1
|
Ray ME, Rothstein TL. Human VH4-34 antibodies derived from B1 cells are more frequently autoreactive than VH4-34 antibodies derived from memory cells. Front Immunol 2023; 14:1259827. [PMID: 38162664 PMCID: PMC10754998 DOI: 10.3389/fimmu.2023.1259827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 11/20/2023] [Indexed: 01/03/2024] Open
Abstract
Human B1 cells produce natural antibodies characterized by overutilization of heavy chain variable region VH4-34 in comparison to other B cell populations. VH4-34-containing antibodies have been reported to be autoreactive and to be associated with lupus and other autoimmune dyscrasias. However, it has been unclear to what extent VH4-34 antibodies manifest autoreactivity in B1 cells or other B cell populations-in other words, are VH4-34 containing antibodies autoreactive wherever found, or mainly within the B1 cell population? To address this issue we sort purified single human B1 and memory B cells and then amplified, sequenced, cloned and expressed VH4-34-containing antibodies from 76 individual B cells. Each of these antibodies was tested for autoreactivity by HEp-2 IFA and autoantigen ELISA. Antibodies were scored as autoreactive if positive by either assay. We found VH4-34 antibodies rescued from B1 cells were much more frequently autoreactive (14/48) than VH4-34 antibodies rescued from memory B cells (2/28). Among B1 cell antibodies, 4 were HEp-2+, 6 were dsDNA+ and 4 were positive for both. Considering only HEp-2+ antibodies, again these were found more frequently among B1 cell VH4-34 antibodies (8/48) than memory B cell VH4-34 antibodies (1/28). We found autoreactivity was associated with greater CDR3 length, as expected; however, we found no association between autoreactivity and a previously described FR1 "hydrophobic patch". Our results indicate that autoreactive VH4-34-containing antibodies tend to reside within the human B1 cell population.
Collapse
Affiliation(s)
| | - Thomas L. Rothstein
- Center for Immunobiology and Department of Investigative Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States
| |
Collapse
|
2
|
Monson N, Smith C, Greenberg H, Plumb P, Guzman A, Tse K, Chen D, Zhang W, Morgan M, Speed H, Powell C, Batra S, Cowell L, Christley S, Vernino S, Blackburn K, Greenberg B. VH2+ Antigen-Experienced B Cells in the Cerebrospinal Fluid Are Expanded and Enriched in Pediatric Anti-NMDA Receptor Encephalitis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1332-1339. [PMID: 37712756 PMCID: PMC10593502 DOI: 10.4049/jimmunol.2300156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 08/17/2023] [Indexed: 09/16/2023]
Abstract
Pediatric and adult autoimmune encephalitis (AE) are often associated with Abs to the NR1 subunit of the N-methyl-d-aspartate (NMDA) receptor (NMDAR). Very little is known regarding the cerebrospinal fluid humoral immune profile and Ab genetics associated with pediatric anti-NMDAR-AE. Using a combination of cellular, molecular, and immunogenetics tools, we collected cerebrospinal fluid from pediatric subjects and generated 1) flow cytometry data to calculate the frequency of B cell subtypes in the cerebrospinal fluid of pediatric subjects with anti-NMDAR-AE and controls, 2) a panel of recombinant human Abs from a pediatric case of anti-NMDAR-AE that was refractory to treatment, and 3) a detailed analysis of the Ab genes that bound the NR1 subunit of the NMDAR. Ag-experienced B cells including memory cells, plasmablasts, and Ab-secreting cells were expanded in the pediatric anti-NMDAR-AE cohort, but not in the controls. These Ag-experienced B cells in the cerebrospinal fluid of a pediatric case of NMDAR-AE that was refractory to treatment had expanded use of variable H chain family 2 (VH2) genes with high somatic hypermutation that all bound to the NR1 subunit of the NMDAR. A CDR3 motif was identified in this refractory case that likely drove early stage activation and expansion of naive B cells to Ab-secreting cells, facilitating autoimmunity associated with pediatric anti-NMDAR-AE through the production of Abs that bind NR1. These features of humoral immune responses in the cerebrospinal fluid of pediatric anti-NMDAR-AE patients may be relevant for clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Nancy Monson
- Department of Neurology, UT Southwestern Medical Center, Dallas, TX
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX
| | - Chad Smith
- Department of Neurology, UT Southwestern Medical Center, Dallas, TX
| | - Hannah Greenberg
- Department of Neurology, UT Southwestern Medical Center, Dallas, TX
| | - Patricia Plumb
- Department of Neurology, UT Southwestern Medical Center, Dallas, TX
| | - Alyssa Guzman
- Department of Neurology, UT Southwestern Medical Center, Dallas, TX
| | - Key Tse
- Department of Neurology, UT Southwestern Medical Center, Dallas, TX
| | - Ding Chen
- Department of Neurology, UT Southwestern Medical Center, Dallas, TX
| | - Wei Zhang
- Department of Neurology, UT Southwestern Medical Center, Dallas, TX
| | - Miles Morgan
- Department of Neurology, UT Southwestern Medical Center, Dallas, TX
| | - Haley Speed
- Department of Neurology, UT Southwestern Medical Center, Dallas, TX
| | - Craig Powell
- Department of Neurobiology, Civitan International Research Center, University of Alabama Marnix E. Heersink School of Medicine, Birmingham, AL
| | - Sushobhna Batra
- Department of Neurology, UT Southwestern Medical Center, Dallas, TX
| | - Lindsay Cowell
- Department of Population and Data Sciences, UT Southwestern Medical Center, Dallas, TX
| | - Scott Christley
- Department of Population and Data Sciences, UT Southwestern Medical Center, Dallas, TX
| | - Steve Vernino
- Department of Neurology, UT Southwestern Medical Center, Dallas, TX
| | - Kyle Blackburn
- Department of Neurology, UT Southwestern Medical Center, Dallas, TX
| | | |
Collapse
|
3
|
Ma F, Zhan Y, Bartolomé-Cabrero R, Ying W, Asano M, Huang Z, Xiao C, González-Martín A. Analysis of a miR-148a Targetome in B Cell Central Tolerance. Front Immunol 2022; 13:861655. [PMID: 35634349 PMCID: PMC9134011 DOI: 10.3389/fimmu.2022.861655] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/15/2022] [Indexed: 12/31/2022] Open
Abstract
A microRNA (miRNA) often regulates the expression of hundreds of target genes. A fundamental question in the field of miRNA research is whether a miRNA exerts its biological function through regulating a small number of key targets or through small changes in the expression of hundreds of target genes. We addressed this issue by performing functional analysis of target genes regulated by miR-148a. We previously identified miR-148a as a critical regulator of B cell central tolerance and found 119 target genes that may mediate its function. We selected 4 of them for validation and demonstrated a regulatory role for Bim, Pten, and Gadd45a in this process. In this study, we performed functional analysis of the other miR-148a target genes in in vitro and in vivo models of B cell central tolerance. Our results show that those additional target genes play a minimal role, if any, in miR-148a-mediated control of B cell central tolerance, suggesting that the function of miRNAs is mediated by a few key target genes. These findings have advanced our understanding of molecular mechanisms underlying miRNA regulation of gene expression and B cell central tolerance.
Collapse
Affiliation(s)
- Fengge Ma
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yating Zhan
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Rocío Bartolomé-Cabrero
- Department of Biochemistry, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain
| | - Wei Ying
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Masahide Asano
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Zhe Huang
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States
| | - Changchun Xiao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States
- *Correspondence: Alicia González-Martín, ; Changchun Xiao,
| | - Alicia González-Martín
- Department of Biochemistry, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain
- *Correspondence: Alicia González-Martín, ; Changchun Xiao,
| |
Collapse
|
4
|
Abu-Raya B, Michalski C, Sadarangani M, Lavoie PM. Maternal Immunological Adaptation During Normal Pregnancy. Front Immunol 2020; 11:575197. [PMID: 33133091 PMCID: PMC7579415 DOI: 10.3389/fimmu.2020.575197] [Citation(s) in RCA: 326] [Impact Index Per Article: 65.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/18/2020] [Indexed: 12/25/2022] Open
Abstract
The risk and severity of specific infections are increased during pregnancy due to a combination of physiological and immunological changes. Characterizing the maternal immune system during pregnancy is important to understand how the maternal immune system maintains tolerance towards the allogeneic fetus. This may also inform strategies to prevent maternal fatalities due to infections and optimize maternal vaccination to best protect the mother-fetus dyad and the infant after birth. In this review, we describe what is known about the immunological changes that occur during a normal pregnancy.
Collapse
Affiliation(s)
- Bahaa Abu-Raya
- Vaccine Evaluation Center, BC Children's Hospital Research Institute, Vancouver, BC, Canada.,BC Children's Hospital Research Institute, Vancouver, BC, Canada.,Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada.,Experimental Medicine Program, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Christina Michalski
- BC Children's Hospital Research Institute, Vancouver, BC, Canada.,Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada.,Experimental Medicine Program, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Manish Sadarangani
- Vaccine Evaluation Center, BC Children's Hospital Research Institute, Vancouver, BC, Canada.,BC Children's Hospital Research Institute, Vancouver, BC, Canada.,Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada.,Experimental Medicine Program, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Pascal M Lavoie
- BC Children's Hospital Research Institute, Vancouver, BC, Canada.,Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada.,Experimental Medicine Program, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
5
|
Duchow A, Chien C, Paul F, Bellmann-Strobl J. Emerging drugs for the treatment of neuromyelitis optica. Expert Opin Emerg Drugs 2020; 25:285-297. [PMID: 32731771 DOI: 10.1080/14728214.2020.1803828] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Evidence-based treatment options for neuromyelitis optica spectrum disorders (NMOSD) patients are beginning to enter the market. Where previously, there was only the exclusive use of empiric and off-label immunosuppressants in this rare and devastating central nervous system autoimmune disease. AREAS COVERED In accordance to expanding pathogenetic insights, drugs in phase II and III clinical trials are presented in the context of the current treatment situation for acute attacks and immunopreventative strategies in NMOSD. Some such drugs are the 2019-approved complement inhibitor eculizumab, other compounds in late development include its modified successor ravulizumab, IL-6 receptor antibody satralizumab, CD19 targeting antibody inebilizumab and the TACI-Fc fusion protein telitacicept. EXPERT OPINION Moving from broad immunosuppression to tailored treatment strategies, the prospects for efficient NMOSD therapy are positive. For the first time in this disease, class I treatment evidence is available, but long-term data will be necessary to confirm the overall promising study results of the compounds close to approval. While drug development still centers around AQP4 antibody seropositive patients, current and future research requires consideration of possible diverging treatment demands for the smaller group of seronegative patients and patients with presence of MOG antibodies.
Collapse
Affiliation(s)
- Ankelien Duchow
- Neurocure Clinical Research Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health , Berlin, Germany.,Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health and Max Delbrück Center for Molecular Medicine , Berlin, Germany
| | - Claudia Chien
- Neurocure Clinical Research Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health , Berlin, Germany.,Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health , Berlin, Germany.,Department for Psychiatry and Psychotherapy - Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health , Berlin, Germany
| | - Friedemann Paul
- Neurocure Clinical Research Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health , Berlin, Germany.,Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health and Max Delbrück Center for Molecular Medicine , Berlin, Germany
| | - Judith Bellmann-Strobl
- Neurocure Clinical Research Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health , Berlin, Germany.,Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health and Max Delbrück Center for Molecular Medicine , Berlin, Germany
| |
Collapse
|
6
|
Duchow A, Paul F, Bellmann-Strobl J. Current and emerging biologics for the treatment of neuromyelitis optica spectrum disorders. Expert Opin Biol Ther 2020; 20:1061-1072. [DOI: 10.1080/14712598.2020.1749259] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Ankelien Duchow
- Neurocure Clinical Research Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health and Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Friedemann Paul
- Neurocure Clinical Research Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health and Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Judith Bellmann-Strobl
- Neurocure Clinical Research Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health and Max Delbrück Center for Molecular Medicine, Berlin, Germany
| |
Collapse
|
7
|
Muhammad Yusoff F, Wong KK, Mohd Redzwan N. Th1, Th2, and Th17 cytokines in systemic lupus erythematosus. Autoimmunity 2019; 53:8-20. [PMID: 31771364 DOI: 10.1080/08916934.2019.1693545] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by the breakdown of immune tolerance leading to excessive inflammation and tissue damage. Imbalance in the levels of cytokines represents one of the multifactorial causes of SLE pathogenesis and it contributes to disease severity. Deregulated levels of T helper type 1 (Th1), type 2 (Th2), and type 17 (Th17) cytokines have been associated with autoimmune inflammation. Growing evidence has shown deregulated levels of Th1, Th2, and Th17 cytokines in SLE patients compared to healthy controls associated with disease activity and severity. In this review, we describe and discuss the levels of Th1, Th2, and Th17 cytokines in SLE patients, and clinical trials involving Th1, Th2, and Th17 cytokines in SLE patients. In particular, with the exception of IL-2, IL-4, and TGF-β1, the levels of Th1, Th2, and Th17 cytokines are increased in SLE patients associated with disease severity. Current phase II or III studies involve therapeutic antibodies targeting IFN-α and type I IFN receptor, while low-dose IL-2 therapy is assessed in phase II clinical trials.
Collapse
Affiliation(s)
- Farhana Muhammad Yusoff
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kota Bharu, Malaysia
| | - Kah Keng Wong
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kota Bharu, Malaysia
| | - Norhanani Mohd Redzwan
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kota Bharu, Malaysia
| |
Collapse
|
8
|
Fernández Matilla M, Grau García E, Fernández-Llanio Comella N, Chalmeta Verdejo I, Ivorra Cortés J, Castellano Cuesta JA, Román Ivorra JA. Increased interferon-1α, interleukin-10 and BLyS concentrations as clinical activity biomarkers in systemic lupus erythematosus. Med Clin (Barc) 2019; 153:225-231. [PMID: 30795903 DOI: 10.1016/j.medcli.2018.12.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 12/03/2018] [Accepted: 12/13/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND OBJECTIVE to analyse the association between interferon-1α (INF1α), interleukin-10 (IL-10) and BLyS concentrations and clinical activity in systemic lupus erythematosus (SLE). PATIENTS AND METHODS A cross-sectional, observational study of 142 SLE patients and 34 healthy controls was performed, through a complete blood and urine test and review of their medical history. Serum concentration of INF1α, IL-10 and BLyS was determined by colorimetric methods. A biostatistical analysis was performed with R (3.3.2.). RESULTS 69% of our SLE patients showed at least one cytokine increased. INF1α, IL-10 and BLyS are higher in SLE patients than in healthy controls (P<.001, P=.005 and P=.043, respectively), being INF1α the most frequent. Patients were categorised according to low or high concentrations of the three cytokines. We found a significant association between increased IL-10/INF1α concentrations and a higher clinical activity measured by SELENA-SLEDAI (P<.0001) and, to a lesser extent, an association with increased INF1α/IL-10/BLyS concentrations. Elevated levels of IL-10/INF1α and INF1α/IL-10/BLyS related to increased C3-C4 consumption (P<.001 and P=.001 respectively) and anti-dsDNA titres (P=.001 and P=.002 respectively). Elevated INF1α/BLyS related to higher anti-dsDNA titres (P=.004) and ENA positivity (P<.001). Increased levels of INF1α/IL-10/BLyS related to positivity of ANAs (P<.001) and APL (P=.004). CONCLUSIONS INF1α, IL-10 and BLyS are higher in SLE patients than in healthy controls. Increased IL-10 levels, regardless of whether or not there were also increased levels of BLyS and/or INF1α, was the cytokine that best fit with clinical activity in SLE measured with classic methods.
Collapse
Affiliation(s)
- Meritxell Fernández Matilla
- Escuela de Doctorado, Universidad Católica de Valencia San Vicente Mártir, Valencia, España; Sección de Reumatología, Hospital Arnau de Vilanova, Valencia, España.
| | - Elena Grau García
- Servicio de Reumatología, Hospital Universitario y Politécnico la Fe, Valencia, España
| | | | | | - José Ivorra Cortés
- Servicio de Reumatología, Hospital Universitario y Politécnico la Fe, Valencia, España
| | | | | |
Collapse
|
9
|
Soni C, Reizis B. Self-DNA at the Epicenter of SLE: Immunogenic Forms, Regulation, and Effects. Front Immunol 2019; 10:1601. [PMID: 31354738 PMCID: PMC6637313 DOI: 10.3389/fimmu.2019.01601] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 06/26/2019] [Indexed: 12/12/2022] Open
Abstract
Self-reactive B cells generated through V(D)J recombination in the bone marrow or through accrual of random mutations in secondary lymphoid tissues are mostly purged or edited to prevent autoimmunity. Yet, 10–20% of all mature naïve B cells in healthy individuals have self-reactive B cell receptors (BCRs). In patients with serologically active systemic lupus erythematosus (SLE) the percentage increases up to 50%, with significant self-DNA reactivity that correlates with disease severity. Endogenous or self-DNA has emerged as a potent antigen in several autoimmune disorders, particularly in SLE. However, the mechanism(s) regulating or preventing anti-DNA antibody production remain elusive. It is likely that in healthy subjects, DNA-reactive B cells avoid activation due to the unavailability of endogenous DNA, which is efficiently degraded through efferocytosis and various DNA-processing proteins. Genetic defects, physiological, and/or pathological conditions can override these protective checkpoints, leading to autoimmunity. Plausibly, increased availability of immunogenic self-DNA may be the key initiating event in the loss of tolerance of otherwise quiescent DNA-reactive B cells. Indeed, mutations impairing apoptotic cell clearance pathways and nucleic acid metabolism-associated genes like DNases, RNases, and their sensors are known to cause autoimmune disorders including SLE. Here we review the literature supporting the idea that increased availability of DNA as an immunogen or adjuvant, or both, may cause the production of pathogenic anti-DNA antibodies and subsequent manifestations of clinical disease such as SLE. We discuss the main cellular players involved in anti-DNA responses; the physical forms and sources of immunogenic DNA in autoimmunity; the DNA-protein complexes that render DNA immunogenic; the regulation of DNA availability by intracellular and extracellular DNases and the autoimmune pathologies associated with their dysfunction; the cytosolic and endosomal sensors of immunogenic DNA; and the cytokines such as interferons that drive auto-inflammatory and autoimmune pathways leading to clinical disease. We propose that prevention of DNA availability by aiding extracellular DNase activity could be a viable therapeutic modality in controlling SLE.
Collapse
Affiliation(s)
- Chetna Soni
- Department of Pathology, New York University School of Medicine, New York, NY, United States
| | - Boris Reizis
- Department of Pathology, New York University School of Medicine, New York, NY, United States.,Department of Medicine, New York University School of Medicine, New York, NY, United States
| |
Collapse
|
10
|
Zumaquero E, Stone SL, Scharer CD, Jenks SA, Nellore A, Mousseau B, Rosal-Vela A, Botta D, Bradley JE, Wojciechowski W, Ptacek T, Danila MI, Edberg JC, Bridges SL, Kimberly RP, Chatham WW, Schoeb TR, Rosenberg AF, Boss JM, Sanz I, Lund FE. IFNγ induces epigenetic programming of human T-bet hi B cells and promotes TLR7/8 and IL-21 induced differentiation. eLife 2019; 8:e41641. [PMID: 31090539 PMCID: PMC6544433 DOI: 10.7554/elife.41641] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 05/10/2019] [Indexed: 12/24/2022] Open
Abstract
Although B cells expressing the IFNγR or the IFNγ-inducible transcription factor T-bet promote autoimmunity in Systemic Lupus Erythematosus (SLE)-prone mouse models, the role for IFNγ signaling in human antibody responses is unknown. We show that elevated levels of IFNγ in SLE patients correlate with expansion of the T-bet expressing IgDnegCD27negCD11c+CXCR5neg (DN2) pre-antibody secreting cell (pre-ASC) subset. We demonstrate that naïve B cells form T-bethi pre-ASCs following stimulation with either Th1 cells or with IFNγ, IL-2, anti-Ig and TLR7/8 ligand and that IL-21 dependent ASC formation is significantly enhanced by IFNγ or IFNγ-producing T cells. IFNγ promotes ASC development by synergizing with IL-2 and TLR7/8 ligands to induce genome-wide epigenetic reprogramming of B cells, which results in increased chromatin accessibility surrounding IRF4 and BLIMP1 binding motifs and epigenetic remodeling of IL21R and PRDM1 loci. Finally, we show that IFNγ signals poise B cells to differentiate by increasing their responsiveness to IL-21.
Collapse
Affiliation(s)
- Esther Zumaquero
- Department of MicrobiologyThe University of Alabama at BirminghamBirminghamUnited States
| | - Sara L Stone
- Department of MicrobiologyThe University of Alabama at BirminghamBirminghamUnited States
| | - Christopher D Scharer
- Department of Microbiology and Immunology, Division of RheumatologyEmory UniversityAtlantaUnited States
| | - Scott A Jenks
- Department of Medicine, Division of RheumatologyEmory UniversityAtlantaUnited States
| | - Anoma Nellore
- Department of Medicine, Division of Infectious DiseaseThe University of Alabama at BirminghamBirminghamUnited States
| | - Betty Mousseau
- Department of MicrobiologyThe University of Alabama at BirminghamBirminghamUnited States
| | - Antonio Rosal-Vela
- Department of MicrobiologyThe University of Alabama at BirminghamBirminghamUnited States
| | - Davide Botta
- Department of MicrobiologyThe University of Alabama at BirminghamBirminghamUnited States
| | - John E Bradley
- Department of Medicine, Division of Clinical Immunology and RheumatologyThe University of Alabama at BirminghamBirminghamUnited States
| | - Wojciech Wojciechowski
- Center for Pediatric Biomedical Research, Flow Cytometry Shared Resource LaboratoryUniversity of Rochester School of Medicine and DentistryRochesterUnited States
| | - Travis Ptacek
- Department of MicrobiologyThe University of Alabama at BirminghamBirminghamUnited States
- Informatics Group, Center for Clinical and Translational ScienceThe University of Alabama at BirminghamBirminghamUnited States
| | - Maria I Danila
- Department of Medicine, Division of Clinical Immunology and RheumatologyThe University of Alabama at BirminghamBirminghamUnited States
| | - Jeffrey C Edberg
- Department of Medicine, Division of Clinical Immunology and RheumatologyThe University of Alabama at BirminghamBirminghamUnited States
| | - S Louis Bridges
- Department of Medicine, Division of Clinical Immunology and RheumatologyThe University of Alabama at BirminghamBirminghamUnited States
| | - Robert P Kimberly
- Department of Medicine, Division of Clinical Immunology and RheumatologyThe University of Alabama at BirminghamBirminghamUnited States
| | - W Winn Chatham
- Department of Medicine, Division of Clinical Immunology and RheumatologyThe University of Alabama at BirminghamBirminghamUnited States
| | - Trenton R Schoeb
- Department of Genetics, Animal Resources ProgramThe University of Alabama at BirminghamBirminghamUnited States
| | - Alexander F Rosenberg
- Department of MicrobiologyThe University of Alabama at BirminghamBirminghamUnited States
- The Informatics InstituteThe University of Alabama at BirminghamBirminghamUnited States
| | - Jeremy M Boss
- Department of Microbiology and Immunology, Division of RheumatologyEmory UniversityAtlantaUnited States
| | - Ignacio Sanz
- Department of Medicine, Division of RheumatologyEmory UniversityAtlantaUnited States
| | - Frances E Lund
- Department of MicrobiologyThe University of Alabama at BirminghamBirminghamUnited States
| |
Collapse
|
11
|
The Involvement of MicroRNAs in Modulation of Innate and Adaptive Immunity in Systemic Lupus Erythematosus and Lupus Nephritis. J Immunol Res 2018; 2018:4126106. [PMID: 29854836 PMCID: PMC5964414 DOI: 10.1155/2018/4126106] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 04/03/2018] [Indexed: 12/20/2022] Open
Abstract
Noncoding RNAs (ncRNAs), including microRNAs (miRNAs), represent a family of RNA molecules that do not translate into protein. Nevertheless, they have the ability to regulate gene expression and play an essential role in immune cell differentiation and function. MicroRNAs were found to be differentially expressed in various tissues, and changes in their expression have been associated with several pathological processes. Yet, their roles in systemic lupus erythematosus (SLE) and lupus nephritis (LN) remain to be elucidated. Both SLE and LN are characterized by a complex dysfunction of the innate and adaptive immunity. Recently, significant findings have been made in understanding SLE through the use of genetic variant identification and expression pattern analysis and mouse models, as well as epigenetic analyses. Abnormalities in immune cell responses, cytokine and chemokine production, cell activation, and apoptosis have been linked to a unique expression pattern of a number of miRNAs that have been implicated in the immune pathogenesis of this autoimmune disease. The recent evidence that significantly increased the understanding of the pathogenesis of SLE drives a renewed interest in efficient therapy targets. This review aims at providing an overview of the current state of research on the expression and role of miRNAs in the immune pathogenesis of SLE and LN.
Collapse
|
12
|
Gies V, Schickel JN, Jung S, Joublin A, Glauzy S, Knapp AM, Soley A, Poindron V, Guffroy A, Choi JY, Gottenberg JE, Anolik JH, Martin T, Soulas-Sprauel P, Meffre E, Korganow AS. Impaired TLR9 responses in B cells from patients with systemic lupus erythematosus. JCI Insight 2018. [PMID: 29515028 DOI: 10.1172/jci.insight.96795] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
B cells play a central role in systemic lupus erythematosus (SLE) pathophysiology but dysregulated pathways leading to a break in B cell tolerance remain unclear. Since Toll-like receptor 9 (TLR9) favors the elimination of autoreactive B cells in the periphery, we assessed TLR9 function in SLE by analyzing the responses of B cells and plasmacytoid dendritic cells (pDCs) isolated from healthy donors and patients after stimulation with CpG, a TLR9 agonist. We found that SLE B cells from patients without hydroxychloroquine treatment displayed defective in vitro TLR9 responses, as illustrated by the impaired upregulation of B cell activation molecules and the diminished production of various cytokines including antiinflammatory IL-10. In agreement with CD19 controlling TLR9 responses in B cells, decreased expression of the CD19/CD21 complex on SLE B cells was detected as early as the transitional B cell stage. In contrast, TLR7 function was preserved in SLE B cells, whereas pDCs from SLE patients properly responded to TLR9 stimulation, thereby revealing that impaired TLR9 function in SLE was restricted to B cells. We conclude that abnormal CD19 expression and TLR9 tolerogenic function in SLE B cells may contribute to the break of B cell tolerance in these patients.
Collapse
Affiliation(s)
- Vincent Gies
- CNRS UPR 3572 "Immunopathology and Therapeutic Chemistry"/Laboratory of Excellence Médalis, Institute of Molecular and Cellular Biology (IBMC), Strasbourg, France.,Department of Clinical Immunology and Internal Medicine, National Reference Center for Rare Autoimmune Diseases, University Hospital, Strasbourg, France
| | - Jean-Nicolas Schickel
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Sophie Jung
- CNRS UPR 3572 "Immunopathology and Therapeutic Chemistry"/Laboratory of Excellence Médalis, Institute of Molecular and Cellular Biology (IBMC), Strasbourg, France.,Reference Center for Oral Rare Diseases (O-Rares), "Pôle de Médecine et de Chirurgie Bucco-Dentaires, University Hospital - Faculty of Dentistry, University of Strasbourg, Strasbourg, France
| | - Aurélie Joublin
- CNRS UPR 3572 "Immunopathology and Therapeutic Chemistry"/Laboratory of Excellence Médalis, Institute of Molecular and Cellular Biology (IBMC), Strasbourg, France
| | - Salomé Glauzy
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Anne-Marie Knapp
- CNRS UPR 3572 "Immunopathology and Therapeutic Chemistry"/Laboratory of Excellence Médalis, Institute of Molecular and Cellular Biology (IBMC), Strasbourg, France
| | - Anne Soley
- CNRS UPR 3572 "Immunopathology and Therapeutic Chemistry"/Laboratory of Excellence Médalis, Institute of Molecular and Cellular Biology (IBMC), Strasbourg, France
| | - Vincent Poindron
- Department of Clinical Immunology and Internal Medicine, National Reference Center for Rare Autoimmune Diseases, University Hospital, Strasbourg, France
| | - Aurélien Guffroy
- CNRS UPR 3572 "Immunopathology and Therapeutic Chemistry"/Laboratory of Excellence Médalis, Institute of Molecular and Cellular Biology (IBMC), Strasbourg, France.,Department of Clinical Immunology and Internal Medicine, National Reference Center for Rare Autoimmune Diseases, University Hospital, Strasbourg, France
| | - Jin-Young Choi
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jacques-Eric Gottenberg
- CNRS UPR 3572 "Immunopathology and Therapeutic Chemistry"/Laboratory of Excellence Médalis, Institute of Molecular and Cellular Biology (IBMC), Strasbourg, France.,UFR Medicine, University of Strasbourg, Strasbourg, France.,Department of Rheumatology, National Reference Center for Autoimmune Diseases, University Hospital, Strasbourg, France
| | - Jennifer H Anolik
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, University of Rochester Medical Center, Rochester, New York, USA
| | - Thierry Martin
- CNRS UPR 3572 "Immunopathology and Therapeutic Chemistry"/Laboratory of Excellence Médalis, Institute of Molecular and Cellular Biology (IBMC), Strasbourg, France.,Department of Clinical Immunology and Internal Medicine, National Reference Center for Rare Autoimmune Diseases, University Hospital, Strasbourg, France.,UFR Medicine, University of Strasbourg, Strasbourg, France
| | - Pauline Soulas-Sprauel
- CNRS UPR 3572 "Immunopathology and Therapeutic Chemistry"/Laboratory of Excellence Médalis, Institute of Molecular and Cellular Biology (IBMC), Strasbourg, France.,Department of Clinical Immunology and Internal Medicine, National Reference Center for Rare Autoimmune Diseases, University Hospital, Strasbourg, France.,UFR Pharmaceutical Sciences, Strasbourg University, Illkirch, France
| | - Eric Meffre
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Anne-Sophie Korganow
- CNRS UPR 3572 "Immunopathology and Therapeutic Chemistry"/Laboratory of Excellence Médalis, Institute of Molecular and Cellular Biology (IBMC), Strasbourg, France.,Department of Clinical Immunology and Internal Medicine, National Reference Center for Rare Autoimmune Diseases, University Hospital, Strasbourg, France.,UFR Medicine, University of Strasbourg, Strasbourg, France
| |
Collapse
|
13
|
Brodie EJ, Infantino S, Low MSY, Tarlinton DM. Lyn, Lupus, and (B) Lymphocytes, a Lesson on the Critical Balance of Kinase Signaling in Immunity. Front Immunol 2018; 9:401. [PMID: 29545808 PMCID: PMC5837976 DOI: 10.3389/fimmu.2018.00401] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 02/13/2018] [Indexed: 01/23/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a progressive autoimmune disease characterized by increased sensitivity to self-antigens, auto-antibody production, and systemic inflammation. B cells have been implicated in disease progression and as such represent an attractive therapeutic target. Lyn is a Src family tyrosine kinase that plays a major role in regulating signaling pathways within B cells as well as other hematopoietic cells. Its role in initiating negative signaling cascades is especially critical as exemplified by Lyn-/- mice developing an SLE-like disease with plasma cell hyperplasia, underscoring the importance of tightly regulating signaling within B cells. This review highlights recent advances in our understanding of the function of the Src family tyrosine kinase Lyn in B lymphocytes and its contribution to positive and negative signaling pathways that are dysregulated in autoimmunity.
Collapse
Affiliation(s)
- Erica J. Brodie
- Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia
| | - Simona Infantino
- Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia
| | - Michael S. Y. Low
- Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, University of Melbourne, Parkville, VIC, Australia
- Department of Haematology, Monash Health, Monash Hospital, Clayton, VIC, Australia
| | - David M. Tarlinton
- Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
14
|
Berggren O, Hagberg N, Alexsson A, Weber G, Rönnblom L, Eloranta ML. Plasmacytoid dendritic cells and RNA-containing immune complexes drive expansion of peripheral B cell subsets with an SLE-like phenotype. PLoS One 2017; 12:e0183946. [PMID: 28846748 PMCID: PMC5573130 DOI: 10.1371/journal.pone.0183946] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 08/15/2017] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Hyperactive B cells and a continuous interferon (IFN)-α production by plasmacytoid dendritic cells (pDCs) play a key role in systemic lupus erythematosus (SLE). We asked whether the interaction between B cells and pDCs stimulated with RNA-containing immune complexes affects peripheral B cell subsets. METHODS B cells and pDCs were isolated from blood of healthy individuals and stimulated with immune complexes consisting of SLE-IgG and U1snRNP (RNA-IC). Expression of cell surface molecules as well as IL-6 and IL-10 production were determined by flow cytometry and immunoassays. Gene expression profiles were determined by a NanoString nCounter expression array. RESULTS We found a remarkable increase of double negative CD27-IgD- B cells, from 7% within fresh CD19+ B cells to 37% in the RNA-IC-stimulated co-cultures of B cells and pDCs, comparable to the frequency of double negative B cells in SLE patients. Gene expression analysis of the double negative CD27-IgD- and the CD27+IgD- memory B cells revealed that twenty-one genes were differentially expressed between the two B cell subsets (≥ 2-fold, p<0.001). The, IL21R, IL4R, CCL4, CCL3, CD83 and the IKAROS Family Zinc Finger 2 (IKZ2) showed higher expression in the double negative CD27-IgD- B cells. CONCLUSION The interactions between B cells and pDCs together with RNA-containing IC led to an expansion of B cells with similar phenotype as seen in SLE, suggesting that the pDC-B cell crosstalk contributes to the autoimmune feed-forward loop in SLE.
Collapse
Affiliation(s)
- Olof Berggren
- Department of Medical Sciences, Rheumatology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Niklas Hagberg
- Department of Medical Sciences, Rheumatology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Andrei Alexsson
- Department of Medical Sciences, Rheumatology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Gert Weber
- Department of Molecular Structural Biology, Institute of Biochemistry, Ernst-Moritz-Arndt University of Greifswald, Greifswald, Germany
| | - Lars Rönnblom
- Department of Medical Sciences, Rheumatology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Maija-Leena Eloranta
- Department of Medical Sciences, Rheumatology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
15
|
Moulton VR, Suarez-Fueyo A, Meidan E, Li H, Mizui M, Tsokos GC. Pathogenesis of Human Systemic Lupus Erythematosus: A Cellular Perspective. Trends Mol Med 2017. [PMID: 28623084 DOI: 10.1016/j.molmed.2017.05.006] [Citation(s) in RCA: 312] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease affecting multiple organs. A complex interaction of genetics, environment, and hormones leads to immune dysregulation and breakdown of tolerance to self-antigens, resulting in autoantibody production, inflammation, and destruction of end-organs. Emerging evidence on the role of these factors has increased our knowledge of this complex disease, guiding therapeutic strategies and identifying putative biomarkers. Recent findings include the characterization of genetic/epigenetic factors linked to SLE, as well as cellular effectors. Novel observations have provided an improved understanding of the contribution of tissue-specific factors and associated damage, T and B lymphocytes, as well as innate immune cell subsets and their corresponding abnormalities. The intricate web of involved factors and pathways dictates the adoption of tailored therapeutic approaches to conquer this disease.
Collapse
Affiliation(s)
- Vaishali R Moulton
- Division of Rheumatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA.
| | - Abel Suarez-Fueyo
- Division of Rheumatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Esra Meidan
- Division of Rheumatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; Department of Rheumatology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Hao Li
- Division of Rheumatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Masayuki Mizui
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - George C Tsokos
- Division of Rheumatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
16
|
Identification of autoreactive B cells with labeled nucleosomes. Sci Rep 2017; 7:602. [PMID: 28377609 PMCID: PMC5428865 DOI: 10.1038/s41598-017-00664-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 02/28/2017] [Indexed: 12/15/2022] Open
Abstract
The pathogenesis of autoimmune diseases has not been completely elucidated yet, and only a few specific treatments have been developed so far. In autoimmune diseases mediated by pathogenic autoantibodies, such as systemic lupus erythematosus, the specific detection and analysis of autoreactive B cells is crucial for a better understanding of the physiopathology. Biological characterization of these cells may help to define new therapeutic targets. Very few techniques allowing the precise detection of autoreactive B cells have been described so far. Herein we propose a new flow cytometry technique for specific detection of anti-nucleosome B cells, which secrete autoantibodies in systemic lupus erythematosus, using labeled nucleosomes. We produced different fluorochrome-labeled nucleosomes, characterized them, and finally tested them in flow cytometry. Nucleosomes labeled via the cysteines present in H3 histone specifically bind to autoreactive B cells in the anti-DNA transgenic B6.56R mice model. The present work validates the use of fluorochrome-labeled nucleosomes via cysteines to identify anti-nucleosome B cells and offers new opportunities for the description of autoreactive B cell phenotype.
Collapse
|
17
|
Oleksyn D, Zhao J, Vosoughi A, Zhao JC, Misra R, Pentland AP, Ryan D, Anolik J, Ritchlin C, Looney J, Anandarajah AP, Schwartz G, Calvi LM, Georger M, Mohan C, Sanz I, Chen L. PKK deficiency in B cells prevents lupus development in Sle lupus mice. Immunol Lett 2017; 185:1-11. [PMID: 28274793 DOI: 10.1016/j.imlet.2017.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 02/27/2017] [Accepted: 03/01/2017] [Indexed: 12/25/2022]
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by the production of autoantibodies that can result in damage to multiple organs. It is well documented that B cells play a critical role in the development of the disease. We previously showed that protein kinase C associated kinase (PKK) is required for B1 cell development as well as for the survival of recirculating mature B cells and B-lymphoma cells. Here, we investigated the role of PKK in lupus development in a lupus mouse model. We demonstrate that the conditional deletion of PKK in B cells prevents lupus development in Sle1Sle3 mice. The loss of PKK in Sle mice resulted in the amelioration of multiple classical lupus-associated phenotypes and histologic features of lupus nephritis, including marked reduction in the levels of serum autoantibodies, proteinuria, spleen size, peritoneal B-1 cell population and the number of activated CD4 T cells. In addition, the abundance of autoreactive plasma cells normally seen in Sle lupus mice was also significantly decreased in the PKK-deficient Sle mice. Sle B cells deficient in PKK display defective proliferation responses to BCR and LPS stimulation. Consistently, B cell receptor-mediated NF-κB activation, which is required for the survival of activated B cells, was impaired in the PKK-deficient B cells. Taken together, our work uncovers a critical role of PKK in lupus development and suggests that targeting the PKK-mediated pathway may represent a promising therapeutic strategy for lupus treatment.
Collapse
Affiliation(s)
- D Oleksyn
- Division of Allergy/Immunology and Rheumatology, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, United States
| | - J Zhao
- Department of Biomedical Genetics, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, United States
| | - A Vosoughi
- Division of Allergy/Immunology and Rheumatology, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, United States
| | - J C Zhao
- Department of Biology, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, United States
| | - R Misra
- Department of Pediatrics, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, United States
| | - A P Pentland
- Department of Dermatology, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, United States
| | - D Ryan
- Department of Pathology, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, United States
| | - J Anolik
- Division of Allergy/Immunology and Rheumatology, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, United States
| | - C Ritchlin
- Division of Allergy/Immunology and Rheumatology, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, United States
| | - J Looney
- Division of Allergy/Immunology and Rheumatology, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, United States
| | - A P Anandarajah
- Division of Allergy/Immunology and Rheumatology, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, United States
| | - G Schwartz
- Department of Pediatrics, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, United States
| | - L M Calvi
- Department of Medicine, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, United States
| | - M Georger
- Department of Medicine, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, United States
| | - C Mohan
- Department Biomedical Engineering, University of Houston, Houston, TX 77204, United States
| | - I Sanz
- Division of Allergy/Immunology and Rheumatology, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, United States
| | - L Chen
- Division of Allergy/Immunology and Rheumatology, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, United States; Department of Dermatology, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, United States.
| |
Collapse
|
18
|
Gallagher S, Turman S, Lekstrom K, Wilson S, Herbst R, Wang Y. CD47 limits antibody dependent phagocytosis against non-malignant B cells. Mol Immunol 2017; 85:57-65. [PMID: 28208074 DOI: 10.1016/j.molimm.2017.01.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 01/24/2017] [Accepted: 01/25/2017] [Indexed: 01/21/2023]
Abstract
Recent studies have demonstrated the importance of CD47 in protecting malignant B cells from antibody dependent cellular phagocytosis (ADCP). Combined treatment of anti-CD47 and -CD20 antibodies synergistically augment elimination of tumor B cells in xenograft mouse models. This has led to the development of novel reagents that can potentially enhance killing of malignant B cells in patients. B cell depleting therapy is also a promising treatment for autoimmune patients. In the current study, we aimed to investigate whether or not CD47 protects non-malignant B cells from ADCP. We show that CD47 is expressed on all B cells in mice, with the highest level on plasma cells in bone marrow and spleen. Although its expression is dispensable for B cell development in mice, CD47 on B cells limits antibody mediated phagocytosis. B cell depletion following in vivo anti-CD19 treatment is more efficient in CD47-/- mice than in wild type mice. In vitro, both naïve and activated B cells from CD47-/- mice are more sensitive to ADCP than wild type B cells. Lastly, we show in an ADCP assay that blocking CD47 can enhance anti-CD19 antibody mediated phagocytosis of wild type B cells. These results suggest that in addition to its already demonstrated benefit in cancer, targeting CD47 may be used as an adjunct in combination with B cell depletion antibodies for treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Sandra Gallagher
- Department of Oncology Research, MedImmune, One MedImmune Way, Gaithersburg, MD 20878, USA
| | - Sean Turman
- Department of Oncology Research, MedImmune, One MedImmune Way, Gaithersburg, MD 20878, USA
| | - Kristen Lekstrom
- Department of Protein Science, MedImmune, One MedImmune Way, Gaithersburg, MD 20878, USA
| | - Susan Wilson
- Department of Protein Science, MedImmune, One MedImmune Way, Gaithersburg, MD 20878, USA
| | - Ronald Herbst
- Department of Oncology Research, MedImmune, One MedImmune Way, Gaithersburg, MD 20878, USA
| | - Yue Wang
- Department of Oncology Research, MedImmune, One MedImmune Way, Gaithersburg, MD 20878, USA.
| |
Collapse
|
19
|
Dang J, Li J, Xin Q, Shan S, Bian X, Yuan Q, Liu N, Ma X, Li Y, Liu Q. Gene-gene interaction of ATG5, ATG7, BLK and BANK1 in systemic lupus erythematosus. Int J Rheum Dis 2016; 19:1284-1293. [PMID: 26420661 DOI: 10.1111/1756-185x.12768] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
AIM Autophagy-related gene 5 (ATG5), ATG7, B-lymphoid tyrosine kinase (BLK) and B-cell scaffold protein with ankyrin repeats 1 (BANK1) are involved in B-cell signaling; several genome-wide association studies detected these genes as candidates involved in systemic lupus erythematosus (SLE). We aimed to replicate the association of these genes with SLE in Chinese Han and to search for possible gene-gene interactions. METHODS TaqMan single-nucleotide polymorphism (SNP) genotyping was used to detect rs548234, rs665791 in ATG5, rs11706903 in ATG7, rs2736340 in BLK and rs10516487 in BANK1 in 382 SLE patients and 660 healthy controls. The epistasis effect was analyzed by logistic regression, multifactor dimensionality reduction (MDR) and linear regression analysis. RESULTS SLE was associated with frequency of rs548234 (P = 0.010; odds ratio [OR] = 1.298), rs2736340 (P = 2.47 × 10-5 ; OR = 1.574) and rs10516487 (P = 0.002; OR = 0.642). Although no epistasis effects were found among three autophagy-related gene loci or with rs2736340 and rs10516487, BLK and BANK1 had the closest interaction effect on logistic regression analysis (P = 0.013; OR = 1.205), MDR (P < 0.0001), and linear regression analysis (P = 0.0017; R2 = 0.1806). The risk genotype TT of rs2736340 was associated with decreased messenger RNA level of BLK; BLK transcript level was lower in SLE patients than healthy controls. CONCLUSION We confirmed the association of rs548234, rs2736340 and rs10516487 with SLE in Chinese Han and reinforced our hypothesis of their epistasis effect in regulating B-cell signaling in SLE.
Collapse
Affiliation(s)
- Jie Dang
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Medical Genetics, Shandong University School of Medicine, Jinan, Shandong, China
- Department of Medical Genetics and Cell Biology, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jiangxia Li
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Medical Genetics, Shandong University School of Medicine, Jinan, Shandong, China
| | - Qian Xin
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Medical Genetics, Shandong University School of Medicine, Jinan, Shandong, China
| | - Shan Shan
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Medical Genetics, Shandong University School of Medicine, Jinan, Shandong, China
| | - Xianli Bian
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Medical Genetics, Shandong University School of Medicine, Jinan, Shandong, China
| | - Qianqian Yuan
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Medical Genetics, Shandong University School of Medicine, Jinan, Shandong, China
| | - Na Liu
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Medical Genetics, Shandong University School of Medicine, Jinan, Shandong, China
| | - Xiaochun Ma
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Medical Genetics, Shandong University School of Medicine, Jinan, Shandong, China
| | - Yan Li
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Medical Genetics, Shandong University School of Medicine, Jinan, Shandong, China
| | - Qiji Liu
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Medical Genetics, Shandong University School of Medicine, Jinan, Shandong, China
| |
Collapse
|
20
|
Chen D, Gallagher S, Monson NL, Herbst R, Wang Y. Inebilizumab, a B Cell-Depleting Anti-CD19 Antibody for the Treatment of Autoimmune Neurological Diseases: Insights from Preclinical Studies. J Clin Med 2016; 5:jcm5120107. [PMID: 27886126 PMCID: PMC5184780 DOI: 10.3390/jcm5120107] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 11/14/2016] [Accepted: 11/17/2016] [Indexed: 12/11/2022] Open
Abstract
Exaggerated or inappropriate responses by B cells are an important feature in many types of autoimmune neurological diseases. The recent success of B-cell depletion in the treatment of multiple sclerosis (MS) has stimulated the development of novel B-cell-targeting therapies with the potential for improved efficacy. CD19 has emerged as a promising target for the depletion of B cells as well as CD19-positive plasmablasts and plasma cells. Inebilizumab (MEDI-551), an anti-CD19 antibody with enhanced antibody-dependent cell-mediated cytotoxicity against B cells, is currently being evaluated in MS and neuromyelitis optica. This review discusses the role of B cells in autoimmune neurological disorders, summarizes the development of inebilizumab, and analyzes the recent results for inebilizumab treatment in an autoimmune encephalitis mouse model. The novel insights obtained from these preclinical studies can potentially guide future investigation of inebilizumab in patients.
Collapse
Affiliation(s)
- Ding Chen
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Sandra Gallagher
- Department of Project Management, MedImmune, Gaithersburg, MD 20878, USA.
| | - Nancy L Monson
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Ronald Herbst
- Department of Oncology Research, MedImmune, Gaithersburg, MD 20878, USA.
| | - Yue Wang
- Department of Oncology Research, MedImmune, Gaithersburg, MD 20878, USA.
| |
Collapse
|
21
|
Association of Serum CXCL13 with Intrarenal Ectopic Lymphoid Tissue Formation in Lupus Nephritis. J Immunol Res 2016; 2016:4832543. [PMID: 27990444 PMCID: PMC5136399 DOI: 10.1155/2016/4832543] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/31/2016] [Accepted: 09/06/2016] [Indexed: 12/22/2022] Open
Abstract
Aims. To assess the concentrations of serum CXCL13 and intrarenal ectopic lymphoid tissue (ELT) profiles and their correlation in the patients with lupus nephritis (LN). Methods. Serum CXCL13 levels were measured using enzyme-linked immunosorbent assays (ELISA). The expression of CD3, CD20, and CD21 in renal biopsy specimens was tested using immunohistochemical methods. Results. Serum CXCL13 levels were significantly higher in the LN group than those in the SLE group without LN and also in the type III and IV LN patients than in type V LN patients. LN patients with positive CD20 expression (CD20+ LN) had a longer disease course and poorer response to combination therapy and higher serum CXCL13 levels than CD20- LN patients. Moreover, the serum CXCL13 level was positively correlated with the number of B cells/HP in the renal tissue of LN patients. The coexpression patterns of CD3, CD20, and CD21 in the renal tissue of LN patients with different WHO pathological types were significantly different. Serum CXCL13 levels were significantly higher in ELT-2 type LN patients than in 0 or 1 type LN patients. Conclusions. This study suggested that increased serum levels of CXCL13 might be involved in renal ELT formation and renal impairment process in LN.
Collapse
|
22
|
[Therapy-resistant cells of the B cell line]. Z Rheumatol 2016; 75:556-9. [PMID: 27379736 DOI: 10.1007/s00393-016-0126-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
23
|
Lima J, Martins C, Leandro MJ, Nunes G, Sousa MJ, Branco JC, Borrego LM. Characterization of B cells in healthy pregnant women from late pregnancy to post-partum: a prospective observational study. BMC Pregnancy Childbirth 2016; 16:139. [PMID: 27267973 PMCID: PMC4895979 DOI: 10.1186/s12884-016-0927-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 05/31/2016] [Indexed: 01/12/2023] Open
Abstract
Background B cells play a role in pregnancy due to their humoral and regulatory activities. To our knowledge, different maturational stages (from transitional to memory) of circulating B cell subsets have not yet been characterized (cell quantification and phenotype identification) in healthy pregnant women. Thus, the objective of our study was to characterize these subsets (as well as regulatory B cells) from late pregnancy to post-partum and to compare them with the circulating B cells of non-pregnant women. Methods In all of the enrolled women, flow cytometry was used to characterize the circulating B cell subsets according to the expression of IgD and CD38 (Bm1-Bm5 classification system). Regulatory B cells were characterized based on the expression of surface antigens (CD24, CD27, and CD38) and the production of IL-10 after lipopolysaccharide stimulation. Results Compared to the absolute counts of B cells in the non-pregnant women (n = 35), those in the pregnant women (n = 43) were significantly lower (p < 0.05) during the 3rd trimester of pregnancy and on delivery day (immediately after delivery). The percentages of these cells on delivery day and at post-partum were significantly lower than those in the non-pregnant women. In general, the absolute counts and percentages of the majority of the B cell subsets were significantly lower in the 3rd trimester of pregnancy and on delivery day than in the non-pregnant women. However, these counts and percentages did not differ significantly between the post-partum and the non-pregnant women. The most notable exceptions to the above were the percentages of naïve B cells (which were significantly higher in the 3rd trimester and on delivery day than in the non-pregnant women) and of CD24hiCD38hi regulatory B cells (which were significantly higher in the post-partum than in the non-pregnant women). Conclusion According to our study, the peripheral B cell compartment undergoes quantitative changes during normal late pregnancy and post-partum. Such findings may allow us to better understand immunomodulation during human pregnancy and provide evidence that could aid in the development of new strategies to diagnose and treat pregnancy-associated disturbances. Our findings could also be useful for studies of the mechanisms of maternal responses to vaccination and infection. Electronic supplementary material The online version of this article (doi:10.1186/s12884-016-0927-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jorge Lima
- Department of Obstetrics and Gynecology, CUF Descobertas Hospital, Lisbon, Portugal. .,CEDOC, Chronic Diseases Research Center, Immunology, NOVA Medical School, Faculty of Medical Sciences, Lisbon, Portugal.
| | - Catarina Martins
- CEDOC, Chronic Diseases Research Center, Immunology, NOVA Medical School, Faculty of Medical Sciences, Lisbon, Portugal
| | - Maria J Leandro
- Center for Rheumatology Research, Department of Medicine, University College London, London, UK
| | - Glória Nunes
- CEDOC, Chronic Diseases Research Center, Immunology, NOVA Medical School, Faculty of Medical Sciences, Lisbon, Portugal
| | - Maria-José Sousa
- Centro de Medicina Laboratorial Germano Sousa, Lisbon, Portugal.,Department of Clinical Pathology, Hospital Prof. Fernando Fonseca, E.P.E., Amadora, Portugal
| | | | - Luís-Miguel Borrego
- CEDOC, Chronic Diseases Research Center, Immunology, NOVA Medical School, Faculty of Medical Sciences, Lisbon, Portugal.,Department of Immunoallergy, CUF Descobertas Hospital, Lisbon, Portugal
| |
Collapse
|
24
|
Gallagher S, Turman S, Yusuf I, Akhgar A, Wu Y, Roskos LK, Herbst R, Wang Y. Pharmacological profile of MEDI-551, a novel anti-CD19 antibody, in human CD19 transgenic mice. Int Immunopharmacol 2016; 36:205-212. [PMID: 27163209 DOI: 10.1016/j.intimp.2016.04.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 04/15/2016] [Accepted: 04/21/2016] [Indexed: 10/21/2022]
Abstract
B cell depletion therapy is beneficial for patients with B cell malignancies and autoimmune diseases. CD19, a transmembrane protein, is expressed on a vast majority of normal and neoplastic B cells, making it a suitable target for monoclonal antibody (MAb) mediated immunotherapy. We have developed MEDI-551, an affinity optimized and afucosylated IgG1 MAb targeting human CD19 for B cell depletion. MEDI-551 is currently under investigation in multiple clinical trials. Because MEDI-551 does not cross react with rodent and non-human primate CD19, the pharmacological characteristics of the MAb were evaluated in human CD19 transgenic mice (hCD19 Tg). Here we show that MEDI-551 potently depletes tissue and circulating B cells in hCD19 Tg mice and is more efficacious than the anti-CD19 MAb with intact fucose. The length of B cell depletion depends on MEDI-551 dose; and, B cell recovery in the circulation follows stepwise phenotypic maturation. Furthermore, intravenous (IV) and subcutaneous (SC) administration of MEDI-551 results in comparable efficacy. Lastly, the combination of MEDI-551 with the anti-CD20 MAb, rituximab, further prolongs the duration of B cell depletion. In summary, the pharmacological profile of MEDI-551 presented in hCD19 Tg mice supports further testing of MEDI-551 in clinical trials involving B cell malignancies and autoimmune diseases.
Collapse
Affiliation(s)
- Sandra Gallagher
- Respiratory, Inflammation and Autoimmune Research, Gaithersburg, MD, United States
| | - Sean Turman
- Respiratory, Inflammation and Autoimmune Research, Gaithersburg, MD, United States
| | - Isharat Yusuf
- Respiratory, Inflammation and Autoimmune Research, Gaithersburg, MD, United States
| | - Ahmad Akhgar
- Translational Sciences, MedImmune LLC, Gaithersburg, MD, United States
| | - Yuling Wu
- Translational Sciences, MedImmune LLC, Gaithersburg, MD, United States
| | - Lorin K Roskos
- Translational Sciences, MedImmune LLC, Gaithersburg, MD, United States
| | - Ronald Herbst
- Respiratory, Inflammation and Autoimmune Research, Gaithersburg, MD, United States
| | - Yue Wang
- Respiratory, Inflammation and Autoimmune Research, Gaithersburg, MD, United States.
| |
Collapse
|
25
|
Domeier PP, Chodisetti SB, Soni C, Schell SL, Elias MJ, Wong EB, Cooper TK, Kitamura D, Rahman ZSM. IFN-γ receptor and STAT1 signaling in B cells are central to spontaneous germinal center formation and autoimmunity. J Exp Med 2016; 213:715-32. [PMID: 27069112 PMCID: PMC4854731 DOI: 10.1084/jem.20151722] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 02/18/2016] [Indexed: 12/15/2022] Open
Abstract
Spontaneously developed germinal centers (GCs [Spt-GCs]) harbor autoreactive B cells that generate somatically mutated and class-switched pathogenic autoantibodies (auto-Abs) to promote autoimmunity. However, the mechanisms that regulate Spt-GC development are not clear. In this study, we report that B cell-intrinsic IFN-γ receptor (IFN-γR) and STAT1 signaling are required for Spt-GC and follicular T helper cell (Tfh cell) development. We further demonstrate that IFN-γR and STAT1 signaling control Spt-GC and Tfh cell formation by driving T-bet expression and IFN-γ production by B cells. Global or B cell-specific IFN-γR deficiency in autoimmune B6.Sle1b mice leads to significantly reduced Spt-GC and Tfh cell responses, resulting in diminished antinuclear Ab reactivity and IgG2c and IgG2b auto-Ab titers compared with B6.Sle1b mice. Additionally, we observed that the proliferation and differentiation of DNA-reactive B cells into a GC B cell phenotype require B cell-intrinsic IFN-γR signaling, suggesting that IFN-γR signaling regulates GC B cell tolerance to nuclear self-antigens. The IFN-γR deficiency, however, does not affect GC, Tfh cell, or Ab responses against T cell-dependent foreign antigens, indicating that IFN-γR signaling regulates autoimmune, but not the foreign antigen-driven, GC and Tfh cell responses. Together, our data define a novel B cell-intrinsic IFN-γR signaling pathway specific to Spt-GC development and autoimmunity. This novel pathway can be targeted for future pharmacological intervention to treat systemic lupus erythematosus.
Collapse
Affiliation(s)
- Phillip P Domeier
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Sathi Babu Chodisetti
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Chetna Soni
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Stephanie L Schell
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Melinda J Elias
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Eric B Wong
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Timothy K Cooper
- Department of Comparative Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033 Department of Pathology, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Daisuke Kitamura
- Research Institute for Biomedical Sciences, Tokyo University of Science, 162 0825 Tokyo, Japan
| | - Ziaur S M Rahman
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033
| |
Collapse
|
26
|
Mensah F, Bansal A, Berkovitz S, Sharma A, Reddy V, Leandro MJ, Cambridge G. Extended B cell phenotype in patients with myalgic encephalomyelitis/chronic fatigue syndrome: a cross-sectional study. Clin Exp Immunol 2016; 184:237-47. [PMID: 26646713 DOI: 10.1111/cei.12749] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2015] [Indexed: 12/21/2022] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a heterogeneous condition of unknown aetiology characterized by multiple symptoms including fatigue, post-exertional malaise and cognitive impairment, lasting for at least 6 months. Recently, two clinical trials of B cell depletion therapy with rituximab (anti-CD20) reported convincing improvement in symptoms. A possible but undefined role for B cells has therefore been proposed. Studies of the relative percentages of B cell subsets in patients with ME/CFS have not revealed any reproducible differences from healthy controls (HC). In order to explore whether more subtle alterations in B cell subsets related to B cell differentiation exist in ME/CFS patients we used flow cytometry to immunophenotype CD19⁺ B cells. The panel utilized immunoglobulin (Ig)D, CD27 and CD38 (classical B cell subsets) together with additional markers. A total of 38 patients fulfilling Canadian, Centre for Disease Control and Fukuda ME/CFS criteria and 32 age- and sex-matched HC were included. We found no difference in percentages of classical subsets between ME/CFS patients and HC. However, we observed an increase in frequency (P < 0·01) and expression (MFI; P = 0·03) of CD24 on total B cells, confined to IgD⁺ subsets. Within memory subsets, a higher frequency of CD21⁺ CD38⁻ B cells (> 20%) was associated with the presence of ME/CFS [odds ratio: 3·47 (1·15-10·46); P = 0·03] compared with HC, and there was a negative correlation with disease duration. In conclusion, we identified possible changes in B cell phenotype in patients with ME/CFS. These may reflect altered B cell function and, if confirmed in other patient cohorts, could provide a platform for studies based on clinical course or responsiveness to rituximab therapy.
Collapse
Affiliation(s)
- F Mensah
- Department of Rheumatology Research, Division of Medicine, University College of London
| | - A Bansal
- Department of Immunology, Epsom and St Helier University Hospitals NHS Trust
| | - S Berkovitz
- Department of Neurology, Royal London Hospital of Integrated Medicine, London, UK
| | - A Sharma
- Department of Rheumatology Research, Division of Medicine, University College of London
| | - V Reddy
- Department of Rheumatology Research, Division of Medicine, University College of London
| | - M J Leandro
- Department of Rheumatology Research, Division of Medicine, University College of London
| | - G Cambridge
- Department of Rheumatology Research, Division of Medicine, University College of London
| |
Collapse
|
27
|
Hamilton JA, Li J, Wu Q, Yang P, Luo B, Li H, Bradley JE, Taylor JJ, Randall TD, Mountz JD, Hsu HC. General Approach for Tetramer-Based Identification of Autoantigen-Reactive B Cells: Characterization of La- and snRNP-Reactive B Cells in Autoimmune BXD2 Mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 194:5022-34. [PMID: 25888644 PMCID: PMC4417409 DOI: 10.4049/jimmunol.1402335] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 03/15/2015] [Indexed: 11/19/2022]
Abstract
Autoreactive B cells are associated with the development of several autoimmune diseases, including systemic lupus erythematosus and rheumatoid arthritis. The low frequency of these cells represents a major barrier to their analysis. Ag tetramers prepared from linear epitopes represent a promising strategy for the identification of small subsets of Ag-reactive immune cells. This is challenging given the requirement for identification and validation of linear epitopes and the complexity of autoantibody responses, including the broad spectrum of autoantibody specificities and the contribution of isotype to pathogenicity. Therefore, we tested a two-tiered peptide microarray approach, coupled with epitope mapping of known autoantigens, to identify and characterize autoepitopes using the BXD2 autoimmune mouse model. Microarray results were verified through comparison with established age-associated profiles of autoantigen specificities and autoantibody class switching in BXD2 and control (C57BL/6) mice and high-throughput ELISA and ELISPOT analyses of synthetic peptides. Tetramers were prepared from two linear peptides derived from two RNA-binding proteins (RBPs): lupus La and 70-kDa U1 small nuclear ribonucleoprotein. Flow cytometric analysis of tetramer-reactive B cell subsets revealed a significantly higher frequency and greater numbers of RBP-reactive marginal zone precursor, transitional T3, and PDL-2(+)CD80(+) memory B cells, with significantly elevated CD69 and CD86 observed in RBP(+) marginal zone precursor B cells in the spleens of BXD2 mice compared with C57BL/6 mice, suggesting a regulatory defect. This study establishes a feasible strategy for the characterization of autoantigen-specific B cell subsets in different models of autoimmunity and, potentially, in humans.
Collapse
Affiliation(s)
- Jennie A Hamilton
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Jun Li
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Qi Wu
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - PingAr Yang
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Bao Luo
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Hao Li
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - John E Bradley
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Justin J Taylor
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109; and
| | - Troy D Randall
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - John D Mountz
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294; Department of Medicine, Birmingham, Alabama VA Medical Center, Birmingham, AL 35233
| | - Hui-Chen Hsu
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294;
| |
Collapse
|