observed that the genetic deletion of IL-33 reduced OIR-induced PKCμ/PRKD1-p38 MAPK-α-catenin signaling in the hypoxic retina. Therefore, we conclude that IL-33-induced PKCμ/PRKD1-p38 MAPK-α-catenin signaling plays a significant role in endothelial permeability and iBRB integrity.
Collapse
Affiliation(s)
- Deepti Sharma
- Integrative Biosciences Center, Wayne State University, Detroit, MI 48202, USA
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Geetika Kaur
- Integrative Biosciences Center, Wayne State University, Detroit, MI 48202, USA
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Shivantika Bisen
- Integrative Biosciences Center, Wayne State University, Detroit, MI 48202, USA
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Anamika Sharma
- Integrative Biosciences Center, Wayne State University, Detroit, MI 48202, USA
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Ahmed S. Ibrahim
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48202, USA
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
- Department of Pharmacology, Wayne State University, Detroit, MI 48202, USA
| | - Nikhlesh K. Singh
- Integrative Biosciences Center, Wayne State University, Detroit, MI 48202, USA
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48202, USA
| |
Collapse
|
10
|
Grönloh MLB, Arts JJG, Palacios Martínez S, van der Veen AA, Kempers L, van Steen ACI, Roelofs JJTH, Nolte MA, Goedhart J, van Buul JD. Endothelial transmigration hotspots limit vascular leakage through heterogeneous expression of ICAM-1. EMBO Rep 2023; 24:e55483. [PMID: 36382783 PMCID: PMC9827561 DOI: 10.15252/embr.202255483] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 11/18/2022] Open
Abstract
Upon inflammation, leukocytes leave the circulation by crossing the endothelial monolayer at specific transmigration "hotspot" regions. Although these regions support leukocyte transmigration, their functionality is not clear. We found that endothelial hotspots function to limit vascular leakage during transmigration events. Using the photoconvertible probe mEos4b, we traced back and identified original endothelial transmigration hotspots. Using this method, we show that the heterogeneous distribution of ICAM-1 determines the location of the transmigration hotspot. Interestingly, the loss of ICAM-1 heterogeneity either by CRISPR/Cas9-induced knockout of ICAM-1 or equalizing the distribution of ICAM-1 in all endothelial cells results in the loss of TEM hotspots but not necessarily in reduced TEM events. Functionally, the loss of endothelial hotspots results in increased vascular leakage during TEM. Mechanistically, we demonstrate that the 3 extracellular Ig-like domains of ICAM-1 are crucial for hotspot recognition. However, the intracellular tail of ICAM-1 and the 4th Ig-like dimerization domain are not involved, indicating that intracellular signaling or ICAM-1 dimerization is not required for hotspot recognition. Together, we discovered that hotspots function to limit vascular leakage during inflammation-induced extravasation.
Collapse
Affiliation(s)
- Max L B Grönloh
- Molecular Cell Biology Lab, Department of Molecular HematologySanquin Research and Landsteiner LaboratoryAmsterdamThe Netherlands
- Section Molecular Cytology at Swammerdam Institute for Life Sciences, Leeuwenhoek Centre for Advanced MicroscopyUniversity of AmsterdamAmsterdamThe Netherlands
| | - Janine J G Arts
- Molecular Cell Biology Lab, Department of Molecular HematologySanquin Research and Landsteiner LaboratoryAmsterdamThe Netherlands
- Section Molecular Cytology at Swammerdam Institute for Life Sciences, Leeuwenhoek Centre for Advanced MicroscopyUniversity of AmsterdamAmsterdamThe Netherlands
| | - Sebastián Palacios Martínez
- Molecular Cell Biology Lab, Department of Molecular HematologySanquin Research and Landsteiner LaboratoryAmsterdamThe Netherlands
| | - Amerens A van der Veen
- Molecular Cell Biology Lab, Department of Molecular HematologySanquin Research and Landsteiner LaboratoryAmsterdamThe Netherlands
| | - Lanette Kempers
- Molecular Cell Biology Lab, Department of Molecular HematologySanquin Research and Landsteiner LaboratoryAmsterdamThe Netherlands
| | - Abraham C I van Steen
- Molecular Cell Biology Lab, Department of Molecular HematologySanquin Research and Landsteiner LaboratoryAmsterdamThe Netherlands
| | - Joris J T H Roelofs
- Department of Pathology, Amsterdam Cardiovascular SciencesAmsterdam UMC, University of Amsterdam, Location AMCAmsterdamThe Netherlands
| | - Martijn A Nolte
- Molecular Cell Biology Lab, Department of Molecular HematologySanquin Research and Landsteiner LaboratoryAmsterdamThe Netherlands
| | - Joachim Goedhart
- Section Molecular Cytology at Swammerdam Institute for Life Sciences, Leeuwenhoek Centre for Advanced MicroscopyUniversity of AmsterdamAmsterdamThe Netherlands
| | - Jaap D van Buul
- Molecular Cell Biology Lab, Department of Molecular HematologySanquin Research and Landsteiner LaboratoryAmsterdamThe Netherlands
- Section Molecular Cytology at Swammerdam Institute for Life Sciences, Leeuwenhoek Centre for Advanced MicroscopyUniversity of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
11
|
Duan X, Shi Y, Zhao S, Yao L, Sheng J, Liu D. Foxc1a regulates zebrafish vascular integrity and brain vascular development through targeting amotl2a and ctnnb1. Microvasc Res 2022; 143:104400. [PMID: 35724741 DOI: 10.1016/j.mvr.2022.104400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 11/20/2022]
Abstract
Accumulating evidences have pointed that foxc1a is essential for vascular development and integrity maintenance through regulating the expression of downstream genes and interacting with signaling pathways. However, the underling cellular and molecular mechanisms of foxc1a in regulating vascular development remain undetermined. Based on two different foxc1a mutant zebrafish lines (foxc1anju18 and foxc1anju19 which generated predicted truncated foxc1a proteins with 50aa and 315aa respectively), we found that around 30 % of foxc1anju18 zebrafish exhibited severe vascular developmental defects with obvious hemorrhage in hindbrain and trunk at embryonic stages. Confocal imaging analysis revealed that the formation of middle cerebral vein (MCeV), intra-cerebral central arteries (CtAs) and dorsal longitudinal vein (DLV) of brain vessels was significantly blocked in foxc1anju18enbryos. Injection of exogenous full length and foxc1anju19 truncated foxc1a mRNA both rescued the deficiency of foxc1anju18 embryos. Transcriptome analysis revealed 186 DEGs in foxc1anju18 zebrafish among which amotl2a and ctnnb1 expression were reduced and functionally associated with adherens junctions. Dual-Luciferase assays validated amotl2a and ctnnb1 were both directly transactivated by foxc1a. Rescue experiments demonstrated that amotl2a was mainly responsible for the vascular integrity caused by foxc1a mutation and also coordinated with ctnnb1 to regulate brain vascular development. Our data point to a novel clue that foxc1a regulates vascular integrity and brain vascular development through targeting amotl2a and ctnnb1.
Collapse
Affiliation(s)
- Xuchu Duan
- School of Life Science, Nantong Laboratory of Development and Diseases, Department of Endocrine, Affiliated Hospital, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Medical School, Nantong University, Nantong, China
| | - Yuanyuan Shi
- The Sixth Affiliated Hospital of Nantong University, Yancheng Third People's Hospital, Yancheng, China
| | - Shu Zhao
- School of Life Science, Nantong Laboratory of Development and Diseases, Department of Endocrine, Affiliated Hospital, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Medical School, Nantong University, Nantong, China
| | - Lili Yao
- School of Life Science, Nantong Laboratory of Development and Diseases, Department of Endocrine, Affiliated Hospital, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Medical School, Nantong University, Nantong, China
| | - Jiajing Sheng
- School of Life Science, Nantong Laboratory of Development and Diseases, Department of Endocrine, Affiliated Hospital, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Medical School, Nantong University, Nantong, China.
| | - Dong Liu
- School of Life Science, Nantong Laboratory of Development and Diseases, Department of Endocrine, Affiliated Hospital, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Medical School, Nantong University, Nantong, China.
| |
Collapse
|
12
|
Barinov E, Statinova E, Faber T, Gillyer D. Extracellular matrix remodeling as a risk factor for the progression of cerebrovascular pathology. Zh Nevrol Psikhiatr Im S S Korsakova 2022; 122:27-31. [DOI: 10.17116/jnevro202212203127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
13
|
Chan YH, Musa NF, Chong YJ, Saat SA, Hafiz F, Shaari K, Israf DA, Tham CL. 2,4,6-Trihydroxy-3-geranyl acetophenone suppresses vascular leakage and leukocyte infiltration in lipopolysaccharide-induced endotoxemic mice. PHARMACEUTICAL BIOLOGY 2021; 59:732-740. [PMID: 34155953 PMCID: PMC8221152 DOI: 10.1080/13880209.2021.1933083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
CONTEXT Lipopolysaccharide (LPS) exacerbates systemic inflammatory responses and causes excessive fluid leakage. 2,4,6-Trihydroxy-3-geranyl acetophenone (tHGA) has been revealed to protect against LPS-induced vascular inflammation and endothelial hyperpermeability in vitro. OBJECTIVE This study assesses the in vivo protective effects of tHGA against LPS-induced systemic inflammation and vascular permeability in endotoxemic mice. MATERIALS AND METHODS BALB/c mice were intraperitoneally pre-treated with tHGA for 1 h, followed by 6 h of LPS induction. Evans blue permeability assay and leukocyte transmigration assay were performed in mice (n = 6) pre-treated with 2, 20 and 100 mg/kg tHGA. The effects of tHGA (20, 40 and 80 mg/kg) on LPS-induced serum TNF-α secretion, lung dysfunction and lethality were assessed using ELISA (n = 6), histopathological analysis (n = 6) and survivability assay (n = 10), respectively. Saline and dexamethasone were used as the negative control and drug control, respectively. RESULTS tHGA significantly inhibited vascular permeability at 2, 20 and 100 mg/kg with percentage of inhibition of 48%, 85% and 86%, respectively, in comparison to the LPS control group (IC50=3.964 mg/kg). Leukocyte infiltration was suppressed at 20 and 100 mg/kg doses with percentage of inhibition of 73% and 81%, respectively (IC50=17.56 mg/kg). However, all tHGA doses (20, 40 and 80 mg/kg) failed to prevent endotoxemic mice from lethality because tHGA could not suppress TNF-α overproduction and organ dysfunction. DISCUSSION AND CONCLUSIONS tHGA may be developed as a potential therapeutic agent for diseases related to uncontrolled vascular leakage by combining with other anti-inflammatory agents.
Collapse
Affiliation(s)
- Yee Han Chan
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Nazmi Firdaus Musa
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Yi Joong Chong
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Siti Arfah Saat
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Faizul Hafiz
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Khozirah Shaari
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang, Malaysia
| | - Daud Ahmad Israf
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Chau Ling Tham
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
- CONTACT Chau Ling Tham Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400Serdang, Selangor, Malaysia
| |
Collapse
|
14
|
Burn GL, Foti A, Marsman G, Patel DF, Zychlinsky A. The Neutrophil. Immunity 2021; 54:1377-1391. [PMID: 34260886 DOI: 10.1016/j.immuni.2021.06.006] [Citation(s) in RCA: 348] [Impact Index Per Article: 87.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/30/2021] [Accepted: 06/08/2021] [Indexed: 12/17/2022]
Abstract
Neutrophils are immune cells with unusual biological features that furnish potent antimicrobial properties. These cells phagocytose and subsequently kill prokaryotic and eukaryotic organisms very efficiently. Importantly, it is not only their ability to attack microbes within a constrained intracellular compartment that endows neutrophils with antimicrobial function. They can unleash their effectors into the extracellular space, where, even post-mortem, their killing machinery can endure and remain functional. The antimicrobial activity of neutrophils must not be misconstrued as being microbe specific and should be viewed more generally as biotoxic. Outside of fighting infections, neutrophils can harness their noxious machinery in other contexts, like cancer. Inappropriate or dysregulated neutrophil activation damages the host and contributes to autoimmune and inflammatory disease. Here we review a number of topics related to neutrophil biology based on contemporary findings.
Collapse
Affiliation(s)
- Garth Lawrence Burn
- Department of Cellular Microbiology, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117 Berlin, Germany
| | - Alessandro Foti
- Department of Cellular Microbiology, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117 Berlin, Germany
| | - Gerben Marsman
- Department of Cellular Microbiology, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117 Berlin, Germany
| | - Dhiren Ferise Patel
- Department of Cellular Microbiology, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117 Berlin, Germany
| | - Arturo Zychlinsky
- Department of Cellular Microbiology, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
15
|
Ho-Tin-Noé B, Le Chapelain O, Camerer E. Platelets maintain vascular barrier function in the absence of injury or inflammation. J Thromb Haemost 2021; 19:1145-1148. [PMID: 33595179 DOI: 10.1111/jth.15240] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 01/05/2021] [Indexed: 11/27/2022]
Affiliation(s)
- Benoit Ho-Tin-Noé
- Laboratory of Vascular Translational Science, U1148 Institut National de la Santé et de la Recherche Médicale (INSERM, Université de Paris, Paris, France
| | - Ophélie Le Chapelain
- Laboratory of Vascular Translational Science, U1148 Institut National de la Santé et de la Recherche Médicale (INSERM, Université de Paris, Paris, France
| | - Eric Camerer
- Université de Paris, Paris Cardiovascular Research Centre, INSERM U970, Paris, France
| |
Collapse
|
16
|
Ziogas A, Sajib MS, Lim JH, Alves TC, Das A, Witt A, Hagag E, Androulaki N, Grossklaus S, Gerlach M, Noll T, Grinenko T, Mirtschink P, Hajishengallis G, Chavakis T, Mikelis CM, Sprott D. Glycolysis is integral to histamine-induced endothelial hyperpermeability. FASEB J 2021; 35:e21425. [PMID: 33566443 PMCID: PMC7909462 DOI: 10.1096/fj.202001634r] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 01/31/2023]
Abstract
Histamine-induced vascular leakage is a core process of allergic pathologies, including anaphylaxis. Here, we show that glycolysis is integral to histamine-induced endothelial barrier disruption and hyperpermeability. Histamine rapidly enhanced glycolysis in endothelial cells via a pathway that involved histamine receptor 1 and phospholipase C beta signaling. Consistently, partial inhibition of glycolysis with 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3PO) prevented histamine-induced hyperpermeability in human microvascular endothelial cells, by abolishing the histamine-induced actomyosin contraction, focal adherens junction formation, and endothelial barrier disruption. Pharmacologic blockade of glycolysis with 3PO in mice reduced histamine-induced vascular hyperpermeability, prevented vascular leakage in passive cutaneous anaphylaxis and protected from systemic anaphylaxis. In conclusion, we elucidated the role of glycolysis in histamine-induced disruption of endothelial barrier integrity. Our data thereby point to endothelial glycolysis as a novel therapeutic target for human pathologies related to excessive vascular leakage, such as systemic anaphylaxis.
Collapse
Affiliation(s)
- Athanasios Ziogas
- Institute of Clinical Chemistry and Laboratory Medicine, Faculty of Medicine and University Clinic Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Md Sanaullah Sajib
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Jong-Hyung Lim
- University of Pennsylvania, Penn Dental Medicine, Department of Basic and Translational Sciences, Laboratory of Innate Immunity and Inflammation, Philadelphia, PA, USA
| | - Tiago C. Alves
- Institute of Clinical Chemistry and Laboratory Medicine, Faculty of Medicine and University Clinic Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Anupam Das
- Department of Physiology, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Anke Witt
- Institute of Clinical Chemistry and Laboratory Medicine, Faculty of Medicine and University Clinic Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Eman Hagag
- Institute of Clinical Chemistry and Laboratory Medicine, Faculty of Medicine and University Clinic Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Nikolais Androulaki
- Institute of Clinical Chemistry and Laboratory Medicine, Faculty of Medicine and University Clinic Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Sylvia Grossklaus
- Institute of Clinical Chemistry and Laboratory Medicine, Faculty of Medicine and University Clinic Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Michael Gerlach
- Core Facility Cellular Imaging (CFCI), Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Thomas Noll
- Department of Physiology, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Tatyana Grinenko
- Institute of Clinical Chemistry and Laboratory Medicine, Faculty of Medicine and University Clinic Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Peter Mirtschink
- Institute of Clinical Chemistry and Laboratory Medicine, Faculty of Medicine and University Clinic Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - George Hajishengallis
- University of Pennsylvania, Penn Dental Medicine, Department of Basic and Translational Sciences, Laboratory of Innate Immunity and Inflammation, Philadelphia, PA, USA
| | - Triantafyllos Chavakis
- Institute of Clinical Chemistry and Laboratory Medicine, Faculty of Medicine and University Clinic Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Constantinos M. Mikelis
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - David Sprott
- Institute of Clinical Chemistry and Laboratory Medicine, Faculty of Medicine and University Clinic Carl Gustav Carus, TU Dresden, Dresden, Germany
| |
Collapse
|
17
|
Kalafati L, Chavakis T. Hematopoietic stem and progenitor cells take the route through the bone marrow endothelium. Haematologica 2020; 105:2700-2701. [PMID: 33256368 PMCID: PMC7716267 DOI: 10.3324/haematol.2020.262113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Lydia Kalafati
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden; National Center for Tumor Diseases, Partner Site Dresden, Dresden and German Cancer Research Center Heidelberg, Heidelberg, Germany
| | - Triantafyllos Chavakis
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden.
| |
Collapse
|
18
|
Shang Q, Chu Y, Li Y, Han Y, Yu D, Liu R, Zheng Z, Song L, Fang J, Li X, Cao L, Gong Z, Zhang L, Chen Y, Wang Y, Shao C, Shi Y. Adipose-derived mesenchymal stromal cells promote corneal wound healing by accelerating the clearance of neutrophils in cornea. Cell Death Dis 2020; 11:707. [PMID: 32848141 PMCID: PMC7450061 DOI: 10.1038/s41419-020-02914-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/03/2020] [Accepted: 05/05/2020] [Indexed: 02/07/2023]
Abstract
The dome-shaped cornea is a transparent, non-vascularized, and epithelialized highly organized tissue. Physical and chemical injuries may trigger corneal wound healing (CWH) response and result in neovascularization that impairs the visual function. CWH involves not only migration, proliferation, and differentiation of the cells in different layers of cornea, but also the mobilization of immune cells. We demonstrated here that human adipose-derived mesenchymal stromal cells (ADSCs) could effectively inhibit neovascularization during ethanol-induced injury in mouse cornea. Importantly, we found that while neutrophils are essential for CWH, excessive and prolonged neutrophil retention during the granulation stage contributes to neovascularization. ADSCs were found to promote the clearance of neutrophils in the cornea during the granulation stage, likely via increasing the reverse transendothelial cell migration of CXCR4high neutrophils from cornea to the lung. Our results demonstrate that ADSCs are effective in treating CWH-induced neovascularization and modulation of neutrophil clearance could be novel strategies for better vision recovery after injury.
Collapse
Affiliation(s)
- Qianwen Shang
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Medical College, Suzhou, Jiangsu, 215123, China
| | - Yunpeng Chu
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Medical College, Suzhou, Jiangsu, 215123, China
| | - Yanan Li
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Medical College, Suzhou, Jiangsu, 215123, China
| | - Yuyi Han
- Department of Ophthalmology, The Affiliated Hospital of Jiangnan University, 200 Huihe Road, Wuxi, 214062, China
| | - Daojiang Yu
- The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215123, China
| | - Rui Liu
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Medical College, Suzhou, Jiangsu, 215123, China
| | - Zhiyuan Zheng
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Medical College, Suzhou, Jiangsu, 215123, China
| | - Lin Song
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Medical College, Suzhou, Jiangsu, 215123, China
| | - Jiankai Fang
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Medical College, Suzhou, Jiangsu, 215123, China
| | - Xiaolei Li
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Medical College, Suzhou, Jiangsu, 215123, China
| | - Lijuan Cao
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Medical College, Suzhou, Jiangsu, 215123, China
| | - Zheng Gong
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Medical College, Suzhou, Jiangsu, 215123, China
| | - Liying Zhang
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Medical College, Suzhou, Jiangsu, 215123, China
| | - Yongjing Chen
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Medical College, Suzhou, Jiangsu, 215123, China
| | - Ying Wang
- Key Laboratory of Stem Cell Biology, Shanghai Jiao Tong University School of Medicine and Shanghai Institutes for Biological Science, Chinese Academy of Sciences, Shanghai, 200025, China
| | - Changshun Shao
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Medical College, Suzhou, Jiangsu, 215123, China.
| | - Yufang Shi
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Medical College, Suzhou, Jiangsu, 215123, China.
- Key Laboratory of Stem Cell Biology, Shanghai Jiao Tong University School of Medicine and Shanghai Institutes for Biological Science, Chinese Academy of Sciences, Shanghai, 200025, China.
| |
Collapse
|
19
|
Duong CN, Vestweber D. Mechanisms Ensuring Endothelial Junction Integrity Beyond VE-Cadherin. Front Physiol 2020; 11:519. [PMID: 32670077 PMCID: PMC7326147 DOI: 10.3389/fphys.2020.00519] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/27/2020] [Indexed: 12/30/2022] Open
Abstract
Endothelial junctions provide blood and lymph vessel integrity and are essential for the formation of a vascular system. They control the extravasation of solutes, leukocytes and metastatic cells from blood vessels and the uptake of fluid and leukocytes into the lymphatic vascular system. A multitude of adhesion molecules mediate and control the integrity and permeability of endothelial junctions. VE-cadherin is arguably the most important adhesion molecule for the formation of vascular structures, and the stability of their junctions. Interestingly, despite this prominence, its elimination from junctions in the adult organism has different consequences in the vasculature of different organs, both for blood and lymph vessels. In addition, even in tissues where the lack of VE-cadherin leads to strong plasma leaks from venules, the physical integrity of endothelial junctions is preserved. Obviously, other adhesion molecules can compensate for a loss of VE-cadherin and this review will discuss which other adhesive mechanisms contribute to the stability and regulation of endothelial junctions and cooperate with VE-cadherin in intact vessels. In addition to adhesion molecules, endothelial receptors will be discussed, which stimulate signaling processes that provide junction stability by modulating the actomyosin system, which reinforces tension of circumferential actin and dampens pulling forces of radial stress fibers. Finally, we will highlight most recent reports about the formation and control of the specialized button-like junctions of initial lymphatics, which represent the entry sites for fluid and cells into the lymphatic vascular system.
Collapse
Affiliation(s)
| | - Dietmar Vestweber
- Department of Vascular Cell Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| |
Collapse
|
20
|
Owen-Woods C, Joulia R, Barkaway A, Rolas L, Ma B, Nottebaum AF, Arkill KP, Stein M, Girbl T, Golding M, Bates DO, Vestweber D, Voisin MB, Nourshargh S. Local microvascular leakage promotes trafficking of activated neutrophils to remote organs. J Clin Invest 2020; 130:2301-2318. [PMID: 31971917 PMCID: PMC7190919 DOI: 10.1172/jci133661] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/14/2020] [Indexed: 01/11/2023] Open
Abstract
Increased microvascular permeability to plasma proteins and neutrophil emigration are hallmarks of innate immunity and key features of numerous inflammatory disorders. Although neutrophils can promote microvascular leakage, the impact of vascular permeability on neutrophil trafficking is unknown. Here, through the application of confocal intravital microscopy, we report that vascular permeability-enhancing stimuli caused a significant frequency of neutrophil reverse transendothelial cell migration (rTEM). Furthermore, mice with a selective defect in microvascular permeability enhancement (VEC-Y685F-ki) showed reduced incidence of neutrophil rTEM. Mechanistically, elevated vascular leakage promoted movement of interstitial chemokines into the bloodstream, a response that supported abluminal-to-luminal neutrophil TEM. Through development of an in vivo cell labeling method we provide direct evidence for the systemic dissemination of rTEM neutrophils, and showed them to exhibit an activated phenotype and be capable of trafficking to the lungs where their presence was aligned with regions of vascular injury. Collectively, we demonstrate that increased microvascular leakage reverses the localization of directional cues across venular walls, thus causing neutrophils engaged in diapedesis to reenter the systemic circulation. This cascade of events offers a mechanism to explain how local tissue inflammation and vascular permeability can induce downstream pathological effects in remote organs, most notably in the lungs.
Collapse
Affiliation(s)
- Charlotte Owen-Woods
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Régis Joulia
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Anna Barkaway
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Loïc Rolas
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Bin Ma
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Astrid Fee Nottebaum
- Department of Vascular Cell Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Kenton P. Arkill
- Division of Cancer and Stem Cells, School of Medicine, Queen’s Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Monja Stein
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Tamara Girbl
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Matthew Golding
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - David O. Bates
- Division of Cancer and Stem Cells, School of Medicine, Queen’s Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Dietmar Vestweber
- Department of Vascular Cell Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Mathieu-Benoit Voisin
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Sussan Nourshargh
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
21
|
P-Cresylsulfate, the Protein-Bound Uremic Toxin, Increased Endothelial Permeability Partly Mediated by Src-Induced Phosphorylation of VE-Cadherin. Toxins (Basel) 2020; 12:toxins12020062. [PMID: 31973024 PMCID: PMC7076797 DOI: 10.3390/toxins12020062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/12/2020] [Accepted: 01/19/2020] [Indexed: 12/23/2022] Open
Abstract
The goal of our study was to investigate the impact of p-cresylsulfate (PCS) on the barrier integrity in human umbilical vein endothelial cell (HUVEC) monolayers and the renal artery of chronic kidney disease (CKD) patients. We measured changes in the transendothelial electrical resistance (TEER) of HUVEC monolayers treated with PCS (0.1–0.2 mM) similar to serum levels of CKD patients. A PCS dose (0.2 mM) significantly decreased TEER over a 48-h period. Both PCS doses (0.1 and 0.2 mM) significantly decreased TEER over a 72-h period. Inter-endothelial gaps were observed in HUVECs following 48 h of PCS treatment by immunofluorescence microscopy. We also determined whether PCS induced the phosphorylation of VE-cadherin at tyrosine 658 (Y658) mediated by the phosphorylation of Src. Phosphorylated VE-cadherin (Y658) and phosphorylated Src levels were significantly higher when the cells were treated with 0.1 and 0.2 mM PCS, respectively, compared to the controls. The endothelial barrier dysfunction in the arterial intima in CKD patients was evaluated by endothelial leakage of immunoglobulin G (IgG). Increased endothelial leakage of IgG was related to the declining kidney function in CKD patients. Increased endothelial permeability induced by uremic toxins, including PCS, suggests that uremic toxins induce endothelial barrier dysfunction in CKD patients and Src-mediated phosphorylation of VE-cadherin is involved in increased endothelial permeability induced by PCS exposure.
Collapse
|
22
|
Majolée J, Kovačević I, Hordijk PL. Ubiquitin-based modifications in endothelial cell-cell contact and inflammation. J Cell Sci 2019; 132:132/17/jcs227728. [PMID: 31488505 DOI: 10.1242/jcs.227728] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Endothelial cell-cell contacts are essential for vascular integrity and physiology, protecting tissues and organs from edema and uncontrolled invasion of inflammatory cells. The vascular endothelial barrier is dynamic, but its integrity is preserved through a tight control at different levels. Inflammatory cytokines and G-protein-coupled receptor agonists, such as histamine, reduce endothelial integrity and increase vascular leakage. This is due to elevated myosin-based contractility, in conjunction with phosphorylation of proteins at cell-cell contacts. Conversely, reducing contractility stabilizes or even increases endothelial junctional integrity. Rho GTPases are key regulators of such cytoskeletal dynamics and endothelial cell-cell contacts. In addition to signaling-induced regulation, the expression of junctional proteins, such as occludin, claudins and vascular endothelial cadherin, also controls endothelial barrier function. There is increasing evidence that, in addition to protein phosphorylation, ubiquitylation (also known as ubiquitination) is an important and dynamic post-translational modification that regulates Rho GTPases, junctional proteins and, consequently, endothelial barrier function. In this Review, we discuss the emerging role of ubiquitylation and deubiquitylation events in endothelial integrity and inflammation. The picture that emerges is one of increasing complexity, which is both fascinating and promising given the clinical relevance of vascular integrity in the control of inflammation, and of tissue and organ damage.
Collapse
Affiliation(s)
- Jisca Majolée
- Department of Physiology, Amsterdam University Medical Centers, location VUmc, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Igor Kovačević
- Department of Physiology, Amsterdam University Medical Centers, location VUmc, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Peter L Hordijk
- Department of Physiology, Amsterdam University Medical Centers, location VUmc, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| |
Collapse
|
23
|
Sullivan DP, Dalal PJ, Jaulin F, Sacks DB, Kreitzer G, Muller WA. Endothelial IQGAP1 regulates leukocyte transmigration by directing the LBRC to the site of diapedesis. J Exp Med 2019; 216:2582-2601. [PMID: 31395618 PMCID: PMC6829592 DOI: 10.1084/jem.20190008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 06/10/2019] [Accepted: 07/03/2019] [Indexed: 01/09/2023] Open
Abstract
The function of endothelial cell IQGAP1 during diapedesis requires its actin-binding domain and IQ motifs to recruit the lateral border recycling compartment. Genetic ablation of endothelial cell IQGAP1 expression in vivo causes significant disruption of diapedesis in two models of inflammation. Transendothelial migration (TEM) of leukocytes across the endothelium is critical for inflammation. In the endothelium, TEM requires the coordination of membrane movements and cytoskeletal interactions, including, prominently, recruitment of the lateral border recycling compartment (LBRC). The scaffold protein IQGAP1 was recently identified in a screen for LBRC-interacting proteins. Knockdown of endothelial IQGAP1 disrupted the directed movement of the LBRC and substantially reduced leukocyte TEM. Expression of truncated IQGAP1 constructs demonstrated that the calponin homology domain is required for IQGAP1 localization to endothelial borders and that the IQ domain, on the same IQGAP1 polypeptide, is required for its function in TEM. This is the first reported function of IQGAP1 requiring two domains to be present on the same polypeptide. Additionally, we show for the first time that IQGAP1 in the endothelium is required for efficient TEM in vivo. These findings reveal a novel function for IQGAP1 and demonstrate that IQGAP1 in endothelial cells facilitates TEM by directing the LBRC to the site of TEM.
Collapse
Affiliation(s)
- David P Sullivan
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Prarthana J Dalal
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | | | - David B Sacks
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, MD
| | - Geri Kreitzer
- Department of Molecular, Cellular and Biomedical Sciences, City University of New York School of Medicine, The City College of New York, New York, NY
| | - William A Muller
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| |
Collapse
|
24
|
Livelli A, Vaida F, Ellis RJ, Ma Q, Ferrara M, Clifford DB, Collier AC, Gelman BB, Marra CM, McArthur JC, McCutchan JA, Morgello S, Sacktor N, Simpson DM, Grant I, Letendre SL. Correlates of HIV RNA concentrations in cerebrospinal fluid during antiretroviral therapy: a longitudinal cohort study. Lancet HIV 2019; 6:e456-e462. [PMID: 31208949 PMCID: PMC12077812 DOI: 10.1016/s2352-3018(19)30143-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/26/2018] [Accepted: 04/03/2019] [Indexed: 01/01/2023]
Abstract
BACKGROUND Few large projects have evaluated the factors that influence the HIV RNA concentrations (viral load) in cerebrospinal fluid (CSF) during antiretroviral therapy (ART) over time. We aimed to determine the correlates of HIV RNA in CSF in a large cohort. METHODS We analysed longitudinal data from adults living with HIV in the US CHARTER cohort. Participants in the CHARTER study were recruited from six US academic medical centres-in Baltimore (MD), Galveston (TX), New York (NY), St Louis (MO), San Diego (C92A), and Seattle (WA). Participants in this study had been assessed at least three times between Sept 4, 2003, and Sept 14, 2010, and were taking ART and underwent venous and lumbar puncture with measurement of HIV RNA concentration at all assessments. The lower limit of quantification of the HIV RNA assays was 50 copies per mL. Data were analysed with longitudinal mixed effects logistic regression to identify correlates of HIV RNA concentration (as a binary [detectable or not] and as a continuous variable) in CSF over time. We tested demographic characteristics, plasma HIV RNA, nadir and current CD4 cell count in blood, current CD8 cell count in blood, estimated duration of HIV infection, AIDS diagnosis, duration of ART, adherence to ART, ART characteristics, and CSF characteristics as potential correlates. FINDINGS At the time of analysis, 2207 assessments from 401 participants met the criteria for inclusion in this study. Mean duration of observation was 33·7 months (range 12-84). HIV RNA concentrations in 710 (32·2%) plasma specimens and in 255 (11·6%) CSF specimens were greater than the lower limit of quantification. The best multivariate model of HIV RNA concentration in CSF greater than the lower limit of quantification over time included increased plasma HIV RNA concentration (odds ratio 18·0 per 1 log10 copy per mL, 95% CI 11·3 to 28·8; p<0·0001), increased CSF leucocyte count (2·01 per 5 cells per μL, 1·61 to 2·39; p<0·0001), decreased CD4 cell count (0·53 per 5 square-root cells per μL, 0·35 to 0·79; p=0·0025), decreased CNS penetration-effectiveness value (0·71 per unit, 0·56 to 0·92; p=0·0078), increased CD8 cell count (1·51 per 5 square-root cells, 1·11 to 2·06; p=0·0089), and protease inhibitor use (3·26, 1·04 to 10·23; p=0·039; model R2=0·22, p<0·0001). Analyses of continuous HIV RNA concentration in CSF that accounted for censoring below the lower limit of quantification had similar findings, although increased HIV RNA concentrations in CSF were also associated with black ethnicity (change in log10 HIV RNA concentration in CSF 0·205, 0·0367 to 0·3733; p=0·017), increased total protein in CSF (0·0025, -0·0002 to 0·0052; p=0·069), and the presence of addictive-drug metabolites in urine (0·103, -0·013 to 0·219; p=0·081). INTERPRETATION The identified correlates of HIV RNA concentration in CSF during ART could strengthen clinical prediction of risk for failure to achieve or maintain HIV RNA suppression in CSF. Because most participants in this analysis were ART-experienced and were taking a three-drug regimen that did not include an integrase inhibitor, future research should focus on participants who are taking their first ART regimens or regimens that include integrase inhibitors or two drugs. FUNDING The work was supported by the National Institute of Mental Health and the National Institute of Neurological Disorders and Stroke.
Collapse
Affiliation(s)
- Alessandro Livelli
- Department of Psychology, Università degli Studi di Torino, Torino, Italy
| | - Florin Vaida
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Ronald J Ellis
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA; Department of Neurosciences, University of California San Diego, San Diego, CA, USA
| | - Qing Ma
- Department of Pharmacy Practice, University at Buffalo, Buffalo, NY, USA
| | - Micol Ferrara
- Department of Medical Sciences, Università degli Studi di Torino, Torino, Italy
| | - David B Clifford
- Department of Neurology, Washington University, St Louis, MO, USA
| | - Ann C Collier
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Benjamin B Gelman
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | | | - Justin C McArthur
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - J Allen McCutchan
- Department of Medicine, University of California San Diego, San Diego, CA, USA
| | - Susan Morgello
- Department of Neurology, Mount Sinai School of Medicine, New York, NY, USA; Department of Pathology, and Department of Neuroscience, Mount Sinai School of Medicine, New York, NY, USA
| | - Ned Sacktor
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - David M Simpson
- Department of Neurology, Mount Sinai School of Medicine, New York, NY, USA
| | - Igor Grant
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Scott L Letendre
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA; Department of Medicine, University of California San Diego, San Diego, CA, USA.
| |
Collapse
|
25
|
Hägerling R, Hoppe E, Dierkes C, Stehling M, Makinen T, Butz S, Vestweber D, Kiefer F. Distinct roles of VE-cadherin for development and maintenance of specific lymph vessel beds. EMBO J 2018; 37:embj.201798271. [PMID: 30297530 DOI: 10.15252/embj.201798271] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 08/19/2018] [Accepted: 08/30/2018] [Indexed: 12/13/2022] Open
Abstract
Endothelial cells line blood and lymphatic vessels and form intercellular junctions, which preserve vessel structure and integrity. The vascular endothelial cadherin, VE-cadherin, mediates endothelial adhesion and is indispensible for blood vessel development and permeability regulation. However, its requirement for lymphatic vessels has not been addressed. During development, VE-cadherin deletion in lymphatic endothelial cells resulted in abortive lymphangiogenesis, edema, and prenatal death. Unexpectedly, inducible postnatal or adult deletion elicited vessel bed-specific responses. Mature dermal lymph vessels resisted VE-cadherin loss and maintained button junctions, which was associated with an upregulation of junctional molecules. Very different, mesenteric lymphatic collectors deteriorated and formed a strongly hyperplastic layer of lymphatic endothelial cells on the mesothelium. This massive hyperproliferation may have been favored by high mesenteric VEGF-C expression and was associated with VEGFR-3 phosphorylation and upregulation of the transcriptional activator TAZ Finally, intestinal lacteals fragmented into cysts or became highly distended possibly as a consequence of the mesenteric defects. Taken together, we demonstrate here the importance of VE-cadherin for lymphatic vessel development and maintenance, which is however remarkably vessel bed-specific.
Collapse
Affiliation(s)
- René Hägerling
- Mammalian Cell Signaling Laboratory, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Esther Hoppe
- Mammalian Cell Signaling Laboratory, Max Planck Institute for Molecular Biomedicine, Münster, Germany.,European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany
| | - Cathrin Dierkes
- Mammalian Cell Signaling Laboratory, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Martin Stehling
- Flow Cytometry Unit, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Taija Makinen
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Stefan Butz
- Department Vascular Cell Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Dietmar Vestweber
- Department Vascular Cell Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany.,DFG Cluster of Excellence 1003 "CiM - Cells in Motion", Münster, Germany
| | - Friedemann Kiefer
- Mammalian Cell Signaling Laboratory, Max Planck Institute for Molecular Biomedicine, Münster, Germany .,European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany.,DFG Cluster of Excellence 1003 "CiM - Cells in Motion", Münster, Germany
| |
Collapse
|
26
|
Lampugnani MG, Dejana E, Giampietro C. Vascular Endothelial (VE)-Cadherin, Endothelial Adherens Junctions, and Vascular Disease. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a029322. [PMID: 28851747 DOI: 10.1101/cshperspect.a029322] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Endothelial cell-cell adherens junctions (AJs) supervise fundamental vascular functions, such as the control of permeability and transmigration of circulating leukocytes, and the maintenance of existing vessels and formation of new ones. These processes are often dysregulated in pathologies. However, the evidence that links dysfunction of endothelial AJs to human pathologies is mostly correlative. In this review, we present an update of the molecular organization of AJ complexes in endothelial cells (ECs) that is mainly based on observations from experimental models. Furthermore, we report in detail on a human pathology, cerebral cavernous malformation (CCM), which is initiated by loss-of-function mutations in the genes that encode the three cytoplasmic components of AJs (CCM1, CCM2, and CCM3). At present, these represent a unique example of mutations in components of endothelial AJs that cause human disease. We describe also how studies into the defects of AJs in CCM are shedding light on the crucial regulatory mechanisms and signaling activities of these endothelial structures. Although these observations are specific for CCM, they support the concept that dysfunction of endothelial AJs can directly contribute to human pathologies.
Collapse
Affiliation(s)
- Maria Grazia Lampugnani
- Fondazione Italiana per la Ricerca sul Cancro (FIRC) Institute of Molecular Oncology, 20139 Milan, Italy.,Mario Negri Institute for Pharmacological Research, 20156 Milan, Italy
| | - Elisabetta Dejana
- Fondazione Italiana per la Ricerca sul Cancro (FIRC) Institute of Molecular Oncology, 20139 Milan, Italy.,Department of Immunology, Genetics and Pathology, Uppsala University, 75185 Uppsala, Sweden
| | - Costanza Giampietro
- Fondazione Italiana per la Ricerca sul Cancro (FIRC) Institute of Molecular Oncology, 20139 Milan, Italy
| |
Collapse
|
27
|
Zhang J, Huang J, Qi T, Huang Y, Lu Y, Zhan T, Gong H, Zhu Z, Shi Y, Zhou J, Yu L, Zhang X, Cheng H, Ke Y. SHP2 protects endothelial cell barrier through suppressing VE-cadherin internalization regulated by MET-ARF1. FASEB J 2018; 33:1124-1137. [PMID: 30102570 DOI: 10.1096/fj.201800284r] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Vascular endothelial (VE)-cadherin junctional localization is known to play a central role in vascular development, endothelial barrier integrity, and homeostasis. The sarcoma homology domain containing protein tyrosine phosphatase (SHP)2 has been shown to be involved in regulating endothelial barrier function; however, the mechanisms remain largely unknown. In this work SHP2 knockdown in an HUVEC monolayer increased VE-cadherin internalization and endothelial barrier permeability. Loss of SHP2 specifically augmented the GTPase activity of ADP-ribosylation factor (ARF)-1. ARF1 knockdown or inhibition of its guanine nucleotide exchange factors (GEFs) markedly attenuated VE-cadherin internalization and barrier hyperpermeability induced by SHP2 deficiency. SHP2 knockdown increased the total and phosphorylated levels of MET, whose activity was necessary for ARF1 activation and VE-cadherin internalization. Furthermore, constitutive endothelium-specific deletion of Shp2 in mice led to disrupted endothelial cell junctions, massive hemorrhage, and lethality in embryos. Induced and endothelium-specific deletion of Shp2 in adult mice resulted in lung hyperpermeability. Inhibitors for ARF1-GEF or MET used in pregnant mice prevented the vascular leakage in endothelial Shp2-deleted embryos. Together, our findings define a novel role of SHP2 in stabilizing junctional VE-cadherin in the resting endothelial barrier through suppressing MET and ARF1 activation.-Zhang, J., Huang, J., Qi, T., Huang, Y., Lu, Y., Zhan, T., Gong, H., Zhu, Z., Shi, Y., Zhou, J., Yu, L., Zhang, X., Cheng, H., Ke, Y. SHP2 protects endothelial cell barrier through suppressing VE-cadherin internalization regulated by MET-ARF1.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiaqi Huang
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Tongyun Qi
- Department of Gynecology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yizhou Huang
- Department of Gynecology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuting Lu
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Tianwei Zhan
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Hui Gong
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhengyi Zhu
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Yueli Shi
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianhong Zhou
- Department of Gynecology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Luyang Yu
- Institute of Genetics, College of Life Sciences, Zhejiang University, Hangzhou, China; and
| | - Xue Zhang
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongqiang Cheng
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuehai Ke
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| |
Collapse
|
28
|
Szymborska A, Gerhardt H. Hold Me, but Not Too Tight-Endothelial Cell-Cell Junctions in Angiogenesis. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a029223. [PMID: 28851748 DOI: 10.1101/cshperspect.a029223] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Endothelial cell-cell junctions must perform seemingly incompatible tasks during vascular development-providing stable connections that prevent leakage, while allowing dynamic cellular rearrangements during sprouting, anastomosis, lumen formation, and functional remodeling of the vascular network. This review aims to highlight recent insights into the molecular mechanisms governing endothelial cell-cell adhesion in the context of vascular development.
Collapse
Affiliation(s)
- Anna Szymborska
- Integrative Vascular Biology Laboratory, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin
| | - Holger Gerhardt
- Integrative Vascular Biology Laboratory, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany.,Vascular Patterning Laboratory, Center for Cancer Biology, VIB, Department of Oncology, KU Leuven, 3000 Leuven, Belgium.,DZHK (German Centre for Cardiovascular Research), partner site Berlin.,Berlin Institute of Health (BIH), 10178 Berlin, Germany
| |
Collapse
|
29
|
Dong W, He B, Qian H, Liu Q, Wang D, Li J, Wei Z, Wang Z, Xu Z, Wu G, Qian G, Wang G. RAB26-dependent autophagy protects adherens junctional integrity in acute lung injury. Autophagy 2018; 14:1677-1692. [PMID: 29965781 DOI: 10.1080/15548627.2018.1476811] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Microvascular barrier dysfunction is the central pathophysiological feature of acute lung injury (ALI). RAB26 is a newly identified small GTPase involved in the regulation of endothelial cell (EC) permeability. However, the mechanism behind this protection has not been clearly elucidated. Here we found that RAB26 promoted the integrity of adherens junctions (AJs) in a macroautophagy/autophagy-dependent manner in ALI. RAB26 is frequently downregulated in mouse lungs after LPS treatment. Mice lacking Rab26 exhibited phosphorylated SRC expression and increased CDH5/VE-cadherin phosphorylation, leading to AJ destruction. rab26-null mice showed further aggravation of the effects of endotoxin insult on lung vascular permeability and water content. Depletion of RAB26 resulted in upregulation of phosphorylated SRC, enhancement of CDH5 phosphorylation, and aggravation of CDH5 internalization, thereby weakening AJ integrity and endothelial barrier function in human pulmonary microvascular endothelial cells (HPMECs). RAB26 overexpression caused active interaction between SRC and the autophagy marker LC3-II and promoted degradation of phosphorylated SRC. Furthermore, RAB26 was involved in a direct and activation-dependent manner in autophagy induction through interaction with ATG16L1 in its GTP-bound form. These findings demonstrate that RAB26 exerts a protective effect on endothelial cell (EC) permeability, which is in part dependent on autophagic targeting of active SRC, and the resultant CDH5 dephosphorylation maintains AJ stabilization. Thus, RAB26-mediated autophagic targeting of phosphorylated SRC can maintain barrier integrity when flux through the RAB26-SRC pathway is protected. These findings suggest that activation of RAB26-SRC signaling provides a new therapeutic opportunity to prevent vascular leakage in ALI. ABBREVIATIONS AJs: adherens junctions; ALI: acute lung injury; ARDS: acute respiratory distress syndrome; ATG5: autophagy related 5; ATG12: autophagy related 12; ATG 16L1: autophagy related 16 like; 1 BALF: bronchoalveolar lavage fluidCQ: chloroquine; Ctrl: control; EC: endothelial cell; GFP: green fluorescent protein; HA-tagged; RAB26WT: HA-tagged wild-type; RAB26 HA-tagged; RAB26QL: HA-tagged; RAB26Q123LHA-tagged; RAB26NI: HA-tagged; RAB26N177IHPMECs: human pulmonary microvascular endothelial cells; H&E: hematoxylin & eosin; IgG: immunoglobulin; GIF: immunofluorescence; IP: immunoprecipitationi;. p.: intraperitoneal; LPS: lipopolysaccharide; PBS: phosphate-buffered salinesi; RNA: small interfering;RNASQSTM1/p62, sequestosome; 1TBS: Tris-buffered saline; VEGF: vascular endothelial growth factor; WB: western blot; WT: wild-type.
Collapse
Affiliation(s)
- Weijie Dong
- a Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University , Chongqing , China
| | - Binfeng He
- a Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University , Chongqing , China
| | - Hang Qian
- a Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University , Chongqing , China
| | - Qian Liu
- a Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University , Chongqing , China
| | - Dong Wang
- a Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University , Chongqing , China
| | - Jin Li
- a Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University , Chongqing , China
| | - Zhenghua Wei
- a Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University , Chongqing , China
| | - Zi Wang
- a Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University , Chongqing , China
| | - Zhi Xu
- a Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University , Chongqing , China
| | - Guangyu Wu
- b Department of Pharmacology and Toxicology , Georgia Regents University , Augusta , Georgia , USA
| | - Guisheng Qian
- a Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University , Chongqing , China
| | - Guansong Wang
- a Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University , Chongqing , China
| |
Collapse
|
30
|
Honkura N, Richards M, Laviña B, Sáinz-Jaspeado M, Betsholtz C, Claesson-Welsh L. Intravital imaging-based analysis tools for vessel identification and assessment of concurrent dynamic vascular events. Nat Commun 2018; 9:2746. [PMID: 30013228 PMCID: PMC6048163 DOI: 10.1038/s41467-018-04929-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 05/16/2018] [Indexed: 12/21/2022] Open
Abstract
The vasculature undergoes changes in diameter, permeability and blood flow in response to specific stimuli. The dynamics and interdependence of these responses in different vessels are largely unknown. Here we report a non-invasive technique to study dynamic events in different vessel categories by multi-photon microscopy and an image analysis tool, RVDM (relative velocity, direction, and morphology) allowing the identification of vessel categories by their red blood cell (RBC) parameters. Moreover, Claudin5 promoter-driven green fluorescent protein (GFP) expression is used to distinguish capillary subtypes. Intradermal injection of vascular endothelial growth factor A (VEGFA) is shown to induce leakage of circulating dextran, with vessel-type-dependent kinetics, from capillaries and venules devoid of GFP expression. VEGFA-induced leakage in capillaries coincides with vessel dilation and reduced flow velocity. Thus, intravital imaging of non-invasive stimulation combined with RVDM analysis allows for recording and quantification of very rapid events in the vasculature. Different stimuli can induce dynamic changes in blood flow velocity, vessel diameter and permeability. Here the authors develop a multi-photon microscopy-based image analysis tool allowing the identification of vessels and the assessment of rapid changes in large vascular networks.
Collapse
Affiliation(s)
- Naoki Honkura
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Science for Life Laboratory, Uppsala University, Dag Hammarskjöldsv. 20, 751 85, Uppsala, Sweden.
| | - Mark Richards
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Science for Life Laboratory, Uppsala University, Dag Hammarskjöldsv. 20, 751 85, Uppsala, Sweden
| | - Bàrbara Laviña
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Science for Life Laboratory, Uppsala University, Dag Hammarskjöldsv. 20, 751 85, Uppsala, Sweden
| | - Miguel Sáinz-Jaspeado
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Science for Life Laboratory, Uppsala University, Dag Hammarskjöldsv. 20, 751 85, Uppsala, Sweden
| | - Christer Betsholtz
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Science for Life Laboratory, Uppsala University, Dag Hammarskjöldsv. 20, 751 85, Uppsala, Sweden
| | - Lena Claesson-Welsh
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Science for Life Laboratory, Uppsala University, Dag Hammarskjöldsv. 20, 751 85, Uppsala, Sweden
| |
Collapse
|
31
|
Chen Z, Tang M, Huang D, Jiang W, Li M, Ji H, Park J, Xu B, Atchison LJ, Truskey GA, Leong KW. Real-time observation of leukocyte-endothelium interactions in tissue-engineered blood vessel. LAB ON A CHIP 2018; 18:2047-2054. [PMID: 29927449 PMCID: PMC6055475 DOI: 10.1039/c8lc00202a] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Human cell-based 3D tissue constructs play an increasing role in disease modeling and drug screening. Inflammation, atherosclerosis, and many autoimmune disorders involve the interactions between immune cells and blood vessels. However, it has been difficult to image and model these interactions under realistic conditions. In this study, we fabricated a perfusion and imaging chamber to allow the real-time visualization of leukocyte perfusion, adhesion, and migration inside a tissue-engineered blood vessel (TEBV). We monitored the elevated monocyte adhesion to the TEBV wall and transendothelial migration (TEM) as the TEBV endothelium was activated by the inflammatory cytokine TNF-α. We demonstrated that treatment with anti-TNF-α or an NF-kB signaling pathway inhibitor would attenuate the endothelium activation and reduce the number of leukocyte adhesion (>74%) and TEM events (>87%) close to the control. As the first demonstration of real-time imaging of dynamic cellular events within a TEBV, this work paves the way for drug screening and disease modeling in TEBV-associated microphysiological systems.
Collapse
Affiliation(s)
- Z Chen
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Deubiquitinase function of A20 maintains and repairs endothelial barrier after lung vascular injury. Cell Death Discov 2018; 4:60. [PMID: 29796309 PMCID: PMC5955943 DOI: 10.1038/s41420-018-0056-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 04/02/2018] [Indexed: 01/16/2023] Open
Abstract
Vascular endothelial cadherin (VE-cad) expression at endothelial adherens junctions (AJs) regulates vascular homeostasis. Here we show that endothelial A20 is required for VE-cad expression at AJs to maintain and repair the injured endothelial barrier. In endothelial cell (EC)-restricted Tnfaip3 (A20) knockout (A20∆EC ) mice, LPS challenge caused uncontrolled lung vascular leak and persistent sequestration of polymorphonuclear neutrophil (PMNs). Importantly, A20∆EC mice exhibited drastically reduced VE-cad expression in lungs compared with wild-type counterparts. Endothelial expression of wild-type A20 but not the deubiquitinase-inactive A20 mutant (A20C103A) prevented VE-cad ubiquitination, restored VE-cad expression, and suppressed lung vascular leak in A20∆EC mice. Interestingly, IRAK-M-mediated nuclear factor-κB (NF-κB) signaling downstream of TLR4 was required for A20 expression in ECs. interleukin-1 receptor-associated kinase M (IRAK-M) knockdown suppressed basal and LPS-induced A20 expression in ECs. Further, in vivo silencing of IRAK-M in mouse lung vascular ECs through the CRISPR-Cas9 system prevented expression of A20 and VE-cad while augmenting lung vascular leak. These results suggest that targeting of endothelial A20 is a potential therapeutic strategy to restore endothelial barrier integrity in the setting of acute lung injury.
Collapse
|
33
|
Abstract
INTRODUCTION Lipopolysaccharide (LPS) is known to induce vascular derangements. The pathophysiology involved therein is unknown, but matrix metalloproteinases (MMPs) may be an important mediator. We hypothesized that in vitro LPS provokes vascular permeability, damages endothelial structural proteins, and increases MMP activity; that in vivo LPS increases permeability and fluid requirements; and that the MMP inhibitor doxycycline mitigates such changes. METHODS Rat lung microvascular endothelial cells were divided into four groups: control, LPS, LPS plus doxycycline, and doxycycline. Permeability, structural proteins β-catenin and Filamentous-actin, and MMP-9 activity were examined. Sprauge Dawley rats were divided into sham, IV LPS, and IV LPS plus IV doxycycline groups. Mesenteric postcapillary venules were observed. Blood pressure was measured as animals were resuscitated and fluid requirements were compared. Statistical analysis was conducted using Student's t-test and ANOVA. RESULTS In vitro LPS increased permeability, damaged adherens junctions, induced actin stress fiber formation, and increased MMP-9 enzyme activity. In vivo, IV LPS administration induced vascular permeability. During resuscitation, significantly more fluid was necessary to maintain normotension in the IV LPS group. Doxycycline mitigated all derangements observed. CONCLUSIONS We conclude that LPS increases permeability, damages structural proteins, and increases MMP-9 activity in endothelial cells. Additionally, endotoxemia induces hyperpermeability and increases the amount of IV fluid required to maintain normotension in vivo. Doxycycline mitigates such changes both in vitro and in vivo. Our findings illuminate the possible role of matrix metalloproteinases in the pathophysiology of lipopolysaccharide-induced microvascular hyperpermeability and pave the way for better understanding and treatment of this process.
Collapse
|
34
|
Rho SS, Ando K, Fukuhara S. Dynamic Regulation of Vascular Permeability by Vascular Endothelial Cadherin-Mediated Endothelial Cell-Cell Junctions. J NIPPON MED SCH 2018; 84:148-159. [PMID: 28978894 DOI: 10.1272/jnms.84.148] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Endothelial cells lining blood vessels regulate vascular barrier function, which controls the passage of plasma proteins and circulating cells across the endothelium. In most normal adult tissues, endothelial cells preserve basal vascular permeability at a low level, while they increase permeability in response to inflammation. Therefore, vascular permeability is tightly controlled by a number of extracellular stimuli and mediators to maintain tissue homeostasis. Accordingly, impaired regulation of endothelial permeability causes various diseases, including chronic inflammation, asthma, edema, sepsis, acute respiratory distress syndrome, anaphylaxis, tumor angiogenesis, and diabetic retinopathy. Vascular endothelial (VE)-cadherin, a member of the classical cadherin superfamily, is a component of cell-to-cell adherens junctions in endothelial cells and plays an important role in regulating vascular permeability. VE-cadherin mediates intercellular adhesion through trans-interactions formed by its extracellular domain, while its cytoplasmic domain is anchored to the actin cytoskeleton via α- and β-catenins, leading to stabilization of VE-cadherin at cell-cell junctions. VE-cadherin-mediated cell adhesions are dynamically, but tightly, controlled by mechanisms that involve protein phosphorylation and reorganization of the actomyosin cytoskeleton. Phosphorylation of VE-cadherin, and its associated-catenins, results in dissociation of the VE-cadherin/catenin complex and internalization of VE-cadherin, leading to increased vascular permeability. Furthermore, reorganization of the actomyosin cytoskeleton by Rap1, a small GTPase that belongs to the Ras subfamily, and Rho family small GTPases, regulates VE-cadherin-mediated cell adhesions to control vascular permeability. In this review, we describe recent progress in understanding the signaling mechanisms that enable dynamic regulation of VE-cadherin adhesions and vascular permeability. In addition, we discuss the possibility of novel therapeutic approaches targeting the signaling pathways controlling VE-cadherin-mediated cell adhesion in diseases associated with vascular hyper-permeability.
Collapse
Affiliation(s)
- Seung-Sik Rho
- Department of Molecular Pathophysiology, Institute of Advanced Medical Sciences, Nippon Medical School Musashi Kosugi Hospital
| | - Koji Ando
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute
| | - Shigetomo Fukuhara
- Department of Molecular Pathophysiology, Institute of Advanced Medical Sciences, Nippon Medical School Musashi Kosugi Hospital
| |
Collapse
|
35
|
Schimmel L, de Ligt A, Tol S, de Waard V, van Buul JD. Endothelial RhoB and RhoC are dispensable for leukocyte diapedesis and for maintaining vascular integrity during diapedesis. Small GTPases 2018; 11:225-232. [PMID: 28960175 DOI: 10.1080/21541248.2017.1377815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Active remodeling of the actin cytoskeleton in endothelial cells is necessary for allowing leukocytes to cross the barrier during the process of transendothelial migration (TEM). Involvement of RhoGTPases to regulate actin organization is inevitable, and we recently reported on the local function of RhoA in limiting vascular leakage during leukocyte TEM. As a follow-up we investigated here the possible involvement of two other closely-related GTPases; RhoB and RhoC, in regulating leukocyte TEM and vascular barrier maintenance. Physiological flow experiments showed no substantial involvement of either endothelial RhoB or RhoC in neutrophil adhesion and transmigration efficiency. Besides neutrophil TEM, we did not observe a role for endothelial RhoB or RhoC in limiting vascular leakage in both inflammatory conditions and during TEM. In conclusion, endothelial RhoB and RhoC are both dispensable for regulating leukocyte diapedesis and for maintaining vascular barrier function under inflammatory conditions and during leukocyte diapedesis.
Collapse
Affiliation(s)
- Lilian Schimmel
- Department of Plasma Proteins, Molecular Cell Biology Lab, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Aafke de Ligt
- Department of Plasma Proteins, Molecular Cell Biology Lab, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Simon Tol
- Department of Central Facility, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Vivian de Waard
- Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands
| | - Jaap D van Buul
- Department of Plasma Proteins, Molecular Cell Biology Lab, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
36
|
Multhaup A, Huppertz B, Göhner C, Böhringer M, Mai M, Markert U, Schleußner E, Groten T. N-cadherin knockdown leads to disruption of trophoblastic and endothelial cell interaction in a 3D cell culture model - New insights in trophoblast invasion failure. Cell Adh Migr 2017; 12:259-270. [PMID: 29231798 DOI: 10.1080/19336918.2017.1386822] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
INTRODUCTION Trophoblast homing to maternal spiral arteries is mandatory for successful placentation. Cell-cell adhesion molecules regulate this process and adhesion molecule expression is altered in impaired placentation. We hypothesize that, similar to immune cell recruitment, trophoblast cell adherence and rolling are primarily mediated by adhesion molecules like, cadherins, immunoglobulins, selectins and their partnering ligands. Here, the interdependence of adhesion molecule expression in trophoblastic cell lines of diverse origin was investigated in relation to their interaction with endothelial cell networks on Matrigel® co-cultures and the effect of specific adhesion molecule knockdown analyzed. METHODS Trophoblastic cells were labeled in red and co-cultured with green HUVEC networks on Matrigel®. Association was quantified after collection of fluorescence microscopy pictures using Wimasis® internet platform and software. Expression of adhesion molecules was analyzed by PCR and Western blot, immuno-fluorescence and flow cytometry. The impact of adhesion molecules on trophoblast-endothelial-cell interaction was investigated using siRNA technique. RESULTS N-cadherin and CD162 were specifically expressed in the trophoblast cell line HTR-8/SVneo, which closely adhere to and actively migrate toward HUVEC networks on Matrigel®. Suppression of N-cadherin led to a significant alteration in trophoblast-endothelial cell interaction. Expression of VE-cadherin in closely interacting trophoblast cells was not confirmed in vitro. DISCUSSION We identified N-cadherin to mediate specific interaction between HUVEC and the migrating trophoblast cells HTR-8/SVneo in a Matrigel® co-culture model. VE-cadherin contribution could not be confirmed in vitro. Our results support the hypothesis that impaired N-cadherin but not VE-cadherin expression is involved in trophoblast recruitment to the maternal endothelium.
Collapse
Affiliation(s)
- A Multhaup
- a Department of Obstetrics , University Hospital Jena, Friedrich-Schiller-University , Jena , Germany
| | - B Huppertz
- b Institute of Cell Biology, Histology and Embryology, Medical University Graz , Graz, Austria
| | - C Göhner
- a Department of Obstetrics , University Hospital Jena, Friedrich-Schiller-University , Jena , Germany
| | - M Böhringer
- c Septomics Research Centre, Friedrich Schiller University and Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute , Jena , Germany
| | - M Mai
- a Department of Obstetrics , University Hospital Jena, Friedrich-Schiller-University , Jena , Germany
| | - U Markert
- a Department of Obstetrics , University Hospital Jena, Friedrich-Schiller-University , Jena , Germany
| | - E Schleußner
- a Department of Obstetrics , University Hospital Jena, Friedrich-Schiller-University , Jena , Germany
| | - T Groten
- a Department of Obstetrics , University Hospital Jena, Friedrich-Schiller-University , Jena , Germany
| |
Collapse
|
37
|
Schaefer A, van Duijn TJ, Majolee J, Burridge K, Hordijk PL. Endothelial CD2AP Binds the Receptor ICAM-1 To Control Mechanosignaling, Leukocyte Adhesion, and the Route of Leukocyte Diapedesis In Vitro. THE JOURNAL OF IMMUNOLOGY 2017; 198:4823-4836. [PMID: 28484055 DOI: 10.4049/jimmunol.1601987] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 04/12/2017] [Indexed: 12/16/2022]
Abstract
Inflammation is driven by excessive transmigration (diapedesis) of leukocytes from the blood to the tissue across the endothelial cell monolayer that lines blood vessels. Leukocyte adhesion, crawling, and transmigration are regulated by clustering of the endothelial mechanosensitive receptor intercellular adhesion molecule-1 (ICAM-1). Whereas several proteins are known to promote ICAM-1 function, the molecular mechanisms that limit ICAM-1-mediated adhesion to prevent excessive leukocyte transmigration remain unknown. We identify the endothelial actin-binding protein CD2-associated protein (CD2AP) as a novel interaction partner of ICAM-1. Loss of CD2AP stimulates the dynamics of ICAM-1 clustering, which facilitates the formation of ICAM-1 complexes on the endothelial cell surface. Consequently, neutrophil adhesion is increased, but crawling is decreased. In turn, this promotes the neutrophil preference for the transcellular over the paracellular transmigration route. Mechanistically, CD2AP is required for mechanosensitive ICAM-1 downstream signaling toward activation of the PI3K, and recruitment of F-actin and of the actin-branching protein cortactin. Moreover, CD2AP is necessary for ICAM-1-induced Rac1 recruitment and activation. Mechanical force applied on ICAM-1 impairs CD2AP binding to ICAM-1, suggesting that a tension-induced negative feedback loop promotes ICAM-1-mediated neutrophil crawling and paracellular transmigration. To our knowledge, these data show for the first time that the mechanoreceptor ICAM-1 is negatively regulated by an actin-binding adaptor protein, i.e., CD2AP, to allow a balanced and spatiotemporal control of its adhesive function. CD2AP is important in kidney dysfunction that is accompanied by inflammation. Our findings provide a mechanistic basis for the role of CD2AP in inflamed vessels, identifying this adaptor protein as a potential therapeutic target.
Collapse
Affiliation(s)
- Antje Schaefer
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam 1066CX, the Netherlands; .,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Trynette J van Duijn
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam 1066CX, the Netherlands
| | - Jisca Majolee
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam 1066CX, the Netherlands
| | - Keith Burridge
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599.,Department of Cell Biology and Physiology and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; and
| | - Peter L Hordijk
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam 1066CX, the Netherlands.,Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1098XH, the Netherlands
| |
Collapse
|
38
|
Triacca V, Güç E, Kilarski WW, Pisano M, Swartz MA. Transcellular Pathways in Lymphatic Endothelial Cells Regulate Changes in Solute Transport by Fluid Stress. Circ Res 2017; 120:1440-1452. [DOI: 10.1161/circresaha.116.309828] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 01/23/2017] [Accepted: 01/25/2017] [Indexed: 01/12/2023]
Abstract
Rationale:
The transport of interstitial fluid and solutes into lymphatic vessels is important for maintaining interstitial homeostasis and delivering antigens and soluble factors to the lymph node for immune surveillance. Transendothelial transport across lymphatic endothelial cells (LECs) is commonly considered to occur paracellularly, or between cell–cell junctions, and driven by local pressure and concentration gradients. However, emerging evidence suggests that LECs also play active roles in regulating interstitial solute balance and can scavenge and store antigens, raising the possibility that vesicular or transcellular pathways may be important in lymphatic solute transport.
Objective:
The aim of this study was to determine the relative importance of transcellular (vesicular) versus paracellular transport pathways by LECs and how mechanical stress (ie, fluid flow conditioning) alters either pathway.
Methods and Results:
We demonstrate that transcellular transport mechanisms substantially contribute to lymphatic solute transport and that solute uptake occurs in both caveolae- and clathrin-coated vesicles. In vivo, intracelluar uptake of fluorescently labeled albumin after intradermal injection by LECs was similar to that of dermal dendritic cells. In vitro, we developed a method to differentially quantify intracellular solute uptake versus transendothelial transport by LECs. LECs preconditioned to 1 µm/s transmural flow demonstrated increased uptake and basal-to-apical solute transport, which could be substantially reversed by blocking dynamin-dependent vesicle formation.
Conclusions:
These findings reveal the importance of intracellular transport in steady-state lymph formation and suggest that LECs use transcellular mechanisms in parallel to the well-described paracellular route to modulate solute transport from the interstitium according to biomechanical cues.
Collapse
Affiliation(s)
- Valentina Triacca
- From the Institute of Bioengineering and Swiss Institute for Experimental Cancer Research (ISREC), École Polytechnique Fédérale de Lausanne (V.T., E.G., W.W.K., M.P., M.A.S.); and Institute for Molecular Engineering, The University of Chicago, IL (W.W.K., M.A.S.)
| | - Esra Güç
- From the Institute of Bioengineering and Swiss Institute for Experimental Cancer Research (ISREC), École Polytechnique Fédérale de Lausanne (V.T., E.G., W.W.K., M.P., M.A.S.); and Institute for Molecular Engineering, The University of Chicago, IL (W.W.K., M.A.S.)
| | - Witold W. Kilarski
- From the Institute of Bioengineering and Swiss Institute for Experimental Cancer Research (ISREC), École Polytechnique Fédérale de Lausanne (V.T., E.G., W.W.K., M.P., M.A.S.); and Institute for Molecular Engineering, The University of Chicago, IL (W.W.K., M.A.S.)
| | - Marco Pisano
- From the Institute of Bioengineering and Swiss Institute for Experimental Cancer Research (ISREC), École Polytechnique Fédérale de Lausanne (V.T., E.G., W.W.K., M.P., M.A.S.); and Institute for Molecular Engineering, The University of Chicago, IL (W.W.K., M.A.S.)
| | - Melody A. Swartz
- From the Institute of Bioengineering and Swiss Institute for Experimental Cancer Research (ISREC), École Polytechnique Fédérale de Lausanne (V.T., E.G., W.W.K., M.P., M.A.S.); and Institute for Molecular Engineering, The University of Chicago, IL (W.W.K., M.A.S.)
| |
Collapse
|
39
|
Soni D, Regmi SC, Wang DM, DebRoy A, Zhao YY, Vogel SM, Malik AB, Tiruppathi C. Pyk2 phosphorylation of VE-PTP downstream of STIM1-induced Ca 2+ entry regulates disassembly of adherens junctions. Am J Physiol Lung Cell Mol Physiol 2017; 312:L1003-L1017. [PMID: 28385807 DOI: 10.1152/ajplung.00008.2017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 03/28/2017] [Accepted: 03/29/2017] [Indexed: 11/22/2022] Open
Abstract
Vascular endothelial protein tyrosine phosphatase (VE-PTP) stabilizes endothelial adherens junctions (AJs) through constitutive dephosphorylation of VE-cadherin. Here we investigated the role of stromal interaction molecule 1 (STIM1) activation of store-operated Ca2+ entry (SOCE) in regulating AJ assembly. We observed that SOCE induced by STIM1 activated Pyk2 in human lung microvascular endothelial cells (ECs) and induced tyrosine phosphorylation of VE-PTP at Y1981. Pyk2-induced tyrosine phosphorylation of VE-PTP promoted Src binding to VE-PTP, Src activation, and subsequent VE-cadherin phosphorylation and thereby increased the endothelial permeability response. The increase in permeability was secondary to disassembly of AJs. Pyk2-mediated responses were blocked in EC-restricted Stim1 knockout mice, indicating the requirement for STIM1 in initiating the signaling cascade. A peptide derived from the Pyk2 phosphorylation site on VE-PTP abolished the STIM1/SOCE-activated permeability response. Thus Pyk2 activation secondary to STIM1-induced SOCE causes tyrosine phosphorylation of VE-PTP, and VE-PTP, in turn, binds to and activates Src, thereby phosphorylating VE-cadherin to increase endothelial permeability through disassembly of AJs. Our results thus identify a novel signaling mechanism by which STIM1-induced Ca2+ signaling activates Pyk2 to inhibit the interaction of VE-PTP and VE-cadherin and hence increase endothelial permeability. Therefore, targeting the Pyk2 activation pathway may be a potentially important anti-inflammatory strategy.
Collapse
Affiliation(s)
- Dheeraj Soni
- Department of Pharmacology and Center for Lung and Vascular Biology, College of Medicine, University of Illinois, Chicago, Illinois
| | - Sushil C Regmi
- Department of Pharmacology and Center for Lung and Vascular Biology, College of Medicine, University of Illinois, Chicago, Illinois
| | - Dong-Mei Wang
- Department of Pharmacology and Center for Lung and Vascular Biology, College of Medicine, University of Illinois, Chicago, Illinois
| | - Auditi DebRoy
- Department of Pharmacology and Center for Lung and Vascular Biology, College of Medicine, University of Illinois, Chicago, Illinois
| | - You-Yang Zhao
- Department of Pharmacology and Center for Lung and Vascular Biology, College of Medicine, University of Illinois, Chicago, Illinois
| | - Stephen M Vogel
- Department of Pharmacology and Center for Lung and Vascular Biology, College of Medicine, University of Illinois, Chicago, Illinois
| | - Asrar B Malik
- Department of Pharmacology and Center for Lung and Vascular Biology, College of Medicine, University of Illinois, Chicago, Illinois
| | - Chinnaswamy Tiruppathi
- Department of Pharmacology and Center for Lung and Vascular Biology, College of Medicine, University of Illinois, Chicago, Illinois
| |
Collapse
|
40
|
Dragoni S, Hudson N, Kenny BA, Burgoyne T, McKenzie JA, Gill Y, Blaber R, Futter CE, Adamson P, Greenwood J, Turowski P. Endothelial MAPKs Direct ICAM-1 Signaling to Divergent Inflammatory Functions. THE JOURNAL OF IMMUNOLOGY 2017; 198:4074-4085. [PMID: 28373581 PMCID: PMC5421301 DOI: 10.4049/jimmunol.1600823] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 03/07/2017] [Indexed: 12/30/2022]
Abstract
Lymphocyte transendothelial migration (TEM) is critically dependent on intraendothelial signaling triggered by adhesion to ICAM-1. Here we show that endothelial MAPKs ERK, p38, and JNK mediate diapedesis-related and diapedesis-unrelated functions of ICAM-1 in cerebral and dermal microvascular endothelial cells (MVECs). All three MAPKs were activated by ICAM-1 engagement, either through lymphocyte adhesion or Ab-mediated clustering. MAPKs were involved in ICAM-1-dependent expression of TNF-α in cerebral and dermal MVECs, and CXCL8, CCL3, CCL4, VCAM-1, and cyclooxygenase 2 (COX-2) in cerebral MVECs. Endothelial JNK and to a much lesser degree p38 were the principal MAPKs involved in facilitating diapedesis of CD4+ lymphocytes across both types of MVECs, whereas ERK was additionally required for TEM across dermal MVECs. JNK activity was critical for ICAM-1-induced F-actin rearrangements. Furthermore, activation of endothelial ICAM-1/JNK led to phosphorylation of paxillin, its association with VE-cadherin, and internalization of the latter. Importantly ICAM-1-induced phosphorylation of paxillin was required for lymphocyte TEM and converged functionally with VE-cadherin phosphorylation. Taken together we conclude that during lymphocyte TEM, ICAM-1 signaling diverges into pathways regulating lymphocyte diapedesis, and other pathways modulating gene expression thereby contributing to the long-term inflammatory response of the endothelium.
Collapse
Affiliation(s)
- Silvia Dragoni
- Department of Cell Biology, Institute of Ophthalmology, University College London, London EC1V 9EL, United Kingdom
| | - Natalie Hudson
- Department of Cell Biology, Institute of Ophthalmology, University College London, London EC1V 9EL, United Kingdom
| | - Bridget-Ann Kenny
- Department of Cell Biology, Institute of Ophthalmology, University College London, London EC1V 9EL, United Kingdom
| | - Thomas Burgoyne
- Department of Cell Biology, Institute of Ophthalmology, University College London, London EC1V 9EL, United Kingdom
| | - Jenny A McKenzie
- Department of Cell Biology, Institute of Ophthalmology, University College London, London EC1V 9EL, United Kingdom
| | - Yadvinder Gill
- Department of Cell Biology, Institute of Ophthalmology, University College London, London EC1V 9EL, United Kingdom
| | - Robert Blaber
- Department of Cell Biology, Institute of Ophthalmology, University College London, London EC1V 9EL, United Kingdom
| | - Clare E Futter
- Department of Cell Biology, Institute of Ophthalmology, University College London, London EC1V 9EL, United Kingdom
| | - Peter Adamson
- Department of Cell Biology, Institute of Ophthalmology, University College London, London EC1V 9EL, United Kingdom
| | - John Greenwood
- Department of Cell Biology, Institute of Ophthalmology, University College London, London EC1V 9EL, United Kingdom
| | - Patric Turowski
- Department of Cell Biology, Institute of Ophthalmology, University College London, London EC1V 9EL, United Kingdom
| |
Collapse
|
41
|
Belvitch P, Brown ME, Brinley BN, Letsiou E, Rizzo AN, Garcia JGN, Dudek SM. The ARP 2/3 complex mediates endothelial barrier function and recovery. Pulm Circ 2017; 7:200-210. [PMID: 28680579 PMCID: PMC5448540 DOI: 10.1086/690307] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 11/23/2016] [Indexed: 01/03/2023] Open
Abstract
Pulmonary endothelial cell (EC) barrier dysfunction and recovery is critical to the pathophysiology of acute respiratory distress syndrome. Cytoskeletal and subsequent cell membrane dynamics play a key mechanistic role in determination of EC barrier integrity. Here, we characterizAQe the actin related protein 2/3 (Arp 2/3) complex, a regulator of peripheral branched actin polymerization, in human pulmonary EC barrier function through studies of transendothelial electrical resistance (TER), intercellular gap formation, peripheral cytoskeletal structures and lamellipodia. Compared to control, Arp 2/3 inhibition with the small molecule inhibitor CK-666 results in a reduction of baseline barrier function (1,241 ± 53 vs 988 ± 64 ohm; p < 0.01), S1P-induced barrier enhancement and delayed recovery of barrier function after thrombin (143 ± 14 vs 93 ± 6 min; p < 0.01). Functional changes of Arp 2/3 inhibition on barrier integrity are associated temporally with increased intercellular gap area at baseline (0.456 ± 0.02 vs 0.299 ± 0.02; p < 0.05) and thirty minutes after thrombin (0.885 ± 0.03 vs 0.754 ± 0.03; p < 0.05). Immunofluorescent microscopy reveals reduced lamellipodia formation after S1P and during thrombin recovery in Arp 2/3 inhibited cells. Individual lamellipodia demonstrate reduced depth following Arp 2/3 inhibition vs vehicle at baseline (1.83 ± 0.41 vs 2.55 ± 0.46 µm; p < 0.05) and thirty minutes after S1P treatment (1.53 ± 0.37 vs 2.09 ± 0.36 µm; p < 0.05). These results establish a critical role for Arp 2/3 activity in determination of pulmonary endothelial barrier function and recovery through formation of EC lamellipodia and closure of intercellular gaps.
Collapse
Affiliation(s)
- Patrick Belvitch
- Division of Pulmonary, Critical Care, Sleep, and Allergy, University of Illinois Hospital and Health Science System, Chicago, IL, USA
| | - Mary E Brown
- Division of Pulmonary, Critical Care, Sleep, and Allergy, University of Illinois Hospital and Health Science System, Chicago, IL, USA
| | | | - Eleftheria Letsiou
- Division of Pulmonary, Critical Care, Sleep, and Allergy, University of Illinois Hospital and Health Science System, Chicago, IL, USA
| | - Alicia N Rizzo
- Division of Pulmonary, Critical Care, Sleep, and Allergy, University of Illinois Hospital and Health Science System, Chicago, IL, USA
| | - Joe G N Garcia
- University of Arizona Health Sciences Center, Tucson, AZ, USA
| | - Steven M Dudek
- Division of Pulmonary, Critical Care, Sleep, and Allergy, University of Illinois Hospital and Health Science System, Chicago, IL, USA
| |
Collapse
|
42
|
Abstract
Inflammation is part of the complex biological response of body tissues to harmful stimuli, such as pathogens. It serves as a protective response that involves leukocytes, blood vessels and molecular mediators with the purpose to eliminate the initial cause of cell injury and to initiate tissue repair. Inflammation is tightly regulated by the body and is associated with transient crossing of leukocytes through the blood vessel wall, a process called transendothelial migration (TEM) or diapedesis. TEM is a close collaboration between leukocytes on one hand and the endothelium on the other. Limiting vascular leakage during TEM but also when the leukocyte has crossed the endothelium is essential for maintaining vascular homeostasis. Although many details have been uncovered during the recent years, the molecular mechanisms from the vascular part that drive TEM still shows significant gaps in our understanding. This review will focus on the local signals that are induced in the endothelium that regulate leukocyte TEM and simultaneous preservation of endothelial barrier function.
Collapse
Affiliation(s)
- Lilian Schimmel
- a Department of Molecular Cell Biology , Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam , Amsterdam , The Netherlands
| | - Niels Heemskerk
- a Department of Molecular Cell Biology , Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam , Amsterdam , The Netherlands
| | - Jaap D van Buul
- a Department of Molecular Cell Biology , Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam , Amsterdam , The Netherlands
| |
Collapse
|
43
|
Nourshargh S, Renshaw SA, Imhof BA. Reverse Migration of Neutrophils: Where, When, How, and Why? Trends Immunol 2016; 37:273-286. [PMID: 27055913 DOI: 10.1016/j.it.2016.03.006] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 03/14/2016] [Accepted: 03/14/2016] [Indexed: 02/07/2023]
Abstract
Neutrophil migration to injured and pathogen-infected tissues is a fundamental component of innate immunity. An array of cellular and molecular events mediate this response to collectively guide neutrophils out of the vasculature and towards the core of the ensuing inflammatory reaction where they exert effector functions. Advances in imaging modalities have revealed that neutrophils can also exhibit motility away from sites of inflammation and injury, although it is unclear under what circumstances this reverse migration is a physiological protective response, and when it has pathophysiological relevance. Here we review different types of neutrophil reverse migration and discuss the current understanding of the associated mechanisms. In this context we propose clarifications to the existing terminology used to describe the many facets of neutrophil reverse migration.
Collapse
Affiliation(s)
- Sussan Nourshargh
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| | - Stephen A Renshaw
- Bateson Centre and Department of Infection, Immunity and Cardiovascular Disease, Firth Court, University of Sheffield, Western Bank, Sheffield S10 2TN, UK.
| | - Beat A Imhof
- Centre Médical Universitaire, Rue Michel-Servet 1, Geneva 1211, Switzerland.
| |
Collapse
|
44
|
Chang CH, Hale SJ, Cox CV, Blair A, Kronsteiner B, Grabowska R, Zhang Y, Cook D, Khoo CP, Schrader JB, Kabuga SB, Martin-Rendon E, Watt SM. Junctional Adhesion Molecule-A Is Highly Expressed on Human Hematopoietic Repopulating Cells and Associates with the Key Hematopoietic Chemokine Receptor CXCR4. Stem Cells 2016; 34:1664-78. [PMID: 26866290 DOI: 10.1002/stem.2340] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 01/11/2016] [Indexed: 12/16/2022]
Abstract
Hematopoietic stem/progenitor cells (HSPCs) reside in specialized bone marrow microenvironmental niches, with vascular elements (endothelial/mesenchymal stromal cells) and CXCR4-CXCL12 interactions playing particularly important roles for HSPC entry, retention, and maintenance. The functional effects of CXCL12 are dependent on its local concentration and rely on complex HSPC-niche interactions. Two Junctional Adhesion Molecule family proteins, Junctional Adhesion Molecule-B (JAM)-B and JAM-C, are reported to mediate HSPC-stromal cell interactions, which in turn regulate CXCL12 production by mesenchymal stromal cells (MSCs). Here, we demonstrate that another JAM family member, JAM-A, is most highly expressed on human hematopoietic stem cells with in vivo repopulating activity (p < .01 for JAM-A(high) compared to JAM-A(Int or Low) cord blood CD34(+) cells). JAM-A blockade, silencing, and overexpression show that JAM-A contributes significantly (p < .05) to the adhesion of human HSPCs to IL-1β activated human bone marrow sinusoidal endothelium. Further studies highlight a novel association of JAM-A with CXCR4, with these molecules moving to the leading edge of the cell upon presentation with CXCL12 (p < .05 compared to no CXCL12). Therefore, we hypothesize that JAM family members differentially regulate CXCR4 function and CXCL12 secretion in the bone marrow niche. Stem Cells 2016;34:1664-1678.
Collapse
Affiliation(s)
- Chao-Hui Chang
- Nuffield Division of Clinical Laboratory Medicine, Radcliffe Department of Medicine, Stem Cell Research, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom.,Radcliffe Department of Medicine, Stem Cell Research, NHS Blood and Transplant, John Radcliffe Hospital, Oxford, United Kingdom
| | - Sarah J Hale
- Nuffield Division of Clinical Laboratory Medicine, Radcliffe Department of Medicine, Stem Cell Research, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom.,Radcliffe Department of Medicine, Stem Cell Research, NHS Blood and Transplant, John Radcliffe Hospital, Oxford, United Kingdom
| | - Charlotte V Cox
- Bristol Institute for Transfusion Sciences, NHS Blood and Transplant, Bristol, United Kingdom.,Cancer Research School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Allison Blair
- Bristol Institute for Transfusion Sciences, NHS Blood and Transplant, Bristol, United Kingdom.,Cancer Research School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Barbara Kronsteiner
- Nuffield Division of Clinical Laboratory Medicine, Radcliffe Department of Medicine, Stem Cell Research, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom.,Radcliffe Department of Medicine, Stem Cell Research, NHS Blood and Transplant, John Radcliffe Hospital, Oxford, United Kingdom
| | - Rita Grabowska
- Nuffield Division of Clinical Laboratory Medicine, Radcliffe Department of Medicine, Stem Cell Research, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom.,Radcliffe Department of Medicine, Stem Cell Research, NHS Blood and Transplant, John Radcliffe Hospital, Oxford, United Kingdom
| | - Youyi Zhang
- Nuffield Division of Clinical Laboratory Medicine, Radcliffe Department of Medicine, Stem Cell Research, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom.,Radcliffe Department of Medicine, Stem Cell Research, NHS Blood and Transplant, John Radcliffe Hospital, Oxford, United Kingdom
| | - David Cook
- Nuffield Division of Clinical Laboratory Medicine, Radcliffe Department of Medicine, Stem Cell Research, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom.,Radcliffe Department of Medicine, Stem Cell Research, NHS Blood and Transplant, John Radcliffe Hospital, Oxford, United Kingdom
| | - Cheen P Khoo
- Nuffield Division of Clinical Laboratory Medicine, Radcliffe Department of Medicine, Stem Cell Research, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom.,Radcliffe Department of Medicine, Stem Cell Research, NHS Blood and Transplant, John Radcliffe Hospital, Oxford, United Kingdom
| | - Jack B Schrader
- Nuffield Division of Clinical Laboratory Medicine, Radcliffe Department of Medicine, Stem Cell Research, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom.,Radcliffe Department of Medicine, Stem Cell Research, NHS Blood and Transplant, John Radcliffe Hospital, Oxford, United Kingdom
| | - Suranahi Buglass Kabuga
- Nuffield Division of Clinical Laboratory Medicine, Radcliffe Department of Medicine, Stem Cell Research, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom.,Radcliffe Department of Medicine, Stem Cell Research, NHS Blood and Transplant, John Radcliffe Hospital, Oxford, United Kingdom
| | - Enca Martin-Rendon
- Nuffield Division of Clinical Laboratory Medicine, Radcliffe Department of Medicine, Stem Cell Research, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom.,Radcliffe Department of Medicine, Stem Cell Research, NHS Blood and Transplant, John Radcliffe Hospital, Oxford, United Kingdom
| | - Suzanne M Watt
- Nuffield Division of Clinical Laboratory Medicine, Radcliffe Department of Medicine, Stem Cell Research, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom.,Radcliffe Department of Medicine, Stem Cell Research, NHS Blood and Transplant, John Radcliffe Hospital, Oxford, United Kingdom
| |
Collapse
|
45
|
F-actin-rich contractile endothelial pores prevent vascular leakage during leukocyte diapedesis through local RhoA signalling. Nat Commun 2016; 7:10493. [PMID: 26814335 PMCID: PMC4737874 DOI: 10.1038/ncomms10493] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 12/14/2015] [Indexed: 12/17/2022] Open
Abstract
During immune surveillance and inflammation, leukocytes exit the vasculature through transient openings in the endothelium without causing plasma leakage. However, the exact mechanisms behind this intriguing phenomenon are still unknown. Here we report that maintenance of endothelial barrier integrity during leukocyte diapedesis requires local endothelial RhoA cycling. Endothelial RhoA depletion in vitro or Rho inhibition in vivo provokes neutrophil-induced vascular leakage that manifests during the physical movement of neutrophils through the endothelial layer. Local RhoA activation initiates the formation of contractile F-actin structures that surround emigrating neutrophils. These structures that surround neutrophil-induced endothelial pores prevent plasma leakage through actomyosin-based pore confinement. Mechanistically, we found that the initiation of RhoA activity involves ICAM-1 and the Rho GEFs Ect2 and LARG. In addition, regulation of actomyosin-based endothelial pore confinement involves ROCK2b, but not ROCK1. Thus, endothelial cells assemble RhoA-controlled contractile F-actin structures around endothelial pores that prevent vascular leakage during leukocyte extravasation. Endothelial cells can support leukocyte extravasation without causing vascular leakage, but the exact mechanism underlying this process has not been fully elucidated. Here the authors show that it is regulated through actomyosin-based endothelial pore confinement, which requires local endothelial RhoA activation.
Collapse
|
46
|
Chistiakov DA, Orekhov AN, Bobryshev YV. Endothelial Barrier and Its Abnormalities in Cardiovascular Disease. Front Physiol 2015; 6:365. [PMID: 26696899 PMCID: PMC4673665 DOI: 10.3389/fphys.2015.00365] [Citation(s) in RCA: 177] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 11/16/2015] [Indexed: 01/15/2023] Open
Abstract
Endothelial cells (ECs) form a unique barrier between the vascular lumen and the vascular wall. In addition, the endothelium is highly metabolically active. In cardiovascular disease such as atherosclerosis and hypertension, normal endothelial function could be severely disturbed leading to endothelial dysfunction that then could progress to complete and irreversible loss of EC functionality and contribute to entire vascular dysfunction. Proatherogenic stimuli such as diabetes, dyslipidemia, and oxidative stress could initiate endothelial dysfunction and in turn vascular dysfunction and lead to the development of atherosclerotic arterial disease, a background for multiple cardiovascular disorders including coronary artery disease, acute coronary syndrome, stroke, and thrombosis. Intercellular junctions between ECs mediate the barrier function. Proinflammatory stimuli destabilize the junctions causing the disruption of the endothelial barrier and increased junctional permeability. This facilitates transendothelial migration of immune cells to the arterial intima and induction of vascular inflammation. Proatherogenic stimuli attack endothelial microtubule function that is regulated by acetylation of tubulin, an essential microtubular constituent. Chemical modification of tubulin caused by cardiometabolic risk factors and oxidative stress leads to reorganization of endothelial microtubules. These changes destabilize vascular integrity and increase permeability, which finally results in increasing cardiovascular risk.
Collapse
Affiliation(s)
- Dimitry A Chistiakov
- Division of Laboratory Medicine, Department of Molecular Genetic Diagnostics and Cell Biology, Research Center for Children's Health, Institute of Pediatrics Moscow, Russia
| | - Alexander N Orekhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Sciences Moscow, Russia ; Department of Biophysics, Biological Faculty, Moscow State University Moscow, Russia ; Institute for Atherosclerosis Research, Skolkovo Innovation Center Moscow, Russia
| | - Yuri V Bobryshev
- Faculty of Medicine, School of Medical Sciences, University of New South Wales Sydney, NSW, Australia ; School of Medicine, University of Western Sydney Campbelltown, NSW, Australia
| |
Collapse
|
47
|
Regulation of Endothelial Adherens Junctions by Tyrosine Phosphorylation. Mediators Inflamm 2015; 2015:272858. [PMID: 26556953 PMCID: PMC4628659 DOI: 10.1155/2015/272858] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 08/16/2015] [Indexed: 12/14/2022] Open
Abstract
Endothelial cells form a semipermeable, regulated barrier that limits the passage of fluid, small molecules, and leukocytes between the bloodstream and the surrounding tissues. The adherens junction, a major mechanism of intercellular adhesion, is comprised of transmembrane cadherins forming homotypic interactions between adjacent cells and associated cytoplasmic catenins linking the cadherins to the cytoskeleton. Inflammatory conditions promote the disassembly of the adherens junction and a loss of intercellular adhesion, creating openings or gaps in the endothelium through which small molecules diffuse and leukocytes transmigrate. Tyrosine kinase signaling has emerged as a central regulator of the inflammatory response, partly through direct phosphorylation and dephosphorylation of the adherens junction components. This review discusses the findings that support and those that argue against a direct effect of cadherin and catenin phosphorylation in the disassembly of the adherens junction. Recent findings indicate a complex interaction between kinases, phosphatases, and the adherens junction components that allow a fine regulation of the endothelial permeability to small molecules, leukocyte migration, and barrier resealing.
Collapse
|
48
|
Khakpour S, Wilhelmsen K, Hellman J. Vascular endothelial cell Toll-like receptor pathways in sepsis. Innate Immun 2015; 21:827-46. [DOI: 10.1177/1753425915606525] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 08/11/2015] [Indexed: 12/20/2022] Open
Abstract
The endothelium forms a vast network that dynamically regulates vascular barrier function, coagulation pathways and vasomotor tone. Microvascular endothelial cells are uniquely situated to play key roles during infection and injury, owing to their widespread distribution throughout the body and their constant interaction with circulating blood. While not viewed as classical immune cells, endothelial cells express innate immune receptors, including the Toll-like receptors (TLRs), which activate intracellular inflammatory pathways mediated through NF-κB and the MAP kinases. TLR agonists, including LPS and bacterial lipopeptides, directly upregulate microvascular endothelial cell expression of inflammatory mediators. Intriguingly, TLR activation also modulates microvascular endothelial cell permeability and the expression of coagulation pathway intermediaries. Microvascular thrombi have been hypothesized to trap microorganisms thereby limiting the spread of infection. However, dysregulated activation of endothelial inflammatory pathways is also believed to lead to coagulopathy and increased vascular permeability, which together promote sepsis-induced organ failure. This article reviews vascular endothelial cell innate immune pathways mediated through the TLRs as they pertain to sepsis, highlighting links between TLRs and coagulation and permeability pathways, and their role in healthy and pathologic responses to infection and sepsis.
Collapse
Affiliation(s)
- Samira Khakpour
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
- Biomedical Sciences and Immunology Programs, University of California, San Francisco, CA, USA
| | - Kevin Wilhelmsen
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
| | - Judith Hellman
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
- Biomedical Sciences and Immunology Programs, University of California, San Francisco, CA, USA
| |
Collapse
|
49
|
Hillgruber C, Pöppelmann B, Weishaupt C, Steingräber AK, Wessel F, Berdel WE, Gessner JE, Ho-Tin-Noé B, Vestweber D, Goerge T. Blocking neutrophil diapedesis prevents hemorrhage during thrombocytopenia. ACTA ACUST UNITED AC 2015; 212:1255-66. [PMID: 26169941 PMCID: PMC4516803 DOI: 10.1084/jem.20142076] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 06/11/2015] [Indexed: 01/03/2023]
Abstract
Organ hemorrhage represents a major complication in thrombocytopenia with potential fatal outcome. Hillgruber et al. demonstrate that neutrophil diapedesis through the endothelial barrier is responsible for the bleeding and could represent a therapeutic target in immune-thrombocytopenic patients. Spontaneous organ hemorrhage is the major complication in thrombocytopenia with a potential fatal outcome. However, the exact mechanisms regulating vascular integrity are still unknown. Here, we demonstrate that neutrophils recruited to inflammatory sites are the cellular culprits inducing thrombocytopenic tissue hemorrhage. Exposure of thrombocytopenic mice to UVB light provokes cutaneous petechial bleeding. This phenomenon is also observed in immune-thrombocytopenic patients when tested for UVB tolerance. Mechanistically, we show, analyzing several inflammatory models, that it is neutrophil diapedesis through the endothelial barrier that is responsible for the bleeding defect. First, bleeding is triggered by neutrophil-mediated mechanisms, which act downstream of capturing, adhesion, and crawling on the blood vessel wall and require Gαi signaling in neutrophils. Second, mutating Y731 in the cytoplasmic tail of VE-cadherin, known to selectively affect leukocyte diapedesis, but not the induction of vascular permeability, attenuates bleeding. Third, and in line with this, simply destabilizing endothelial junctions by histamine did not trigger bleeding. We conclude that specifically targeting neutrophil diapedesis through the endothelial barrier may represent a new therapeutic avenue to prevent fatal bleeding in immune-thrombocytopenic patients.
Collapse
Affiliation(s)
- Carina Hillgruber
- Department of Dermatology and Department of Medicine A-Hematology and Oncology, University Hospital of Münster and Interdisciplinary Center for Clinical Research (IZKF), University of Münster, 48149 Münster, Germany Department of Dermatology and Department of Medicine A-Hematology and Oncology, University Hospital of Münster and Interdisciplinary Center for Clinical Research (IZKF), University of Münster, 48149 Münster, Germany
| | - Birgit Pöppelmann
- Department of Dermatology and Department of Medicine A-Hematology and Oncology, University Hospital of Münster and Interdisciplinary Center for Clinical Research (IZKF), University of Münster, 48149 Münster, Germany
| | - Carsten Weishaupt
- Department of Dermatology and Department of Medicine A-Hematology and Oncology, University Hospital of Münster and Interdisciplinary Center for Clinical Research (IZKF), University of Münster, 48149 Münster, Germany
| | - Annika Kathrin Steingräber
- Department of Dermatology and Department of Medicine A-Hematology and Oncology, University Hospital of Münster and Interdisciplinary Center for Clinical Research (IZKF), University of Münster, 48149 Münster, Germany
| | - Florian Wessel
- Department of Vascular Cell Biology, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany
| | - Wolfgang E Berdel
- Department of Dermatology and Department of Medicine A-Hematology and Oncology, University Hospital of Münster and Interdisciplinary Center for Clinical Research (IZKF), University of Münster, 48149 Münster, Germany
| | - J Engelbert Gessner
- Clinical Department of Immunology and Rheumatology, Molecular Immunology Research Unit, Hannover Medical School, 30625 Hannover, Germany
| | - Benoît Ho-Tin-Noé
- French Institute of Health and Medical Research (INSERM) U1148-Paris 7 University, Xavier Bichat Hospital, 75877 Paris, France
| | - Dietmar Vestweber
- Department of Vascular Cell Biology, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany
| | - Tobias Goerge
- Department of Dermatology and Department of Medicine A-Hematology and Oncology, University Hospital of Münster and Interdisciplinary Center for Clinical Research (IZKF), University of Münster, 48149 Münster, Germany Department of Dermatology and Department of Medicine A-Hematology and Oncology, University Hospital of Münster and Interdisciplinary Center for Clinical Research (IZKF), University of Münster, 48149 Münster, Germany
| |
Collapse
|
50
|
Schaefer A, Hordijk PL. Cell-stiffness-induced mechanosignaling - a key driver of leukocyte transendothelial migration. J Cell Sci 2015; 128:2221-30. [PMID: 26092932 DOI: 10.1242/jcs.163055] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The breaching of cellular and structural barriers by migrating cells is a driving factor in development, inflammation and tumor cell metastasis. One of the most extensively studied examples is the extravasation of activated leukocytes across the vascular endothelium, the inner lining of blood vessels. Each step of this leukocyte transendothelial migration (TEM) process is regulated by distinct endothelial adhesion receptors such as the intercellular adhesion molecule 1 (ICAM1). Adherent leukocytes exert force on these receptors, which sense mechanical cues and transform them into localized mechanosignaling in endothelial cells. In turn, the function of the mechanoreceptors is controlled by the stiffness of the endothelial cells and of the underlying substrate representing a positive-feedback loop. In this Commentary, we focus on the mechanotransduction in leukocytes and endothelial cells, which is induced in response to variations in substrate stiffness. Recent studies have described the first key proteins involved in these mechanosensitive events, allowing us to identify common regulatory mechanisms in both cell types. Finally, we discuss how endothelial cell stiffness controls the individual steps in the leukocyte TEM process. We identify endothelial cell stiffness as an important component, in addition to locally presented chemokines and adhesion receptors, which guides leukocytes to sites that permit TEM.
Collapse
Affiliation(s)
- Antje Schaefer
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, Swammerdam Institute of Life Sciences, University of Amsterdam, Amsterdam 1066 CX, The Netherlands
| | - Peter L Hordijk
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, Swammerdam Institute of Life Sciences, University of Amsterdam, Amsterdam 1066 CX, The Netherlands
| |
Collapse
|