1
|
Tabassum N, Anjum R, Haque P, Hossain MS, Mobarak MB, Quddus MS, Chowdhury F, Rahman L, Islam D, Ahmed S, Mahmud M. Ag-Co ferrite-based magnetic polymeric composite film: a breakthrough in cationic dye remediation for sustainable environment. RSC Adv 2024; 14:36557-36575. [PMID: 39553274 PMCID: PMC11565276 DOI: 10.1039/d4ra06315e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 10/28/2024] [Indexed: 11/19/2024] Open
Abstract
The deployment of magnetically responsive and polymeric materials to remove dyes that are hazardous in aquatic environments has profoundly revolutionized environmental sustainability. This study focuses on removing the hazardous cationic Malachite Green (MG) dye from solutions, employing a novel magnetic composite film as an adsorbent, designated as Ag0.2Co0.8 Fe2O4 (ACFCeP). The composite was synthesized via solvent casting, incorporating Ag0.2Co0.8 Fe2O4 nanoparticles and CeO2 into a cellulose acetate/polyvinylpyrrolidone (CA/PVP) polymer matrix. The Ag0.2Co0.8Fe2O4 nanoparticles were synthesized by a co-precipitation method. Comprehensive characterization of the synthesized composite was conducted using techniques, such as Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FE-SEM), and vibrating sample magnetometer (VSM). The Ag-doped cobalt ferrite component retained a strong hysteresis loop within the final composite, even when blended with the CA/PVP polymer, preserving the robust magnetic properties that facilitate the easy removal of the composite post-treatment without secondary pollution. Additionally, the mesoporous structure of the composite effectively aids in the adsorption mechanism. The isothermal study shows that both linear Langmuir isotherm and Freundlich isotherm are well fitted with R 2 values of 0.99 and 0.97, respectively. The linear Langmuir maximum adsorption capacity, q max, is 45.66 mg g-1 at pH 7. The kinetic studies of the composite resemble the pseudo-second-order kinetic model, reaching adsorption equilibrium within 70 min for a 100 ppm MG dye concentration. The composite film exhibits excellent reusability, maintaining high removal efficiency over three cycles. Overall, the ACFCeP composite film showcases excellent dye removal capabilities, a fast adsorption rate, and satisfactory magnetic properties and offers a sustainable solution for environmental pollution, thus contributing to ecosystem preservation through efficient recycling and reuse in dye adsorption applications.
Collapse
Affiliation(s)
- Nafisa Tabassum
- Department of Applied Chemistry and Chemical Engineering, University of Dhaka Dhaka-1000 Bangladesh
| | - Raamisa Anjum
- Department of Applied Chemistry and Chemical Engineering, University of Dhaka Dhaka-1000 Bangladesh
| | - Papia Haque
- Department of Applied Chemistry and Chemical Engineering, University of Dhaka Dhaka-1000 Bangladesh
| | - Md Sahadat Hossain
- Institute of Glass and Ceramic Research and Testing (IGCRT), Bangladesh Council of Scientific and Industrial Research (BCSIR) Dr. Qudrat-i-Khuda Road, Dhanmondi Dhaka-1205 Bangladesh
| | - Mashrafi Bin Mobarak
- Institute of Glass and Ceramic Research and Testing (IGCRT), Bangladesh Council of Scientific and Industrial Research (BCSIR) Dr. Qudrat-i-Khuda Road, Dhanmondi Dhaka-1205 Bangladesh
| | - Md Saiful Quddus
- Institute of Glass and Ceramic Research and Testing (IGCRT), Bangladesh Council of Scientific and Industrial Research (BCSIR) Dr. Qudrat-i-Khuda Road, Dhanmondi Dhaka-1205 Bangladesh
| | - Fariha Chowdhury
- BTRI, Bangladesh Council of Scientific and Industrial Research (BCSIR) Dr. Qudrat-i-Khuda Road, Dhanmondi Dhaka-1205 Bangladesh
| | - Lutfor Rahman
- Institute of Glass and Ceramic Research and Testing (IGCRT), Bangladesh Council of Scientific and Industrial Research (BCSIR) Dr. Qudrat-i-Khuda Road, Dhanmondi Dhaka-1205 Bangladesh
| | - Dipa Islam
- BTRI, Bangladesh Council of Scientific and Industrial Research (BCSIR) Dr. Qudrat-i-Khuda Road, Dhanmondi Dhaka-1205 Bangladesh
| | - Samina Ahmed
- Institute of Glass and Ceramic Research and Testing (IGCRT), Bangladesh Council of Scientific and Industrial Research (BCSIR) Dr. Qudrat-i-Khuda Road, Dhanmondi Dhaka-1205 Bangladesh
- BCSIR Laboratories Dhaka, Bangladesh Council of Scientific and Industrial Research (BCSIR) Dr. Qudrat-i-Khuda Road, Dhanmondi Dhaka-1205 Bangladesh
| | - Monika Mahmud
- Institute of Glass and Ceramic Research and Testing (IGCRT), Bangladesh Council of Scientific and Industrial Research (BCSIR) Dr. Qudrat-i-Khuda Road, Dhanmondi Dhaka-1205 Bangladesh
| |
Collapse
|
2
|
Peter S, Lyczko N, Thomas S, Leruth D, Germeau A, Fati D, Nzihou A. Fabrication of eco-friendly nanocellulose-chitosan-calcium phosphate ternary nanocomposite for wastewater remediation. CHEMOSPHERE 2024; 363:142779. [PMID: 38972455 DOI: 10.1016/j.chemosphere.2024.142779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
Nanocomposites have emerged as promising materials for pollutant removal due to their unique properties. However, conventional synthesis methods often involve toxic solvents or expensive materials. In this study, we present a novel ternary nanocomposite synthesized via a simple, cost-effective vacuum filtration method. The composite consists of calcium phosphate (CaP), biowaste-derived nanocellulose (diameter <50 nm) (NC), and chitosan (CH). The nanocomposite exhibited exceptional pollutant removal capabilities due to the hybrid approach of combining adsorption and size exclusion that widens and accelerates pollutant removal. When tested with synthetic wastewater containing 10 ppm of Ni ions and 10 ppm of Congo red (CR) dye, it achieved impressive removal rates of 98.7% for Ni ions and 100% for CR dye. Moreover, the nanocomposite effectively removed heavy metals such as Cd, Ag, Al, Fe, Hg, Mo, Li, and Se at 100%, and Ba, Be, P, and Zn at 80%, 92%, 87%, and 97%, respectively, from real-world municipal wastewater. Importantly, this green nanocomposite membrane was synthesized without the use of harmful chemicals or complex modifications and operated at a high flux rate of 146 L/m2.h.MPa. Its outstanding performance highlights its potential for sustainable pollutant removal applications.
Collapse
Affiliation(s)
- Sherin Peter
- Université de Toulouse, IMT Mines Albi, RAPSODEE CNRS UMR-5302, Campus Jarlard, Albi cedex 09, F-81013, France.
| | - Nathalie Lyczko
- Université de Toulouse, IMT Mines Albi, RAPSODEE CNRS UMR-5302, Campus Jarlard, Albi cedex 09, F-81013, France.
| | - Sabu Thomas
- International and Inter-University Centre for Nanoscience and Nanotechnology, and School of Energy Studies, Mahatma Gandhi University, Kottayam, 686 560, India.
| | - Denis Leruth
- PRAYON S.A., Rue J. Wauters, 144, B-4480, Engis, Belgium.
| | - Alain Germeau
- PRAYON S.A., Rue J. Wauters, 144, B-4480, Engis, Belgium.
| | - Dorina Fati
- PRAYON S.A., Rue J. Wauters, 144, B-4480, Engis, Belgium.
| | - Ange Nzihou
- Université de Toulouse, IMT Mines Albi, RAPSODEE CNRS UMR-5302, Campus Jarlard, Albi cedex 09, F-81013, France.
| |
Collapse
|
3
|
Alkandari S, Ching M, Lightfoot JC, Berri N, Leese HS, Castro-Dominguez B. Recycling and 3D-Printing Biodegradable Membranes for Gas Separation-toward a Membrane Circular Economy. ACS APPLIED ENGINEERING MATERIALS 2024; 2:1515-1525. [PMID: 38962722 PMCID: PMC11217943 DOI: 10.1021/acsaenm.4c00060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 07/05/2024]
Abstract
Polymer membranes employed in gas separation play a pivotal role in advancing environmental sustainability, energy production, and gas purification technologies. Despite their significance, the current design and manufacturing of these membranes lack cradle-to-cradle approaches, contributing to plastic waste pollution. This study explores emerging solutions, including the use of biodegradable biopolymers such as polyhydroxybutyrate (PHB) and membrane recycling, with a focus on the specific impact of mechanical recycling on the performance of biodegradable gas separation membranes. This research represents the first systematic exploration of recycling biodegradable membranes for gas separation. Demonstrating that PHB membranes can be recycled and remanufactured without solvents using hot-melt extrusion and 3D printing, the research highlights PHB's promising performance in developing more sustainable CO2 separations, despite an increase in gas permeability with successive recycling steps due to reduced polymer molecular weight. The study emphasizes the excellent thermal, chemical, and mechanical stability of PHB membranes, albeit with a marginal reduction in gas selectivity upon recycling. However, limitations in PHB's molecular weight affecting extrudability and processability restrict the recycling to three cycles. Anticipating that this study will serve as a foundational exploration, we foresee more sophisticated recycling studies for gas separation membranes, paving the way for a circular economy in future membrane technologies.
Collapse
Affiliation(s)
| | - Matthew Ching
- Department
of Chemical Engineering, University of Bath, Bath BA2 7AY, U.K.
| | - Jasmine C. Lightfoot
- Department
of Chemical Engineering, University of Bath, Bath BA2 7AY, U.K.
- Centre for Digital Manufacturing
and Design (dMaDe), University of Bath, Bath BA2 7AY, U.K.
| | - Nael Berri
- Department
of Chemical Engineering, University of Bath, Bath BA2 7AY, U.K.
- Centre
for Bioengineering and Biomedical Technologies, University of Bath, Bath BA2 7AY, U.K.
| | - Hannah S. Leese
- Department
of Chemical Engineering, University of Bath, Bath BA2 7AY, U.K.
- Centre
for Bioengineering and Biomedical Technologies, University of Bath, Bath BA2 7AY, U.K.
| | - Bernardo Castro-Dominguez
- Department
of Chemical Engineering, University of Bath, Bath BA2 7AY, U.K.
- Centre for Digital Manufacturing
and Design (dMaDe), University of Bath, Bath BA2 7AY, U.K.
| |
Collapse
|
4
|
Kramar A, González-Benito J, Nikolić N, Larrañaga A, Lizundia E. Properties and environmental sustainability of fungal chitin nanofibril reinforced cellulose acetate films and nanofiber mats by solution blow spinning. Int J Biol Macromol 2024; 269:132046. [PMID: 38723813 DOI: 10.1016/j.ijbiomac.2024.132046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 05/16/2024]
Abstract
Materials from biological origin composed by renewable carbon facilitate the transition from linear carbon-intensive economy to a sustainable circular economy. Accordingly, we use solution blow spinning to develop fully biobased cellulose acetate films and nanofiber mats reinforced with fungal chitin nanofibrils (ChNFs), an emerging bio-colloid with lower carbon footprint compared to crustacean-derived nanochitin. This study incorporates fungal ChNFs into spinning processes for the first time. ChNF addition reduces film surface roughness, modifies film water affinity, and tailors the nanofiber diameter of the mats. The covalently bonded β-D-glucans of ChNFs act as a binder to improve the interfacial properties and consequently load transference to enhance the mechanical properties. Accordingly, the Young's modulus of the films increases from 200 ± 18 MPa to 359 ± 99 MPa with 1.5 wt% ChNFs, while the elongation at break increases by ~45 %. Life cycle assessment (LCA) is applied to quantify the environmental impacts of solution blow spinning for the first time, providing global warming potential values of 69.7-347.4 kg·CO2-equiv.·kg-1. Additionally, this work highlights the suitability of ChNFs as reinforcing fillers during spinning and proves the reinforcing effect of mushroom-derived chitin in bio-based films, opening alternatives for sustainable materials development beyond nanocelluloses in the near future.
Collapse
Affiliation(s)
- Ana Kramar
- Department of Materials Science and Engineering and Chemical Engineering, Universidad Carlos III de Madrid, Avda. Universidad 30, 28911 Leganés, Spain.
| | - Javier González-Benito
- Department of Materials Science and Engineering and Chemical Engineering, Universidad Carlos III de Madrid, Avda. Universidad 30, 28911 Leganés, Spain; Instituto Tecnológico de Química y Materiales "Álvaro Alonso Barba", Universidad Carlos III de Madrid, Avda. Universidad 30, 28911 Leganés, Spain
| | - Nataša Nikolić
- Department of Materials Science and Engineering and Chemical Engineering, Universidad Carlos III de Madrid, Avda. Universidad 30, 28911 Leganés, Spain
| | - Aitor Larrañaga
- Group of Science and Engineering of Polymeric Biomaterials (ZIBIO Group), Department of Mining, Metallurgy Engineering and Materials Science, POLYMAT, University of the Basque Country (UPV/EHU), Plaza Ingeniero Torres Quevedo 1, 48013 Bilbao, Biscay, Spain
| | - Erlantz Lizundia
- Life Cycle Thinking Group, Department of Graphic Design and Engineering Projects, University of the Basque Country (UPV/EHU), Plaza Ingeniero Torres Quevedo 1, 48013 Bilbao, Biscay, Spain; BCMaterials, Basque Center for Materials, Applications and Nanostructures, Edif. Martina Casiano, Pl. 3 Parque Científico UPV/EHU Barrio Sarriena, 48940 Leioa, Biscay, Spain.
| |
Collapse
|
5
|
Eze E, Omer AM, Hassanin AH, Eltaweil AS, El-Khouly ME. Cellulose acetate nanofiber modified with polydopamine polymerized MOFs for efficient removal of noxious organic dyes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:29992-30008. [PMID: 38598154 DOI: 10.1007/s11356-024-33050-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/19/2024] [Indexed: 04/11/2024]
Abstract
The need to effectively remove toxic organic dyes from aquatic systems has become an increasingly critical issue in the recent years. In pursuit of this objective, polydopamine (PDA)-binary ZIF-8/UiO-66 (MOFs) was synthesized and incorporated into cellulose acetate (CA), producing ZIF-8/UiO-66/PDA@CA composite nanofibers under meticulously optimized conditions. The potential of fabricated nanofibers to remove cationic methylene blue (MB) dye was investigated. Various analysis tools including FTIR, XRD, SEM, zeta potential, BET, tensile strength testing, and XPS were employed. Results revealed a substantial leap in tensile strength, with ZIF-8/UiO-66/PDA@CA registering an impressive 2.8 MPa, as a marked improvement over the neat CA nanofibers (1.1 MPa). ZIF-8/UiO-66/PDA@CA nanofibers exhibit an outstanding adsorption capacity of 82 mg/g, notably outperforming the 22.4 mg/g capacity of neat CA nanofibers. In binary dye systems, these nanofibers exhibit a striking maximum adsorption capacity of 108 mg/g, establishing their eminence in addressing the complexities of wastewater treatment. Furthermore, the adsorption data fitted to the Langmuir isotherm, and the pseudo-second-order kinetic model. The fabricated nanofiber demonstrates good reproducibility and durability, consistently upholding its performance over five cycles. This suite of remarkable attributes collectively underscores its potential as a robust, durable, and highly promising solution for the effective and efficient removal of pernicious MB dye, in the context of both water quality improvement and environmental preservation.
Collapse
Affiliation(s)
- Esther Eze
- Nanoscience Program, Institute of Basic and Applied Sciences, Egypt-Japan University of Science and Technology, New Borg El-Arab City, Alexandria, Egypt
| | - Ahmed M Omer
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria, Egypt
| | - Ahmed H Hassanin
- Department of Textile, Faculty of Engineering, Alexandria University, Alexandria, Egypt
- Wilson College Textile, North Carolina State University, Raleigh, NC, USA
| | - Abdelazeem S Eltaweil
- Department of Chemistry, Faculty of Science, Alexandria University, Alexandria, 21934, Egypt
- Department of Engineering, Faculty of Engineering and Technology, University of Technology and Applied Sciences, Muscat, Oman
| | - Mohamed E El-Khouly
- Nanoscience Program, Institute of Basic and Applied Sciences, Egypt-Japan University of Science and Technology, New Borg El-Arab City, Alexandria, Egypt.
| |
Collapse
|
6
|
Adhikari J, Dasgupta S, Das P, Gouripriya DA, Barui A, Basak P, Ghosh M, Saha P. Bilayer regenerated cellulose/quaternized chitosan-hyaluronic acid/collagen electrospun scaffold for potential wound healing applications. Int J Biol Macromol 2024; 261:129661. [PMID: 38266850 DOI: 10.1016/j.ijbiomac.2024.129661] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 01/12/2024] [Accepted: 01/19/2024] [Indexed: 01/26/2024]
Abstract
In this study, a bilayer electrospun scaffold has been prepared using regenerated cellulose (RC)/quaternized chitosan (CS) as the primary layer and collagen/hyaluronic acid (HA) as the second layer. An approximate 48 mol% substituted (estimated from 1H NMR) quaternized CS was used in this study. Both layers were crosslinked with EDC/NHS, reflecting an increase in UTS (2.29 MPa for the bilayer scaffold compared to 1.82 MPa for the RC scaffold). Initial cell viability, cell adhesion and proliferation, FDA staining for live cells, and hydroxyproline release rate from cells were evaluated with L929 mouse fibroblast cells. Also, detailed in vitro studies were performed using HADF cells, which include MTT Assay, Live/Dead imaging, DAPI staining, gene expression of PDGF, VEGF-A, and COL1 in RT-PCR, and cell cycle analysis. The collagen/HA-based bilayer scaffold depicted a 9.76-fold increase of VEGF-A compared to a 2.1-fold increase for the RC scaffold, indicating angiogenesis and vascularization potential. In vitro scratch assay was performed to observe the migration of cells in simulated wounds. Antimicrobial, antioxidant, and protease inhibitory activity were further performed, and overall, the primary results highlighted the potential usage of bilayer scaffold in wound healing applications.
Collapse
Affiliation(s)
- Jaideep Adhikari
- School of Advanced Materials, Green Energy and Sensor Systems, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, West Bengal, India
| | - Shalini Dasgupta
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, West Bengal, India
| | - Pratik Das
- School of Bioscience and Engineering, Jadavpur University, 188, Raja S.C. Mullick Road, Kolkata 700032, West Bengal, India
| | - D A Gouripriya
- Centre for Interdisciplinary Sciences, JIS Institute of Advanced Studies and Research (JISIASR) Kolkata, JIS University, GP Block, Salt Lake, Sector-5, WB 700091, India
| | - Ananya Barui
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, West Bengal, India
| | - Piyali Basak
- School of Bioscience and Engineering, Jadavpur University, 188, Raja S.C. Mullick Road, Kolkata 700032, West Bengal, India
| | - Manojit Ghosh
- Department of Metallurgy and Materials Engineering, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, West Bengal, India
| | - Prosenjit Saha
- Centre for Interdisciplinary Sciences, JIS Institute of Advanced Studies and Research (JISIASR) Kolkata, JIS University, GP Block, Salt Lake, Sector-5, WB 700091, India.
| |
Collapse
|
7
|
de Souza RC, da Silva LM, Buratti BA, Carra S, Flores M, Puton BM, Rigotti M, Salvador M, Malvessi E, Moreira FKV, Steffens C, Valduga E, Zeni J. Purification, bioactivity and application of maltobionic acid in active films. 3 Biotech 2024; 14:32. [PMID: 38188310 PMCID: PMC10764696 DOI: 10.1007/s13205-023-03879-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 12/05/2023] [Indexed: 01/09/2024] Open
Abstract
The objective of this study was to purify sodium maltobionate using Zymomonas mobilis cells immobilized in situ on flexible polyurethane (PU) and convert it into maltobionic acid for further evaluation of bioactivity (iron chelating ability, antibacterial potential and cytoprotection) and incorporation into films based on cassava starch, chitosan, and cellulose acetate. Sodium maltobionate exhibited a purity of 98.1% and demonstrated an iron chelating ability of approximately 50% at concentrations ranging from 15 to 20 mg mL-1. Maltobionic acid displayed minimal inhibitory concentrations (MIC) of 8.5, 10.5, 8.0, and 8.0 mg mL-1 for Salmonella enterica serovar Choleraesuis, Escherichia coli, Staphylococcus aureus, and Listeria monocytogenes, respectively. Maltobionic acid did not exhibit cytotoxicity in HEK-293 cells at concentrations up to 500 µg mL-1. Films incorporating 7.5% maltobionic acid into cassava starch and chitosan demonstrated inhibition of microbial growth, with halo sizes ranging from 15.67 to 22.33 mm. These films had a thickness of 0.17 and 0.13 mm, water solubility of 62.68% and 78.85%, and oil solubility of 6.23% and 11.91%, respectively. The cellulose acetate film exhibited a non-uniform visual appearance due to the low solubility of maltobionic acid in acetone. Mechanical and optical properties were enhanced with the addition of maltobionic acid to chitosan and cassava films. The chitosan film with 7.5% maltobionic acid demonstrated higher tensile strength (30.3 MPa) and elongation at break (9.0%). In contrast, the cassava starch film exhibited a high elastic modulus (1.7). Overall, maltobionic acid, with its antibacterial activity, holds promise for applications in active films suitable for food packaging. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03879-3.
Collapse
Affiliation(s)
- Roberta Cristina de Souza
- Department of Food Engineering, Universidade Regional Integrada Do Alto Uruguai E das Missões, CEP: 99709-910 Erechim, RS Brasil
| | - Leonardo Meirelles da Silva
- Department of Food Engineering, Universidade Regional Integrada Do Alto Uruguai E das Missões, CEP: 99709-910 Erechim, RS Brasil
| | - Bruna Angela Buratti
- Department of Food Engineering, Universidade Regional Integrada Do Alto Uruguai E das Missões, CEP: 99709-910 Erechim, RS Brasil
| | - Sabrina Carra
- Biotechnology Institute, Universidade de Caxias Do Sul, CEP: 95070-560 Caxias Do Sul, RS Brasil
| | - Maicon Flores
- Biotechnology Institute, Universidade de Caxias Do Sul, CEP: 95070-560 Caxias Do Sul, RS Brasil
| | - Bruna Maria Puton
- Department of Food Engineering, Universidade Regional Integrada Do Alto Uruguai E das Missões, CEP: 99709-910 Erechim, RS Brasil
| | - Marina Rigotti
- Biotechnology Institute, Universidade de Caxias Do Sul, CEP: 95070-560 Caxias Do Sul, RS Brasil
| | - Mirian Salvador
- Biotechnology Institute, Universidade de Caxias Do Sul, CEP: 95070-560 Caxias Do Sul, RS Brasil
| | - Eloane Malvessi
- Biotechnology Institute, Universidade de Caxias Do Sul, CEP: 95070-560 Caxias Do Sul, RS Brasil
| | | | - Clarice Steffens
- Department of Food Engineering, Universidade Regional Integrada Do Alto Uruguai E das Missões, CEP: 99709-910 Erechim, RS Brasil
| | - Eunice Valduga
- Department of Food Engineering, Universidade Regional Integrada Do Alto Uruguai E das Missões, CEP: 99709-910 Erechim, RS Brasil
| | - Jamile Zeni
- Department of Food Engineering, Universidade Regional Integrada Do Alto Uruguai E das Missões, CEP: 99709-910 Erechim, RS Brasil
| |
Collapse
|
8
|
Gulzar S, Tagrida M, Prodpran T, Li L, Benjakul S. Packaging films based on biopolymers from seafood processing wastes: Preparation, properties, and their applications for shelf-life extension of seafoods-A comprehensive review. Compr Rev Food Sci Food Saf 2023; 22:4451-4483. [PMID: 37680068 DOI: 10.1111/1541-4337.13230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 09/09/2023]
Abstract
Biopolymers derived from seafood processing byproducts are used to prepare active and biodegradable films as the packaging of food products. These films possess bioactivities to enhance the shelf life of packed foods by proactively releasing antimicrobial/antioxidative agents into the foods and providing sufficient barrier properties. Seafood processing byproducts are an eminent source of valuable compounds, including biopolymers and bioactive compounds. These biopolymers, including collagen, gelatin, chitosan, and muscle proteins, could be used to prepare robust and sustainable food packaging with some antimicrobial agents or antioxidants, for example, plant extracts rich in polyphenols or essential oils. These active packaging are not only biodegradable but also prevent the deterioration of packed foods caused by spoilage microorganisms as well as chemical deterioration. Seafood discards have a promising benefit for the development of environmentally friendly food packaging systems via the appropriate preparation methods or techniques. Therefore, the green packaging from seafood leftover can be better exploited and replace the synthetic counterpart.
Collapse
Affiliation(s)
- Saqib Gulzar
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Department of Food Technology, Engineering and Science, University of Lleida-Agrotecnio CERCA Center, Lleida, Spain
| | - Mohamed Tagrida
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Thummanoon Prodpran
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Center of Excellence in Bio-based Materials and Packaging Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Li Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Department of Food and Nutrition, Kyung Hee Unibersity, Seoul, Republic of Korea
| |
Collapse
|
9
|
Pérez-Silva I, Canales-Feliciano GD, Rodríguez JA, Mendoza-Huizar LH, Pérez-Estrada S, Ibarra IS, Páez-Hernández ME. The Evaluation of Cellulose Acetate Capsules Functionalized for the Removal of Cd(II). Polymers (Basel) 2023; 15:3917. [PMID: 37835966 PMCID: PMC10575433 DOI: 10.3390/polym15193917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/20/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Cellulose acetate is derived from cellulose and has the characteristics of biodegradability and reusability. So, it has been used for the elimination of toxic compounds capable of producing different diseases, such as cadmium, that result from human and industrial activity. For this reason, capsules functionalized with Cyanex 923 were prepared and characterized by FTIR spectroscopy, Energy Dispersive X-ray Spectroscopy (EDX), and SEM. The functionalized capsules were used for removing and recovering Cd(II) by modifying variables such as HCl concentration in the extraction medium and carrier content in the capsules, among others. The extraction of cadmium from battery leachates and the three isotherm models, Langmuir, Freundlich, and Dubinin Radushkevich, were also tested to model the cadmium removal process. The results showed a favorable physical sorption with a good capacity for extraction and the possibility of reusing the capsules for up to seven cycles without a decrease in the percentage of cadmium recovery.
Collapse
Affiliation(s)
- Irma Pérez-Silva
- Academic Area of Chemistry, Autonomous University of Hidalgo State, Carr. Pachuca-Tulancingo Km. 4.5, Mineral de la Reforma C.P. 42184, Hidalgo, Mexico
| | | | | | | | | | | | - M. Elena Páez-Hernández
- Academic Area of Chemistry, Autonomous University of Hidalgo State, Carr. Pachuca-Tulancingo Km. 4.5, Mineral de la Reforma C.P. 42184, Hidalgo, Mexico
| |
Collapse
|
10
|
Kramar A, Luxbacher T, Moshfeghi Far N, González-Benito J. Active Cellulose Acetate/Chitosan Composite Films Prepared Using Solution Blow Spinning: Structure and Electrokinetic Properties. Polymers (Basel) 2023; 15:3276. [PMID: 37571170 PMCID: PMC10422433 DOI: 10.3390/polym15153276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Cellulose acetate (CA), a very promising derivative of cellulose, has come into the focus of research due to its highly desired good film-forming ability for food packaging applications. Frequently, this derivative is used in combination with other compounds (polymers, nanoparticles) in order to obtain active materials. Here, we report the preparation of thin films made of cellulose acetate loaded with chitosan (CS) using the solution blow spinning (SBS) method. Films are prepared by SBS processing of the polymers mixture solution, considering the following variables: (i) the concentration of cellulose acetate and chitosan in the solution and (ii) the solvent system consisting of acetic or formic acid. The prepared materials are characterized in terms of physical properties, roughness (optical profilometer), porosity, wettability (contact angle measurements), chemical structure (Fourier transform infrared spectrometry), and electrokinetic properties (zeta potential). SBS enables the preparation of CA/CS films with high water vapor permeability, high porosity, and also higher water contact angle compared with pure CA films. The electrokinetic properties of composites are influenced by the inclusion of chitosan, which causes a shift of the isoelectric point (IEP) towards higher pH values, but the magnitude of the shift is not in correlation with chitosan concentration. Adsorption kinetic studies using bovine serum albumin (BSA) as a model protein reveal that chitosan modified cellulose acetate films manifest low affinity towards proteins that suggests prevention of biofilm formation on its surface.
Collapse
Affiliation(s)
- Ana Kramar
- Department of Materials Science and Engineering and Chemical Engineering, Universidad Carlos III de Madrid, Avda. Universidad 30, 28911 Leganés, Spain; (N.M.F.); (J.G.-B.)
- Institute of Chemistry and Materials Álvaro Alonso Barba, IQMAAB, Universidad Carlos III de Madrid, Avda. Universidad 30, 28911 Leganés, Spain
| | | | - Nasrin Moshfeghi Far
- Department of Materials Science and Engineering and Chemical Engineering, Universidad Carlos III de Madrid, Avda. Universidad 30, 28911 Leganés, Spain; (N.M.F.); (J.G.-B.)
| | - Javier González-Benito
- Department of Materials Science and Engineering and Chemical Engineering, Universidad Carlos III de Madrid, Avda. Universidad 30, 28911 Leganés, Spain; (N.M.F.); (J.G.-B.)
- Institute of Chemistry and Materials Álvaro Alonso Barba, IQMAAB, Universidad Carlos III de Madrid, Avda. Universidad 30, 28911 Leganés, Spain
| |
Collapse
|
11
|
Alkandari SH, Lightfoot J, Castro-Dominguez B. Asymmetric membranes for gas separation: interfacial insights and manufacturing. RSC Adv 2023; 13:14198-14209. [PMID: 37180016 PMCID: PMC10170239 DOI: 10.1039/d3ra00995e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
State-of-the-art gas separation membrane technologies combine the properties of polymers and other materials, such as metal-organic frameworks to yield mixed matrix membranes (MMM). Although, these membranes display an enhanced gas separation performance, when compared to pure polymer membranes; major challenges remain in their structure including, surface defects, uneven filler dispersion and incompatibility of constituting materials. Therefore, to avoid these structural issues posed by today's membrane manufacturing methodologies, we employed electrohydrodynamic emission and solution casting as a hybrid membrane manufacturing method, to produce ZIF-67/cellulose acetate asymmetric membranes with improved gas permeability and selectivity for CO2/N2, CO2/CH4, and O2/N2. Rigorous molecular simulations were used to reveal the key ZIF-67/cellulose acetate interfacial phenomena (e.g., higher density, chain rigidity, etc.) that must be considered when engineering optimum composite membranes. In particular, we demonstrated that the asymmetric configuration effectively leverages these interfacial features to generate membranes superior to MMM. These insights coupled with the proposed manufacturing technique can accelerate the deployment of membranes in sustainable processes such as carbon capture, hydrogen production, and natural gas upgrading.
Collapse
Affiliation(s)
- Sharifah H Alkandari
- Centre for Advanced Separations Engineering, Department of Chemical Engineering, University of Bath Bath BA2 7AY UK +44 (0)1225384946
| | - Jasmine Lightfoot
- Centre for Advanced Separations Engineering, Department of Chemical Engineering, University of Bath Bath BA2 7AY UK +44 (0)1225384946
| | - Bernardo Castro-Dominguez
- Centre for Advanced Separations Engineering, Department of Chemical Engineering, University of Bath Bath BA2 7AY UK +44 (0)1225384946
| |
Collapse
|
12
|
Eldenary AOA, El-Salam HMA, Allah AE. Chitosan-g-polyacrylonitrile ZnO nano-composite, synthesis and characterization as new and good adsorbent for Iron from groundwater. Int J Biol Macromol 2023; 242:124768. [PMID: 37169054 DOI: 10.1016/j.ijbiomac.2023.124768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 05/13/2023]
Abstract
The highly poisonous, non-biodegradable heavy metals present serious concern in wastewater environmental sustainability and human health. Using adsorption is an effective technology for the treatment of this kind of water. Therefore, developing efficient and cost-effective adsorbents considers a significant and an emerging topic in the field the water purification. Chitosan grafted polyacrylonitrile (Cs-g-PAN) was facially fabricated via graft polymerization using ammonium persulfate (APS) as the initiator. The simple ultrasonic technique was used for doping ZnO nanoparticles into the Cs-g-PAN matrix to prepare chitosan-grafted polyacrylonitrile/ZnO (Cs-g-PAN/ZnO). For comparative study, pure ZnO and nanocomposite of PAN doped with ZnO (PAN/ZnO) were also prepared. XRD, FTIR, SEM, TEM, BET, EDS, and TGA measurements were conducted to confirm the morphological and structural properties of the prepared materials. Cs-g-PAN/ZnO possesses a specific surface area of 20.23 m2/g with a pore size of 31.58 nm and pore volume of 0.16 cm3 g-1. The adsorption behavior toward Fe(II) as a pollutant for groundwater was studied for the synthesized materials. The effect of pH (4-8), contact time (5-60 min), adsorbent dose (0.01-0.3 g), and different temperature degrees (278, 288, 298, 308, and 318 K) on the removal of iron (II) has been conducted. The removal efficiency was achieved 100 % under the optimum condition, at pH = 7, contact time 30 min, adsorbate concentration 0.93 mg/L, and adsorbent dosage 0.05 g/L at room temperature. Langmuir and Freundlich's isothermal and kinetic studies have been analyzed to determine the adsorption mechanism of Fe(II) ions on the synthesized nanomaterials. The adsorption process of Fe(II) over the surface of prepared catalysts proceeded via the Langmuir model and pseudo-second-order reaction kinetics with R2 > 0.99. Suggesting the formation of Fe(II) monolayer over the adsorbent surface and the rate-limiting step is probably controlled by chemisorption through sharing the electrons between Fe+2 and the prepared catalyst.
Collapse
Affiliation(s)
- Abdelrahman O A Eldenary
- Department of Chemistry, Faculty of Science, Polymer Research Laboratory, Beni-Suef University, 62514 Beni-Suef City, Egypt
| | - H M Abd El-Salam
- Department of Chemistry, Faculty of Science, Polymer Research Laboratory, Beni-Suef University, 62514 Beni-Suef City, Egypt.
| | - Abeer Enaiet Allah
- Department of Chemistry, Faculty of Science, Beni-Suef University, 62514 Beni-Suef City, Egypt
| |
Collapse
|
13
|
Raval H, Jasani N, Srivastava A. Hydrophilic Surface Modification of TFC Reverse Osmosis Membrane Using Blends of Sodium Carboxymethyl Cellulose and Chitosan. POLYM-PLAST TECH MAT 2023. [DOI: 10.1080/25740881.2022.2101374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Hiren Raval
- Membrane Science and Separation Technology Division, Council of Scientific & Industrial Research-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar, India
| | - Niraj Jasani
- Membrane Science and Separation Technology Division, Council of Scientific & Industrial Research-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar, India
| | - Ashish Srivastava
- Membrane Science and Separation Technology Division, Council of Scientific & Industrial Research-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar, India
| |
Collapse
|
14
|
Kandil H, Moghazy RM, Amin A. Enhancing the adsorption affinity of cellulose acetate film toward cationic dye by incorporating Cloisite
30B
grafted with polyacrylic acid. POLYM ENG SCI 2022. [DOI: 10.1002/pen.26242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Heba Kandil
- Polymers and Pigments Department National Research Centre Cairo Egypt
| | - Reda M. Moghazy
- Water Pollution Research Department National Research Centre Cairo Egypt
| | - Amal Amin
- Polymers and Pigments Department National Research Centre Cairo Egypt
| |
Collapse
|
15
|
Tan WB, Luo D, Song W, Lu YY, Cheng N, Zhang JB, Huang T, Wang Y. Polydopamine-assisted polyethyleneimine grafting on electrospun cellulose acetate/TiO2 fibers towards highly efficient removal of Cr(VI). Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Fabrication of sustainable organic solvent nanofiltration membranes using cellulose–chitosan biopolymer blends. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120743] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
17
|
Liang L, Chen H. Development and characterization of biodegradable ultraviolet protective and antibacterial polylactic acid-cellulose acetate film modified by phenyl salicylate. Int J Biol Macromol 2022; 211:85-93. [PMID: 35561857 DOI: 10.1016/j.ijbiomac.2022.05.055] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 11/05/2022]
Abstract
The polylactic acid composite films were successfully fabricated via the technique of solvent casting using cellulose acetate (20%, wt) as the reinforcing material and phenyl salicylate as the ultraviolet (UV) absorbent and antibacterial agent. Polylactic acid-cellulose acetate-phenyl salicylate composite films displayed complete absorption effect at the region of UV-C (280-100 nm) and UV-B (315-280 nm), and more than 95% UV absorption effect at the region of UV-A (400-315 nm). These results indicate that the UV shielding performance of the composite films could be significantly improve by addition of phenyl salicylate. Moreover, the addition of 20% phenyl salicylate could improve the steam resistance, mechanical properties and thermal stability of the films, and the composite films had also better antibacterial activity against Escherichia coli. The composite films could reduce the decay rate of fresh lilies and extend their storage time. The degradation characteristics of the films were explored in the natural environment and the laboratory level, which provided application prospect for the development of degradable food packaging materials with anti-ultraviolet and anti-bacteria effect.
Collapse
Affiliation(s)
- Liyuan Liang
- College of Science, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Hongyan Chen
- College of Science, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
18
|
Oke N, Mohan S. Development of nanoporous textile sludge based adsorbent for the dye removal from industrial textile effluent. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126864. [PMID: 34416690 DOI: 10.1016/j.jhazmat.2021.126864] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 06/13/2023]
Abstract
The development of a novel textile sludge based activated carbon (TSBAC) adsorbent and its performance for the treatment of textile dyeing effluent, have been explained in this paper. TSBAC was prepared by the thermal treatment of textile effluent treatment sludge followed by the chemical activation using phosphoric acid. Characterization of TSBAC resulted in enhanced specific surface area (123.65 m2/g) along with the presence of active surface functional groups including -OH, -COOH, -CO. TSBAC showed superior adsorption capacity for methylene blue (123.6 mg/g), reactive red 198 (101.4 mg/g), and reactive yellow 145 (96.8 mg/g) individually, and from the synthetic textile effluent (106 mg/g). The pseudo-second order model and Langmuir isotherm model were found to be fitted well with batch experimental data. The results of the continuous column studies showed that adsorption capacity for methylene blue, reactive red 198, reactive yellow 145 are 101.8 mg/g, 76.6 mg/g, and 75.1 mg/g respectively, and the synthetic textile effluent resulted in an adsorption capacity value of 79.1 mg/g. The reuse potential of TSBAC was proved by effective dye removal up to six reuse cycles. The leachability studies proved that the used adsorbent could be safely disposed of without any harmful effect to the environment.
Collapse
Affiliation(s)
- Ninad Oke
- Indian Institute of Technology Madras, Environmental and Water Resources Engineering Division, Department of Civil Engineering, Chennai, Tamil Nadu 600036, India.
| | - S Mohan
- Indian Institute of Technology Madras, Environmental and Water Resources Engineering Division, Department of Civil Engineering, Chennai, Tamil Nadu 600036, India.
| |
Collapse
|
19
|
David ME, Ion RM, Grigorescu RM, Iancu L, Holban AM, Iordache F, Nicoara AI, Alexandrescu E, Somoghi R, Teodorescu S, Gheboianu AI. Biocompatible and Antimicrobial Cellulose Acetate-Collagen Films Containing MWCNTs Decorated with TiO 2 Nanoparticles for Potential Biomedical Applications. NANOMATERIALS 2022; 12:nano12020239. [PMID: 35055256 PMCID: PMC8781191 DOI: 10.3390/nano12020239] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/27/2021] [Accepted: 01/10/2022] [Indexed: 12/29/2022]
Abstract
This research focuses on the synthesis of multi-walled carbon nanotubes (MWCNTs) decorated with TiO2 nanoparticles (NPs) and incorporated in cellulose acetate-collagen film in order to obtain a new biomaterial with potential biomedical applications and improved antimicrobial activity. The successful decoration of the MWCNTs with TiO2 NPs was confirmed by several structural and morphological analysis, such as Fourier transformed infrared spectroscopy, Raman spectroscopy, X-ray diffraction and transmission electron microscopy. The obtained nanocomposites were further incorporated into cellulose acetate-collagen films, at different concentrations and absorption kinetics, antimicrobial activity and in vitro biocompatibility of the obtained films was investigated. The antimicrobial tests sustained that the presence of the nanocomposites into the polymeric matrix is an important aspect in increasing and maintaining the antimicrobial activity of the polymeric wound dressings over time. The biocompatibility and cytotoxicity of the obtained films was evaluated using cellular viability/proliferation assay and fluorescent microscopy which revealed the ability of the obtained materials as potential wound dressing biomaterial.
Collapse
Affiliation(s)
- Madalina Elena David
- National Institute for Research and Development in Chemistry and Petrochemistry—ICECHIM, 060021 Bucharest, Romania; (R.M.I.); (R.M.G.); (L.I.); (E.A.); (R.S.)
- Doctoral School of Materials Engineering Department, Valahia University of Targoviste, 130004 Targoviste, Romania
- Correspondence:
| | - Rodica Mariana Ion
- National Institute for Research and Development in Chemistry and Petrochemistry—ICECHIM, 060021 Bucharest, Romania; (R.M.I.); (R.M.G.); (L.I.); (E.A.); (R.S.)
- Doctoral School of Materials Engineering Department, Valahia University of Targoviste, 130004 Targoviste, Romania
| | - Ramona Marina Grigorescu
- National Institute for Research and Development in Chemistry and Petrochemistry—ICECHIM, 060021 Bucharest, Romania; (R.M.I.); (R.M.G.); (L.I.); (E.A.); (R.S.)
| | - Lorena Iancu
- National Institute for Research and Development in Chemistry and Petrochemistry—ICECHIM, 060021 Bucharest, Romania; (R.M.I.); (R.M.G.); (L.I.); (E.A.); (R.S.)
| | | | - Florin Iordache
- Department of Biochemistry, Faculty of Veterinary Medicine, University of Agronomic Science and Veterinary Medicine, 011464 Bucharest, Romania;
| | - Adrian Ionut Nicoara
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania;
| | - Elvira Alexandrescu
- National Institute for Research and Development in Chemistry and Petrochemistry—ICECHIM, 060021 Bucharest, Romania; (R.M.I.); (R.M.G.); (L.I.); (E.A.); (R.S.)
| | - Raluca Somoghi
- National Institute for Research and Development in Chemistry and Petrochemistry—ICECHIM, 060021 Bucharest, Romania; (R.M.I.); (R.M.G.); (L.I.); (E.A.); (R.S.)
| | - Sofia Teodorescu
- Institute of Multidisciplinary Research for Science and Technology, Valahia University of Targoviste, 130004 Targoviste, Romania; (S.T.); (A.I.G.)
| | - Anca Irina Gheboianu
- Institute of Multidisciplinary Research for Science and Technology, Valahia University of Targoviste, 130004 Targoviste, Romania; (S.T.); (A.I.G.)
| |
Collapse
|
20
|
Fabrication of asymmetric cellulose acetate/pluronic F-127 forward osmosis membrane: minimization of internal concentration polarization via control thickness and porosity. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-020-03514-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
21
|
Sirajudheen P, Poovathumkuzhi NC, Vigneshwaran S, Chelaveettil BM, Meenakshi S. Applications of chitin and chitosan based biomaterials for the adsorptive removal of textile dyes from water - A comprehensive review. Carbohydr Polym 2021; 273:118604. [PMID: 34561004 DOI: 10.1016/j.carbpol.2021.118604] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/11/2021] [Accepted: 08/20/2021] [Indexed: 12/29/2022]
Abstract
The presence of pollutants in the water bodies deteriorate the water quality and make it unfit for use. From an environmental perspective, it is essential to develop new technologies for the wastewater treatment and recycling of dye contaminated water. The surface modified chitin and chitosan biopolymeric composites based adsorbents, have an important role in the toxic organic dyes from removal wastewater. The surface modification of biopolymers with various organics and inorganics produces more active sites at the surface of the adsorbent, which enhances dye and adsorbent interaction more reliable. Herein, the work brought in the thought of the application of various chitin and chitosan composites in wastewater remediation and suggested the versatility in composites for the development of rapid, selective and effective removal processes for the detoxification of a variety of organic dyes. It further emphasizes the existing obstruction and impending prediction for the deprivation of dyes via adsorption techniques.
Collapse
Affiliation(s)
- Palliyalil Sirajudheen
- Department of Chemistry, The Gandhigram Rural Institute - Deemed to be University, Gandhigram - 624 302, Dindigul, Tamil Nadu, India; Department of Chemistry, Pocker Sahib Memorial Orphanage College, Tirurangadi - 676306, Malappuram, Kerala, India
| | | | - Sivakumar Vigneshwaran
- Department of Chemistry, The Gandhigram Rural Institute - Deemed to be University, Gandhigram - 624 302, Dindigul, Tamil Nadu, India; Department of Chemistry, Nadar Saraswathi College of Engineering and Technology, 11 Vadapudupatti- 625 531, Theni, Tamil Nadu, India
| | | | - Sankaran Meenakshi
- Department of Chemistry, The Gandhigram Rural Institute - Deemed to be University, Gandhigram - 624 302, Dindigul, Tamil Nadu, India.
| |
Collapse
|
22
|
Lionetto F, Esposito Corcione C. Recent Applications of Biopolymers Derived from Fish Industry Waste in Food Packaging. Polymers (Basel) 2021; 13:2337. [PMID: 34301094 PMCID: PMC8309529 DOI: 10.3390/polym13142337] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 02/07/2023] Open
Abstract
Fish waste is attracting growing interest as a new raw material for biopolymer production in different application fields, mainly in food packaging, with significant economic and environmental advantages. This review paper summarizes the recent advances in the valorization of fish waste for the preparation of biopolymers for food packaging applications. The issues related to fishery industry waste and fish by-catch and the potential for re-using these by-products in a circular economy approach have been presented in detail. Then, all the biopolymer typologies derived from fish waste with potential applications in food packaging, such as muscle proteins, collagen, gelatin, chitin/chitosan, have been described. For each of them, the recent applications in food packaging, in the last five years, have been overviewed with an emphasis on smart packaging applications. Despite the huge industrial potential of fish industry by-products, most of the reviewed applications are still at lab-scale. Therefore, the technological challenges for a reliable exploitation and recovery of several potentially valuable molecules and the strategies to improve the barrier, mechanical and thermal performance of each kind of biopolymer have been analyzed.
Collapse
Affiliation(s)
- Francesca Lionetto
- Department of Engineering for Innovation, University of Salento, Via Arnesano, 73100 Lecce, Italy;
| | | |
Collapse
|
23
|
|
24
|
Silva MA, Belmonte-Reche E, de Amorim MTP. Morphology and water flux of produced cellulose acetate membranes reinforced by the design of experiments (DOE). Carbohydr Polym 2020; 254:117407. [PMID: 33357894 DOI: 10.1016/j.carbpol.2020.117407] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/08/2020] [Accepted: 11/12/2020] [Indexed: 12/16/2022]
Abstract
Cellulose acetate (CA) ultrafiltration membranes were successfully prepared using the non-solvent induced phase separation (NIPS) methodology. This technique is used to produce porous membranes for a large variety of applications. However, the formation of a dense skin during the process reduces membrane pure water flux (PWF). To overcome this issue, three parameters were investigated: CA/NMP (N-methyl-2-pyrrolidone) ratio in the casting solution, acetone (Ac)/water (W) ratio in the precipitation bath composition (PBC) and support material (glass/polyethylene). The effect of each factor on the mean pore size, water contact angle, porosity and PWF was supported by Taguchi design. The increase in the CA/NMP ratio reduced mean pore size and porosity. In contrast, there was an increase in porosity and hydrophilicity with increasing Ac/W ratio. The maximum value of PWF was obtained for membranes prepared using a PE support. ANOVA showed that most, but not all, factors had significant effects on the parameters measured.
Collapse
Affiliation(s)
- Mónica A Silva
- Center for Science and Textile Technology, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal.
| | - Efres Belmonte-Reche
- Life Sciences Department, International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal
| | - M T Pessoa de Amorim
- Center for Science and Textile Technology, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
| |
Collapse
|
25
|
Putri KNA, Keereerak A, Chinpa W. Novel cellulose-based biosorbent from lemongrass leaf combined with cellulose acetate for adsorption of crystal violet. Int J Biol Macromol 2020; 156:762-772. [DOI: 10.1016/j.ijbiomac.2020.04.100] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 03/05/2020] [Accepted: 04/13/2020] [Indexed: 12/20/2022]
|
26
|
Santos VP, Marques NSS, Maia PCSV, de Lima MAB, Franco LDO, de Campos-Takaki GM. Seafood Waste as Attractive Source of Chitin and Chitosan Production and Their Applications. Int J Mol Sci 2020; 21:ijms21124290. [PMID: 32560250 PMCID: PMC7349002 DOI: 10.3390/ijms21124290] [Citation(s) in RCA: 162] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/26/2020] [Accepted: 05/26/2020] [Indexed: 12/14/2022] Open
Abstract
Chitosan is a cationic polymer obtained by deacetylation of chitin, found abundantly in crustacean, insect, arthropod exoskeletons, and molluscs. The process of obtaining chitin by the chemical extraction method comprises the steps of deproteinization, demineralization, and discoloration. To obtain chitosan, the deacetylation of chitin is necessary. These polymers can also be extracted through the biological extraction method involving the use of microorganisms. Chitosan has biodegradable and biocompatible properties, being applied in the pharmaceutical, cosmetic, food, biomedical, chemical, and textile industries. Chitosan and its derivatives may be used in the form of gels, beads, membranes, films, and sponges, depending on their application. Polymer blending can also be performed to improve the mechanical properties of the bioproduct. This review aims to provide the latest information on existing methods for chitin and chitosan recovery from marine waste as well as their applications.
Collapse
Affiliation(s)
- Vanessa P. Santos
- Federal Rural University of Pernambuco, Recife 52171-900, Pernambuco, Brazil; (V.P.S.); (N.S.S.M.); (P.C.S.V.M.)
| | - Nathália S. S. Marques
- Federal Rural University of Pernambuco, Recife 52171-900, Pernambuco, Brazil; (V.P.S.); (N.S.S.M.); (P.C.S.V.M.)
| | - Patrícia C. S. V. Maia
- Federal Rural University of Pernambuco, Recife 52171-900, Pernambuco, Brazil; (V.P.S.); (N.S.S.M.); (P.C.S.V.M.)
| | - Marcos Antonio Barbosa de Lima
- Department of Microbiology, Federal Rural University of Pernambuco, Recife 52171-900, Pernambuco, Brazil; (M.A.B.d.L.); (L.d.O.F.)
| | - Luciana de Oliveira Franco
- Department of Microbiology, Federal Rural University of Pernambuco, Recife 52171-900, Pernambuco, Brazil; (M.A.B.d.L.); (L.d.O.F.)
| | - Galba Maria de Campos-Takaki
- Research Center for Environmental Sciences and Biotechnology, Catholic University Pernambuco, Recife 50050-590, Pernambuco, Brazil
- Correspondence: ; Tel.: +55-081-2119-4017
| |
Collapse
|
27
|
Facile production of HNTs\PDA\PF nanocomposites by unique and environment-friendly method for the removal of phenolic pollutants in water as an environmental adsorbent. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2020.01.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
28
|
Adsorption of Eosin Y, methyl orange and brilliant green from aqueous solution using ferroferric oxide/polypyrrole magnetic composite. Polym Bull (Berl) 2019. [DOI: 10.1007/s00289-019-02792-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|