1
|
Chen JY, Meng QY, Qian W, Qu YF. Effects of Bacterial Infections under Heatwaves on Chinese Soft-Shelled Turtles and Their Single-Cell Transcriptomic Landscapes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:8357-8367. [PMID: 40274607 DOI: 10.1021/acs.est.4c09111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
The intensification of global warming could precipitate the widespread dissemination of opportunistic pathogens, exerting a bidirectional strain on wildlife populations and potentially hastening the process of species extinction. In this study, we integrated indicators from peripheral blood single-cell transcriptome, behavior, and physiological indices in Chinese soft-shelled turtles (Pelodiscus sinensis) to explore the impact of dual stress caused by bacterial infections and/or heatwaves on the turtles. Turtles were randomly divided into four groups based on constant temperature at 28 °C and heatwave exposure, as well as whether they were infected with bacteria (Bacillus cereus). Principal component analysis-based cell clustering revealed that the 14 cell clusters were classified into seven distinct cell types: erythrocytes, monocytes, thrombocytes, T cells, B cells, basophils, and heterophils. All cell types participated in the host immune response to heatwaves and bacterial infection, but these cells exhibited significant group-specific differences in their gene expression patterns. Bacterial infections and heatwaves altered turtle behavior and physiology indexes. The dual stresses inhibited the expression of antioxidant enzymes and immune genes, potentially jeopardizing turtle survival. Overall, this study provides valuable insights into peripheral blood cell profiles of Chinese soft-shelled turtles under different environmental conditions, enhancing the understanding of their immune responses and potential stressors.
Collapse
Affiliation(s)
- Jing-Yi Chen
- Herpetological Research Center, College of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| | - Qing-Yan Meng
- Herpetological Research Center, College of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| | - Wei Qian
- Herpetological Research Center, College of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| | - Yan-Fu Qu
- Herpetological Research Center, College of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| |
Collapse
|
2
|
Charles N, Blank U. IgE-Mediated Activation of Mast Cells and Basophils in Health and Disease. Immunol Rev 2025; 331:e70024. [PMID: 40165512 DOI: 10.1111/imr.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Accepted: 03/12/2025] [Indexed: 04/02/2025]
Abstract
Type 2-mediated immune responses protect the body against environmental threats at barrier surfaces, such as large parasites and environmental toxins, and facilitate the repair of inflammatory tissue damage. However, maladaptive responses to typically nonpathogenic substances, commonly known as allergens, can lead to the development of allergic diseases. Type 2 immunity involves a series of prototype TH2 cytokines (IL-4, IL-5, IL-13) and alarmins (IL-33, TSLP) that promote the generation of adaptive CD4+ helper Type 2 cells and humoral products such as allergen-specific IgE. Mast cells and basophils are integral players in this network, serving as primary effectors of IgE-mediated responses. These cells bind IgE via high-affinity IgE receptors (FcεRI) expressed on their surface and, upon activation by allergens, release a variety of mediators that regulate tissue responses, attract and modulate other inflammatory cells, and contribute to tissue repair. Here, we review the biology and effector mechanisms of these cells, focusing primarily on their role in mediating IgE responses in both physiological and pathological contexts.
Collapse
Affiliation(s)
- Nicolas Charles
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS EMR8252, Faculté de Médecine Site Bichat, Paris, France
- Laboratoire d'Excellence Inflamex, Université Paris Cité, Paris, France
| | - Ulrich Blank
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS EMR8252, Faculté de Médecine Site Bichat, Paris, France
- Laboratoire d'Excellence Inflamex, Université Paris Cité, Paris, France
| |
Collapse
|
3
|
Kurita R, Abe T, Maebara K, Takahashi D, Miyata S, Satake M, Tani Y. Establishment of a novel human basophil cell line for functional analysis and in vitro allergy testing. Allergol Int 2025:S1323-8930(25)00027-9. [PMID: 40187962 DOI: 10.1016/j.alit.2025.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 03/04/2025] [Accepted: 03/05/2025] [Indexed: 04/07/2025] Open
Abstract
BACKGROUND Basophils are the rarest granulocytes and play diverse roles, e.g., in protective immunity and allergic inflammatory reactions. However, the underlying molecules and mechanisms involved in basophil differentiation and functions, particularly in humans, remain largely unknown. This may be due to the lack of high-quality research tools. METHODS We established a novel, immortalized, human basophil cell line by introducing human papillomavirus 16-E6/E7, c-MYC, and BCL-xL gene expression systems into cultured basophils, and evaluated whether this cell line is useful as a research tool, compared with KU812, which is the most commonly-used human basophil cell line. RESULTS This cell line expressed various basophil markers, including CD123, CD203c, and the high-affinity immunoglobulin (Ig)E receptor α-chain and can mature into more differentiated cells under specific culture conditions. The differentiated cells stimulated with anti-IgE antibodies showed increased CD203c expression in a dose-dependent manner, whereas the differentiated KU812 cells showed little activation after the stimulation. The established cell line also demonstrated increased sensitivity to allergic activation when stimulated with an allergen (NP-BSA) and allergen-specific IgE (anti-NP-IgE). Furthermore, histamine- and interleukin-4-releasing abilities were also confirmed. These allergic activation profiles were similar to those of basophils from healthy individuals, although the activation levels of the established cells were lower than those of basophils from highly-sensitive individuals. CONCLUSIONS These findings suggest that the established basophil cell line has substantially different characteristics from a conventional cell line and could serve as a new tool for investigating basophil differentiation and functions, as well as for testing allergic reactions.
Collapse
Affiliation(s)
- Ryo Kurita
- Department of Research and Development, Central Blood Institute, Blood Service Headquarters, Japanese Red Cross Society, Tatsumi 2-1-67, Koto-ku, Tokyo 135-8521, Japan.
| | - Takaaki Abe
- Department of Research and Development, Central Blood Institute, Blood Service Headquarters, Japanese Red Cross Society, Tatsumi 2-1-67, Koto-ku, Tokyo 135-8521, Japan
| | - Kanako Maebara
- Department of Research and Development, Central Blood Institute, Blood Service Headquarters, Japanese Red Cross Society, Tatsumi 2-1-67, Koto-ku, Tokyo 135-8521, Japan
| | - Daisuke Takahashi
- Department of Research and Development, Central Blood Institute, Blood Service Headquarters, Japanese Red Cross Society, Tatsumi 2-1-67, Koto-ku, Tokyo 135-8521, Japan
| | - Shigeki Miyata
- Department of Research and Development, Central Blood Institute, Blood Service Headquarters, Japanese Red Cross Society, Tatsumi 2-1-67, Koto-ku, Tokyo 135-8521, Japan
| | - Masahiro Satake
- Department of Research and Development, Central Blood Institute, Blood Service Headquarters, Japanese Red Cross Society, Tatsumi 2-1-67, Koto-ku, Tokyo 135-8521, Japan
| | - Yoshihiko Tani
- Department of Research and Development, Central Blood Institute, Blood Service Headquarters, Japanese Red Cross Society, Tatsumi 2-1-67, Koto-ku, Tokyo 135-8521, Japan
| |
Collapse
|
4
|
Slack KL, Groffen J, Davis AK, Hopkins WA. Parasite Infections Influence Immunological Responses But Not Reproductive Success of Male Hellbender Salamanders ( Cryptobranchus alleganiensis). Integr Org Biol 2025; 7:obaf006. [PMID: 40248315 PMCID: PMC12004113 DOI: 10.1093/iob/obaf006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 02/08/2025] [Indexed: 04/19/2025] Open
Abstract
The emergence and spread of infectious diseases is a significant contributor to global amphibian declines, requiring increased surveillance and research. We assessed host-vector-parasite dynamics using a population of eastern hellbender salamanders (Cryptobranchus alleganiensis) that harbor leeches (Placobdella appalachiensis) that transmit endoparasitic blood parasites (Trypanosoma spp) to the host, with coinfection frequently occurring. We centered our study on adult males throughout their extended 8-month paternal care period because recent research indicates that nest failure caused by lack of paternal care and filial cannibalism is contributing to hellbender population declines. Recognizing the potential for parasites to modulate host physiology and behavior, we explored how infection severity influences paternal health and reproductive success. We assessed white blood cell profiles of adult male hellbenders in response to parasites, coinfection, and seasonal temperature fluctuations, while also investigating whether parasite infection or coinfection was predictive of nest success. We found that hellbenders exhibited seasonal shifts in white blood cell indices; as temperatures increased across seasons (from 5°C to 20°C), the proportion of neutrophils and eosinophils decreased (by 14% and 46%, respectively) in circulation while the proportion of lymphocytes and basophils increased (by 8% and 101%, respectively). Moreover, the proportion of neutrophil precursors increased by 80% under colder temperatures, which signifies seasonal immune cell recruitment. We demonstrated that neutrophils and eosinophils increased while lymphocytes decreased in response to leech infection. However, as leech and trypanosome infection intensity increased together, the proportion of lymphocytes increased while neutrophils and eosinophils decreased, underscoring the complex interactions between coinfection and immune responses of hellbenders that warrant future research. Despite the influence of infection and coinfection on hellbender physiology, we detected no evidence to support the hypothesis that parasites influence the likelihood of nest failure or whole-clutch filial cannibalism. In light of amphibian declines being exacerbated by climate change and disease, our study emphasizes the need to establish hematological reference values that account for physiological adaptations to seasonal fluctuations in temperature and different life history stages and to study the physiological responses of imperiled amphibian species to parasites.
Collapse
Affiliation(s)
- K L Slack
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA 24061, USA
| | - J Groffen
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA 24061, USA
| | - A K Davis
- Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
| | - W A Hopkins
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
5
|
Held E, Mochizuki H. Hematologic Abnormalities and Diseases Associated with Moderate-to-Marked Basophilia in a Large Cohort of Dogs. Vet Sci 2023; 10:700. [PMID: 38133251 PMCID: PMC10748300 DOI: 10.3390/vetsci10120700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/28/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023] Open
Abstract
Basophilia is a rare hematologic finding in dogs. This research aimed to describe the hematologic and clinical characteristics of dogs with moderate-to-marked basophilia. CBC reports with blood smear examinations from dogs presented to the North Carolina State University Veterinary Teaching Hospital were retrospectively reviewed for basophilia (>193 cells/µL). We classified basophilia as moderate when counts were ≥500 cells/µL and marked when they reached ≥1000 cells/µL. We compared the hematologic and clinical profiles of dogs with moderate-to-marked basophilia (the basophilia group) to those without basophilia, serving as our control group. In addition, we investigated differences between dogs with marked basophilia versus those with moderate basophilia, as well as between dogs in the basophilia group with and without concurrent eosinophilia. Diseases associated with moderate-to-marked basophilia included eosinophilic lung disease (p < 0.0001), leukemia/myeloproliferative neoplasms (p = 0.004), parasitic infection (p = 0.004), mast cell tumor (p = 0.005), and inflammatory bowel disease (p = 0.02). Overall, dogs with marked basophilia had a lower frequency of inflammatory diseases (51% vs. 70%, p = 0.009) and a higher frequency of neoplastic diseases (48% vs. 26%, p = 0.003) compared to those with moderate basophilia. In the basophilia group, concurrent eosinophilia was only seen in 36% of dogs. Dogs with concurrent eosinophilia were more often diagnosed with inflammatory diseases (77% vs. 58%, p = 0.006), with fewer diagnoses of neoplasia (19% vs. 40%, p = 0.001), compared to dogs without concurrent eosinophilia. The findings of this study offer veterinary clinicians valuable guidance in determining diagnostic priorities for dogs with moderate-to-marked basophilia.
Collapse
Affiliation(s)
- Elizabeth Held
- Department of Public Health and Pathobiology, NC State College of Veterinary Medicine, Raleigh, NC 27607, USA;
| | - Hiroyuki Mochizuki
- Department of Public Health and Pathobiology, NC State College of Veterinary Medicine, Raleigh, NC 27607, USA;
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27606, USA
| |
Collapse
|
6
|
Smita S, Webb LM, Mooney B, Früh SP, Oyesola OO, Matheson MK, Peng SA, Tait Wojno ED. Basophil responses in susceptible AKR mice upon infection with the intestinal helminth parasite Trichuris muris. Parasite Immunol 2023; 45:e12999. [PMID: 37415265 PMCID: PMC10513073 DOI: 10.1111/pim.12999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/01/2023] [Accepted: 06/06/2023] [Indexed: 07/08/2023]
Abstract
Intestinal helminth infection promotes a Type 2 inflammatory response in resistant C57BL/6 mice that is essential for worm clearance. The study of inbred mouse strains has revealed factors that are critical for parasite resistance and delineated the role of Type 1 versus Type 2 immune responses in worm clearance. In C57BL/6 mice, basophils are key innate immune cells that promote Type 2 inflammation and are programmed via the Notch signalling pathway during infection with the helminth Trichuris muris. However, how the host genetic background influences basophil responses and basophil expression of Notch receptors remains unclear. Here we use genetically susceptible inbred AKR/J mice that have a Type 1-skewed immune response during T. muris infection to investigate basophil responses in a susceptible host. Basophil population expansion occurred in AKR/J mice even in the absence of fulminant Type 2 inflammation during T. muris infection. However, basophils in AKR/J mice did not robustly upregulate expression of the Notch2 receptor in response to infection as occurred in C57BL/6 mice. Blockade of the Type 1 cytokine interferon-γ in infected AKR/J mice was not sufficient to elicit infection-induced basophil expression of the Notch2 receptor. These data suggest that the host genetic background, outside of the Type 1 skew, is important in regulating basophil responses during T. muris infection in susceptible AKR/J mice.
Collapse
Affiliation(s)
- Shuchi Smita
- Department of Immunology, University of Washington, Seattle, WA, USA
| | - Lauren M. Webb
- Department of Immunology, University of Washington, Seattle, WA, USA
| | - Bridget Mooney
- Department of Immunology, University of Washington, Seattle, WA, USA
| | - Simon P. Früh
- Baker Institute for Animal Health and Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | - Oyebola O. Oyesola
- Department of Immunology, University of Washington, Seattle, WA, USA
- Baker Institute for Animal Health and Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | - Macy K. Matheson
- Department of Immunology, University of Washington, Seattle, WA, USA
| | - Seth A. Peng
- Baker Institute for Animal Health and Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | | |
Collapse
|
7
|
Poto R, Loffredo S, Marone G, Di Salvatore A, de Paulis A, Schroeder JT, Varricchi G. Basophils beyond allergic and parasitic diseases. Front Immunol 2023; 14:1190034. [PMID: 37205111 PMCID: PMC10185837 DOI: 10.3389/fimmu.2023.1190034] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 04/14/2023] [Indexed: 05/21/2023] Open
Abstract
Basophils bind IgE via FcεRI-αβγ2, which they uniquely share only with mast cells. In doing so, they can rapidly release mediators that are hallmark of allergic disease. This fundamental similarity, along with some morphological features shared by the two cell types, has long brought into question the biological significance that basophils mediate beyond that of mast cells. Unlike mast cells, which mature and reside in tissues, basophils are released into circulation from the bone marrow (constituting 1% of leukocytes), only to infiltrate tissues under specific inflammatory conditions. Evidence is emerging that basophils mediate non-redundant roles in allergic disease and, unsuspectingly, are implicated in a variety of other pathologies [e.g., myocardial infarction, autoimmunity, chronic obstructive pulmonary disease, fibrosis, cancer, etc.]. Recent findings strengthen the notion that these cells mediate protection from parasitic infections, whereas related studies implicate basophils promoting wound healing. Central to these functions is the substantial evidence that human and mouse basophils are increasingly implicated as important sources of IL-4 and IL-13. Nonetheless, much remains unclear regarding the role of basophils in pathology vs. homeostasis. In this review, we discuss the dichotomous (protective and/or harmful) roles of basophils in a wide spectrum of non-allergic disorders.
Collapse
Affiliation(s)
- Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
| | - Stefania Loffredo
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- Institute of Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (CNR), Naples, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- Institute of Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (CNR), Naples, Italy
| | - Antonio Di Salvatore
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Amato de Paulis
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - John T. Schroeder
- Division of Allergy and Clinical Immunology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- Institute of Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (CNR), Naples, Italy
| |
Collapse
|
8
|
Peng J, Federman HG, Hernandez C, Siracusa MC. Communication is key: Innate immune cells regulate host protection to helminths. Front Immunol 2022; 13:995432. [PMID: 36225918 PMCID: PMC9548658 DOI: 10.3389/fimmu.2022.995432] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/30/2022] [Indexed: 11/24/2022] Open
Abstract
Parasitic helminth infections remain a significant global health issue and are responsible for devastating morbidity and economic hardships. During infection, helminths migrate through different host organs, which results in substantial tissue damage and the release of diverse effector molecules by both hematopoietic and non-hematopoietic cells. Thus, host protective responses to helminths must initiate mechanisms that help to promote worm clearance while simultaneously mitigating tissue injury. The specialized immunity that promotes these responses is termed type 2 inflammation and is initiated by the recruitment and activation of hematopoietic stem/progenitor cells, mast cells, basophils, eosinophils, dendritic cells, neutrophils, macrophages, myeloid-derived suppressor cells, and group 2 innate lymphoid cells. Recent work has also revealed the importance of neuron-derived signals in regulating type 2 inflammation and antihelminth immunity. These studies suggest that multiple body systems coordinate to promote optimal outcomes post-infection. In this review, we will describe the innate immune events that direct the scope and intensity of antihelminth immunity. Further, we will highlight the recent progress made in our understanding of the neuro-immune interactions that regulate these pathways and discuss the conceptual advances they promote.
Collapse
Affiliation(s)
- Jianya Peng
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, United States
- Department of Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, United States
| | - Hannah G. Federman
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, United States
- Department of Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, United States
| | - Christina M. Hernandez
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, United States
- Department of Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, United States
| | - Mark C. Siracusa
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, United States
- Department of Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, United States
- *Correspondence: Mark C. Siracusa,
| |
Collapse
|
9
|
Poto R, Quinti I, Marone G, Taglialatela M, de Paulis A, Casolaro V, Varricchi G. IgG Autoantibodies Against IgE from Atopic Dermatitis Can Induce the Release of Cytokines and Proinflammatory Mediators from Basophils and Mast Cells. Front Immunol 2022; 13:880412. [PMID: 35711458 PMCID: PMC9192953 DOI: 10.3389/fimmu.2022.880412] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/27/2022] [Indexed: 12/18/2022] Open
Abstract
IgE-mediated release of proinflammatory mediators and cytokines from basophils and mast cells is a central event in allergic disorders. Several groups of investigators have demonstrated the presence of autoantibodies against IgE and/or FcεRI in patients with chronic spontaneous urticaria. By contrast, the prevalence and functional activity of anti-IgE autoantibodies in atopic dermatitis (AD) are largely unknown. We evaluated the ability of IgG anti-IgE from patients with AD to induce the in vitro IgE-dependent activation of human basophils and skin and lung mast cells. Different preparations of IgG anti-IgE purified from patients with AD and rabbit IgG anti-IgE were compared for their triggering effects on the in vitro release of histamine and type 2 cytokines (IL-4, IL-13) from basophils and of histamine and lipid mediators (prostaglandin D2 and cysteinyl leukotriene C4) from human skin and lung mast cells. One preparation of human IgG anti-IgE out of six patients with AD induced histamine release from basophils, skin and lung mast cells. This preparation of human IgG anti-IgE induced the secretion of cytokines and eicosanoids from basophils and mast cells, respectively. Human monoclonal IgE was a competitive antagonist of both human and rabbit IgG anti-IgE. Human anti-IgE was more potent than rabbit anti-IgE for IL-4 and IL-13 production by basophils and histamine, prostaglandin D2 and leukotriene C4 release from mast cells. Functional anti-IgE autoantibodies rarely occur in patients with AD. When present, they induce the release of proinflammatory mediators and cytokines from basophils and mast cells, thereby possibly contributing to sustained IgE-dependent inflammation in at least a subset of patients with this disorder.
Collapse
Affiliation(s)
- Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,World Allergy Organization (WAO) Center of Excellence, Naples, Italy
| | - Isabella Quinti
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,World Allergy Organization (WAO) Center of Excellence, Naples, Italy.,Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council (CNR), Naples, Italy
| | | | - Amato de Paulis
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,World Allergy Organization (WAO) Center of Excellence, Naples, Italy
| | - Vincenzo Casolaro
- Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', University of Salerno, Baronissi, Italy
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,World Allergy Organization (WAO) Center of Excellence, Naples, Italy.,Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council (CNR), Naples, Italy
| |
Collapse
|
10
|
Miyake K, Ito J, Karasuyama H. Role of Basophils in a Broad Spectrum of Disorders. Front Immunol 2022; 13:902494. [PMID: 35693800 PMCID: PMC9186123 DOI: 10.3389/fimmu.2022.902494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
Basophils are the rarest granulocytes and have long been overlooked in immunological research due to their rarity and similarities with tissue-resident mast cells. In the last two decades, non-redundant functions of basophils have been clarified or implicated in a broad spectrum of immune responses, particularly by virtue of the development of novel analytical tools for basophils. Basophils infiltrate inflamed tissues of patients with various disorders, even though they circulate in the bloodstream under homeostatic conditions. Depletion of basophils results in the amelioration or exaggeration of inflammation, depending on models of disease, indicating basophils can play either beneficial or deleterious roles in a context-dependent manner. In this review, we summarize the recent findings of basophil pathophysiology under various conditions in mice and humans, including allergy, autoimmunity, tumors, tissue repair, fibrosis, and COVID-19. Further mechanistic studies on basophil biology could lead to the identification of novel biomarkers or therapeutic targets in a broad range of diseases.
Collapse
|
11
|
Wang S, Wang X, Hua X, Jiang S, Xie Y, Liu H. Adjusted association between type 2 immunity and low risk thyroid nodules: a retrospective cohort study. BMC Endocr Disord 2022; 22:2. [PMID: 34983483 PMCID: PMC8725489 DOI: 10.1186/s12902-021-00917-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/14/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Immune responses, especially type 2 immunity, might be related to the prevalence of thyroid nodules, while the key regulators and potential pathways are remaining largely unknown. In addition, the immune status of individuals could be affected by mixed metabolic background. Herein our aim was to investigate the adjusted association between ultrasound-diagnosed low risk thyroid nodules and immune responses, excluding the interference of metabolic effects on immunity. METHODS We retrospectively enrolled 1764 subjects who underwent a thorough thyroid ultrasound examination. To eliminate the interference of confounders, we used propensity score matching (PSM) to match age, gender, cigarette smoking and alcohol drinking, parameters that are related with metabolic syndrome (MetS). Then the potential effectors of immune responses involved in the laboratorial assays were evaluated. Binary logistic regression analysis was used to assess the independent predictors of thyroid nodules in a multivariate manner. RESULTS The 1172 subjects were remained after PSM, and differences of demographic background between subjects with and without thyroid nodules were eliminated. Metabolic parameters comprising blood pressure, fasting blood glucose, total cholesterol, triglyceride, high-density lipoprotein, low-density lipoprotein and serum uric acid were shown no significant difference between post-PSM subjects with and without thyroid nodules. Among the biochemistry and hematological parameters, white blood cell count and the positive rate of eosinophil percentage were increased in subjects with thyroid nodules than in those without thyroid nodules. In contrast, the positive rate of basophil percentage was lower in subjects with thyroid nodules than in those without thyroid nodules. In addition, the thyroid function test results showed that subjects with thyroid nodules had higher positive rates of antithyroglobulin antibody (TgAb) and antithyroid peroxidase antibody (TPOAb) than subjects without thyroid nodules. The logistic regression analysis indicated that the positive value of TgAb as well as high level of white blood cell count and BMI could serve as independent risk factors of thyroid nodules. CONCLUSIONS The type 2 immune responses mediated by increased level of eosinophils, along with positive value of TgAb and TPOAb were associated with the presence of thyroid nodules. In addition, the potential role of basophils in protecting against thyroid nodules and the pathogenesis of immune-metabolic status remains to be elucidated.
Collapse
Affiliation(s)
- Sanxing Wang
- Department of Laboratory Medicine, the Second Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China
| | - Xia Wang
- State Key Laboratory of Medical Molecular Biology and Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Xiang Hua
- State Key Laboratory of Medical Molecular Biology and Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Shichao Jiang
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Yong Xie
- State Key Laboratory of Medical Molecular Biology and Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, 100005, China.
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Hongying Liu
- Department of Laboratory Medicine, the Second Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
12
|
Donnelly E, de Water JV, Luckhart S. Malaria-induced bacteremia as a consequence of multiple parasite survival strategies. CURRENT RESEARCH IN MICROBIAL SCIENCES 2021; 2:100036. [PMID: 34841327 PMCID: PMC8610325 DOI: 10.1016/j.crmicr.2021.100036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/26/2021] [Accepted: 04/29/2021] [Indexed: 12/30/2022] Open
Abstract
Globally, malaria continues to be an enormous public health burden, with concomitant parasite-induced damage to the gastrointestinal (GI) barrier resulting in bacteremia-associated morbidity and mortality in both adults and children. Infected red blood cells sequester in and can occlude the GI microvasculature, ultimately leading to disruption of the tight and adherens junctions that would normally serve as a physical barrier to translocating enteric bacteria. Mast cell (MC) activation and translocation to the GI during malaria intensifies damage to the physical barrier and weakens the immunological barrier through the release of enzymes and factors that alter the host response to escaped enteric bacteria. In this context, activated MCs release Th2 cytokines, promoting a balanced Th1/Th2 response that increases local and systemic allergic inflammation while protecting the host from overwhelming Th1-mediated immunopathology. Beyond the mammalian host, recent studies in both the lab and field have revealed an association between a Th2-skewed host response and success of parasite transmission to mosquitoes, biology that is evocative of parasite manipulation of the mammalian host. Collectively, these observations suggest that malaria-induced bacteremia may be, in part, an unintended consequence of a Th2-shifted host response that promotes parasite survival and transmission. Future directions of this work include defining the factors and mechanisms that precede the development of bacteremia, which will enable the development of biomarkers to simplify diagnostics, the identification of therapeutic targets to improve patient outcomes and better understanding of the consequences of clinical interventions to transmission blocking strategies.
Collapse
Affiliation(s)
- Erinn Donnelly
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA
| | - Judy Van de Water
- Division of Rheumatology, Allergy, and Clinical Immunology, University of California, Davis, CA, USA
| | - Shirley Luckhart
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, USA
| |
Collapse
|
13
|
Peng J, Siracusa MC. Basophils in antihelminth immunity. Semin Immunol 2021; 53:101529. [PMID: 34815162 PMCID: PMC8715908 DOI: 10.1016/j.smim.2021.101529] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/15/2022]
Abstract
It has been appreciated that basophilia is a common feature of helminth infections for approximately 50 years. The ability of basophils to secrete IL-4 and other type 2 cytokines has supported the prevailing notion that basophils contribute to antihelminth immunity by promoting optimal type 2 T helper (Th2) cell responses. While this appears to be the case in several helminth infections, emerging studies are also revealing that the effector functions of basophils are extremely diverse and parasite-specific. Further, new reports now suggest that basophils can restrict type 2 inflammation in a manner that preserves the integrity of helminth-affected tissue. Finally, exciting data has also demonstrated that basophils can regulate inflammation by participating in neuro-immune interactions. This article will review the current state of basophil biology and describe how recent studies are transforming our understanding of the role basophils play in the context of helminth infections.
Collapse
Affiliation(s)
- Jianya Peng
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, USA; Department of Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, USA
| | - Mark C Siracusa
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, USA; Department of Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, USA.
| |
Collapse
|
14
|
Yoshikawa S, Miyake K, Kamiya A, Karasuyama H. The role of basophils in acquired protective immunity to tick infestation. Parasite Immunol 2021; 43:e12804. [PMID: 33124059 PMCID: PMC8244031 DOI: 10.1111/pim.12804] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 10/26/2020] [Indexed: 01/22/2023]
Abstract
Ticks are blood-feeding ectoparasites that transmit a variety of pathogens to host animals and humans, causing severe infectious diseases such as Lyme disease. In a certain combination of animal and tick species, tick infestation elicits acquired immunity against ticks in the host, which can reduce the ability of ticks to feed on blood and to transmit pathogens in the following tick infestations. Therefore, our understanding of the cellular and molecular mechanisms of acquired tick resistance (ATR) can advance the development of anti-tick vaccines to prevent tick infestation and tick-borne diseases. Basophils are a minor population of white blood cells circulating in the bloodstream and are rarely observed in peripheral tissues under steady-state conditions. Basophils have been reported to accumulate at tick-feeding sites during re-infestation in cattle, rabbits, guinea pigs and mice. Selective ablation of basophils resulted in a loss of ATR in guinea pigs and mice, illuminating the essential role of basophils in the manifestation of ATR. In this review, we discuss the recent advance in the elucidation of the cellular and molecular mechanisms underlying basophil recruitment to the tick-feeding site and basophil-mediated ATR.
Collapse
Affiliation(s)
- Soichiro Yoshikawa
- Department of Cellular PhysiologyOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Kensuke Miyake
- Inflammation, Infection and Immunity LaboratoryTMDU Advanced Research InstituteTokyo Medical and Dental University (TMDU)TokyoJapan
| | - Atsunori Kamiya
- Department of Cellular PhysiologyOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Hajime Karasuyama
- Inflammation, Infection and Immunity LaboratoryTMDU Advanced Research InstituteTokyo Medical and Dental University (TMDU)TokyoJapan
| |
Collapse
|
15
|
Malta KK, Silva TP, Palazzi C, Neves VH, Carmo LAS, Cardoso SJ, Melo RCN. Changing our view of the Schistosoma granuloma to an ecological standpoint. Biol Rev Camb Philos Soc 2021; 96:1404-1420. [PMID: 33754464 DOI: 10.1111/brv.12708] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 12/27/2022]
Abstract
Schistosomiasis, a neglected parasitic tropical disease that has plagued humans for centuries, remains a major public health burden. A primary challenge to understanding schistosomiasis is deciphering the most remarkable pathological feature of this disease, the granuloma - a highly dynamic and self-organized structure formed by both host and parasite components. Granulomas are considered a remarkable example of how parasites evolved with their hosts to establish complex and intimate associations. However, much remains unclear regarding life within the granuloma, and strategies to restrain its development are still lacking. Here we explore current information on the hepatic Schistosoma mansoni granuloma in the light of Ecology and propose that this intricate structure acts as a real ecosystem. The schistosomal granuloma is formed by cells (biotic component), protein scaffolds, fibres, and chemical compounds (abiotic components) with inputs/outputs of energy and matter, as complex as in classical ecosystems. We review the distinct cell populations ('species') within the granuloma and examine how they integrate with each other and interact with their microenvironment to form a multifaceted cell community in different space-time frames. The colonization of the hepatic tissue to form granulomas is explained from the point of view of an ecological succession whereby a community is able to modify its physical environment, creating conditions and resources for ecosystem construction. Remarkably, the granuloma represents a dynamic evolutionary system that undergoes progressive changes in the 'species' that compose its community over time. In line with ecological concepts, we examine the granuloma not only as a place where a community of cells is settled (spatial niche or habitat) but also as a site in which the functional activities of these combined populations occur in an orchestrated way in response to microenvironmental gradients such as cytokines and egg antigens. Finally, we assert how the levels of organization of cellular components in a granuloma as conventionally defined by Cell Biology can fit perfectly into a hierarchical structure of biological systems as defined by Ecology. By rethinking the granuloma as an integrating and evolving ecosystem, we draw attention to the inner workings of this structure that are central to the understanding of schistosomiasis and could guide its future treatment.
Collapse
Affiliation(s)
- Kássia K Malta
- Laboratory of Cellular Biology, Department of Biology, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, São Pedro, Juiz de Fora, MG, 36036-900, Brazil.,Graduate Program in Biodiversity, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, São Pedro, Juiz de Fora, MG, 36036-900, Brazil
| | - Thiago P Silva
- Laboratory of Cellular Biology, Department of Biology, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, São Pedro, Juiz de Fora, MG, 36036-900, Brazil.,Graduate Program in Biodiversity, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, São Pedro, Juiz de Fora, MG, 36036-900, Brazil
| | - Cinthia Palazzi
- Laboratory of Cellular Biology, Department of Biology, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, São Pedro, Juiz de Fora, MG, 36036-900, Brazil.,Graduate Program in Cell Biology, Federal University of Minas Gerais, Belo Horizonte, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, 31270-901, Brazil
| | - Vitor H Neves
- Laboratory of Cellular Biology, Department of Biology, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, São Pedro, Juiz de Fora, MG, 36036-900, Brazil.,Graduate Program in Cell Biology, Federal University of Minas Gerais, Belo Horizonte, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, 31270-901, Brazil
| | - Lívia A S Carmo
- Laboratory of Cellular Biology, Department of Biology, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, São Pedro, Juiz de Fora, MG, 36036-900, Brazil.,Department of Medicine, Federal University of Alagoas, Rodovia AL-115, Bom Sucesso, Arapiraca, AL, 57309-005, Brazil
| | - Simone J Cardoso
- Graduate Program in Biodiversity, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, São Pedro, Juiz de Fora, MG, 36036-900, Brazil.,Laboratory of Plankton Ecology, Department of Zoology, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, São Pedro, Juiz de Fora, MG, 36036-900, Brazil
| | - Rossana C N Melo
- Laboratory of Cellular Biology, Department of Biology, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, São Pedro, Juiz de Fora, MG, 36036-900, Brazil.,Graduate Program in Biodiversity, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, São Pedro, Juiz de Fora, MG, 36036-900, Brazil.,Graduate Program in Cell Biology, Federal University of Minas Gerais, Belo Horizonte, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, 31270-901, Brazil
| |
Collapse
|
16
|
Berger AE, Durrieu C, Dzviga C, Perrot JL, Lambert C. Human peripheral basophils extended phenotype shows a high expression of CD244 immuno-regulatory receptor. J Immunol Methods 2021; 492:112951. [PMID: 33493550 DOI: 10.1016/j.jim.2020.112951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/16/2020] [Accepted: 12/16/2020] [Indexed: 10/22/2022]
Abstract
INTRODUCTION Basophils play a major physio-pathological role in hypersensitivity related diseases. Basophils express high affinity Immunoglobulin (Ig) E receptors (FcεRI), IgG and complement regulatory. Basophils also have immunoregulatory activity through interaction with T cells. The aim of this study was to look for the expression of markers reflecting the activation status of peripheral Basophil in healthy donors. METHOD the study was performed on 29 healthy donors, 62% females with a mean age of 50.1 + 17.0 years. Basophils were identified on their expression of CD123 without HLA-DR and/or CD193 in two 8 colors panels including CD46, CD55, CD59, CD203c, CD32 (FcγRII), CD64 (FcγRIII), CD163, CD137L (4-1BBL), CD252 (OX40L), CD244 (2B4) and CD3 on whole blood. Basophil activation with anti IgE was performed on 14 donors. RESULTS AND DISCUSSION Our results confirmed the Basophil expression of CD123, CD193 and CD203 (the latter is strongly increased under stimulation). Complement regulatory proteins (CD46, CD55, CD59) were expressed at the same levels as on other leukocytes; CD46, CD59 expression being slightly increased under stimulation. CD32 and CD163 scavenger were slightly higher than on lympho and not influenced by activation. CD252 or CD137L were expressed at low levels and significantly induced by stimulation. Most of all, CD244 was highly expressed on Basophils as compared to any other leukocytes in fresh peripheral blood. CONCLUSIONS Our study shows that human resting Basophils express IgE and IgG Fc receptors and check point receptor CD244 that could potentially play a role in their previously reported immunoregulatory activity in sensitization and even in tumor immune escape.
Collapse
Affiliation(s)
- Anne-Emmanuelle Berger
- Immunology laboratory, University Hospital Saint-Etienne, 42055 Saint-Etienne, Cedex 2, France
| | - Coralie Durrieu
- Immunology laboratory, University Hospital Saint-Etienne, 42055 Saint-Etienne, Cedex 2, France
| | - Charles Dzviga
- Allergology unit, University Hospital Saint-Etienne, 42055 Saint-Etienne, Cedex 2, France
| | - Jean-Luc Perrot
- Dermatology department, University Hospital Saint-Etienne, 42055 Saint-Etienne, Cedex 2, France
| | - Claude Lambert
- Immunology laboratory, University Hospital Saint-Etienne, 42055 Saint-Etienne, Cedex 2, France; Allergology unit, University Hospital Saint-Etienne, 42055 Saint-Etienne, Cedex 2, France.
| |
Collapse
|
17
|
Nonlethal Plasmodium yoelii Infection Drives Complex Patterns of Th2-Type Host Immunity and Mast Cell-Dependent Bacteremia. Infect Immun 2020; 88:IAI.00427-20. [PMID: 32958528 PMCID: PMC7671899 DOI: 10.1128/iai.00427-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/16/2020] [Indexed: 12/11/2022] Open
Abstract
Malaria strongly predisposes to bacteremia, which is associated with sequestration of parasitized red blood cells and increased gastrointestinal permeability. The mechanisms underlying this disruption are poorly understood. Here, we evaluated the expression of factors associated with mast cell activation and malaria-associated bacteremia in a rodent model. C57BL/6J mice were infected with Plasmodium yoeliiyoelli 17XNL, and blood and tissues were collected over time to assay for circulating levels of bacterial 16S DNA, IgE, mast cell protease 1 (Mcpt-1) and Mcpt-4, Th1 and Th2 cytokines, and patterns of ileal mastocytosis and intestinal permeability. Malaria strongly predisposes to bacteremia, which is associated with sequestration of parasitized red blood cells and increased gastrointestinal permeability. The mechanisms underlying this disruption are poorly understood. Here, we evaluated the expression of factors associated with mast cell activation and malaria-associated bacteremia in a rodent model. C57BL/6J mice were infected with Plasmodium yoeliiyoelli 17XNL, and blood and tissues were collected over time to assay for circulating levels of bacterial 16S DNA, IgE, mast cell protease 1 (Mcpt-1) and Mcpt-4, Th1 and Th2 cytokines, and patterns of ileal mastocytosis and intestinal permeability. The anti-inflammatory cytokines (interleukin-4 [IL-4], IL-6, and IL-10) and MCP-1/CCL2 were detected early after P. yoeliiyoelii 17XNL infection. This was followed by the appearance of IL-9 and IL-13, cytokines known for their roles in mast cell activation and growth-enhancing activity as well as IgE production. Later increases in circulating IgE, which can induce mast cell degranulation, as well as Mcpt-1 and Mcpt-4, were observed concurrently with bacteremia and increased intestinal permeability. These results suggest that P. yoeliiyoelii 17XNL infection induces the production of early cytokines that activate mast cells and drive IgE production, followed by elevated IgE, IL-9, and IL-13 that maintain and enhance mast cell activation while disrupting the protease/antiprotease balance in the intestine, contributing to epithelial damage and increased permeability.
Collapse
|
18
|
Lins JGG, Almeida FA, Amarante AF. Haematological variables of Santa Ines and Ile de France suckling lambs: Influence of Haemonchus contortus infection. PESQUISA VETERINÁRIA BRASILEIRA 2020. [DOI: 10.1590/1678-5150-pvb-6618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ABSTRACT: Haemonchus contortus is the major gastrointestinal parasite of sheep raised in tropical and subtropical areas worldwide. This trial aimed to evaluate the influence of H. contortus infection on the bone marrow response of Santa Ines (SI) and Ile de France (IF) suckling lambs experimentally infected with H. contortus. Fourteen SI lambs and 12 IF lambs were randomized in four groups: infected SI (n=8), non-infected SI (n=6), infected IF (n=8) and non-infected IF (n=4). Lambs of infected groups were submitted to 27 infections, conducted every two days, from 14 to 68 days of age, and each lamb received a total of 5400 H. contortus infective larvae (L3). Ten blood samples were obtained during the experimental period to be used for erythrocyte and leukocyte counts, packed cell volume and total plasma protein estimation. Additionally, it was carried out a differential leukocyte count. Lambs from control groups did not shed eggs in faeces all over the experiment, while infected Santa Ines and Ile de France lambs presented means of 2963 EPG (Eggs Per Gram of faeces) and 8175 EPG in the last sampling (P<0.05), respectively. Infected Santa Ines lambs had an increase in eosinophil release, however differences (P<0.05) on circulation number in comparison with infected Ile de France lambs were identified only in the last sampling (54 days post first infection). The mild H. cortortus infection did not produce significant changes in the blood variables of the Ile de France and Santa Ines suckling lambs.
Collapse
|
19
|
Tylan C, Horvat-Gordon M, Bartell PA, Langkilde T. Ecoimmune reallocation in a native lizard in response to the presence of invasive, venomous fire ants in their shared environment. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2020; 333:792-804. [PMID: 33038069 DOI: 10.1002/jez.2418] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 09/16/2020] [Accepted: 09/19/2020] [Indexed: 01/10/2023]
Abstract
Exposure to stressors over prolonged periods can have fitness-relevant consequences, including suppression of immune function. We tested for effects of presence of an invasive species threat on a broad panel of immune functions of a coexisting lizard. Eastern fence lizards (Sceloporus undulatus) have been exposed to invasive fire ants (Solenopsis invicta) for over 80 years. Fire ants sting and envenomate lizards, causing physiological stress, but we do not have a comprehensive understanding of the broad immune consequences of lizard exposure to fire ant presence. We conducted a suite of immune measures on fence lizards caught from areas with long histories of fire ant invasion and lizards from areas not yet invaded by fire ants. The effect of fire ant presence on immunity varied depending on the immune component measured: within fire ant invaded areas, some portions of immunity were suppressed (lymphocytic cell-mediated immunity, complement), some were unaffected (phagocytic respiratory burst, natural antibodies), and some were enhanced (anti-fire ant immunoglobulin M, basophils) compared to within uninvaded areas. Rather than fire ants being broadly immunosuppressing, as generally assumed, the immune response appears to be tailored to this specific stressor: the immune measures that were enhanced are important to the lizards' ability to handle envenomation, whereas those that were unaffected or suppressed are less critical to surviving fire ant encounters. Several immune measures were suppressed in reproductive females when actively producing follicles, which may make them more susceptible to immunosuppressive costs of stressors such as interactions with fire ants.
Collapse
Affiliation(s)
- Catherine Tylan
- Department of Biology, The Pennsylvania State University, Mueller Laboratory, University Park, Pennsylvania, USA
| | - Maria Horvat-Gordon
- Department of Animal Science, The Pennsylvania State University, Forest Resource Laboratory, University Park, Pennsylvania, USA
| | - Paul A Bartell
- Department of Animal Science, The Pennsylvania State University, Forest Resource Laboratory, University Park, Pennsylvania, USA
| | - Tracy Langkilde
- Department of Biology, The Pennsylvania State University, Mueller Laboratory, University Park, Pennsylvania, USA
| |
Collapse
|
20
|
Marone G, Schroeder JT, Mattei F, Loffredo S, Gambardella AR, Poto R, de Paulis A, Schiavoni G, Varricchi G. Is There a Role for Basophils in Cancer? Front Immunol 2020; 11:2103. [PMID: 33013885 PMCID: PMC7505934 DOI: 10.3389/fimmu.2020.02103] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/03/2020] [Indexed: 12/11/2022] Open
Abstract
Basophils were identified in human peripheral blood by Paul Ehrlich over 140 years ago. Human basophils represent <1% of peripheral blood leukocytes. During the last decades, basophils have been described also in mice, guinea pigs, rabbits, and monkeys. There are many similarities, but also several immunological differences between human and mouse basophils. There are currently several strains of mice with profound constitutive or inducible basophil deficiency useful to prove that these cells have specific roles in vivo. However, none of these mice are solely and completely devoid of all basophils. Therefore, the relevance of these findings to humans remains to be established. It has been known for some time that basophils have the propensity to migrate into the site of inflammation. Recent observations indicate that tissue resident basophils contribute to lung development and locally promote M2 polarization of macrophages. Moreover, there is increasing evidence that lung-resident basophils exhibit a specific phenotype, different from circulating basophils. Activated human and mouse basophils synthesize restricted and distinct profiles of cytokines. Human basophils produce several canonical (e.g., VEGFs, angiopoietin 1) and non-canonical (i.e., cysteinyl leukotriene C4) angiogenic factors. Activated human and mouse basophils release extracellular DNA traps that may have multiple effects in cancer. Hyperresponsiveness of basophils has been demonstrated in patients with JAK2V617F-positive polycythemia vera. Basophils are present in the immune landscape of human lung adenocarcinoma and pancreatic cancer and can promote inflammation-driven skin tumor growth. The few studies conducted thus far using different models of basophil-deficient mice have provided informative results on the roles of these cells in tumorigenesis. Much more remains to be discovered before we unravel the hitherto mysterious roles of basophils in human and experimental cancers.
Collapse
Affiliation(s)
- Giancarlo Marone
- Section of Hygiene, Department of Public Health, University of Naples Federico II, Naples, Italy.,Azienda Ospedaliera Ospedali dei Colli, Monaldi Hospital Pharmacy, Naples, Italy
| | - John T Schroeder
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins Asthma and Allergy Center, Johns Hopkins University, Baltimore, MD, United States
| | - Fabrizio Mattei
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Stefania Loffredo
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy.,Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Research Council (CNR), Naples, Italy
| | | | - Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Amato de Paulis
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy
| | - Giovanna Schiavoni
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy.,Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Research Council (CNR), Naples, Italy
| |
Collapse
|
21
|
Oyesola OO, Früh SP, Webb LM, Tait Wojno ED. Cytokines and beyond: Regulation of innate immune responses during helminth infection. Cytokine 2020; 133:154527. [PMID: 30241895 PMCID: PMC6422760 DOI: 10.1016/j.cyto.2018.08.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 08/18/2018] [Accepted: 08/20/2018] [Indexed: 12/22/2022]
Abstract
Parasitic helminth infection elicits a type 2 cytokine-mediated inflammatory response. During type 2 inflammation, damaged or stimulated epithelial cells exposed to helminths and their products produce alarmins and cytokines including IL-25, IL-33, and thymic stromal lymphopoietin. These factors promote innate immune cell activation that supports the polarization of CD4+ T helper type 2 (Th2) cells. Activated innate and Th2 cells produce the cytokines IL-4, -5, -9, and -13 that perpetuate immune activation and act back on the epithelium to cause goblet cell hyperplasia and increased epithelial cell turnover. Together, these events facilitate worm expulsion and wound healing processes. While the role of Th2 cells in this context has been heavily studied, recent work has revealed that epithelial cell-derived cytokines are drivers of key innate immune responses that are critical for type 2 anti-helminth responses. Cutting-edge studies have begun to fully assess how other factors and pathways, including lipid mediators, chemokines, Fc receptor signaling, danger-associated molecular pattern molecules, and direct cell-cell interactions, also participate in shaping innate cell-mediated type 2 inflammation. In this review, we discuss how these pathways intersect and synergize with pathways controlled by epithelial cell-derived cytokines to coordinate innate immune responses that drive helminth-induced type 2 inflammation.
Collapse
Affiliation(s)
- Oyebola O Oyesola
- Baker Institute for Animal Health and Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | - Simon P Früh
- Baker Institute for Animal Health and Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | - Lauren M Webb
- Baker Institute for Animal Health and Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | - Elia D Tait Wojno
- Baker Institute for Animal Health and Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY, USA.
| |
Collapse
|
22
|
Linnemann LC, Reitz M, Feyerabend TB, Breloer M, Hartmann W. Limited role of mast cells during infection with the parasitic nematode Litomosoides sigmodontis. PLoS Negl Trop Dis 2020; 14:e0008534. [PMID: 32735561 PMCID: PMC7423137 DOI: 10.1371/journal.pntd.0008534] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 08/12/2020] [Accepted: 06/29/2020] [Indexed: 12/26/2022] Open
Abstract
Mast cells are innate effector cells that due to their localization in the tissue form the first line of defense against parasites. We have previously shown that specifically mucosal mast cells were essential for the termination of the intestinal Strongyloides ratti infection. Here, we analyze the impact of mast cells on the immune response and defense against the tissue-dwelling filarial nematode Litomosoides sigmodontis using mast cell-deficient Cpa3cre mice. Despite an increase and an activation of mast cells at the site of infection in wildtype BALB/c mice the outcome of L. sigmodontis infection was not changed in mast cell-deficient BALB/c Cpa3cre mice. In Cpa3cre mice neither vascular permeability induced by blood-sucking mites nor the migration of L3 was altered compared to Cpa3 wildtype littermates. Worm burden in the thoracic cavity was alike in the presence and absence of mast cells during the entire course of infection. Although microfilaremiae in the peripheral blood increased in mast cell-deficient mice at some time points, the infection was cleared with comparable kinetics in the presence and absence of mast cells. Moreover, mast cell deficiency had no impact on the cytokine and antibody response to L. sigmodontis. In summary, our findings suggest that mast cells are not mandatory for the initiation of an appropriate immune response and host defense during L. sigmodontis infection in mice. Mast cells are innate cells that are equipped with biologically potent granule proteins. Due to their localization in many tissues they form the first line of defense against parasites such as helminths. In the current study we analyzed the impact of mast cell deficiency on the course of a tissue-dwelling helminth infection. Mice were infected with the filarial nematode L. sigmodontis in the presence and absence of mast cells. We show that mast cell numbers increase at the site of infection and that mast cells are activated. Despite the recruitment of mast cells in infected wildtype BALB/c mice, worm burden in the thoracic cavity and final eradication of microfilariae from the peripheral blood were alike in mast cell-deficient and wildtype mice. Mast cell deficiency had no impact on the anti-helminth immune response. In summary, our findings suggest that mast cells are not required for a protective immune response against L. sigmodontis infection in mice.
Collapse
Affiliation(s)
| | - Martina Reitz
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | | - Minka Breloer
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Department of Biology, University of Hamburg, Hamburg, Germany
| | - Wiebke Hartmann
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- * E-mail:
| |
Collapse
|
23
|
Zhu Y, Li J, Li Q, Pang Y. Characterization of lamprey (Lampetra japonica) tnfr10-like gene: A potential granulocyte marker molecule and its immune functions. Mol Immunol 2020; 124:25-34. [PMID: 32497752 DOI: 10.1016/j.molimm.2020.05.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 11/29/2022]
Abstract
Tumor necrosis factor receptor superfamily (TNFRSF) is an ancient protein superfamily. By binding to tumor necrosis factor (TNF), it can participate in inflammatory response, apoptosis, lymphocyte homeostasis and tissue development. Seven TNFR members have previously been identified in lampreys but detailed functions of TNFR members are not yet to be resolved. Here, we demonstrate some of the distinguishing features of TNFR10-like member which belongs to TNFRSF. The immunohistochemical results indicate that the TNFR10-like protein is abundant in vascular epithelial cells of the lamprey typhlosole and gills. The expression of tnfr10-like gene has a significantly increased at transcription level after Vibrio anguillarum, Staphylococcus aureus and Poly (I:C) stimulation. Notably, TNFR10-like is specifically expressed in the granulocytes of lamprey peripheral blood and supraneural body. Besides, overexpression tnfr10-like gene in HEK-293 T cells cause a decrease in cell activity and able to activate nuclear transcription factor-κB (NF-κB). Together, these results imply that L-TNFR10-like may play a vital role as a potential marker in lamprey granulocytes and may also be involved in regulation of immune response mediated by itself.
Collapse
Affiliation(s)
- Yigao Zhu
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Jun Li
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Qingwei Li
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116023, China
| | - Yue Pang
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China.
| |
Collapse
|
24
|
Fecchio A, Martins TF, Bell JA, De La Torre GM, Pinho JB, Weckstein JD, Tkach VV, Labruna MB, Dias RI. Low host specificity and lack of parasite avoidance by immature ticks in Brazilian birds. Parasitol Res 2020; 119:2039-2045. [PMID: 32377908 DOI: 10.1007/s00436-020-06698-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/21/2020] [Indexed: 11/28/2022]
Abstract
Ticks are ectoparasites that feed on blood of a broad taxonomic range of terrestrial and flying vertebrates and are distributed across a wide range of environmental conditions. Here, we explore the biotic and abiotic factors on infestation probability of ticks of the genus Amblyomma and assess the degree of host specificity based on analysis of 1028 birds surveyed across Brazil. We show that tick infestation rates exhibited considerable variation across the 235 avian species analyzed and that the probability of an individual bird being parasitized by immature ticks (larvae and nymphs) increased with annual precipitation. Host phylogeny and two host ecological traits known to promote tick exposure (body mass and foraging behavior) did not predict infestation probability. Moreover, immature ticks displayed a low degree of host specificity at the family level. Lastly, tick occurrence in birds carrying infection with avian malaria and related parasites did not differ from those free of these haemosporidian parasites, indicating a lack of parasite avoidance by immature ticks. Our findings demonstrate that tick occurrence in birds across Brazilian biomes responds to environmental factors rather than ecological and evolutionary host attributes.
Collapse
Affiliation(s)
- Alan Fecchio
- Programa de Pós-graduação em Ecologia e Conservação da Biodiversidade, Universidade Federal de Mato Grosso, Cuiabá, MT, Brazil.
| | - Thiago F Martins
- Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Jeffrey A Bell
- Department of Biology, University of North Dakota, Grand Forks, ND, 58202, USA
| | - Gabriel M De La Torre
- Programa de Pós-graduação em Ecologia e Conservação, Laboratório de Ecologia e Interações Antagonísticas, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - João B Pinho
- Programa de Pós-graduação em Ecologia e Conservação da Biodiversidade, Universidade Federal de Mato Grosso, Cuiabá, MT, Brazil.,Laboratório de Ecologia de Aves, Universidade Federal de Mato Grosso, Cuiabá, MT, Brazil
| | - Jason D Weckstein
- Department of Ornithology, Academy of Natural Sciences of Drexel University, Philadelphia, PA, 19103, USA.,Department of Biodiversity, Earth, and Environmental Science, Drexel University, Philadelphia, PA, 19103, USA
| | - Vasyl V Tkach
- Department of Biology, University of North Dakota, Grand Forks, ND, 58202, USA
| | - Marcelo B Labruna
- Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Raphael I Dias
- Faculdade de Ciências da Educação e Saúde, Centro Universitário de Brasília, Brasília, DF, Brazil.,Programa de Pós-graduação em Zoologia, Universidade de Brasília, Brasília, DF, Brazil
| |
Collapse
|
25
|
Becker DJ, Nachtmann C, Argibay HD, Botto G, Escalera-Zamudio M, Carrera JE, Tello C, Winiarski E, Greenwood AD, Méndez-Ojeda ML, Loza-Rubio E, Lavergne A, de Thoisy B, Czirják GÁ, Plowright RK, Altizer S, Streicker DG. Leukocyte Profiles Reflect Geographic Range Limits in a Widespread Neotropical Bat. Integr Comp Biol 2020; 59:1176-1189. [PMID: 30873523 PMCID: PMC6907035 DOI: 10.1093/icb/icz007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Quantifying how the environment shapes host immune defense is important for understanding which wild populations may be more susceptible or resistant to pathogens. Spatial variation in parasite risk, food and predator abundance, and abiotic conditions can each affect immunity, and these factors can also manifest at both local and biogeographic scales. Yet identifying predictors and the spatial scale of their effects is limited by the rarity of studies that measure immunity across many populations of broadly distributed species. We analyzed leukocyte profiles from 39 wild populations of the common vampire bat (Desmodus rotundus) across its wide geographic range throughout the Neotropics. White blood cell differentials varied spatially, with proportions of neutrophils and lymphocytes varying up to six-fold across sites. Leukocyte profiles were spatially autocorrelated at small and very large distances, suggesting that local environment and large-scale biogeographic factors influence cellular immunity. Generalized additive models showed that bat populations closer to the northern and southern limits of the species range had more neutrophils, monocytes, and basophils, but fewer lymphocytes and eosinophils, than bats sampled at the core of their distribution. Habitats with access to more livestock also showed similar patterns in leukocyte profiles, but large-scale patterns were partly confounded by time between capture and sampling across sites. Our findings suggest that populations at the edge of their range experience physiologically limiting conditions that predict higher chronic stress and greater investment in cellular innate immunity. High food abundance in livestock-dense habitats may exacerbate such conditions by increasing bat density or diet homogenization, although future spatially and temporally coordinated field studies with common protocols are needed to limit sampling artifacts. Systematically assessing immune function and response over space will elucidate how environmental conditions influence traits relevant to epidemiology and help predict disease risks with anthropogenic disturbance, land conversion, and climate change.
Collapse
Affiliation(s)
- Daniel J Becker
- Odum School of Ecology, University of Georgia, Athens, GA 30602, USA.,Center for the Ecology of Infectious Disease, University of Georgia, Athens, GA 30602, USA.,Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Cecilia Nachtmann
- Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
| | - Hernan D Argibay
- Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - Germán Botto
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59715, USA.,Departamento de Metodos Cuantitativos, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Marina Escalera-Zamudio
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin 10315, Germany.,Department of Zoology, University of Oxford, Oxford OX1 3SY, UK
| | - Jorge E Carrera
- Facultad de Ciencias, Universidad Nacional de Piura, Piura 20009, Peru.,Programa de Conservación de Murciélagos de Perú, Piura Lima-1, Peru
| | - Carlos Tello
- Association for the Conservation and Development of Natural Resources, Lima 15037, Peru.,Yunkawasi, Lima 15049, Peru
| | - Erik Winiarski
- Departamento de Histología, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Alex D Greenwood
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin 10315, Germany.,Department of Veterinary Medicine, Freie Universität Berlin, Berlin 14163, Germany
| | - Maria L Méndez-Ojeda
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Veracruzana, Veracruz 91710, Mexico
| | - Elizabeth Loza-Rubio
- Centro Nacional de Investigación Disciplinaria en Microbiología Animal, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Mexico City 05110, Mexico
| | - Anne Lavergne
- Laboratoire des Interactions Virus-Hôtes, Institut Pasteur de la Guyane, Cayenne, French Guiana F-97300, France
| | - Benoit de Thoisy
- Laboratoire des Interactions Virus-Hôtes, Institut Pasteur de la Guyane, Cayenne, French Guiana F-97300, France
| | - Gábor Á Czirják
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin 10315, Germany
| | - Raina K Plowright
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59715, USA
| | - Sonia Altizer
- Odum School of Ecology, University of Georgia, Athens, GA 30602, USA.,Center for the Ecology of Infectious Disease, University of Georgia, Athens, GA 30602, USA
| | - Daniel G Streicker
- Odum School of Ecology, University of Georgia, Athens, GA 30602, USA.,Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.,MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| |
Collapse
|
26
|
Webb LM, Oyesola OO, Früh SP, Kamynina E, Still KM, Patel RK, Peng SA, Cubitt RL, Grimson A, Grenier JK, Harris TH, Danko CG, Tait Wojno ED. The Notch signaling pathway promotes basophil responses during helminth-induced type 2 inflammation. J Exp Med 2019; 216:1268-1279. [PMID: 30975892 PMCID: PMC6547860 DOI: 10.1084/jem.20180131] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 12/11/2018] [Accepted: 03/25/2019] [Indexed: 02/02/2023] Open
Abstract
Basophils promote type 2 inflammation that mediates worm clearance during murine infection with the gastrointestinal helminth parasite Trichuris muris. Webb et al. show for the first time that basophil–intrinsic Notch signaling is required for basophil gene expression and a functional program that support helminth expulsion. Type 2 inflammation drives the clearance of gastrointestinal helminth parasites, which infect over two billion people worldwide. Basophils are innate immune cells that support host-protective type 2 inflammation during murine infection with the helminth Trichuris muris. However, the mechanisms required for basophil function and gene expression regulation in this context remain unclear. We show that during T. muris infection, basophils localized to the intestine and up-regulated Notch receptor expression, rendering them sensitive to Notch signals that rapidly regulate gene expression programs. In vitro, Notch inhibition limited basophil cytokine production in response to cytokine stimulation. Basophil-intrinsic Notch signaling was required for T. muris–elicited changes in genome-wide basophil transcriptional programs. Mice lacking basophil-intrinsic functional Notch signaling had impaired worm clearance, decreased intestinal type 2 inflammation, altered basophil localization in the intestine, and decreased CD4+ T helper 2 cell responses following infection. These findings demonstrate that Notch is required for basophil gene expression and effector function associated with helminth expulsion during type 2 inflammation.
Collapse
Affiliation(s)
- Lauren M Webb
- Baker Institute for Animal Health and Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY
| | - Oyebola O Oyesola
- Baker Institute for Animal Health and Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY
| | - Simon P Früh
- Baker Institute for Animal Health and Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY
| | - Elena Kamynina
- Baker Institute for Animal Health and Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY
| | - Katherine M Still
- Center for Brain Immunology and Glia, Department of Neuroscience, University of Virginia, Charlottesville, VA
| | - Ravi K Patel
- Department of Molecular Biology and Genetics, College of Arts and Sciences, Cornell University, Ithaca, NY
| | - Seth A Peng
- Baker Institute for Animal Health and Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY
| | - Rebecca L Cubitt
- Baker Institute for Animal Health and Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY
| | - Andrew Grimson
- Department of Molecular Biology and Genetics, College of Arts and Sciences, Cornell University, Ithaca, NY
| | - Jennifer K Grenier
- RNA Sequencing Core, Center for Reproductive Genomics, and Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY
| | - Tajie H Harris
- Center for Brain Immunology and Glia, Department of Neuroscience, University of Virginia, Charlottesville, VA
| | - Charles G Danko
- Baker Institute for Animal Health and Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY
| | - Elia D Tait Wojno
- Baker Institute for Animal Health and Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY
| |
Collapse
|
27
|
Yasuda K, Nakanishi K. Host responses to intestinal nematodes. Int Immunol 2019; 30:93-102. [PMID: 29346656 DOI: 10.1093/intimm/dxy002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 01/10/2018] [Indexed: 12/19/2022] Open
Abstract
Helminth infection remains common in developing countries, where residents who suffer from the consequences of such infections can develop serious physical and mental disorders and often persist in the face of serious economic problems. Intestinal nematode infection induces the development of Th2-type immune responses including the B-cell IgE response; additionally, this infection induces an increase in the numbers and activation of various types of effector cells, such as mast cells, eosinophils and basophils, as well as the induction of goblet cell hyperplasia, anti-microbial peptide production and smooth-muscle contraction, all of which contribute to expel nematodes. Innate immunity is important in efforts to eliminate helminth infection; cytokines, including IL-25, IL-33 and thymic stromal lymphopoietin, which are products of epithelial cells and mast cells, induce Th2 cells and group 2 innate lymphoid cells to proliferate and produce Th2 cytokines. Nematodes also facilitate chronic infection by suppression of immune reactions through an increased number of Treg cells. Immunosuppression by parasite infection may ultimately be beneficial for the host animals; indeed, a negative correlation has been found between parasite infection and the prevalence of inflammatory disease in humans.
Collapse
Affiliation(s)
- Koubun Yasuda
- Department of Immunology, Hyogo College of Medicine, Hyogo, Japan
| | - Kenji Nakanishi
- Department of Immunology, Hyogo College of Medicine, Hyogo, Japan
| |
Collapse
|
28
|
Piliponsky AM, Shubin NJ, Lahiri AK, Truong P, Clauson M, Niino K, Tsuha AL, Nedospasov SA, Karasuyama H, Reber LL, Tsai M, Mukai K, Galli SJ. Basophil-derived tumor necrosis factor can enhance survival in a sepsis model in mice. Nat Immunol 2019; 20:129-140. [PMID: 30664762 PMCID: PMC6352314 DOI: 10.1038/s41590-018-0288-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 11/20/2018] [Indexed: 11/11/2022]
Abstract
Basophils are evolutionarily conserved in vertebrates, despite their small numbers and short lifespan, suggesting that basophils have beneficial roles in maintaining health. However, these roles are not fully defined. Here, we demonstrate that basophil-deficient mice exhibited reduced bacterial clearance, and increased morbidity and mortality, in the cecal ligation and puncture (CLP) model of sepsis. Among the several pro-inflammatory mediators we measured, tumor necrosis factor (TNF) was the only cytokine that was significantly reduced in basophil-deficient mice after CLP. In accordance with that observation, we found that mice with genetic ablation of Tnf in basophils exhibited reduced systemic TNF concentrations during endotoxemia. Moreover, during CLP, mice whose basophils could not produce TNF exhibited reduced neutrophil and macrophage TNF production and effector functions, reduced bacterial clearance, and increased mortality. Taken together, our studies show that basophils can enhance the innate immune response against bacterial infection and help prevent sepsis.
Collapse
Affiliation(s)
- Adrian M Piliponsky
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA. .,Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA. .,Department of Pathology, University of Washington School of Medicine, Seattle, WA, USA.
| | - Nicholas J Shubin
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA
| | - Asha K Lahiri
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA
| | - Phuong Truong
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA
| | - Morgan Clauson
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA
| | - Kerri Niino
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA
| | - Avery L Tsuha
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA
| | - Sergei A Nedospasov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Hajime Karasuyama
- Tokyo Medical and Dental University Graduate School of Medical and Dental Sciences, Tokyo, Japan
| | - Laurent L Reber
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Mindy Tsai
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.,Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA, USA
| | - Kaori Mukai
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.,Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA, USA
| | - Stephen J Galli
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.,Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA, USA.,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
29
|
Varricchi G, Raap U, Rivellese F, Marone G, Gibbs BF. Human mast cells and basophils-How are they similar how are they different? Immunol Rev 2019; 282:8-34. [PMID: 29431214 DOI: 10.1111/imr.12627] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mast cells and basophils are key contributors to allergies and other inflammatory diseases since they are the most prominent source of histamine as well as numerous additional inflammatory mediators which drive inflammatory responses. However, a closer understanding of their precise roles in allergies and other pathological conditions has been marred by the considerable heterogeneity that these cells display, not only between mast cells and basophils themselves but also across different tissue locations and species. While both cell types share the ability to rapidly degranulate and release histamine following high-affinity IgE receptor cross-linking, they differ markedly in their ability to either react to other stimuli, generate inflammatory eicosanoids or release immunomodulating cytokines and chemokines. Furthermore, these cells display considerable pharmacological heterogeneity which has stifled attempts to develop more effective anti-allergic therapies. Mast cell- and basophil-specific transcriptional profiling, at rest and after activation by innate and adaptive stimuli, may help to unravel the degree to which these cells differ and facilitate a clearer understanding of their biological functions and how these could be targeted by new therapies.
Collapse
Affiliation(s)
- Gilda Varricchi
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research, University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy
| | - Ulrike Raap
- Department of Dermatology and Allergology, University of Oldenburg, Oldenburg, Germany
| | - Felice Rivellese
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research, University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy.,Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Gianni Marone
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research, University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy.,Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore" (IEOS), National Research Council (CNR), Naples, Italy
| | - Bernhard F Gibbs
- Department of Dermatology and Allergology, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
30
|
Mast cell deficiency in mice results in biomass overgrowth and delayed expulsion of the rat tapeworm Hymenolepis diminuta. Biosci Rep 2018; 38:BSR20180687. [PMID: 30341242 PMCID: PMC6265620 DOI: 10.1042/bsr20180687] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 09/11/2018] [Accepted: 10/03/2018] [Indexed: 02/06/2023] Open
Abstract
Infection with helminth parasites evokes a complex cellular response in the host, where granulocytes (i.e. eosinophils, basophils and mast cells (MCs)) feature prominently. In addition to being used as markers of helminthic infections, MCs have been implicated in worm expulsion since animals defective in c-kit signaling, which results in diminished MC numbers, can have delayed worm expulsion. The role of MCs in the rejection of the rat tapeworm, Hymenolepsis diminuta, from the non-permissive mouse host is not known. MC-deficient mice display a delay in the expulsion of H. diminuta that is accompanied by a less intense splenic Th2 response, as determined by in vitro release of interleukin (IL)-4, IL-5 and IL-13 cytokines. Moreover, worms retrieved from MC-deficient mice were larger than those from wild-type (WT) mice. Assessment of gut-derived IL-25, IL-33, thymic stromal lymphopoietin revealed lower levels in uninfected MC-deficient mice compared with WT, suggesting a role for MCs in homeostatic control of these cytokines: differences in these gut cytokines between the mouse strains were not observed after infection with H. diminuta. Finally, mice infected with H. diminuta display less severe dinitrobenzene sulphonic acid (DNBS)-induced colitis, and this beneficial effect of the worm was unaltered in MC-deficient mice challenged with DNBS, as assessed by a macroscopic disease score. Thus, while MCs are not essential for rejection of H. diminuta from mice, their absence slows the kinetics of expulsion allowing the development of greater worm biomass prior to successful rejection of the parasitic burden.
Collapse
|
31
|
Odaka T, Suetake H, Maeda T, Miyadai T. Teleost Basophils Have IgM-Dependent and Dual Ig-Independent Degranulation Systems. THE JOURNAL OF IMMUNOLOGY 2018. [PMID: 29514952 DOI: 10.4049/jimmunol.1701051] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Recently, mammalian basophils have been highlighted as having roles in allergy and antiparasitic immunity; however, there is little information about the functions and evolutionary origin of basophils, because they are the least abundant leukocyte in most vertebrates. In this study, we characterized the teleost basophils that are abundant in the peripheral blood of fugu (Takifugu rubripes). Fugu basophils have two distinct granules: reddish-purple and dark violet ones. Teleost fish do not have IgG and IgE, but we found that fugu IgM bound on the surface of the basophils, and the cross-linked IgM induced degranulation of both types of granules. This indicates that teleost basophils can be activated in an Ab-dependent manner. Furthermore, papain induced the degranulation of the reddish-purple granules, which contain histamine, and the released granules stimulated the migration of various leukocytes. In contrast, chitin elicited the degranulation of the dark violet granules, which resulted in CD4+ T cell-specific migration. Thus, fugu basophils control immune responses via two distinct Ab-independent mechanisms. In addition, fugu basophils endocytosed soluble Ag and expressed MHC class II and B7-H1/DC. These findings suggested that fugu basophils can interact with T cells as APCs. Thus, the Ab-dependent basophil activation predates the emergence of IgG and IgE, and fish basophils exhibit different dynamics and features of degranulation to distinct stimuli compared with mammalian basophils. Some features of teleost basophils are more similar to those of mammalian mast cells than to those of mammalian basophils.
Collapse
Affiliation(s)
- Tomoyuki Odaka
- Faculty of Marine Science and Technology, Fukui Prefectural University, Obama, Fukui 917-0003, Japan
| | - Hiroaki Suetake
- Faculty of Marine Science and Technology, Fukui Prefectural University, Obama, Fukui 917-0003, Japan
| | - Tomoki Maeda
- Faculty of Marine Science and Technology, Fukui Prefectural University, Obama, Fukui 917-0003, Japan
| | - Toshiaki Miyadai
- Faculty of Marine Science and Technology, Fukui Prefectural University, Obama, Fukui 917-0003, Japan
| |
Collapse
|
32
|
Protection against Schistosoma haematobium infection in hamsters by immunization with Schistosoma mansoni gut-derived cysteine peptidases, SmCB1 and SmCL3. Vaccine 2017; 35:6977-6983. [PMID: 29122387 DOI: 10.1016/j.vaccine.2017.10.069] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/15/2017] [Accepted: 10/20/2017] [Indexed: 01/21/2023]
Abstract
We examined the immunogenicity and protective potential of SmCB1 and SmCL3 cysteine peptidases, alone and in combination, in hamsters challenged with S. haematobium. For each of two independent experiments, eight Syrian hamsters were immunized twice with a three week-interval with 0 (controls), 20 µg SmCB1, 20 µg SmCL3, or 10 µg SmCB1 plus 10 µg SmCL3, and then percutaneously exposed eight weeks later to 100 S. haematobium cercariae. Hamsters from each group were assessed for humoral and whole blood culture cytokine responses on day 10 post challenge infection, and examined for parasitological parameters 12 weeks post infection. At day 10 post-infection we found that SmCB1 and SmCL3 elicited low antibody titres and weak but polarized cytokine type 2 responses. Nevertheless, both cysteine peptidases, alone or in combination, evoked reproducible and highly significant reduction in challenge worm burden (>70%, P < 0.02) as well as a significant reduction in worm egg counts and viability. The data support our previous findings and show that S. mansoni cysteine peptidases SmCB1 and SmCL3 are efficacious adjuvant-free vaccines that induce protection in mice and hamsters against both S. mansoni and S. haematobium.
Collapse
|
33
|
Abstract
Mast cells and basophils represent the most relevant source of histamine in the immune system. Histamine is stored in cytoplasmic granules along with other amines (e.g., serotonin), proteases, proteoglycans, cytokines/chemokines, and angiogenic factors and rapidly released upon triggering with a variety of stimuli. Moreover, mast cell and basophil histamine release is regulated by several activating and inhibitory receptors. The engagement of different receptors can trigger different modalities of histamine release and degranulation. Histamine released from mast cells and basophils exerts its biological activities by activating four G protein-coupled receptors, namely H1R, H2R, H3R (expressed mainly in the brain), and the recently identified H4R. While H1R and H2R activation accounts mainly for some mast cell- and basophil-mediated allergic disorders, the selective expression of H4R on immune cells is uncovering new roles for histamine (possibly derived from mast cells and basophils) in allergic, inflammatory, and autoimmune disorders. Thus, the in-depth knowledge of mast cell and basophil histamine release and its biologic effects is poised to uncover new therapeutic avenues for a wide spectrum of disorders.
Collapse
|
34
|
Kimura R, Sugita K, Ito A, Goto H, Yamamoto O. Basophils are recruited and localized at the site of tick bites in humans. J Cutan Pathol 2017; 44:1091-1093. [DOI: 10.1111/cup.13045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 09/08/2017] [Accepted: 09/11/2017] [Indexed: 12/30/2022]
Affiliation(s)
- Ryoko Kimura
- Division of Dermatology, Department of Medicine of Sensory and Motor Organs; Tottori University Faculty of Medicine; Yonago Japan
| | - Kazunari Sugita
- Division of Dermatology, Department of Medicine of Sensory and Motor Organs; Tottori University Faculty of Medicine; Yonago Japan
| | - Ayako Ito
- Division of Dermatology, Department of Medicine of Sensory and Motor Organs; Tottori University Faculty of Medicine; Yonago Japan
| | - Hiroyuki Goto
- Division of Dermatology, Department of Medicine of Sensory and Motor Organs; Tottori University Faculty of Medicine; Yonago Japan
| | - Osamu Yamamoto
- Division of Dermatology, Department of Medicine of Sensory and Motor Organs; Tottori University Faculty of Medicine; Yonago Japan
| |
Collapse
|
35
|
Dema B, Lamri Y, Pellefigues C, Pacreau E, Saidoune F, Bidault C, Karasuyama H, Sacré K, Daugas E, Charles N. Basophils contribute to pristane-induced Lupus-like nephritis model. Sci Rep 2017; 7:7969. [PMID: 28801578 PMCID: PMC5554199 DOI: 10.1038/s41598-017-08516-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 07/12/2017] [Indexed: 01/14/2023] Open
Abstract
Lupus nephritis (LN), one of the most severe outcomes of systemic lupus erythematosus (SLE), is initiated by glomerular deposition of immune-complexes leading to an inflammatory response and kidney failure. Autoantibodies to nuclear antigens and autoreactive B and T cells are central in SLE pathogenesis. Immune mechanisms amplifying this autoantibody production drive flares of the disease. We previously showed that basophils were contributing to LN development in a spontaneous lupus-like mouse model (constitutive Lyn -/- mice) and in SLE subjects through their activation and migration to secondary lymphoid organs (SLOs) where they amplify autoantibody production. In order to study the basophil-specific mechanisms by which these cells contribute to LN development, we needed to validate their involvement in a genetically independent SLE-like mouse model. Pristane, when injected to non-lupus-prone mouse strains, induces a LN-like disease. In this inducible model, basophils were activated and accumulated in SLOs to promote autoantibody production. Basophil depletion by two distinct approaches dampened LN-like disease, demonstrating their contribution to the pristane-induced LN model. These results enable further studies to decipher molecular mechanisms by which basophils contribute to lupus progression.
Collapse
Affiliation(s)
- Barbara Dema
- Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS ERL8252, Université Paris Diderot, Sorbonne Paris Cité, Faculté de Médecine site Bichat, Laboratoire d'Excellence Inflamex, DHU FIRE, Paris, France
| | - Yasmine Lamri
- Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS ERL8252, Université Paris Diderot, Sorbonne Paris Cité, Faculté de Médecine site Bichat, Laboratoire d'Excellence Inflamex, DHU FIRE, Paris, France
| | - Christophe Pellefigues
- Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS ERL8252, Université Paris Diderot, Sorbonne Paris Cité, Faculté de Médecine site Bichat, Laboratoire d'Excellence Inflamex, DHU FIRE, Paris, France
| | - Emeline Pacreau
- Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS ERL8252, Université Paris Diderot, Sorbonne Paris Cité, Faculté de Médecine site Bichat, Laboratoire d'Excellence Inflamex, DHU FIRE, Paris, France
| | - Fanny Saidoune
- Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS ERL8252, Université Paris Diderot, Sorbonne Paris Cité, Faculté de Médecine site Bichat, Laboratoire d'Excellence Inflamex, DHU FIRE, Paris, France
| | - Caroline Bidault
- Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS ERL8252, Université Paris Diderot, Sorbonne Paris Cité, Faculté de Médecine site Bichat, Laboratoire d'Excellence Inflamex, DHU FIRE, Paris, France
| | - Hajime Karasuyama
- Department of Immune Regulation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan
| | - Karim Sacré
- Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS ERL8252, Université Paris Diderot, Sorbonne Paris Cité, Faculté de Médecine site Bichat, Laboratoire d'Excellence Inflamex, DHU FIRE, Paris, France
- Department of Internal Medicine, Faculté de Médecine site Bichat, DHU FIRE, Paris, France
| | - Eric Daugas
- Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS ERL8252, Université Paris Diderot, Sorbonne Paris Cité, Faculté de Médecine site Bichat, Laboratoire d'Excellence Inflamex, DHU FIRE, Paris, France
- Department of Nephrology, Hôpital Bichat, Assistance Publique-Hôpitaux de Paris, Université Paris Diderot, Faculté de Médecine site Bichat, DHU FIRE, Paris, France
| | - Nicolas Charles
- Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS ERL8252, Université Paris Diderot, Sorbonne Paris Cité, Faculté de Médecine site Bichat, Laboratoire d'Excellence Inflamex, DHU FIRE, Paris, France.
| |
Collapse
|
36
|
Differences in the Importance of Mast Cells, Basophils, IgE, and IgG versus That of CD4 + T Cells and ILC2 Cells in Primary and Secondary Immunity to Strongyloides venezuelensis. Infect Immun 2017; 85:IAI.00053-17. [PMID: 28264908 DOI: 10.1128/iai.00053-17] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 03/02/2017] [Indexed: 12/11/2022] Open
Abstract
There is evidence that mast cells, basophils, and IgE can contribute to immune responses to parasites; however, the relative levels of importance of these effector elements in parasite immunity are not fully understood. Previous work in Il3-deficient and c-kit mutant KitW/W-v mice indicated that interleukin-3 and c-Kit contribute to expulsion of the intestinal nematode Strongyloides venezuelensis during primary infection. Our findings in mast cell-deficient KitW-sh/W-sh mice and two types of mast cell-deficient mice that have normal c-kit ("Hello Kitty" and MasTRECK mice) confirmed prior work in KitW/W-v mice that suggested that mast cells play an important role in S. venezuelensis egg clearance in primary infections. We also assessed a possible contribution of basophils in immune responses to S. venezuelensis By immunohistochemistry, we found that numbers of basophils and mast cells were markedly increased in the jejunal mucosa during primary infections with S. venezuelensis Studies in basophil-deficient Mcpt8DTR mice revealed a small but significant contribution of basophils to S. venezuelensis egg clearance in primary infections. Studies in mice deficient in various components of immune responses showed that CD4+ T cells and ILC2 cells, IgG, FcRγ, and, to a lesser extent, IgE and FcεRI contribute to effective immunity in primary S. venezuelensis infections. These findings support the conclusion that the hierarchy of importance of immune effector mechanisms in primary S. venezuelensis infection is as follows: CD4+ T cells/ILC2 cells, IgG, and FcRγ>mast cells>IgE and FcεRI>basophils. In contrast, in secondary S. venezuelensis infection, our evidence indicates that the presence of CD4+ T cells is of critical importance but mast cells, antibodies, and basophils have few or no nonredundant roles.
Collapse
|
37
|
Bando T, Fujita S, Nagano N, Yoshikawa S, Yamanishi Y, Minami M, Karasuyama H. Differential usage of COX-1 and COX-2 in prostaglandin production by mast cells and basophils. Biochem Biophys Rep 2017; 10:82-87. [PMID: 28955738 PMCID: PMC5614629 DOI: 10.1016/j.bbrep.2017.03.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/08/2017] [Accepted: 03/11/2017] [Indexed: 01/10/2023] Open
Abstract
Basophils have been erroneously considered as minor relatives of mast cells, due to some phenotypic similarity between them. While recent studies have revealed non-redundant roles for basophils in various immune responses, basophil-derived effector molecules, including lipid mediators, remain poorly characterized, compared to mast cell-derived ones. Here we analyzed and compared eicosanoids produced by mouse basophils and mast cells when stimulated with IgE plus allergens. The production of 5-LOX metabolites such as LTB4 and 5-HETE was detected as early as 0.5 h post-stimulation in both cell types, even though their amounts were much smaller in basophils than in mast cells. In contrast, basophils and mast cells showed distinct time course in the production of COX metabolites, including PGD2, PGE2 and 11-HETE. Their production by mast cells was detected at both 0.5 and 6 h post-stimulation while that by basophils was detectable only at 6 h. Of note, mast cells showed 8–9 times higher levels of COX-1 than did basophils at the resting status. In contrast to unaltered COX-1 expression with or without stimulation, COX-2 expression was up-regulated in both cell types upon activation. Importantly, when activated, basophils expressed 4–5 times higher levels of COX-2 than did mast cells. In accordance with these findings, the late-phase production of the COX metabolites by basophils was completely ablated by COX-2 inhibitor whereas the early-phase production by mast cells was blocked by COX-1 but not COX-2 inhibitor. Thus, the production of COX metabolites is differentially regulated by COX-1 and COX-2 in basophils and mast cells. Basophils and mast cells show distinct time course of COX metabolite production. Basophils and mast cells show differential expression and induction of COX isoforms. COX metabolite production by basophils but not mast cells is mediated by COX-2.
Collapse
Key Words
- BMBAs, bone marrow derived basophils
- BMMCs, bone marrow derived mast cells
- BW-A4C (PubChem CID: 6438354)
- Basophils
- COX, cyclooxygenase
- COX-2
- Celecoxib (PubChem CID: 2662)
- Eicosanoids
- HETE, hydroxyeicosatetraenoic acid
- LC-MS/MS
- LOX, lipoxygenase
- LTA4, leukotriene A4
- LTB4, leukotriene B4
- LTC4, leukotriene C4
- LTD4, leukotriene D4
- Mast cells
- OVA, Ovalbumin
- PGD2, prostaglandin D2
- PGE2, prostaglandin E2
- Prostaglandins
- SC-560 (PubChem CID: 4306515)
- TNP, 2,4,6-trinitrophenyl
Collapse
Affiliation(s)
- Tomoyuki Bando
- Department of Immune Regulation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan.,Ono pharmaceutical co., ltd. Exploratory Research Laboratories, 3-1-1 Sakurai, Shimamoto-Cho, Mishima-Gun, Osaka 618-8585, Japan
| | - Setsuko Fujita
- Ono pharmaceutical co., ltd. Exploratory Research Laboratories, 3-1-1 Sakurai, Shimamoto-Cho, Mishima-Gun, Osaka 618-8585, Japan
| | - Naoko Nagano
- Ono pharmaceutical co., ltd. Exploratory Research Laboratories, 3-1-1 Sakurai, Shimamoto-Cho, Mishima-Gun, Osaka 618-8585, Japan
| | - Soichiro Yoshikawa
- Department of Immune Regulation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Yoshinori Yamanishi
- Department of Immune Regulation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Masashi Minami
- Ono pharmaceutical co., ltd. Exploratory Research Laboratories, 3-1-1 Sakurai, Shimamoto-Cho, Mishima-Gun, Osaka 618-8585, Japan
| | - Hajime Karasuyama
- Department of Immune Regulation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| |
Collapse
|
38
|
The Evolution of Human Basophil Biology from Neglect towards Understanding of Their Immune Functions. BIOMED RESEARCH INTERNATIONAL 2016; 2016:8232830. [PMID: 28078302 PMCID: PMC5204076 DOI: 10.1155/2016/8232830] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 11/16/2016] [Indexed: 12/03/2022]
Abstract
Being discovered long ago basophils have been neglected for more than a century. During the past decade evidence emerged that basophils share features of innate and adaptive immunity. Nowadays, basophils are best known for their striking effector role in the allergic reaction. They hence have been used for establishing new diagnostic tests and therapeutic approaches and for characterizing natural and recombinant allergens as well as hypoallergens, which display lower or diminished IgE-binding activity. However, it was a long way from discovery in 1879 until identification of their function in hypersensitivity reactions, including adverse drug reactions. Starting with a historical background, this review highlights the modern view on basophil biology.
Collapse
|
39
|
Basophils and mast cells in immunity and inflammation. Semin Immunopathol 2016; 38:535-7. [PMID: 27405865 DOI: 10.1007/s00281-016-0582-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 07/05/2016] [Indexed: 10/21/2022]
|