1
|
Wu Y, Schnitker F, Liu Y, Keitsch S, Caicci F, Schumacher F, Riehle A, Pollmeier B, Kehrmann J, Kleuser B, Kamler M, Szabo I, Grassmé H, Gulbins E. Sphingosine kills Mycobacteria and suppresses mycobacterial lung infections. J Mol Med (Berl) 2025; 103:547-558. [PMID: 40153002 PMCID: PMC12078450 DOI: 10.1007/s00109-025-02534-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 03/15/2025] [Accepted: 03/18/2025] [Indexed: 03/30/2025]
Abstract
Tuberculous mycobacterial infections pose a substantial global health burden because of their prevalence and multi-drug resistance. The current approach to tackling these infections primarily involves developing new antibiotics or combining existing ones, an approach that often proves ineffective in the specific targeting of mycobacteria. We investigated the effect of sphingosine on tuberculous Mycobacteria in vitro and mycobacterial infections in vivo to test whether sphingosine could potentially be used as a novel drug against tuberculosis. Sphingosine inhibited mycobacterial growth and eradicated mycobacteria in vitro. Mechanistically, sphingosine increased bacterial membrane permeability and induced marked changes on the bacterial plasma membrane evidenced by electron microscopy studies. Administration of sphingosine in a mouse model of pulmonary infection with Bacillus Calmette-Guérin (BCG) greatly reduced the number of bacteria in the lung and prevented pulmonary inflammation. Furthermore, infection of ex vivo human lung tissue samples with BCG and treatment with sphingosine showed that sphingosine also kills BCG in human bronchi. Our findings suggest that sphingosine may be a potential therapeutic intervention against mycobacterial infections. KEY MESSAGES: Sphingosine inhibits mycobacterial growth in vitro. Sphingosine disrupts bacterial membrane integrity. Sphingosine reduces bacterial load in mouse pulmonary infection model. Sphingosine eradicates mycobacteria in human bronchi ex vivo.
Collapse
Affiliation(s)
- Yuqing Wu
- Department of Molecular Biology, Institute of Molecular Biology, University Hospital Essen, University Duisburg-Essen, Essen, Germany.
- Shanghai Institute of Immunology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Fabian Schnitker
- Department of Molecular Biology, Institute of Molecular Biology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Yongjie Liu
- Department of Molecular Biology, Institute of Molecular Biology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
- Department of Thoracic and Cardiovascular Surgery, University Hospital Essen, University Duisburg-Essen, Thoracic Transplantation, West German Heart and Vascular Center, Essen, Germany
| | - Simone Keitsch
- Department of Molecular Biology, Institute of Molecular Biology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | | | - Fabian Schumacher
- Institute of Pharmacy, Department of Pharmacology and Toxicology, Freie Universität Berlin, Berlin, Germany
| | - Andrea Riehle
- Department of Molecular Biology, Institute of Molecular Biology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Barbara Pollmeier
- Department of Molecular Biology, Institute of Molecular Biology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Jan Kehrmann
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg, Essen, Germany
| | - Burkhard Kleuser
- Institute of Pharmacy, Department of Pharmacology and Toxicology, Freie Universität Berlin, Berlin, Germany
| | - Markus Kamler
- Department of Thoracic and Cardiovascular Surgery, University Hospital Essen, University Duisburg-Essen, Thoracic Transplantation, West German Heart and Vascular Center, Essen, Germany
| | - Ildiko Szabo
- Department of Biology, University of Padova, Padua, Italy
| | - Heike Grassmé
- Department of Molecular Biology, Institute of Molecular Biology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Erich Gulbins
- Department of Molecular Biology, Institute of Molecular Biology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
- Dept. of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
2
|
Yabaji SM, Zhernovkov V, Araveti PB, Lata S, Rukhlenko OS, Abdullatif SA, Vanvalkenburg A, Alekseev Y, Ma Q, Dayama G, Lau NC, Johnson WE, Bishai WR, Crossland NA, Campbell JD, Kholodenko BN, Gimelbrant AA, Kobzik L, Kramnik I. Lipid Peroxidation and Type I Interferon Coupling Fuels Pathogenic Macrophage Activation Causing Tuberculosis Susceptibility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.03.05.583602. [PMID: 38496444 PMCID: PMC10942339 DOI: 10.1101/2024.03.05.583602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
A quarter of human population is infected with Mycobacterium tuberculosis, but less than 10% of those infected develop pulmonary TB. We developed a genetically defined sst1-susceptible mouse model that uniquely reproduces a defining feature of human TB: the development of necrotic lung granulomas and determined that the sst1-susceptible phenotype was driven by the aberrant macrophage activation. This study demonstrates that the aberrant response of the sst1-susceptible macrophages to prolonged stimulation with TNF is primarily driven by conflicting Myc and antioxidant response pathways leading to a coordinated failure 1) to properly sequester intracellular iron and 2) to activate ferroptosis inhibitor enzymes. Consequently, iron-mediated lipid peroxidation fueled Ifn-beta superinduction and sustained the Type I Interferon (IFN-I) pathway hyperactivity that locked the sst1-susceptible macrophages in a state of unresolving stress and compromised their resistance to Mtb. The accumulation of the aberrantly activated, stressed, macrophages within granuloma microenvironment led to the local failure of anti-tuberculosis immunity and tissue necrosis. The upregulation of Myc pathway in peripheral blood cells of human TB patients was significantly associated with poor outcomes of TB treatment. Thus, Myc dysregulation in activated macrophages results in an aberrant macrophage activation and represents a novel target for host-directed TB therapies.
Collapse
|
3
|
Russell DG, Simwela NV, Mattila JT, Flynn J, Mwandumba HC, Pisu D. How macrophage heterogeneity affects tuberculosis disease and therapy. Nat Rev Immunol 2025; 25:370-384. [PMID: 39774813 DOI: 10.1038/s41577-024-01124-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2024] [Indexed: 01/11/2025]
Abstract
Macrophages are the primary host cell type for infection by Mycobacterium tuberculosis in vivo. Macrophages are also key immune effector cells that mediate the control of bacterial growth. However, the specific macrophage phenotypes that are required for optimal immune control of M. tuberculosis infection in vivo remain poorly defined. There are two distinct macrophage lineages in the lung, comprising embryonically derived, tissue-resident alveolar macrophages and recruited, blood monocyte-derived interstitial macrophages. Recent studies have shown that these lineages respond divergently to similar immune environments within the tuberculosis granuloma. Here, we discuss how the differing responses of macrophage lineages might affect the control or progression of tuberculosis disease. We suggest that the ability to reprogramme macrophage responses appropriately, through immunological or chemotherapeutic routes, could help to optimize vaccines and drug regimens for tuberculosis.
Collapse
Affiliation(s)
- David G Russell
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
| | - Nelson V Simwela
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Joshua T Mattila
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - JoAnne Flynn
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Henry C Mwandumba
- Malawi Liverpool Wellcome Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Davide Pisu
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
- Department of Microbial Pathogenesis and Immunology, Texas A&M School of Medicine, Bryan, TX, USA
| |
Collapse
|
4
|
Marcantonio E, Burger AD, Chang KH, Hoffmann FW, Fu Y, Khadka VS, Smagghe BJ, Deng Y, Hoffmann PR, Prisic S. Zinc-limited Mycobacterium tuberculosis stimulate distinct responses in macrophages compared with standard zinc-replete bacteria. Infect Immun 2025; 93:e0057824. [PMID: 39903447 PMCID: PMC11895486 DOI: 10.1128/iai.00578-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 12/23/2024] [Indexed: 02/06/2025] Open
Abstract
Tuberculosis (TB) is notoriously difficult to treat, likely due to the complex host-pathogen interactions driven by pathogen heterogeneity. An understudied area of TB pathogenesis is host responses to Mycobacterium tuberculosis bacteria (Mtb) that are limited in zinc ions. This distinct population resides in necrotic granulomas and sputum and could be the key player in tuberculosis pathogenicity. In this study, we tested the hypothesis that macrophages differentiate between Mtb grown under zinc limitation or in the standard zinc-replete medium. Using several macrophage infection models, such as murine RAW 264.7 and murine bone marrow-derived macrophages (BMDMs), as well as human THP-1-derived macrophages, we show that macrophages infected with zinc-limited Mtb have increased bacterial burden compared with macrophages infected with zinc-replete Mtb. We further demonstrate that macrophage infection with zinc-limited Mtb trigger higher production of reactive oxygen species (ROS) and cause more macrophage death. Furthermore, the increased ROS production is linked to the increased phagocytosis of zinc-limited Mtb, whereas cell death is not. Finally, transcriptional analysis of RAW 264.7 macrophages demonstrates that macrophages have more robust pro-inflammatory responses when infected with zinc-limited Mtb than zinc-replete Mtb. Together, our findings suggest that Mtb's access to zinc affects their interaction with macrophages and that zinc-limited Mtb may be influencing TB progression. Therefore, zinc availability in bacterial growth medium should be considered in TB drug and vaccine developments.
Collapse
Affiliation(s)
- Endrei Marcantonio
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, Hawaii, USA
| | - Allexa D. Burger
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, Hawaii, USA
| | - Kelly H. Chang
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, Hawaii, USA
| | - Fukun W. Hoffmann
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawai'i at Mānoa, Honolulu, Hawaii, USA
| | - Yuanyuan Fu
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawai'i at Mānoa, Honolulu, Hawaii, USA
| | - Vedbar S. Khadka
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawai'i at Mānoa, Honolulu, Hawaii, USA
| | - Benoit J. Smagghe
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, Hawaii, USA
| | - Youping Deng
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawai'i at Mānoa, Honolulu, Hawaii, USA
| | - Peter R. Hoffmann
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawai'i at Mānoa, Honolulu, Hawaii, USA
| | - Sladjana Prisic
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, Hawaii, USA
| |
Collapse
|
5
|
Kotlyarov S, Oskin D. The Role of Inflammation in the Pathogenesis of Comorbidity of Chronic Obstructive Pulmonary Disease and Pulmonary Tuberculosis. Int J Mol Sci 2025; 26:2378. [PMID: 40141021 PMCID: PMC11942565 DOI: 10.3390/ijms26062378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/23/2025] [Accepted: 03/05/2025] [Indexed: 03/28/2025] Open
Abstract
The comorbid course of chronic obstructive pulmonary disease (COPD) and pulmonary tuberculosis is an important medical and social problem. Both diseases, although having different etiologies, have many overlapping relationships that mutually influence their course and prognosis. The aim of the current review is to discuss the role of different immune mechanisms underlying inflammation in COPD and pulmonary tuberculosis. These mechanisms are known to involve both the innate and adaptive immune system, including various cellular and intercellular interactions. There is growing evidence that immune mechanisms involved in the pathogenesis of both COPD and tuberculosis may jointly contribute to the tuberculosis-associated obstructive pulmonary disease (TOPD) phenotype. Several studies have reported prior tuberculosis as a risk factor for COPD. Therefore, the study of the mechanisms that link COPD and tuberculosis is of considerable clinical interest.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| | - Dmitry Oskin
- Department of Infectious Diseases and Phthisiology, Ryazan State Medical University, 390026 Ryazan, Russia
| |
Collapse
|
6
|
Zheng W, Borja M, Dorman LC, Liu J, Zhou A, Seng A, Arjyal R, Sunshine S, Nalyvayko A, Pisco AO, Rosenberg OS, Neff N, Zha BS. Single-cell analysis reveals Mycobacterium tuberculosis ESX-1-mediated accumulation of permissive macrophages in infected mouse lungs. SCIENCE ADVANCES 2025; 11:eadq8158. [PMID: 39813329 PMCID: PMC11734715 DOI: 10.1126/sciadv.adq8158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 12/09/2024] [Indexed: 01/18/2025]
Abstract
Mycobacterium tuberculosis (MTB) ESX-1, a type VII secretion system, is a key virulence determinant contributing to MTB's survival within lung mononuclear phagocytes (MNPs), but its effect on MNP recruitment and differentiation remains unknown. Here, using multiple single-cell RNA sequencing techniques, we studied the role of ESX-1 in MNP heterogeneity and response in mice and murine bone marrow-derived macrophages (BMDM). We found that ESX-1 is required for MTB to recruit diverse MNP subsets with high MTB burden. Further, MTB induces a transcriptional signature of immune evasion in lung macrophages and BMDM in an ESX-1-dependent manner. Spatial transcriptomics revealed an up-regulation of permissive features within MTB lesions, where monocyte-derived macrophages concentrate near MTB-infected cells. Together, our findings suggest that MTB ESX-1 facilitates the recruitment and differentiation of MNPs, which MTB can infect and manipulate for survival. Our dataset across various models and methods could contribute to the broader understanding of recruited cell heterogeneity during MTB lung infection.
Collapse
Affiliation(s)
- Weihao Zheng
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, CA, USA
| | | | | | | | - Andy Zhou
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Amanda Seng
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | | | - Sara Sunshine
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| | - Alina Nalyvayko
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, CA, USA
| | | | - Oren S. Rosenberg
- Division of Infectious Diseases, Department of Medicine, University of California, San Francisco, California, USA
| | - Norma Neff
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Beth Shoshana Zha
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California, San Francisco, CA, USA
| |
Collapse
|
7
|
Meade RK, Smith CM. Immunological roads diverged: mapping tuberculosis outcomes in mice. Trends Microbiol 2025; 33:15-33. [PMID: 39034171 DOI: 10.1016/j.tim.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/23/2024]
Abstract
The journey from phenotypic observation to causal genetic mechanism is a long and challenging road. For pathogens like Mycobacterium tuberculosis (Mtb), which causes tuberculosis (TB), host-pathogen coevolution has spanned millennia, costing millions of human lives. Mammalian models can systematically recapitulate host genetic variation, producing a spectrum of disease outcomes. Leveraging genome sequences and deep phenotyping data from infected mouse genetic reference populations (GRPs), quantitative trait locus (QTL) mapping approaches have successfully identified host genomic regions associated with TB phenotypes. Here, we review the ongoing optimization of QTL mapping study design alongside advances in mouse GRPs. These next-generation resources and approaches have enabled identification of novel host-pathogen interactions governing one of the most prevalent infectious diseases in the world today.
Collapse
Affiliation(s)
- Rachel K Meade
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA; University Program in Genetics and Genomics, Duke University, Durham, NC, USA
| | - Clare M Smith
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA; University Program in Genetics and Genomics, Duke University, Durham, NC, USA.
| |
Collapse
|
8
|
Lyu J, Narum DE, Baldwin SL, Larsen SE, Bai X, Griffith DE, Dartois V, Naidoo T, Steyn AJC, Coler RN, Chan ED. Understanding the development of tuberculous granulomas: insights into host protection and pathogenesis, a review in humans and animals. Front Immunol 2024; 15:1427559. [PMID: 39717773 PMCID: PMC11663721 DOI: 10.3389/fimmu.2024.1427559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 11/18/2024] [Indexed: 12/25/2024] Open
Abstract
Granulomas, organized aggregates of immune cells which form in response to Mycobacterium tuberculosis (Mtb), are characteristic but not exclusive of tuberculosis (TB). Despite existing investigations on TB granulomas, the determinants that differentiate host-protective granulomas from granulomas that contribute to TB pathogenesis are often disputed. Thus, the goal of this narrative review is to help clarify the existing literature on such determinants. We adopt the a priori view that TB granulomas are host-protective organelles and discuss the molecular and cellular determinants that induce protective granulomas and those that promote their failure. While reports about protective TB granulomas and their failure may initially seem contradictory, it is increasingly recognized that either deficiencies or excesses of the molecular and cellular components in TB granuloma formation may be detrimental to the host. More specifically, insufficient or excessive expression/representation of the following components have been reported to skew granulomas toward the less protective phenotype: (i) epithelioid macrophages; (ii) type 1 adaptive immune response; (iii) type 2 adaptive immune response; (iv) tumor necrosis factor; (v) interleukin-12; (vi) interleukin-17; (vii) matrix metalloproteinases; (viii) hypoxia in the TB granulomas; (ix) hypoxia inducible factor-1 alpha; (x) aerobic glycolysis; (xi) indoleamine 2,3-dioxygenase activity; (xii) heme oxygenase-1 activity; (xiii) immune checkpoint; (xiv) leukotriene A4 hydrolase activity; (xv) nuclear-factor-kappa B; and (xvi) transforming growth factor-beta. Rather, more precise and timely coordinated immune responses appear essential for eradication or containment of Mtb infection. Since there are several animal models of infection with Mtb, other species within the Mtb complex, and the surrogate Mycobacterium marinum - whether natural (cattle, elephants) or experimental (zebrafish, mouse, guinea pig, rabbit, mini pig, goat, non-human primate) infections - we also compared the TB granulomatous response and other pathologic lung lesions in various animals infected with one of these mycobacteria with that of human pulmonary TB. Identifying components that dictate the formation of host-protective granulomas and the circumstances that result in their failure can enhance our understanding of the macrocosm of human TB and facilitate the development of novel remedies - whether they be direct therapeutics or indirect interventions - to efficiently eliminate Mtb infection and prevent its pathologic sequelae.
Collapse
Affiliation(s)
- Jiwon Lyu
- Division of Pulmonary and Critical Medicine, Soon Chun Hyang University Cheonan Hospital, Seoul, Republic of Korea
- Department of Academic Affairs, National Jewish Health, Denver, CO, United States
| | - Drew E. Narum
- Department of Academic Affairs, National Jewish Health, Denver, CO, United States
| | - Susan L. Baldwin
- Center for Global Infectious Diseases, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Sasha E. Larsen
- Center for Global Infectious Diseases, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Xiyuan Bai
- Department of Academic Affairs, National Jewish Health, Denver, CO, United States
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, United States
| | - David E. Griffith
- Department of Medicine, National Jewish Health, Denver, CO, United States
| | - Véronique Dartois
- Center for Discovery and Innovation, Hackensack Meridian School of Medicine, Nutley, NJ, United States
| | - Threnesan Naidoo
- Departments of Forensic & Legal Medicine and Laboratory Medicine & Pathology, Faculty of Medicine & Health Sciences, Walter Sisulu University, Mthatha, South Africa
| | - Adrie J. C. Steyn
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Department of Microbiology and Centers for AIDS Research and Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Rhea N. Coler
- Center for Global Infectious Diseases, Seattle Children’s Research Institute, Seattle, WA, United States
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, United States
- Department of Global Health, University of Washington, Seattle, WA, United States
| | - Edward D. Chan
- Department of Academic Affairs, National Jewish Health, Denver, CO, United States
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, United States
- Department of Medicine, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, United States
| |
Collapse
|
9
|
Nikonenko B, Logunova N, Egorova A, Kapina M, Sterzhanova N, Bocharova I, Kondratieva E, Riabova O, Semyonova L, Makarov V. Efficacy of macozinone in mice with genetically diverse susceptibility to Mycobacterium tuberculosis infection. Microbes Infect 2024; 26:105376. [PMID: 38852904 DOI: 10.1016/j.micinf.2024.105376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/04/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
Host heterogeneity in pulmonary tuberculosis leads to varied responses to infection and drug treatment. The present portfolio of anti-TB drugs needs to be boosted with new drugs and drug regimens. Macozinone, a clinical-stage molecule targeting the essential enzyme, DprE1, represents an attractive option. Mice (I/St, B6, (AKRxI/St)F1, B6.I-100 and B6.I-139) genetically diverse susceptibility to Mycobacterium tuberculosis (Mtb) H37Rv infection were subjected to aerosol- or intravenous infection to determine the efficacy of macozinone (MCZ). They were treated with macozinone or reference drugs (isoniazid, rifampicin). Lung and spleen bacterial burdens were measured at four and eight weeks post-infection. Lung histology was evaluated at four weeks of treatment. Treatment with macozinone resulted in a statistically significant reduction in the bacterial load in the lungs and spleen as early as four weeks after treatment initiation in mice susceptible or resistant to Mtb infection. In the TB hypoxic granuloma model, macozinone was more potent than rifampicin in reducing the CFU counts. However, histopathological analysis revealed significant lung changes in I/St mice after eight weeks of treatment initiation. Macozinone demonstrated efficacy to varying degrees across all mouse models of Mtb infection used. These results should facilitate its further development and potential introduction into clinical practice.
Collapse
Affiliation(s)
- Boris Nikonenko
- Department of Immunology, Central Tuberculosis Research Institute, 2 Yauzskaya Alley, 107564 Moscow, Russia
| | - Nadezhda Logunova
- Department of Immunology, Central Tuberculosis Research Institute, 2 Yauzskaya Alley, 107564 Moscow, Russia
| | - Anna Egorova
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences (Research Centre of Biotechnology RAS), 33-2 Leninsky Prospect, 119071 Moscow, Russia
| | - Marina Kapina
- Department of Immunology, Central Tuberculosis Research Institute, 2 Yauzskaya Alley, 107564 Moscow, Russia
| | - Natalia Sterzhanova
- Department of Immunology, Central Tuberculosis Research Institute, 2 Yauzskaya Alley, 107564 Moscow, Russia
| | - Irina Bocharova
- Department of Immunology, Central Tuberculosis Research Institute, 2 Yauzskaya Alley, 107564 Moscow, Russia
| | - Elena Kondratieva
- Department of Immunology, Central Tuberculosis Research Institute, 2 Yauzskaya Alley, 107564 Moscow, Russia
| | - Olga Riabova
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences (Research Centre of Biotechnology RAS), 33-2 Leninsky Prospect, 119071 Moscow, Russia
| | - Lyudmila Semyonova
- Department of Immunology, Central Tuberculosis Research Institute, 2 Yauzskaya Alley, 107564 Moscow, Russia
| | - Vadim Makarov
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences (Research Centre of Biotechnology RAS), 33-2 Leninsky Prospect, 119071 Moscow, Russia.
| |
Collapse
|
10
|
Auld SC, Barczak AK, Bishai W, Coussens AK, Dewi IMW, Mitini-Nkhoma SC, Muefong C, Naidoo T, Pooran A, Stek C, Steyn AJC, Tezera L, Walker NF. Pathogenesis of Post-Tuberculosis Lung Disease: Defining Knowledge Gaps and Research Priorities at the Second International Post-Tuberculosis Symposium. Am J Respir Crit Care Med 2024; 210:979-993. [PMID: 39141569 PMCID: PMC11531093 DOI: 10.1164/rccm.202402-0374so] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 08/13/2024] [Indexed: 08/16/2024] Open
Abstract
Post-tuberculosis (post-TB) lung disease is increasingly recognized as a major contributor to the global burden of chronic lung disease, with recent estimates indicating that over half of TB survivors have impaired lung function after successful completion of TB treatment. However, the pathologic mechanisms that contribute to post-TB lung disease are not well understood, thus limiting the development of therapeutic interventions to improve long-term outcomes after TB. This report summarizes the work of the Pathogenesis and Risk Factors Committee for the Second International Post-Tuberculosis Symposium, which took place in Stellenbosch, South Africa, in April 2023. The committee first identified six areas with high translational potential: 1) tissue matrix destruction, including the role of matrix metalloproteinase dysregulation and neutrophil activity; 2) fibroblasts and profibrotic activity; 3) granuloma fate and cell death pathways; 4) mycobacterial factors, including pathogen burden; 5) animal models; and 6) the impact of key clinical risk factors, including HIV, diabetes, smoking, malnutrition, and alcohol. We share the key findings from a literature review of those areas, highlighting knowledge gaps and areas where further research is needed.
Collapse
Affiliation(s)
- Sara C. Auld
- Departments of Medicine, Epidemiology, and Global Health, Emory University School of Medicine and Rollins School of Public Health, Atlanta, Georgia
| | - Amy K. Barczak
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard, Cambridge, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - William Bishai
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Anna K. Coussens
- Infectious Diseases and Immune Defence Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Intan M. W. Dewi
- Microbiology Division, Department of Biomedical Sciences, Faculty of Medicine, and
- Research Center for Care and Control of Infectious Diseases, Universitas Padjadjaran, Bandung, Indonesia
| | | | - Caleb Muefong
- Department of Microbiology, University of Chicago, Chicago, Illinois
| | - Threnesan Naidoo
- Department of Forensic & Legal Medicine and
- Department of Laboratory Medicine & Pathology, Faculty of Medicine & Health Sciences, Walter Sisulu University, Eastern Cape, South Africa
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Anil Pooran
- Centre for Lung Infection and Immunity, Division of Pulmonology, Department of Medicine, and
- University of Cape Town Lung Institute and Medical Research Council/University of Cape Town Centre for the Study of Antimicrobial Resistance, Cape Town, South Africa
| | - Cari Stek
- Wellcome Center for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Adrie J. C. Steyn
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Department of Microbiology and
- Centers for AIDS Research and Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Liku Tezera
- National Institute for Health and Care Research Biomedical Research Centre, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Naomi F. Walker
- Department of Clinical Sciences and Centre for Tuberculosis Research, Liverpool School of Tropical Medicine, Liverpool, United Kingdom; and
- Tropical and Infectious Diseases Unit, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| |
Collapse
|
11
|
Andrews JT, Zhang Z, Prasad GVRK, Huey F, Nazarova EV, Wang J, Ranaraja A, Weinkopff T, Li LX, Mu S, Birrer MJ, Huang SCC, Zhang N, Argüello RJ, Philips JA, Mattila JT, Huang L. Metabolically active neutrophils represent a permissive niche for Mycobacterium tuberculosis. Mucosal Immunol 2024; 17:825-842. [PMID: 38844208 PMCID: PMC11493682 DOI: 10.1016/j.mucimm.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 06/09/2024]
Abstract
Mycobacterium tuberculosis (Mtb)-infected neutrophils are often found in the airways of patients with active tuberculosis (TB), and excessive recruitment of neutrophils to the lung is linked to increased bacterial burden and aggravated pathology in TB. The basis for the permissiveness of neutrophils for Mtb and the ability to be pathogenic in TB has been elusive. Here, we identified metabolic and functional features of neutrophils that contribute to their permissiveness in Mtb infection. Using single-cell metabolic and transcriptional analyses, we found that neutrophils in the Mtb-infected lung displayed elevated mitochondrial metabolism, which was largely attributed to the induction of activated neutrophils with enhanced metabolic activities. The activated neutrophil subpopulation was also identified in the lung granulomas from Mtb-infected non-human primates. Functionally, activated neutrophils harbored more viable bacteria and displayed enhanced lipid uptake and accumulation. Surprisingly, we found that interferon-γ promoted the activation of lung neutrophils during Mtb infection. Lastly, perturbation of lipid uptake pathways selectively compromised Mtb survival in activated neutrophils. These findings suggest that neutrophil heterogeneity and metabolic diversity are key to their permissiveness for Mtb and that metabolic pathways in neutrophils represent potential host-directed therapeutics in TB.
Collapse
Affiliation(s)
- J Tucker Andrews
- Department of Microbiology and Immunology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Zijing Zhang
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - G V R Krishna Prasad
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Fischer Huey
- Department of Microbiology and Immunology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Evgeniya V Nazarova
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Jocelyn Wang
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Ananya Ranaraja
- Department of Microbiology and Immunology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Tiffany Weinkopff
- Department of Microbiology and Immunology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Lin-Xi Li
- Department of Microbiology and Immunology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Shengyu Mu
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Michael J Birrer
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Stanley Ching-Cheng Huang
- Pelotonia Institute for Immuno-Oncology, The Ohio State University College of Medicine, Columbus, OH, USA; Department of Microbial Infection and Immunity, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Nan Zhang
- Immunology, Metastasis & Microenvironment Program, Ellen and Ronald Caplan Cancer Center, The Wistar Institute, Philadelphia, PA, USA
| | - Rafael J Argüello
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Jennifer A Philips
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA; Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Joshua T Mattila
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lu Huang
- Department of Microbiology and Immunology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
12
|
Sarathy JP. Molecular and microbiological methods for the identification of nonreplicating Mycobacterium tuberculosis. PLoS Pathog 2024; 20:e1012595. [PMID: 39383167 PMCID: PMC11463790 DOI: 10.1371/journal.ppat.1012595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024] Open
Abstract
Chronic tuberculosis (TB) disease, which requires months-long chemotherapy with multiple antibiotics, is defined by diverse pathological manifestations and bacterial phenotypes. Targeting drug-tolerant bacteria in the host is critical to achieving a faster and durable cure for TB. In order to facilitate this field of research, we need to consider the physiology of persistent MTB during infection, which is often associated with the nonreplicating (NR) state. However, the traditional approach to quantifying bacterial burden through colony enumeration alone only informs on the abundance of live bacilli at the time of sampling, and provides an incomplete picture of the replicative state of the pathogen and the extent to which bacterial replication is balanced by ongoing cell death. Modern approaches to profiling bacterial replication status provide a better understanding of inter- and intra-population dynamics under different culture conditions and in distinct host microenvironments. While some methods use molecular markers of DNA replication and cell division, other approaches take advantage of advances in the field of microfluidics and live-cell microscopy. Considerable effort has been made over the past few decades to develop preclinical in vivo models of TB infection and some are recognized for more closely recapitulating clinical disease pathology than others. Unique lesion compartments presenting different environmental conditions produce significant heterogeneity between Mycobacterium tuberculosis populations within the host. While cellular lesion compartments appear to be more permissive of ongoing bacterial replication, caseous foci are associated with the maintenance of M. tuberculosis in a state of static equilibrium. The accurate identification of nonreplicators and where they hide within the host have significant implications for the way novel chemotherapeutic agents and regimens are designed for persistent infections.
Collapse
Affiliation(s)
- Jansy Passiflora Sarathy
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, United States of America
- Hackensack Meridian School of Medicine, Department of Medical Sciences, Nutley, New Jersey, United States of America
| |
Collapse
|
13
|
Dartois V, Bonfield TL, Boyce JP, Daley CL, Dick T, Gonzalez-Juarrero M, Gupta S, Kramnik I, Lamichhane G, Laughon BE, Lorè NI, Malcolm KC, Olivier KN, Tuggle KL, Jackson M. Preclinical murine models for the testing of antimicrobials against Mycobacterium abscessus pulmonary infections: Current practices and recommendations. Tuberculosis (Edinb) 2024; 147:102503. [PMID: 38729070 PMCID: PMC11168888 DOI: 10.1016/j.tube.2024.102503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/08/2024] [Accepted: 03/17/2024] [Indexed: 05/12/2024]
Abstract
Mycobacterium abscessus, a rapidly growing nontuberculous mycobacterium, is increasingly recognized as an important pathogen of the human lung, disproportionally affecting people with cystic fibrosis (CF) and other susceptible individuals with non-CF bronchiectasis and compromised immune functions. M. abscessus infections are extremely difficult to treat due to intrinsic resistance to many antibiotics, including most anti-tuberculous drugs. Current standard-of-care chemotherapy is long, includes multiple oral and parenteral repurposed drugs, and is associated with significant toxicity. The development of more effective oral antibiotics to treat M. abscessus infections has thus emerged as a high priority. While murine models have proven instrumental in predicting the efficacy of therapeutic treatments for M. tuberculosis infections, the preclinical evaluation of drugs against M. abscessus infections has proven more challenging due to the difficulty of establishing a progressive, sustained, pulmonary infection with this pathogen in mice. To address this issue, a series of three workshops were hosted in 2023 by the Cystic Fibrosis Foundation (CFF) and the National Institute of Allergy and Infectious Diseases (NIAID) to review the current murine models of M. abscessus infections, discuss current challenges and identify priorities toward establishing validated and globally harmonized preclinical models. This paper summarizes the key points from these workshops. The hope is that the recommendations that emerged from this exercise will facilitate the implementation of informative murine models of therapeutic efficacy testing across laboratories, improve reproducibility from lab-to-lab and accelerate preclinical-to-clinical translation.
Collapse
Affiliation(s)
- Véronique Dartois
- Center for Discovery and Innovation & Department of Medical Sciences, Hackensack Meridian School of Medicine, Hackensack Meridian Health, Nutley, NJ, USA.
| | - Tracey L Bonfield
- Genetics and Genome Sciences and National Center for Regenerative Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Jim P Boyce
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Charles L Daley
- Department of Medicine, National Jewish Health, Denver, CO, USA; Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Thomas Dick
- Center for Discovery and Innovation & Department of Medical Sciences, Hackensack Meridian School of Medicine, Hackensack Meridian Health, Nutley, NJ, USA; Department of Microbiology and Immunology, Georgetown University, Washington, DC, USA
| | - Mercedes Gonzalez-Juarrero
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523-1682, USA
| | - Shashank Gupta
- Laboratory of Chronic Airway Infection, Pulmonary Branch, National Heart, Lung, and Blood Institute, Bethesda, MD, USA; Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Igor Kramnik
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, 02215, USA; Department of Medicine, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Gyanu Lamichhane
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Barbara E Laughon
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Nicola I Lorè
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Kenneth C Malcolm
- Department of Medicine, National Jewish Health, Denver, CO, USA; Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Kenneth N Olivier
- Department of Medicine, Division of Pulmonary Diseases and Critical Care Medicine, University of North Carolina, USA; Marsico Lung Institute, Chapel Hill, 27599-7248, NC, USA
| | | | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523-1682, USA.
| |
Collapse
|
14
|
Gatti DM, Tyler AL, Mahoney JM, Churchill GA, Yener B, Koyuncu D, Gurcan MN, Niazi MKK, Tavolara T, Gower A, Dayao D, McGlone E, Ginese ML, Specht A, Alsharaydeh A, Tessier PA, Kurtz SL, Elkins KL, Kramnik I, Beamer G. Systems genetics uncover new loci containing functional gene candidates in Mycobacterium tuberculosis-infected Diversity Outbred mice. PLoS Pathog 2024; 20:e1011915. [PMID: 38861581 PMCID: PMC11195971 DOI: 10.1371/journal.ppat.1011915] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 06/24/2024] [Accepted: 04/17/2024] [Indexed: 06/13/2024] Open
Abstract
Mycobacterium tuberculosis infects two billion people across the globe, and results in 8-9 million new tuberculosis (TB) cases and 1-1.5 million deaths each year. Most patients have no known genetic basis that predisposes them to disease. Here, we investigate the complex genetic basis of pulmonary TB by modelling human genetic diversity with the Diversity Outbred mouse population. When infected with M. tuberculosis, one-third develop early onset, rapidly progressive, necrotizing granulomas and succumb within 60 days. The remaining develop non-necrotizing granulomas and survive longer than 60 days. Genetic mapping using immune and inflammatory mediators; and clinical, microbiological, and granuloma correlates of disease identified five new loci on mouse chromosomes 1, 2, 4, 16; and three known loci on chromosomes 3 and 17. Further, multiple positively correlated traits shared loci on chromosomes 1, 16, and 17 and had similar patterns of allele effects, suggesting these loci contain critical genetic regulators of inflammatory responses to M. tuberculosis. To narrow the list of candidate genes, we used a machine learning strategy that integrated gene expression signatures from lungs of M. tuberculosis-infected Diversity Outbred mice with gene interaction networks to generate scores representing functional relationships. The scores were used to rank candidates for each mapped trait, resulting in 11 candidate genes: Ncf2, Fam20b, S100a8, S100a9, Itgb5, Fstl1, Zbtb20, Ddr1, Ier3, Vegfa, and Zfp318. Although all candidates have roles in infection, inflammation, cell migration, extracellular matrix remodeling, or intracellular signaling, and all contain single nucleotide polymorphisms (SNPs), SNPs in only four genes (S100a8, Itgb5, Fstl1, Zfp318) are predicted to have deleterious effects on protein functions. We performed methodological and candidate validations to (i) assess biological relevance of predicted allele effects by showing that Diversity Outbred mice carrying PWK/PhJ alleles at the H-2 locus on chromosome 17 QTL have shorter survival; (ii) confirm accuracy of predicted allele effects by quantifying S100A8 protein in inbred founder strains; and (iii) infection of C57BL/6 mice deficient for the S100a8 gene. Overall, this body of work demonstrates that systems genetics using Diversity Outbred mice can identify new (and known) QTLs and functionally relevant gene candidates that may be major regulators of complex host-pathogens interactions contributing to granuloma necrosis and acute inflammation in pulmonary TB.
Collapse
Affiliation(s)
- Daniel M. Gatti
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Anna L. Tyler
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | | | | | - Bulent Yener
- Rensselaer Polytechnic Institute, Troy, New York, United States of America
| | - Deniz Koyuncu
- Rensselaer Polytechnic Institute, Troy, New York, United States of America
| | - Metin N. Gurcan
- Wake Forest University School of Medicine, Winston Salem, North Carolina, United States of America
| | - MK Khalid Niazi
- Wake Forest University School of Medicine, Winston Salem, North Carolina, United States of America
| | - Thomas Tavolara
- Wake Forest University School of Medicine, Winston Salem, North Carolina, United States of America
| | - Adam Gower
- Clinical and Translational Science Institute, Boston University, Boston, Massachusetts, United States of America
| | - Denise Dayao
- Tufts University Cummings School of Veterinary Medicine, North Grafton, Massachusetts, United States of America
| | - Emily McGlone
- Tufts University Cummings School of Veterinary Medicine, North Grafton, Massachusetts, United States of America
| | - Melanie L. Ginese
- Tufts University Cummings School of Veterinary Medicine, North Grafton, Massachusetts, United States of America
| | - Aubrey Specht
- Tufts University Cummings School of Veterinary Medicine, North Grafton, Massachusetts, United States of America
| | - Anas Alsharaydeh
- Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Philipe A. Tessier
- Department of Microbiology and Immunology, Laval University School of Medicine, Quebec, Canada
| | - Sherry L. Kurtz
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Karen L. Elkins
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Igor Kramnik
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, United States of America
| | - Gillian Beamer
- Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| |
Collapse
|
15
|
Tsareva A, Shelyakin PV, Shagina IA, Myshkin MY, Merzlyak EM, Kriukova VV, Apt AS, Linge IA, Chudakov DM, Britanova OV. Aberrant adaptive immune response underlies genetic susceptibility to tuberculosis. Front Immunol 2024; 15:1380971. [PMID: 38799462 PMCID: PMC11116662 DOI: 10.3389/fimmu.2024.1380971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/11/2024] [Indexed: 05/29/2024] Open
Abstract
Mycobacterium tuberculosis (Mtb) remains a major threat worldwide, although only a fraction of infected individuals develops tuberculosis (TB). TB susceptibility is shaped by multiple genetic factors, and we performed comparative immunological analysis of two mouse strains to uncover relevant mechanisms underlying susceptibility and resistance. C57BL/6 mice are relatively TB-resistant, whereas I/St mice are prone to develop severe TB, partly due to the MHC-II allelic variant that shapes suboptimal CD4+ T cell receptor repertoire. We investigated the repertoires of lung-infiltrating helper T cells and B cells at the progressed stage in both strains. We found that lung CD4+ T cell repertoires of infected C57BL/6 but not I/St mice contained convergent TCR clusters with functionally confirmed Mtb specificity. Transcriptomic analysis revealed a more prominent Th1 signature in C57BL/6, and expression of pro-inflammatory IL-16 in I/St lung-infiltrating helper T cells. The two strains also showed distinct Th2 signatures. Furthermore, the humoral response of I/St mice was delayed, less focused, and dominated by IgG/IgM isotypes, whereas C57BL/6 mice generated more Mtb antigen-focused IgA response. We conclude that the inability of I/St mice to produce a timely and efficient anti-Mtb adaptive immune responses arises from a suboptimal helper T cell landscape that also impacts the humoral response, leading to diffuse inflammation and severe disease.
Collapse
Affiliation(s)
- Anastasiia Tsareva
- Precision Oncology Division, Boston Gene Laboratory, Waltham, MA, United States
| | - Pavel V. Shelyakin
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
- Abu Dhabi Stem Cells Center, Abu Dhabi, United Arab Emirates
| | - Irina A. Shagina
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
- Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Mikhail Yu. Myshkin
- Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Ekaterina M. Merzlyak
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
- Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Valeriia V. Kriukova
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Alexander S. Apt
- Laboratory for Immunogenetics, Central Tuberculosis Research Institute, Moscow, Russia
| | - Irina A. Linge
- Laboratory for Immunogenetics, Central Tuberculosis Research Institute, Moscow, Russia
| | - Dmitriy M. Chudakov
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
- Abu Dhabi Stem Cells Center, Abu Dhabi, United Arab Emirates
- Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
- Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Olga V. Britanova
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
- Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| |
Collapse
|
16
|
Habjan E, Schouten GK, Speer A, van Ulsen P, Bitter W. Diving into drug-screening: zebrafish embryos as an in vivo platform for antimicrobial drug discovery and assessment. FEMS Microbiol Rev 2024; 48:fuae011. [PMID: 38684467 PMCID: PMC11078164 DOI: 10.1093/femsre/fuae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/24/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024] Open
Abstract
The rise of multidrug-resistant bacteria underlines the need for innovative treatments, yet the introduction of new drugs has stagnated despite numerous antimicrobial discoveries. A major hurdle is a poor correlation between promising in vitro data and in vivo efficacy in animal models, which is essential for clinical development. Early in vivo testing is hindered by the expense and complexity of existing animal models. Therefore, there is a pressing need for cost-effective, rapid preclinical models with high translational value. To overcome these challenges, zebrafish embryos have emerged as an attractive model for infectious disease studies, offering advantages such as ethical alignment, rapid development, ease of maintenance, and genetic manipulability. The zebrafish embryo infection model, involving microinjection or immersion of pathogens and potential antibiotic hit compounds, provides a promising solution for early-stage drug screening. It offers a cost-effective and rapid means of assessing the efficacy, toxicity and mechanism of action of compounds in a whole-organism context. This review discusses the experimental design of this model, but also its benefits and challenges. Additionally, it highlights recently identified compounds in the zebrafish embryo infection model and discusses the relevance of the model in predicting the compound's clinical potential.
Collapse
Affiliation(s)
- Eva Habjan
- Department of Medical Microbiology and Infection Control, Amsterdam UMC, Location VU Medical Center,De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Gina K Schouten
- Department of Medical Microbiology and Infection Control, Amsterdam UMC, Location VU Medical Center,De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Alexander Speer
- Department of Medical Microbiology and Infection Control, Amsterdam UMC, Location VU Medical Center,De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Peter van Ulsen
- Section Molecular Microbiology of A-LIFE, Vrije Universiteit, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Wilbert Bitter
- Department of Medical Microbiology and Infection Control, Amsterdam UMC, Location VU Medical Center,De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
- Section Molecular Microbiology of A-LIFE, Vrije Universiteit, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
17
|
Zheng W, Borja M, Dorman L, Liu J, Zhou A, Seng A, Arjyal R, Sunshine S, Nalyvayko A, Pisco A, Rosenberg O, Neff N, Zha BS. How Mycobacterium tuberculosis builds a home: Single-cell analysis reveals M. tuberculosis ESX-1-mediated accumulation of anti-inflammatory macrophages in infected mouse lungs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.20.590421. [PMID: 38712150 PMCID: PMC11071417 DOI: 10.1101/2024.04.20.590421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Mycobacterium tuberculosis (MTB) infects and replicates in lung mononuclear phagocytes (MNPs) with astounding ability to evade elimination. ESX-1, a type VII secretion system, acts as a virulence determinant that contributes to MTB's ability to survive within MNPs, but its effect on MNP recruitment and/or differentiation remains unknown. Here, using single-cell RNA sequencing, we studied the role of ESX-1 in MNP heterogeneity and response in mice and murine bone marrow-derived macrophages (BMDM). We found that ESX-1 is required for MTB to recruit diverse MNP subsets with high MTB burden. Further, MTB induces an anti-inflammatory signature in MNPs and BMDM in an ESX-1 dependent manner. Similarly, spatial transcriptomics revealed an upregulation of anti-inflammatory signals in MTB lesions, where monocyte-derived macrophages concentrate near MTB-infected cells. Together, our findings suggest that MTB ESX-1 mediates the recruitment and differentiation of anti-inflammatory MNPs, which MTB can infect and manipulate for survival.
Collapse
|
18
|
Gern BH, Klas JM, Foster KA, Cohen SB, Plumlee CR, Duffy FJ, Neal ML, Halima M, Gustin AT, Diercks AH, Aderem A, Gale M, Aitchison JD, Gerner MY, Urdahl KB. CD4-mediated immunity shapes neutrophil-driven tuberculous pathology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.12.589315. [PMID: 38659794 PMCID: PMC11042216 DOI: 10.1101/2024.04.12.589315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Pulmonary Mycobacterium tuberculosis (Mtb) infection results in highly heterogeneous lesions ranging from granulomas with central necrosis to those primarily comprised of alveolitis. While alveolitis has been associated with prior immunity in human post-mortem studies, the drivers of these distinct pathologic outcomes are poorly understood. Here, we show that these divergent lesion structures can be modeled in C3HeB/FeJ mice and are regulated by prior immunity. Using quantitative imaging, scRNAseq, and flow cytometry, we demonstrate that Mtb infection in the absence of prior immunity elicits dysregulated neutrophil recruitment and necrotic granulomas. In contrast, prior immunity induces rapid recruitment and activation of T cells, local macrophage activation, and diminished late neutrophil responses. Depletion studies at distinct infection stages demonstrated that neutrophils are required for early necrosis initiation and necrosis propagation at chronic stages, whereas early CD4 T cell responses prevent neutrophil feedforward circuits and necrosis. Together, these studies reveal fundamental determinants of tuberculosis lesion structure and pathogenesis, which have important implications for new strategies to prevent or treat tuberculosis.
Collapse
Affiliation(s)
- Benjamin H Gern
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, United States of America
- University of Washington, Dept. of Pediatrics, Seattle, Washington, United States of America
| | - Josepha M Klas
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, United States of America
| | - Kimberly A Foster
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, United States of America
- University of Washington, Dept. of Immunology, Seattle, Washington, United States of America
| | - Sara B Cohen
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, United States of America
| | - Courtney R Plumlee
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, United States of America
| | - Fergal J Duffy
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, United States of America
| | - Maxwell L Neal
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, United States of America
| | - Mehnaz Halima
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, United States of America
| | - Andrew T Gustin
- University of Washington, Dept. of Immunology, Seattle, Washington, United States of America
| | - Alan H Diercks
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, United States of America
| | - Alan Aderem
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, United States of America
| | - Michael Gale
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, United States of America
- University of Washington, Dept. of Immunology, Seattle, Washington, United States of America
| | - John D Aitchison
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, United States of America
| | - Michael Y Gerner
- University of Washington, Dept. of Immunology, Seattle, Washington, United States of America
| | - Kevin B Urdahl
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, United States of America
- University of Washington, Dept. of Pediatrics, Seattle, Washington, United States of America
- University of Washington, Dept. of Immunology, Seattle, Washington, United States of America
- Lead Contact
| |
Collapse
|
19
|
Gatti DM, Tyler AL, Mahoney JM, Churchill GA, Yener B, Koyuncu D, Gurcan MN, Niazi M, Tavolara T, Gower AC, Dayao D, McGlone E, Ginese ML, Specht A, Alsharaydeh A, Tessier PA, Kurtz SL, Elkins K, Kramnik I, Beamer G. Systems genetics uncover new loci containing functional gene candidates in Mycobacterium tuberculosis-infected Diversity Outbred mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.21.572738. [PMID: 38187647 PMCID: PMC10769337 DOI: 10.1101/2023.12.21.572738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Mycobacterium tuberculosis, the bacillus that causes tuberculosis (TB), infects 2 billion people across the globe, and results in 8-9 million new TB cases and 1-1.5 million deaths each year. Most patients have no known genetic basis that predisposes them to disease. We investigated the complex genetic basis of pulmonary TB by modelling human genetic diversity with the Diversity Outbred mouse population. When infected with M. tuberculosis, one-third develop early onset, rapidly progressive, necrotizing granulomas and succumb within 60 days. The remaining develop non-necrotizing granulomas and survive longer than 60 days. Genetic mapping using clinical indicators of disease, granuloma histopathological features, and immune response traits identified five new loci on mouse chromosomes 1, 2, 4, 16 and three previously identified loci on chromosomes 3 and 17. Quantitative trait loci (QTLs) on chromosomes 1, 16, and 17, associated with multiple correlated traits and had similar patterns of allele effects, suggesting these QTLs contain important genetic regulators of responses to M. tuberculosis. To narrow the list of candidate genes in QTLs, we used a machine learning strategy that integrated gene expression signatures from lungs of M. tuberculosis-infected Diversity Outbred mice with gene interaction networks, generating functional scores. The scores were then used to rank candidates for each mapped trait in each locus, resulting in 11 candidates: Ncf2, Fam20b, S100a8, S100a9, Itgb5, Fstl1, Zbtb20, Ddr1, Ier3, Vegfa, and Zfp318. Importantly, all 11 candidates have roles in infection, inflammation, cell migration, extracellular matrix remodeling, or intracellular signaling. Further, all candidates contain single nucleotide polymorphisms (SNPs), and some but not all SNPs were predicted to have deleterious consequences on protein functions. Multiple methods were used for validation including (i) a statistical method that showed Diversity Outbred mice carrying PWH/PhJ alleles on chromosome 17 QTL have shorter survival; (ii) quantification of S100A8 protein levels, confirming predicted allele effects; and (iii) infection of C57BL/6 mice deficient for the S100a8 gene. Overall, this work demonstrates that systems genetics using Diversity Outbred mice can identify new (and known) QTLs and new functionally relevant gene candidates that may be major regulators of granuloma necrosis and acute inflammation in pulmonary TB.
Collapse
Affiliation(s)
- D M Gatti
- The Jackson Laboratory, Bar Harbor, ME
| | - A L Tyler
- The Jackson Laboratory, Bar Harbor, ME
| | | | | | - B Yener
- Rensselaer Polytechnic Institute, Troy, NY
| | - D Koyuncu
- Rensselaer Polytechnic Institute, Troy, NY
| | - M N Gurcan
- Wake Forest University School of Medicine, Winston Salem, NC
| | - Mkk Niazi
- Wake Forest University School of Medicine, Winston Salem, NC
| | - T Tavolara
- Wake Forest University School of Medicine, Winston Salem, NC
| | - A C Gower
- Clinical and Translational Science Institute, Boston University, Boston, MA
| | - D Dayao
- Tufts University Cummings School of Veterinary Medicine, North Grafton, MA
| | - E McGlone
- Tufts University Cummings School of Veterinary Medicine, North Grafton, MA
| | - M L Ginese
- Tufts University Cummings School of Veterinary Medicine, North Grafton, MA
| | - A Specht
- Tufts University Cummings School of Veterinary Medicine, North Grafton, MA
| | - A Alsharaydeh
- Texas Biomedical Research Institute, San Antonio, TX
| | - P A Tessier
- Department of Microbiology and Immunology, Laval University School of Medicine, Quebec, Canada
| | - S L Kurtz
- Center for Biologics, Food and Drug Administration, Bethesda, MD
| | - K Elkins
- Center for Biologics, Food and Drug Administration, Bethesda, MD
| | - I Kramnik
- NIEDL, Boston University, Boston, MA
| | - G Beamer
- Texas Biomedical Research Institute, San Antonio, TX
| |
Collapse
|
20
|
Mishra R, Hannebelle M, Patil VP, Dubois A, Garcia-Mouton C, Kirsch GM, Jan M, Sharma K, Guex N, Sordet-Dessimoz J, Perez-Gil J, Prakash M, Knott GW, Dhar N, McKinney JD, Thacker VV. Mechanopathology of biofilm-like Mycobacterium tuberculosis cords. Cell 2023; 186:5135-5150.e28. [PMID: 37865090 PMCID: PMC10642369 DOI: 10.1016/j.cell.2023.09.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/26/2023] [Accepted: 09/14/2023] [Indexed: 10/23/2023]
Abstract
Mycobacterium tuberculosis (Mtb) cultured axenically without detergent forms biofilm-like cords, a clinical identifier of virulence. In lung-on-chip (LoC) and mouse models, cords in alveolar cells contribute to suppression of innate immune signaling via nuclear compression. Thereafter, extracellular cords cause contact-dependent phagocyte death but grow intercellularly between epithelial cells. The absence of these mechanopathological mechanisms explains the greater proportion of alveolar lesions with increased immune infiltration and dissemination defects in cording-deficient Mtb infections. Compression of Mtb lipid monolayers induces a phase transition that enables mechanical energy storage. Agent-based simulations demonstrate that the increased energy storage capacity is sufficient for the formation of cords that maintain structural integrity despite mechanical perturbation. Bacteria in cords remain translationally active despite antibiotic exposure and regrow rapidly upon cessation of treatment. This study provides a conceptual framework for the biophysics and function in tuberculosis infection and therapy of cord architectures independent of mechanisms ascribed to single bacteria.
Collapse
Affiliation(s)
- Richa Mishra
- Global Health Institute, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Melanie Hannebelle
- Global Health Institute, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland; Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Vishal P Patil
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Anaëlle Dubois
- BioElectron Microscopy Facility, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | | | - Gabriela M Kirsch
- Global Health Institute, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Maxime Jan
- Bioinformatics Competence Centre, University of Lausanne, 1015 Lausanne, Switzerland; Bioinformatics Competence Centre, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Kunal Sharma
- Global Health Institute, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Nicolas Guex
- Bioinformatics Competence Centre, University of Lausanne, 1015 Lausanne, Switzerland; Bioinformatics Competence Centre, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Jessica Sordet-Dessimoz
- Histology Core Facility, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Jesus Perez-Gil
- Department of Biochemistry, University Complutense Madrid, 28040 Madrid, Spain
| | - Manu Prakash
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Graham W Knott
- BioElectron Microscopy Facility, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Neeraj Dhar
- Global Health Institute, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - John D McKinney
- Global Health Institute, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Vivek V Thacker
- Global Health Institute, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
| |
Collapse
|
21
|
Lai R, Ogunsola AF, Rakib T, Behar SM. Key advances in vaccine development for tuberculosis-success and challenges. NPJ Vaccines 2023; 8:158. [PMID: 37828070 PMCID: PMC10570318 DOI: 10.1038/s41541-023-00750-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/25/2023] [Indexed: 10/14/2023] Open
Abstract
Breakthrough findings in the clinical and preclinical development of tuberculosis (TB) vaccines have galvanized the field and suggest, for the first time since the development of bacille Calmette-Guérin (BCG), that a novel and protective TB vaccine is on the horizon. Here we highlight the TB vaccines that are in the development pipeline and review the basis for optimism in both the clinical and preclinical space. We describe immune signatures that could act as immunological correlates of protection (CoP) to facilitate the development and comparison of vaccines. Finally, we discuss new animal models that are expected to more faithfully model the pathology and complex immune responses observed in human populations.
Collapse
Affiliation(s)
- Rocky Lai
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Abiola F Ogunsola
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Tasfia Rakib
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Samuel M Behar
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
22
|
Kim H, Choi HG, Shin SJ. Bridging the gaps to overcome major hurdles in the development of next-generation tuberculosis vaccines. Front Immunol 2023; 14:1193058. [PMID: 37638056 PMCID: PMC10451085 DOI: 10.3389/fimmu.2023.1193058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/27/2023] [Indexed: 08/29/2023] Open
Abstract
Although tuberculosis (TB) remains one of the leading causes of death from an infectious disease worldwide, the development of vaccines more effective than bacille Calmette-Guérin (BCG), the only licensed TB vaccine, has progressed slowly even in the context of the tremendous global impact of TB. Most vaccine candidates have been developed to strongly induce interferon-γ (IFN-γ)-producing T-helper type 1 (Th1) cell responses; however, accumulating evidence has suggested that other immune factors are required for optimal protection against Mycobacterium tuberculosis (Mtb) infection. In this review, we briefly describe the five hurdles that must be overcome to develop more effective TB vaccines, including those with various purposes and tested in recent promising clinical trials. In addition, we discuss the current knowledge gaps between preclinical experiments and clinical studies regarding peripheral versus tissue-specific immune responses, different underlying conditions of individuals, and newly emerging immune correlates of protection. Moreover, we propose how recently discovered TB risk or susceptibility factors can be better utilized as novel biomarkers for the evaluation of vaccine-induced protection to suggest more practical ways to develop advanced TB vaccines. Vaccines are the most effective tools for reducing mortality and morbidity from infectious diseases, and more advanced technologies and a greater understanding of host-pathogen interactions will provide feasibility and rationale for novel vaccine design and development.
Collapse
Affiliation(s)
- Hongmin Kim
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Han-Gyu Choi
- Department of Microbiology and Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
23
|
Ernest JP, Goh JJN, Strydom N, Wang Q, van Wijk RC, Zhang N, Deitchman A, Nuermberger E, Savic RM. Translational predictions of phase 2a first-in-patient efficacy studies for antituberculosis drugs. Eur Respir J 2023; 62:2300165. [PMID: 37321622 PMCID: PMC10469274 DOI: 10.1183/13993003.00165-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 06/02/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Phase 2a trials in tuberculosis typically use early bactericidal activity (EBA), the decline in sputum CFU over 14 days, as the primary end-point for testing the efficacy of drugs as monotherapy. However, the cost of phase 2a trials can range from USD 7 million to USD 19.6 million on average, while >30% of drugs fail to progress to phase 3. Better utilising pre-clinical data to predict and prioritise the most likely drugs to succeed will thus help to accelerate drug development and reduce costs. We aim to predict clinical EBA using pre-clinical in vivo pharmacokinetic (PK)-pharmacodynamic (PD) data and a model-based translational pharmacology approach. METHODS AND FINDINGS First, mouse PK, PD and clinical PK models were compiled. Second, mouse PK-PD models were built to derive an exposure-response relationship. Third, translational prediction of clinical EBA studies was performed using mouse PK-PD relationships and informed by clinical PK models and species-specific protein binding. Presence or absence of clinical efficacy was accurately predicted from the mouse model. Predicted daily decreases of CFU in the first 2 days of treatment and between day 2 and day 14 were consistent with clinical observations. CONCLUSION This platform provides an innovative solution to inform or even replace phase 2a EBA trials, to bridge the gap between mouse efficacy studies and phase 2b and phase 3 trials, and to substantially accelerate drug development.
Collapse
Affiliation(s)
- Jacqueline P Ernest
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
- Shared authorship ordered alphabetically
| | - Janice Jia Ni Goh
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
- Shared authorship ordered alphabetically
| | - Natasha Strydom
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
- Shared authorship ordered alphabetically
| | - Qianwen Wang
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
- Shared authorship ordered alphabetically
| | - Rob C van Wijk
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
- Shared authorship ordered alphabetically
| | - Nan Zhang
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
- Shared authorship ordered alphabetically
| | - Amelia Deitchman
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Eric Nuermberger
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MA, USA
| | - Rada M Savic
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
24
|
Lai R, Gong DN, Williams T, Ogunsola AF, Cavallo K, Lindestam Arlehamn CS, Acolatse S, Beamer GL, Ferris MT, Sassetti CM, Lauffenburger DA, Behar SM. Host genetic background is a barrier to broadly effective vaccine-mediated protection against tuberculosis. J Clin Invest 2023; 133:e167762. [PMID: 37200108 PMCID: PMC10313364 DOI: 10.1172/jci167762] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 05/11/2023] [Indexed: 05/20/2023] Open
Abstract
Heterogeneity in human immune responses is difficult to model in standard laboratory mice. To understand how host variation affects Bacillus Calmette Guerin-induced (BCG-induced) immunity against Mycobacterium tuberculosis, we studied 24 unique collaborative cross (CC) mouse strains, which differ primarily in the genes and alleles they inherit from founder strains. The CC strains were vaccinated with or without BCG and challenged with aerosolized M. tuberculosis. Since BCG protects only half of the CC strains tested, we concluded that host genetics has a major influence on BCG-induced immunity against M. tuberculosis infection, making it an important barrier to vaccine-mediated protection. Importantly, BCG efficacy is dissociable from inherent susceptibility to tuberculosis (TB). T cell immunity was extensively characterized to identify components associated with protection that were stimulated by BCG and recalled after M. tuberculosis infection. Although considerable diversity is observed, BCG has little impact on the composition of T cells in the lung after infection. Instead, variability is largely shaped by host genetics. BCG-elicited protection against TB correlated with changes in immune function. Thus, CC mice can be used to define correlates of protection and to identify vaccine strategies that protect a larger fraction of genetically diverse individuals instead of optimizing protection for a single genotype.
Collapse
Affiliation(s)
- Rocky Lai
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Diana N. Gong
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Travis Williams
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Abiola F. Ogunsola
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Kelly Cavallo
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | | - Sarah Acolatse
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | - Martin T. Ferris
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Christopher M. Sassetti
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Douglas A. Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Samuel M. Behar
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
25
|
Krug S, Prasad P, Xiao S, Lun S, Ruiz-Bedoya CA, Klunk M, Ordonez AA, Jain SK, Srikrishna G, Kramnik I, Bishai WR. Adjunctive Integrated Stress Response Inhibition Accelerates Tuberculosis Clearance in Mice. mBio 2023; 14:e0349622. [PMID: 36853048 PMCID: PMC10128048 DOI: 10.1128/mbio.03496-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 03/01/2023] Open
Abstract
Despite numerous advances in tuberculosis (TB) drug development, long treatment durations have led to the emergence of multidrug resistance, which poses a major hurdle to global TB control. Shortening treatment time therefore remains a top priority. Host-directed therapies that promote bacterial clearance and/or lung health may improve the efficacy and treatment duration of tuberculosis antibiotics. We recently discovered that inhibition of the integrated stress response, which is abnormally activated in tuberculosis and associated with necrotic granuloma formation, reduced bacterial numbers and lung inflammation in mice. Here, we evaluated the impact of the integrated stress response (ISR) inhibitor ISRIB, administered as an adjunct to standard tuberculosis antibiotics, on bacterial clearance, relapse, and lung pathology in a mouse model of tuberculosis. Throughout the course of treatment, ISRIB robustly lowered bacterial burdens compared to the burdens with standard TB therapy alone and accelerated the time to sterility in mice, as demonstrated by significantly reduced relapse rates after 4 months of treatment. In addition, mice receiving adjunctive ISRIB tended to have reduced lung necrosis and inflammation. Together, our findings identify the ISR pathway as a promising therapeutic target with the potential to shorten TB treatment durations and improve lung health. IMPORTANCE Necrosis of lung lesions is a hallmark of tuberculosis (TB) that promotes bacterial growth, dissemination, and transmission. This process is driven by the persistent hyperactivation of the integrated stress response (ISR) pathway. Here, we show that adjunctive ISR inhibition during standard antibiotic therapy accelerates bacterial clearance and reduces immunopathology in a clinically relevant mouse model of TB, suggesting that host-directed therapies that de-escalate these pathological stress responses may shorten TB treatment durations. Our findings present an important conceptual advance toward overcoming the challenge of improving TB therapy and lowering the global burden of disease.
Collapse
Affiliation(s)
- Stefanie Krug
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Pankaj Prasad
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Shiqi Xiao
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Shichun Lun
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Camilo A. Ruiz-Bedoya
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mariah Klunk
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Alvaro A. Ordonez
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sanjay K. Jain
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Geetha Srikrishna
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Igor Kramnik
- The National Emerging Infectious Diseases Laboratory, Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Medicine, Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, USA
| | - William R. Bishai
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
26
|
Towards using 3D cellular cultures to model the activation and diverse functions of macrophages. Biochem Soc Trans 2023; 51:387-401. [PMID: 36744644 PMCID: PMC9987999 DOI: 10.1042/bst20221008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/25/2022] [Accepted: 01/19/2023] [Indexed: 02/07/2023]
Abstract
The advent of 3D cell culture technology promises to enhance understanding of cell biology within tissue microenvironments. Whilst traditional cell culturing methods have been a reliable tool for decades, they inadequately portray the complex environments in which cells inhabit in vivo. The need for better disease models has pushed the development of effective 3D cell models, providing more accurate drug screening assays. There has been great progress in developing 3D tissue models in fields such as cancer research and regenerative medicine, driven by desires to recreate the tumour microenvironment for the discovery of new chemotherapies, or development of artificial tissues or scaffolds for transplantation. Immunology is one field that lacks optimised 3D models and the biology of tissue resident immune cells such as macrophages has yet to be fully explored. This review aims to highlight the benefits of 3D cell culturing for greater understanding of macrophage biology. We review current knowledge of macrophage interactions with their tissue microenvironment and highlight the potential of 3D macrophage models in the development of more effective treatments for disease.
Collapse
|
27
|
Ernest JP, Ni Goh JJ, Strydom N, Wang Q, van Wijk RC, Zhang N, Deitchman A, Nuermberger E, Savic RM. Translational predictions of phase 2a first-in-patient efficacy studies for antituberculosis drugs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.18.524608. [PMID: 36711493 PMCID: PMC9882354 DOI: 10.1101/2023.01.18.524608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Background Phase 2a trials in tuberculosis typically use early bactericidal activity (EBA), the decline in sputum colony forming units (CFU) over 14 days, as the primary outcome for testing the efficacy of drugs as monotherapy. However, the cost of phase 2a trials can range from 7 to 19.6 million dollars on average, while more than 30% of drugs fail to progress to phase 3. Better utilizing preclinical data to predict and prioritize the most likely drugs to succeed will thus help accelerate drug development and reduce costs. We aim to predict clinical EBA using preclinical in vivo pharmacokinetic-pharmacodynamic (PKPD) data and a model-based translational pharmacology approach. Methods and Findings First, mouse PK, PD and clinical PK models were compiled. Second, mouse PKPD models were built to derive an exposure response relationship. Third, translational prediction of clinical EBA studies was performed using mouse PKPD relationships and informed by clinical PK models and species-specific protein binding. Presence or absence of clinical efficacy was accurately predicted from the mouse model. Predicted daily decreases of CFU in the first 2 days of treatment and between day 2 and day 14 were consistent with clinical observations. Conclusion This platform provides an innovative solution to inform or even replace phase 2a EBA trials, to bridge the gap between mouse efficacy studies and phase 2b and phase 3 trials, and to substantially accelerate drug development.
Collapse
|
28
|
Prolonged B-Lymphocyte-Mediated Immune and Inflammatory Responses to Tuberculosis Infection in the Lungs of TB-Resistant Mice. Int J Mol Sci 2023; 24:ijms24021140. [PMID: 36674664 PMCID: PMC9861759 DOI: 10.3390/ijms24021140] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/25/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
During tuberculosis (TB) infection, B-lymphocytes migrate to the lungs and form B-cell follicles (BCFs) in the vicinity of TB granulomata. B-cell-lacking mice display enhanced susceptibility to TB infection, and early B-cell depletion in infected non-human primates alters T-lymphocyte cytokine responses and increases bacterial burdens in the lungs. However, the role of B cells during late TB stages remained unaddressed. Here, we demonstrate that B cells and BCFs persist up to weeks 25-45 post-challenge in the lungs of TB-resistant C57BL/6 (B6) mice. In hyper-susceptible I/St mice, B-cell content markedly drops between weeks 12-16 post-infection, paralleled by diffuse lung tissue inflammation and elevated gene expression levels for pro-inflammatory cytokines IL-1, IL-11, IL-17a, and TNF-α. To check whether B-cells/BCFs control TB infection at advanced stages, we specifically depleted B-cells from B6 mice by administrating anti-CD20 mAbs at week 16 post-infection. This resulted in more rapid cachexia, a shortened lifespan of the infected animals, an increase in (i) lung-infiltrating CD8+ T cells, (ii) IL-6 production by F4/80+ macrophages, (iii) expression levels of genes for neutrophil-attracting factors CXCL1 and IL-17, and tissue-damaging factors MMP8, MMP9, and S100A8. Taken together, our results suggest that lung B cells and BCFs are moderately protective against chronic TB infection.
Collapse
|
29
|
Larkins-Ford J, Aldridge BB. Advances in the design of combination therapies for the treatment of tuberculosis. Expert Opin Drug Discov 2023; 18:83-97. [PMID: 36538813 PMCID: PMC9892364 DOI: 10.1080/17460441.2023.2157811] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Tuberculosis requires lengthy multi-drug therapy. Mycobacterium tuberculosis occupies different tissue compartments during infection, making drug access and susceptibility patterns variable. Antibiotic combinations are needed to ensure each compartment of infection is reached with effective drug treatment. Despite drug combinations' role in treating tuberculosis, the design of such combinations has been tackled relatively late in the drug development process, limiting the number of drug combinations tested. In recent years, there has been significant progress using in vitro, in vivo, and computational methodologies to interrogate combination drug effects. AREAS COVERED This review discusses the advances in these methodologies and how they may be used in conjunction with new successful clinical trials of novel drug combinations to design optimized combination therapies for tuberculosis. Literature searches for approaches and experimental models used to evaluate drug combination effects were undertaken. EXPERT OPINION We are entering an era richer in combination drug effect and pharmacokinetic/pharmacodynamic data, genetic tools, and outcome measurement types. Application of computational modeling approaches that integrate these data and produce predictive models of clinical outcomes may enable the field to generate novel, effective multidrug therapies using existing and new drug combination backbones.
Collapse
Affiliation(s)
- Jonah Larkins-Ford
- Department of Molecular Biology and Microbiology and Tufts University School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
- Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance (CIMAR), Tufts University, Boston, MA, USA
- Current address: MarvelBiome Inc, Woburn, MA, USA
| | - Bree B. Aldridge
- Department of Molecular Biology and Microbiology and Tufts University School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
- Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance (CIMAR), Tufts University, Boston, MA, USA
- Department of Biomedical Engineering, Tufts University School of Engineering, Medford, MA, USA
| |
Collapse
|
30
|
Bishop CR, Caten FT, Nakaya HI, Suhrbier A. Chikungunya patient transcriptional signatures faithfully recapitulated in a C57BL/6J mouse model. Front Immunol 2022; 13:1092370. [PMID: 36578476 PMCID: PMC9791225 DOI: 10.3389/fimmu.2022.1092370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 11/25/2022] [Indexed: 12/14/2022] Open
Abstract
Introduction An adult wild-type C57BL/6J mouse model of chikungunya virus (CHIKV) infection and disease has been extensively used to study the alphaviral arthritic immunopathology and to evaluate new interventions. How well mouse models recapitulate the gene expression profiles seen in humans remains controversial. Methods Herein we perform a comparative transcriptomics analysis using RNA-Seq datasets from the C57BL/6J CHIKV mouse model with datasets obtained from adults and children acutely infected with CHIKV. Results Despite sampling quite different tissues, peripheral blood from humans and feet from mice, gene expression profiles were quite similar, with an overlap of up to ≈50% for up-regulated single copy orthologue differentially expressed genes. Furthermore, high levels of significant concordance between mouse and human were seen for immune pathways and signatures, which were dominated by interferons, T cells and monocyte/macrophages. Importantly, predicted responses to a series of anti-inflammatory drug and biologic treatments also showed cogent similarities between species. Discussion Comparative transcriptomics and subsequent pathway analysis provides a detailed picture of how a given model recapitulates human gene expression. Using this method, we show that the C57BL/6J CHIKV mouse model provides a reliable and representative system in which to study CHIKV immunopathology and evaluate new treatments.
Collapse
Affiliation(s)
- Cameron R. Bishop
- Department of Infection and Inflammation, Queensland Institute of Medical Research, Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Felipe Ten Caten
- Pathology Advanced Translational Research Unit, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Helder I. Nakaya
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil,*Correspondence: Helder I. Nakaya, ; Andreas Suhrbier,
| | - Andreas Suhrbier
- Department of Infection and Inflammation, Queensland Institute of Medical Research, Berghofer Medical Research Institute, Brisbane, QLD, Australia,Global Virus Network (GVN) Center of Excellence, Australian Infectious Disease Research Centre, Brisbane, QLD, Australia,*Correspondence: Helder I. Nakaya, ; Andreas Suhrbier,
| |
Collapse
|
31
|
Mycobacterium tuberculosis Dormancy: How to Fight a Hidden Danger. Microorganisms 2022; 10:microorganisms10122334. [PMID: 36557586 PMCID: PMC9784227 DOI: 10.3390/microorganisms10122334] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Both latent and active TB infections are caused by a heterogeneous population of mycobacteria, which includes actively replicating and dormant bacilli in different proportions. Dormancy substantially affects M. tuberculosis drug tolerance and TB clinical management due to a significant decrease in the metabolic activity of bacilli, which leads to the complexity of both the diagnosis and the eradication of bacilli. Most diagnostic approaches to latent infection deal with a subpopulation of active M. tuberculosis, underestimating the contribution of dormant bacilli and leading to limited success in the fight against latent TB. Moreover, active TB appears not only as a primary form of infection but can also develop from latent TB, when resuscitation from dormancy is followed by bacterial multiplication, leading to disease progression. To win against latent infection, the identification of the Achilles' heel of dormant M. tuberculosis is urgently needed. Regulatory mechanisms and metabolic adaptation to growth arrest should be studied using in vitro and in vivo models that adequately imitate latent TB infection in macroorganisms. Understanding the mechanisms underlying M. tuberculosis dormancy and resuscitation may provide clues to help control latent infection, reduce disease severity in patients, and prevent pathogen transmission in the population.
Collapse
|
32
|
Bishop CR, Dumenil T, Rawle DJ, Le TT, Yan K, Tang B, Hartel G, Suhrbier A. Mouse models of COVID-19 recapitulate inflammatory pathways rather than gene expression. PLoS Pathog 2022; 18:e1010867. [PMID: 36155667 PMCID: PMC9536645 DOI: 10.1371/journal.ppat.1010867] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/06/2022] [Accepted: 09/08/2022] [Indexed: 11/19/2022] Open
Abstract
How well mouse models recapitulate the transcriptional profiles seen in humans remains debatable, with both conservation and diversity identified in various settings. Herein we use RNA-Seq data and bioinformatics approaches to analyze the transcriptional responses in SARS-CoV-2 infected lungs, comparing 4 human studies with the widely used K18-hACE2 mouse model, a model where hACE2 is expressed from the mouse ACE2 promoter, and a model that uses a mouse adapted virus and wild-type mice. Overlap of single copy orthologue differentially expressed genes (scoDEGs) between human and mouse studies was generally poor (≈15-35%). Rather than being associated with batch, sample treatment, viral load, lung damage or mouse model, the poor overlaps were primarily due to scoDEG expression differences between species. Importantly, analyses of immune signatures and inflammatory pathways illustrated highly significant concordances between species. As immunity and immunopathology are the focus of most studies, these mouse models can thus be viewed as representative and relevant models of COVID-19.
Collapse
Affiliation(s)
- Cameron R. Bishop
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Troy Dumenil
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Daniel J. Rawle
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Thuy T. Le
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Kexin Yan
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Bing Tang
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Gunter Hartel
- Statistics Unit, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Andreas Suhrbier
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Australian Infectious Disease Research Centre, GVN Center of Excellence, Brisbane, Queensland, Australia
| |
Collapse
|
33
|
Singh VK, Chau E, Mishra A, DeAnda A, Hegde VL, Sastry JK, Haviland D, Jagannath C, Godin B, Khan A. CD44 receptor targeted nanoparticles augment immunity against tuberculosis in mice. J Control Release 2022; 349:796-811. [PMID: 35914613 PMCID: PMC10478167 DOI: 10.1016/j.jconrel.2022.07.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 02/01/2023]
Abstract
We describe a role of CD44-mediated signaling during host-defense against tuberculosis (TB) using a mouse model of TB and studies in M. tuberculosis (Mtb) infected human macrophage (MФ). Liposomes targeting CD44 using thioaptamers (CD44TA-LIP) were designed and tested as new vaccines to boost host immunity in TB. CD44TA-LIP enhanced killing of Mtb in human MФ, which correlated with an increased production of pro-inflammatory cytokines IL-1β, TNF-α and IL-12. CD44TA-LIP activated MФ showed an enhanced MHC-II dependent antigen presentation to CD4 T-cells. Inhibition of cellular proliferation and cytoskeleton rearrangement pathways downstream of CD44 signaling abrogated CD44TA-LIP-induced antimicrobial effects. Blockade of inflammatory pathways also reduced antigen presentation by MФ and activation of CD4 T cells. Mtb infected MФ treated with CD44TA-LIP exhibited increased nitric oxide and HβD2 defensin peptide production. Among Mtb infected mice with increased lung and spleen loads of organisms, intranasal administration of CD44TA-LIP led to a ten-fold reduction of colony forming units of Mtb and elevated IFN-γ + CD4, effector, central and resident memory T cells. Biodistribution studies demonstrated that CD44TA-LIP preferentially accumulated in the lungs and were associated with CD11b + cells. CD44TA-LIP treated mice showed no weight loss or increased liver LDH levels. This study highlights the importance of CD44-mediated signaling in host-defense during TB and the therapeutic potential of CD44TA-LIP.
Collapse
Affiliation(s)
- Vipul K Singh
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Eric Chau
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Abhishek Mishra
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Alexandro DeAnda
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Venkatesh L Hegde
- Department of Thoracic Head & Neck Medical Oncology, Division of Cancer Medicine, MD Anderson Cancer Center, Houston, TX, USA
| | - Jagannadha K Sastry
- Department of Thoracic Head & Neck Medical Oncology, Division of Cancer Medicine, MD Anderson Cancer Center, Houston, TX, USA
| | - David Haviland
- Flow Cytometry Core, Houston Methodist Research Institute, Houston, TX, USA
| | - Chinnaswamy Jagannath
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Houston, TX, USA.
| | - Biana Godin
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA.
| | - Arshad Khan
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Houston, TX, USA.
| |
Collapse
|
34
|
Wang Y, Shi Q, Chen Q, Zhou X, Yuan H, Jia X, Liu S, Li Q, Ge L. Emerging advances in identifying signal transmission molecules involved in the interaction between Mycobacterium tuberculosis and the host. Front Cell Infect Microbiol 2022; 12:956311. [PMID: 35959378 PMCID: PMC9359464 DOI: 10.3389/fcimb.2022.956311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/30/2022] [Indexed: 11/21/2022] Open
Abstract
Tuberculosis caused by Mycobacterium tuberculosis (MTB) is an ancient chronic infectious disease and is still the leading cause of death worldwide due to a single infectious disease. MTB can achieve immune escape by interacting with host cells through its special cell structure and secreting a variety of effector proteins. Innate immunity-related pattern recognition receptors (PPR receptors) play a key role in the regulation of signaling pathways. In this review, we focus on the latest research progress on related signal transduction molecules in the interaction between MTB and the host. In addition, we provide new research ideas for the development of new anti-tuberculosis drug targets and lead compounds and provide an overview of information useful for approaching future tuberculosis host-oriented treatment research approaches and strategies, which has crucial scientific guiding significance and research value.
Collapse
Affiliation(s)
- Yue Wang
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiyuan Shi
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China
| | - Qi Chen
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xuebin Zhou
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China
| | - Huiling Yuan
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiwen Jia
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuyuan Liu
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qin Li
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China
- *Correspondence: Qin Li, ; Lijun Ge,
| | - Lijun Ge
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Qin Li, ; Lijun Ge,
| |
Collapse
|
35
|
Brandenburg J, Heyckendorf J, Marwitz F, Zehethofer N, Linnemann L, Gisch N, Karaköse H, Reimann M, Kranzer K, Kalsdorf B, Sanchez-Carballo P, Weinkauf M, Scholz V, Malm S, Homolka S, Gaede KI, Herzmann C, Schaible UE, Hölscher C, Reiling N, Schwudke D. Tuberculostearic Acid-Containing Phosphatidylinositols as Markers of Bacterial Burden in Tuberculosis. ACS Infect Dis 2022; 8:1303-1315. [PMID: 35763439 PMCID: PMC9274766 DOI: 10.1021/acsinfecdis.2c00075] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
![]()
One-fourth of the
global human population is estimated to be infected
with strains of the Mycobacterium tuberculosis complex (MTBC), the causative agent of tuberculosis (TB). Using
lipidomic approaches, we show that tuberculostearic acid (TSA)-containing
phosphatidylinositols (PIs) are molecular markers for infection with
clinically relevant MTBC strains and signify bacterial burden. For
the most abundant lipid marker, detection limits of ∼102 colony forming units (CFUs) and ∼103 CFUs
for bacterial and cell culture systems were determined, respectively.
We developed a targeted lipid assay, which can be performed within
a day including sample preparation—roughly 30-fold faster than
in conventional methods based on bacterial culture. This indirect
and culture-free detection approach allowed us to determine pathogen
loads in infected murine macrophages, human neutrophils, and murine
lung tissue. These marker lipids inferred from mycobacterial PIs were
found in higher levels in peripheral blood mononuclear cells of TB
patients compared to healthy individuals. Moreover, in a small cohort
of drug-susceptible TB patients, elevated levels of these molecular
markers were detected at the start of therapy and declined upon successful
anti-TB treatment. Thus, the concentration of TSA-containing PIs can
be used as a correlate for the mycobacterial burden in experimental
models and in vitro systems and may prospectively also provide a clinically
relevant tool to monitor TB severity.
Collapse
Affiliation(s)
- Julius Brandenburg
- Division of Microbial Interface Biology, Research Center Borstel, Leibniz Lung Center, 23845 Borstel, Germany
| | - Jan Heyckendorf
- Division of Clinical Infectious Disease, Research Center Borstel, Leibniz Lung Center, 23845 Borstel, Germany.,German Center for Infection Research, Clinical Tuberculosis Center, 23845 Borstel, Germany
| | - Franziska Marwitz
- Division of Bioanalytical Chemistry, Research Center Borstel, Leibniz Lung Center, 23845 Borstel, Germany.,German Center for Infection Research, Thematic Translational Unit Tuberculosis, Partner Site Hamburg-Lübeck-Borstel-Riems, 23845 Borstel, Germany
| | - Nicole Zehethofer
- Division of Bioanalytical Chemistry, Research Center Borstel, Leibniz Lung Center, 23845 Borstel, Germany.,German Center for Infection Research, Thematic Translational Unit Tuberculosis, Partner Site Hamburg-Lübeck-Borstel-Riems, 23845 Borstel, Germany
| | - Lara Linnemann
- Division of Cellular Microbiology, Research Center Borstel, Leibniz Lung Center, 23845 Borstel, Germany
| | - Nicolas Gisch
- Division of Bioanalytical Chemistry, Research Center Borstel, Leibniz Lung Center, 23845 Borstel, Germany
| | - Hande Karaköse
- Division of Bioanalytical Chemistry, Research Center Borstel, Leibniz Lung Center, 23845 Borstel, Germany.,German Center for Infection Research, Thematic Translational Unit Tuberculosis, Partner Site Hamburg-Lübeck-Borstel-Riems, 23845 Borstel, Germany
| | - Maja Reimann
- Division of Clinical Infectious Disease, Research Center Borstel, Leibniz Lung Center, 23845 Borstel, Germany.,German Center for Infection Research, Clinical Tuberculosis Center, 23845 Borstel, Germany
| | - Katharina Kranzer
- National Reference Center for Mycobacteria, Research Center Borstel, Leibniz Lung Center, 23845 Borstel, Germany
| | - Barbara Kalsdorf
- Division of Clinical Infectious Disease, Research Center Borstel, Leibniz Lung Center, 23845 Borstel, Germany.,German Center for Infection Research, Clinical Tuberculosis Center, 23845 Borstel, Germany
| | - Patricia Sanchez-Carballo
- Division of Clinical Infectious Disease, Research Center Borstel, Leibniz Lung Center, 23845 Borstel, Germany.,German Center for Infection Research, Clinical Tuberculosis Center, 23845 Borstel, Germany
| | - Michael Weinkauf
- Division of Bioanalytical Chemistry, Research Center Borstel, Leibniz Lung Center, 23845 Borstel, Germany
| | - Verena Scholz
- Division of Bioanalytical Chemistry, Research Center Borstel, Leibniz Lung Center, 23845 Borstel, Germany
| | - Sven Malm
- Division of Molecular and Experimental Mycobacteriology, Research Center Borstel, Leibniz Lung Center, 23845 Borstel, Germany
| | - Susanne Homolka
- Division of Molecular and Experimental Mycobacteriology, Research Center Borstel, Leibniz Lung Center, 23845 Borstel, Germany
| | - Karoline I Gaede
- BioMaterialBank Nord, Research Center Borstel, Leibniz Lung Center, 23845 Borstel, Germany.,German Center for Lung Research (DZL), Airway Research Center North (ARCN), Research Center Borstel, Leibniz Lung Center, 23845 Borstel, Germany
| | - Christian Herzmann
- Center for Clinical Studies, Research Center Borstel, Leibniz Lung Center, 23845 Borstel, Germany
| | - Ulrich E Schaible
- German Center for Infection Research, Thematic Translational Unit Tuberculosis, Partner Site Hamburg-Lübeck-Borstel-Riems, 23845 Borstel, Germany.,Division of Cellular Microbiology, Research Center Borstel, Leibniz Lung Center, 23845 Borstel, Germany
| | - Christoph Hölscher
- German Center for Infection Research, Thematic Translational Unit Tuberculosis, Partner Site Hamburg-Lübeck-Borstel-Riems, 23845 Borstel, Germany.,Division of Infection Immunology, Research Center Borstel, Leibniz Lung Center, 23845 Borstel, Germany
| | - Norbert Reiling
- Division of Microbial Interface Biology, Research Center Borstel, Leibniz Lung Center, 23845 Borstel, Germany.,German Center for Infection Research, Thematic Translational Unit Tuberculosis, Partner Site Hamburg-Lübeck-Borstel-Riems, 23845 Borstel, Germany
| | - Dominik Schwudke
- Division of Bioanalytical Chemistry, Research Center Borstel, Leibniz Lung Center, 23845 Borstel, Germany.,German Center for Infection Research, Thematic Translational Unit Tuberculosis, Partner Site Hamburg-Lübeck-Borstel-Riems, 23845 Borstel, Germany.,German Center for Lung Research (DZL), Airway Research Center North (ARCN), Research Center Borstel, Leibniz Lung Center, 23845 Borstel, Germany
| |
Collapse
|
36
|
Magoulopoulou A, Qian X, Pediatama Setiabudiawan T, Marco Salas S, Yokota C, Rottenberg ME, Nilsson M, Carow B. Spatial Resolution of Mycobacterium tuberculosis Bacteria and Their Surrounding Immune Environments Based on Selected Key Transcripts in Mouse Lungs. Front Immunol 2022; 13:876321. [PMID: 35663950 PMCID: PMC9157500 DOI: 10.3389/fimmu.2022.876321] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) bacilli are the causative agent of tuberculosis (TB), a major killer of mankind. Although it is widely accepted that local interactions between Mtb and the immune system in the tuberculous granuloma determine whether the outcome of infection is controlled or disseminated, these have been poorly studied due to methodological constraints. We have recently used a spatial transcriptomic technique, in situ sequencing (ISS), to define the spatial distribution of immune transcripts in TB mouse lungs. To further contribute to the understanding of the immune microenvironments of Mtb and their local diversity, we here present two complementary automated bacteria-guided analysis pipelines. These position 33 ISS-identified immune transcripts in relation to single bacteria and bacteria clusters. The analysis was applied on new ISS data from lung sections of Mtb-infected C57BL/6 and C3HeB/FeJ mice. In lungs from C57BL/6 mice early and late post infection, transcripts that define inflammatory macrophages were enriched at subcellular distances to bacteria, indicating the activation of infected macrophages. In contrast, expression patterns associated to antigen presentation were enriched in non-infected cells at 12 weeks post infection. T-cell transcripts were evenly distributed in the tissue. In Mtb-infected C3HeB/FeJ mice, transcripts characterizing activated macrophages localized in apposition to small bacteria clusters, but not in organized granulomas. Despite differences in the susceptibility to Mtb, the transcript patterns found around small bacteria clusters of C3HeB/FeJ and C57BL/6 mice were similar. Altogether, the presented tools allow us to characterize in depth the immune cell populations and their activation that interact with Mtb in the infected lung.
Collapse
Affiliation(s)
- Anastasia Magoulopoulou
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
| | - Xiaoyan Qian
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
| | - Todia Pediatama Setiabudiawan
- Department of Microbiology, Tumor and Cell Biology and Centre for Tuberculosis Research, Karolinska Institutet, Solna, Sweden
| | - Sergio Marco Salas
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
| | - Chika Yokota
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
| | - Martin E Rottenberg
- Department of Microbiology, Tumor and Cell Biology and Centre for Tuberculosis Research, Karolinska Institutet, Solna, Sweden
| | - Mats Nilsson
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
| | - Berit Carow
- Department of Microbiology, Tumor and Cell Biology and Centre for Tuberculosis Research, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
37
|
Rosenbloom R, Gavrish I, Tseng AE, Seidel K, Yabaji SM, Gertje HP, Huber BR, Kramnik I, Crossland NA. Progression and Dissemination of Pulmonary Mycobacterium Avium Infection in a Susceptible Immunocompetent Mouse Model. Int J Mol Sci 2022; 23:ijms23115999. [PMID: 35682679 PMCID: PMC9181083 DOI: 10.3390/ijms23115999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 01/11/2023] Open
Abstract
Pulmonary infections caused by the group of nontuberculosis mycobacteria (NTM), Mycobacterium avium complex (MAC), are a growing public health concern with incidence and mortality steadily increasing globally. Granulomatous inflammation is the hallmark of MAC lung infection, yet reliable correlates of disease progression, susceptibility, and resolution are poorly defined. Unlike widely used inbred mouse strains, mice that carry the mutant allele at the genetic locus sst1 develop human-like pulmonary tuberculosis featuring well-organized caseating granulomas. We characterized pulmonary temporospatial outcomes of intranasal and left intrabronchial M. avium spp. hominissuis (M.av) induced pneumonia in B6.Sst1S mice, which carries the sst1 mutant allele. We utilized traditional semi-quantitative histomorphological evaluation, in combination with fluorescent multiplex immunohistochemistry (fmIHC), whole slide imaging, and quantitative digital image analysis. Followingintrabronchiolar infection with the laboratory M.av strain 101, the B6.Sst1S pulmonary lesions progressed 12-16 weeks post infection (wpi), with plateauing and/or resolving disease by 21 wpi. Caseating granulomas were not observed during the study. Disease progression from 12-16 wpi was associated with increased acid-fast bacilli, area of secondary granulomatous pneumonia lesions, and Arg1+ and double positive iNOS+/Arg1+ macrophages. Compared to B6 WT, at 16 wpi, B6.Sst1S lungs exhibited an increased area of acid-fast bacilli, larger secondary lesions with greater Arg1+ and double positive iNOS+/Arg1+ macrophages, and reduced T cell density. This morphomolecular analysis of histologic correlates of disease progression in B6.Sst1S could serve as a platform for assessment of medical countermeasures against NTM infection.
Collapse
Affiliation(s)
- Raymond Rosenbloom
- Graduate Medical Sciences, Boston University School of Medicine, Boston, MA 02118, USA;
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02215, USA; (I.G.); (A.E.T.); (K.S.); (S.M.Y.); (H.P.G.)
| | - Igor Gavrish
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02215, USA; (I.G.); (A.E.T.); (K.S.); (S.M.Y.); (H.P.G.)
| | - Anna E. Tseng
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02215, USA; (I.G.); (A.E.T.); (K.S.); (S.M.Y.); (H.P.G.)
- Department of Pathology & Laboratory Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Kerstin Seidel
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02215, USA; (I.G.); (A.E.T.); (K.S.); (S.M.Y.); (H.P.G.)
| | - Shivraj M. Yabaji
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02215, USA; (I.G.); (A.E.T.); (K.S.); (S.M.Y.); (H.P.G.)
| | - Hans P. Gertje
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02215, USA; (I.G.); (A.E.T.); (K.S.); (S.M.Y.); (H.P.G.)
| | - Bertrand R. Huber
- Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA;
| | - Igor Kramnik
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02215, USA; (I.G.); (A.E.T.); (K.S.); (S.M.Y.); (H.P.G.)
- Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
- Correspondence: (I.K.); (N.A.C.); Tel.: +1-617-358-9285 (I.K. & N.A.C.)
| | - Nicholas A. Crossland
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02215, USA; (I.G.); (A.E.T.); (K.S.); (S.M.Y.); (H.P.G.)
- Department of Pathology & Laboratory Medicine, Boston University School of Medicine, Boston, MA 02118, USA
- Correspondence: (I.K.); (N.A.C.); Tel.: +1-617-358-9285 (I.K. & N.A.C.)
| |
Collapse
|
38
|
Carpenter SM, Lu LL. Leveraging Antibody, B Cell and Fc Receptor Interactions to Understand Heterogeneous Immune Responses in Tuberculosis. Front Immunol 2022; 13:830482. [PMID: 35371092 PMCID: PMC8968866 DOI: 10.3389/fimmu.2022.830482] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/07/2022] [Indexed: 12/25/2022] Open
Abstract
Despite over a century of research, Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), continues to kill 1.5 million people annually. Though less than 10% of infected individuals develop active disease, the specific host immune responses that lead to Mtb transmission and death, as well as those that are protective, are not yet fully defined. Recent immune correlative studies demonstrate that the spectrum of infection and disease is more heterogenous than has been classically defined. Moreover, emerging translational and animal model data attribute a diverse immune repertoire to TB outcomes. Thus, protective and detrimental immune responses to Mtb likely encompass a framework that is broader than T helper type 1 (Th1) immunity. Antibodies, Fc receptor interactions and B cells are underexplored host responses to Mtb. Poised at the interface of initial bacterial host interactions and in granulomatous lesions, antibodies and Fc receptors expressed on macrophages, neutrophils, dendritic cells, natural killer cells, T and B cells have the potential to influence local and systemic adaptive immune responses. Broadening the paradigm of protective immunity will offer new paths to improve diagnostics and vaccines to reduce the morbidity and mortality of TB.
Collapse
Affiliation(s)
- Stephen M. Carpenter
- Division of Infectious Disease and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Cleveland Medical Center, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Lenette L. Lu
- Division of Geographic Medicine and Infectious Diseases, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, United States
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX, United States
- Parkland Health and Hospital System, Dallas, TX, United States
| |
Collapse
|
39
|
Cronan MR. In the Thick of It: Formation of the Tuberculous Granuloma and Its Effects on Host and Therapeutic Responses. Front Immunol 2022; 13:820134. [PMID: 35320930 PMCID: PMC8934850 DOI: 10.3389/fimmu.2022.820134] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/15/2022] [Indexed: 12/19/2022] Open
Abstract
The defining pathology of tuberculosis is the granuloma, an organized structure derived from host immune cells that surrounds infecting Mycobacterium tuberculosis. As the location of much of the bacteria in the infected host, the granuloma is a central point of interaction between the host and the infecting bacterium. This review describes the signals and cellular reprogramming that drive granuloma formation. Further, as a central point of host-bacterial interactions, the granuloma shapes disease outcome by altering host immune responses and bacterial susceptibility to antibiotic treatment, as discussed herein. This new understanding of granuloma biology and the signaling behind it highlights the potential for host-directed therapies targeting the granuloma to enhance antibiotic access and tuberculosis-specific immune responses.
Collapse
Affiliation(s)
- Mark R. Cronan
-
In Vivo Cell Biology of Infection Group, Max Planck Institute for Infection Biology, Berlin, Germany
| |
Collapse
|
40
|
Evaluation of Myeloperoxidase as Target for Host-Directed Therapy in Tuberculosis In Vivo. Int J Mol Sci 2022; 23:ijms23052554. [PMID: 35269694 PMCID: PMC8910451 DOI: 10.3390/ijms23052554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 12/11/2022] Open
Abstract
Due to the rise of tuberculosis cases infected with multi and extensively drug-resistant Mycobacterium tuberculosis strains and the emergence of isolates resistant to antibiotics newly in clinical use, host-directed therapies targeting pathogenesis-associated immune pathways adjunct to antibiotics may ameliorate disease and bacterial clearance. Active tuberculosis is characterized by neutrophil-mediated lung pathology and tissue destruction. Previously, we showed that preventing M. tuberculosis induced necrosis in human neutrophils by inhibition of myeloperoxidase (MPO) promoted default apoptosis and subsequent control of mycobacteria by macrophages taking up the mycobacteria-infected neutrophils. To translate our findings in an in vivo model, we tested the MPO inhibitor 4-aminobenzoic acid hydrazide (ABAH) in C3HeB/FeJ mice, which are highly susceptible to M. tuberculosis infection manifesting in neutrophil-associated necrotic granulomas. MPO inhibition alone or as co-treatment with isoniazid, a first-line antibiotic in tuberculosis treatment, did not result in reduced bacterial burden, improved pathology, or altered infiltrating immune cell compositions. MPO inhibition failed to prevent M. tuberculosis induced neutrophil necrosis in C3Heb/FeJ mice in vivo as well as in murine neutrophils in vitro. In contrast to human neutrophils, murine neutrophils do not respond to M. tuberculosis infection in an MPO-dependent manner. Thus, the murine C3HeB/FeJ model does not fully resemble the pathomechanisms in active human tuberculosis. Consequently, murine infection models of tuberculosis are not necessarily adequate to evaluate host-directed therapies targeting neutrophils in vivo.
Collapse
|
41
|
Motiee M, Zavaran Hosseini A, Soudi S. Evaluating the effects of Cyclosporine A immunosuppression on Mycobacterial infection by inhaling of Cyclosporine A administrated BALB/c mice with live Bacillus Calmette Guérin. Tuberculosis (Edinb) 2021; 132:102163. [PMID: 34999486 DOI: 10.1016/j.tube.2021.102163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 12/16/2021] [Accepted: 12/19/2021] [Indexed: 11/30/2022]
Abstract
Cyclosporine A (CsA) is an immunosuppressive drug used in organ transplantation and treatment of autoimmune diseases. Effects of CsA on determining the direction of the immune response and pathogenesis of infections by altering immune responses particulary T cells functions have always been questionable. We evaluated the effect of different doses of CsA on course of infection in BALB/c mice infected with live Bacillus Calmette Guérin (BCG) (as an example of Mycobacterial infections). Four groups of mice (n = 5) receiving 5, 25, 125, and 0 mg/kg of CsA, three times a week, were infected with BCG aerosolly. Before BCG inhalation and 40-/60- days post-infection, cell proliferation and CD4+CD25+ cell percentage were evaluated in splenocytes of mice after culture and stimulation with PHA or BCG lysate. The histopathological alterations and bacterial burden were assessed in lung tissue. Cells showed a dose-dependent decrease in proliferation and the percentage of CD4+ CD25+ cells. After BCG infection, in presence of dose 125 mg/kg, there were some exceptions. The number of bacteria and histopathological lesions and inflammation in lung tissues increased in a dose-dependent manner. CsA immunosuppressed BCG infected mice can be used as a safe model for studying Mycobacterium species pathogenesis and related cellular immune responses.
Collapse
Affiliation(s)
- Mahdieh Motiee
- Immunology Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Ahmad Zavaran Hosseini
- Immunology Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Sara Soudi
- Immunology Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
42
|
Evolution of Antibacterial Drug Screening Methods: Current Prospects for Mycobacteria. Microorganisms 2021; 9:microorganisms9122562. [PMID: 34946162 PMCID: PMC8708102 DOI: 10.3390/microorganisms9122562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/01/2021] [Accepted: 12/08/2021] [Indexed: 12/25/2022] Open
Abstract
The increasing resistance of infectious agents to available drugs urges the continuous and rapid development of new and more efficient treatment options. This process, in turn, requires accurate and high-throughput techniques for antimicrobials’ testing. Conventional methods of drug susceptibility testing (DST) are reliable and standardized by competent entities and have been thoroughly applied to a wide range of microorganisms. However, they require much manual work and time, especially in the case of slow-growing organisms, such as mycobacteria. Aiming at a better prediction of the clinical efficacy of new drugs, in vitro infection models have evolved to closely mimic the environment that microorganisms experience inside the host. Automated methods allow in vitro DST on a big scale, and they can integrate models that recreate the interactions that the bacteria establish with host cells in vivo. Nonetheless, they are expensive and require a high level of expertise, which makes them still not applicable to routine laboratory work. In this review, we discuss conventional DST methods and how they should be used as a first screen to select active compounds. We also highlight their limitations and how they can be overcome by more complex and sophisticated in vitro models that reflect the dynamics present in the host during infection. Special attention is given to mycobacteria, which are simultaneously difficult to treat and especially challenging to study in the context of DST.
Collapse
|
43
|
Egorova A, Salina EG, Makarov V. Targeting Non-Replicating Mycobacterium tuberculosis and Latent Infection: Alternatives and Perspectives (Mini-Review). Int J Mol Sci 2021; 22:ijms222413317. [PMID: 34948114 PMCID: PMC8707483 DOI: 10.3390/ijms222413317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 01/02/2023] Open
Abstract
Latent tuberculosis infection (LTBI) represents a major challenge to curing TB disease. Current guidelines for LTBI management include only three older drugs and their combinations-isoniazid and rifamycins (rifampicin and rifapentine). These available control strategies have little impact on latent TB elimination, and new specific therapeutics are urgently needed. In the present mini-review, we highlight some of the alternatives that may potentially be included in LTBI treatment recommendations and a list of early-stage prospective small molecules that act on drug targets specific for Mycobacterium tuberculosis latency.
Collapse
Affiliation(s)
- Anna Egorova
- The Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences (Research Center of Biotechnology RAS), 119071 Moscow, Russia; (A.E.); (E.G.S.)
| | - Elena G. Salina
- The Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences (Research Center of Biotechnology RAS), 119071 Moscow, Russia; (A.E.); (E.G.S.)
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy
| | - Vadim Makarov
- The Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences (Research Center of Biotechnology RAS), 119071 Moscow, Russia; (A.E.); (E.G.S.)
- Correspondence:
| |
Collapse
|
44
|
Khatri B, Keeble J, Dagg B, Kaveh DA, Hogarth PJ, Ho MM. Efficacy and immunogenicity of different BCG doses in BALB/c and CB6F1 mice when challenged with H37Rv or Beijing HN878. Sci Rep 2021; 11:23308. [PMID: 34857776 PMCID: PMC8639814 DOI: 10.1038/s41598-021-02442-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 11/10/2021] [Indexed: 11/23/2022] Open
Abstract
Two strains of mice (BALB/c and CB6F1) were vaccinated with a range of Bacille Calmette-Guérin (BCG) Danish doses from 3 × 105 to 30 CFU/mouse, followed by aerosol infection with Mtb (H37Rv or West-Beijing HN878 strain). The results indicated that both strains of mice when infected with HN878 exhibited significant protection in their lungs with BCG doses at 3 × 105-3000 CFU (BALB/c) and 3 × 105-300 CFU (CB6F1). Whereas, a significant protection was seen in both strains of mice with BCG doses at 3 × 105-300 CFU when infected with H37Rv. A significant increase in the frequencies of BCG-specific IFNγ+ IL2+ TNFα+ CD4 T cells in the BCG doses at 3 × 105-3000 CFU (BALB/c) and 3 × 105-300 CFU (CB6F1) was seen. The IFNγ+ IL2+ TNFα+ CD4 T cells correlated with the Mtb burden in the lungs of HN878 infected mice (BALB/c and CB6F1) whereas, IFNγ+ TNFα+ CD4 T cells correlated with the BALB/c mice infected with H37Rv or HN878. The BCG dose at 3000 CFU (an equivalent single human dose in the mice by body weight) is protective in both strains of mice infected with H37Rv or HN878 and may serve an interesting dose to test new TB vaccine in a preclinical animal model.
Collapse
Affiliation(s)
- Bhagwati Khatri
- Bacteriology Division, National Institute for Biological Standards and Control, South Mimms, Potters Bar, Hertfordshire, EN6 3QG, UK.
| | - James Keeble
- Bacteriology Division, National Institute for Biological Standards and Control, South Mimms, Potters Bar, Hertfordshire, EN6 3QG, UK
| | - Belinda Dagg
- Bacteriology Division, National Institute for Biological Standards and Control, South Mimms, Potters Bar, Hertfordshire, EN6 3QG, UK
| | - Daryan A Kaveh
- Department of Bacteriology, Animal and Plant Health Agency, Addlestone, Surrey, KT15 3NB, UK
| | - Philip J Hogarth
- Department of Bacteriology, Animal and Plant Health Agency, Addlestone, Surrey, KT15 3NB, UK
| | - Mei Mei Ho
- Bacteriology Division, National Institute for Biological Standards and Control, South Mimms, Potters Bar, Hertfordshire, EN6 3QG, UK
| |
Collapse
|
45
|
Larkins-Ford J, Greenstein T, Van N, Degefu YN, Olson MC, Sokolov A, Aldridge BB. Systematic measurement of combination-drug landscapes to predict in vivo treatment outcomes for tuberculosis. Cell Syst 2021; 12:1046-1063.e7. [PMID: 34469743 PMCID: PMC8617591 DOI: 10.1016/j.cels.2021.08.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/16/2021] [Accepted: 08/04/2021] [Indexed: 12/30/2022]
Abstract
Lengthy multidrug chemotherapy is required to achieve a durable cure in tuberculosis. However, we lack well-validated, high-throughput in vitro models that predict animal outcomes. Here, we provide an extensible approach to rationally prioritize combination therapies for testing in in vivo mouse models of tuberculosis. We systematically measured Mycobacterium tuberculosis response to all two- and three-drug combinations among ten antibiotics in eight conditions that reproduce lesion microenvironments, resulting in >500,000 measurements. Using these in vitro data, we developed classifiers predictive of multidrug treatment outcome in a mouse model of disease relapse and identified ensembles of in vitro models that best describe in vivo treatment outcomes. We identified signatures of potencies and drug interactions in specific in vitro models that distinguish whether drug combinations are better than the standard of care in two important preclinical mouse models. Our framework is generalizable to other difficult-to-treat diseases requiring combination therapies. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Jonah Larkins-Ford
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA; Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, Boston, MA 02111, USA; Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA; Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA 02115, USA
| | - Talia Greenstein
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA; Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, Boston, MA 02111, USA; Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Nhi Van
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Yonatan N Degefu
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA; Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA 02115, USA
| | - Michaela C Olson
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Artem Sokolov
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA 02115, USA
| | - Bree B Aldridge
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA; Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, Boston, MA 02111, USA; Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA; Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA 02115, USA; Department of Biomedical Engineering, Tufts University School of Engineering, Medford, MA 02155, USA.
| |
Collapse
|
46
|
Consequential drug combinations for tuberculosis treatments. Cell Syst 2021; 12:1021-1022. [PMID: 34793699 DOI: 10.1016/j.cels.2021.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Improved therapies for tuberculosis will require the careful revision of complex, multi-drug regimens. In this issue of Cell Systems, Larkins-Ford et al. integrate extensive dose-response measurements of drug combinations, in vivo animal data, and computational analysis to provide a new predictive framework for the prioritization of specific antitubercular drug regimens.
Collapse
|
47
|
Ozturk M, Chia JE, Hazra R, Saqib M, Maine R, Guler R, Suzuki H, Mishra BB, Brombacher F, Parihar SP. Evaluation of Berberine as an Adjunct to TB Treatment. Front Immunol 2021; 12:656419. [PMID: 34745081 PMCID: PMC8563784 DOI: 10.3389/fimmu.2021.656419] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 09/30/2021] [Indexed: 01/23/2023] Open
Abstract
Tuberculosis (TB) is the global health problem with the second highest number of deaths from a communicable disease after COVID-19. Although TB is curable, poor health infrastructure, long and grueling TB treatments have led to the spread of TB pandemic with alarmingly increasing multidrug-resistant (MDR)-TB prevalence. Alternative host modulating therapies can be employed to improve TB drug efficacies or dampen the exaggerated inflammatory responses to improve lung function. Here, we investigated the adjunct therapy of natural immune-modulatory compound berberine in C57BL/6 mouse model of pulmonary TB. Berberine treatment did not affect Mtb growth in axenic cultures; however, it showed increased bacterial killing in primary murine bone marrow-derived macrophages and human monocyte-derived macrophages. Ad libitum berberine administration was beneficial to the host in combination with rifampicin and isoniazid. Berberine adjunctive treatment resulted in decreased lung pathology with no additive or synergistic effects on bacterial burdens in mice. Lung immune cell flow cytometry analysis showed that adjunctive berberine treatment decreased neutrophil, CD11b+ dendritic cell and recruited interstitial macrophage numbers. Late onset of adjunctive berberine treatment resulted in a similar phenotype with consistently reduced numbers of neutrophils both in lungs and the spleen. Together, our results suggest that berberine can be supplemented as an immunomodulatory agent depending on the disease stage and inflammatory status of the host.
Collapse
Affiliation(s)
- Mumin Ozturk
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town, South Africa
- Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Julius E. Chia
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town, South Africa
- Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Rudranil Hazra
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa) and Institute of Infectious Diseases and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Division of Medical Microbiology, Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Mohd Saqib
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, United States
| | - Rebeng A. Maine
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town, South Africa
- Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Reto Guler
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town, South Africa
- Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa) and Institute of Infectious Diseases and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Harukazu Suzuki
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Bibhuti B. Mishra
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, United States
| | - Frank Brombacher
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town, South Africa
- Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa) and Institute of Infectious Diseases and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Suraj P. Parihar
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town, South Africa
- Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa) and Institute of Infectious Diseases and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Division of Medical Microbiology, Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
48
|
Kotze LA, Beltran CGG, Lang D, Loxton AG, Cooper S, Meiring M, Koegelenberg CFN, Allwood BW, Malherbe ST, Hiemstra AM, Glanzmann B, Kinnear C, Walzl G, du Plessis N. Establishment of a Patient-Derived, Magnetic Levitation-Based, Three-Dimensional Spheroid Granuloma Model for Human Tuberculosis. mSphere 2021; 6:e0055221. [PMID: 34287004 PMCID: PMC8386456 DOI: 10.1128/msphere.00552-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 12/18/2022] Open
Abstract
Tuberculous granulomas that develop in response to Mycobacterium tuberculosis (M. tuberculosis) infection are highly dynamic entities shaped by the host immune response and disease kinetics. Within this microenvironment, immune cell recruitment, polarization, and activation are driven not only by coexisting cell types and multicellular interactions but also by M. tuberculosis-mediated changes involving metabolic heterogeneity, epigenetic reprogramming, and rewiring of the transcriptional landscape of host cells. There is an increased appreciation of the in vivo complexity, versatility, and heterogeneity of the cellular compartment that constitutes the tuberculosis (TB) granuloma and the difficulty in translating findings from animal models to human disease. Here, we describe a novel biomimetic in vitro three-dimensional (3D) human lung spheroid granuloma model, resembling early "innate" and "adaptive" stages of the TB granuloma spectrum, and present results of histological architecture, host transcriptional characterization, mycobacteriological features, cytokine profiles, and spatial distribution of key immune cells. A range of manipulations of immune cell populations in these spheroid granulomas will allow the study of host/pathogen pathways involved in the outcome of infection, as well as pharmacological interventions. IMPORTANCE TB is a highly infectious disease, with granulomas as its hallmark. Granulomas play an important role in the control of M. tuberculosis infection and as such are crucial indicators for our understanding of host resistance to TB. Correlates of risk and protection to M. tuberculosis are still elusive, and the granuloma provides the perfect environment in which to study the immune response to infection and broaden our understanding thereof; however, human granulomas are difficult to obtain, and animal models are costly and do not always faithfully mimic human immunity. In fact, most TB research is conducted in vitro on immortalized or primary immune cells and cultured in two dimensions on flat, rigid plastic, which does not reflect in vivo characteristics. We have therefore conceived a 3D, human in vitro spheroid granuloma model which allows researchers to study features of granuloma-forming diseases in a 3D structural environment resembling in vivo granuloma architecture and cellular orientation.
Collapse
Affiliation(s)
- Leigh A. Kotze
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Caroline G. G. Beltran
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Dirk Lang
- Confocal and Light Microscopy Imaging Facility, University of Cape Town, Cape Town, South Africa
| | - Andre G. Loxton
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Susan Cooper
- Confocal and Light Microscopy Imaging Facility, University of Cape Town, Cape Town, South Africa
| | - Maynard Meiring
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Coenraad F. N. Koegelenberg
- Division of Pulmonology, Department of Medicine, Stellenbosch University and Tygerberg Academic Hospital, Cape Town, South Africa
| | - Brian W. Allwood
- Division of Pulmonology, Department of Medicine, Stellenbosch University and Tygerberg Academic Hospital, Cape Town, South Africa
| | - Stephanus T. Malherbe
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Andriette M. Hiemstra
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Brigitte Glanzmann
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council Genomics Centre, Cape Town, South Africa
| | - Craig Kinnear
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council Genomics Centre, Cape Town, South Africa
| | - Gerhard Walzl
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Nelita du Plessis
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
49
|
In-vivo expressed Mycobacterium tuberculosis antigens recognised in three mouse strains after infection and BCG vaccination. NPJ Vaccines 2021; 6:81. [PMID: 34083546 PMCID: PMC8175414 DOI: 10.1038/s41541-021-00343-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 04/23/2021] [Indexed: 01/15/2023] Open
Abstract
Novel tuberculosis (TB)-vaccines preferably should (i) boost host immune responses induced by previous BCG vaccination and (ii) be directed against Mycobacterium tuberculosis (Mtb) proteins expressed throughout the Mtb infection-cycle. Human Mtb antigen-discovery screens identified antigens encoded by Mtb-genes highly expressed during in vivo murine infection (IVE-TB antigens). To translate these findings towards animal models, we determined which IVE-TB-antigens are recognised by T-cells following Mtb challenge or BCG vaccination in three different mouse strains. Eleven Mtb-antigens were recognised across TB-resistant and susceptible mice. Confirming previous human data, several Mtb-antigens induced cytokines other than IFN-γ. Pulmonary cells from susceptible C3HeB/FeJ mice produced less TNF-α, agreeing with the TB-susceptibility phenotype. In addition, responses to several antigens were induced by BCG in C3HeB/FeJ mice, offering potential for boosting. Thus, recognition of promising Mtb-antigens identified in humans validates across multiple mouse TB-infection models with widely differing TB-susceptibilities. This offers translational tools to evaluate IVE-TB-antigens as diagnostic and vaccine antigens.
Collapse
|
50
|
Tavolara TE, Niazi MKK, Gower AC, Ginese M, Beamer G, Gurcan MN. Deep learning predicts gene expression as an intermediate data modality to identify susceptibility patterns in Mycobacterium tuberculosis infected Diversity Outbred mice. EBioMedicine 2021; 67:103388. [PMID: 34000621 PMCID: PMC8138606 DOI: 10.1016/j.ebiom.2021.103388] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Machine learning sustains successful application to many diagnostic and prognostic problems in computational histopathology. Yet, few efforts have been made to model gene expression from histopathology. This study proposes a methodology which predicts selected gene expression values (microarray) from haematoxylin and eosin whole-slide images as an intermediate data modality to identify fulminant-like pulmonary tuberculosis ('supersusceptible') in an experimentally infected cohort of Diversity Outbred mice (n=77). METHODS Gradient-boosted trees were utilized as a novel feature selector to identify gene transcripts predictive of fulminant-like pulmonary tuberculosis. A novel attention-based multiple instance learning model for regression was used to predict selected genes' expression from whole-slide images. Gene expression predictions were shown to be sufficiently replicated to identify supersusceptible mice using gradient-boosted trees trained on ground truth gene expression data. FINDINGS The model was accurate, showing high positive correlations with ground truth gene expression on both cross-validation (n = 77, 0.63 ≤ ρ ≤ 0.84) and external testing sets (n = 33, 0.65 ≤ ρ ≤ 0.84). The sensitivity and specificity for gene expression predictions to identify supersusceptible mice (n=77) were 0.88 and 0.95, respectively, and for an external set of mice (n=33) 0.88 and 0.93, respectively. IMPLICATIONS Our methodology maps histopathology to gene expression with sufficient accuracy to predict a clinical outcome. The proposed methodology exemplifies a computational template for gene expression panels, in which relatively inexpensive and widely available tissue histopathology may be mapped to specific genes' expression to serve as a diagnostic or prognostic tool. FUNDING National Institutes of Health and American Lung Association.
Collapse
Affiliation(s)
- Thomas E Tavolara
- Center for Biomedical Informatics, Wake Forest School of Medicine, 486 Patterson Avenue, Winston-Salem, NC 27101, United States
| | - M K K Niazi
- Center for Biomedical Informatics, Wake Forest School of Medicine, 486 Patterson Avenue, Winston-Salem, NC 27101, United States.
| | - Adam C Gower
- Department of Medicine, Boston University School of Medicine, 72 E. Concord St Evans Building, Boston, MA 02118, United States
| | - Melanie Ginese
- Department of Infectious Disease and Global Health, Tufts University Cummings School of Veterinary Medicine, 200 Westboro Rd., North Grafton, MA 01536, United States
| | - Gillian Beamer
- Department of Infectious Disease and Global Health, Tufts University Cummings School of Veterinary Medicine, 200 Westboro Rd., North Grafton, MA 01536, United States
| | - Metin N Gurcan
- Center for Biomedical Informatics, Wake Forest School of Medicine, 486 Patterson Avenue, Winston-Salem, NC 27101, United States
| |
Collapse
|