1
|
Geck RC, Moresi NG, Anderson LM, Brewer R, Renz TR, Taylor MB, Dunham MJ. Experimental evolution of Saccharomyces cerevisiae for caffeine tolerance alters multidrug resistance and target of rapamycin signaling pathways. G3 (BETHESDA, MD.) 2024; 14:jkae148. [PMID: 38989875 PMCID: PMC11373655 DOI: 10.1093/g3journal/jkae148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024]
Abstract
Caffeine is a natural compound that inhibits the major cellular signaling regulator target of rapamycin (TOR), leading to widespread effects including growth inhibition. Saccharomyces cerevisiae yeast can adapt to tolerate high concentrations of caffeine in coffee and cacao fermentations and in experimental systems. While many factors affecting caffeine tolerance and TOR signaling have been identified, further characterization of their interactions and regulation remain to be studied. We used experimental evolution of S. cerevisiae to study the genetic contributions to caffeine tolerance in yeast, through a collaboration between high school students evolving yeast populations coupled with further research exploration in university labs. We identified multiple evolved yeast populations with mutations in PDR1 and PDR5, which contribute to multidrug resistance, and showed that gain-of-function mutations in multidrug resistance family transcription factors Pdr1, Pdr3, and Yrr1 differentially contribute to caffeine tolerance. We also identified loss-of-function mutations in TOR effectors Sit4, Sky1, and Tip41 and showed that these mutations contribute to caffeine tolerance. These findings support the importance of both the multidrug resistance family and TOR signaling in caffeine tolerance and can inform future exploration of networks affected by caffeine and other TOR inhibitors in model systems and industrial applications.
Collapse
Affiliation(s)
- Renee C Geck
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Naomi G Moresi
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Leah M Anderson
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | | | | | | | - Maitreya J Dunham
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
2
|
Geck RC, Moresi NG, Anderson LM, Brewer R, Renz TR, Taylor MB, Dunham MJ. Experimental evolution of S. cerevisiae for caffeine tolerance alters multidrug resistance and TOR signaling pathways. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.28.591555. [PMID: 38746122 PMCID: PMC11092465 DOI: 10.1101/2024.04.28.591555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Caffeine is a natural compound that inhibits the major cellular signaling regulator TOR, leading to widespread effects including growth inhibition. S. cerevisiae yeast can adapt to tolerate high concentrations of caffeine in coffee and cacao fermentations and in experimental systems. While many factors affecting caffeine tolerance and TOR signaling have been identified, further characterization of their interactions and regulation remain to be studied. We used experimental evolution of S. cerevisiae to study the genetic contributions to caffeine tolerance in yeast, through a collaboration between high school students evolving yeast populations coupled with further research exploration in university labs. We identified multiple evolved yeast populations with mutations in PDR1 and PDR5, which contribute to multidrug resistance, and showed that gain-of-function mutations in multidrug resistance family transcription factors PDR1, PDR3, and YRR1 differentially contribute to caffeine tolerance. We also identified loss-of-function mutations in TOR effectors SIT4, SKY1, and TIP41, and show that these mutations contribute to caffeine tolerance. These findings support the importance of both the multidrug resistance family and TOR signaling in caffeine tolerance, and can inform future exploration of networks affected by caffeine and other TOR inhibitors in model systems and industrial applications.
Collapse
Affiliation(s)
- Renee C Geck
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Naomi G Moresi
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Leah M Anderson
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | | | | | - M Bryce Taylor
- Program in Biology, Loras College, Dubuque, IA 52001, USA
| | - Maitreya J Dunham
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
3
|
Foo JL, Kitano S, Susanto AV, Jin Z, Lin Y, Luo Z, Huang L, Liang Z, Mitchell LA, Yang K, Wong A, Cai Y, Cai J, Stracquadanio G, Bader JS, Boeke JD, Dai J, Chang MW. Establishing chromosomal design-build-test-learn through a synthetic chromosome and its combinatorial reconfiguration. CELL GENOMICS 2023; 3:100435. [PMID: 38020970 PMCID: PMC10667554 DOI: 10.1016/j.xgen.2023.100435] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/19/2023] [Accepted: 10/06/2023] [Indexed: 12/01/2023]
Abstract
Chromosome-level design-build-test-learn cycles (chrDBTLs) allow systematic combinatorial reconfiguration of chromosomes with ease. Here, we established chrDBTL with a redesigned synthetic Saccharomyces cerevisiae chromosome XV, synXV. We designed and built synXV to harbor strategically inserted features, modified elements, and synonymously recoded genes throughout the chromosome. Based on the recoded chromosome, we developed a method to enable chrDBTL: CRISPR-Cas9-mediated mitotic recombination with endoreduplication (CRIMiRE). CRIMiRE allowed the creation of customized wild-type/synthetic combinations, accelerating genotype-phenotype mapping and synthetic chromosome redesign. We also leveraged synXV as a "build-to-learn" model organism for translation studies by ribosome profiling. We conducted a locus-to-locus comparison of ribosome occupancy between synXV and the wild-type chromosome, providing insight into the effects of codon changes and redesigned features on translation dynamics in vivo. Overall, we established synXV as a versatile reconfigurable system that advances chrDBTL for understanding biological mechanisms and engineering strains.
Collapse
Affiliation(s)
- Jee Loon Foo
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456, Singapore
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Wilmar-NUS Corporate Laboratory (WIL@NUS), National University of Singapore, Singapore 117599, Singapore
| | - Shohei Kitano
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456, Singapore
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Wilmar-NUS Corporate Laboratory (WIL@NUS), National University of Singapore, Singapore 117599, Singapore
| | - Adelia Vicanatalita Susanto
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456, Singapore
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Wilmar-NUS Corporate Laboratory (WIL@NUS), National University of Singapore, Singapore 117599, Singapore
| | - Zhu Jin
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456, Singapore
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Wilmar-NUS Corporate Laboratory (WIL@NUS), National University of Singapore, Singapore 117599, Singapore
| | - Yicong Lin
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Zhouqing Luo
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Linsen Huang
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Zhenzhen Liang
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Leslie A. Mitchell
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA
| | - Kun Yang
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY 11201, USA
| | - Adison Wong
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456, Singapore
- Singapore Institute of Technology, 10 Dover Drive, Singapore 138683, Singapore
| | - Yizhi Cai
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | - Jitong Cai
- High-Throughput Biological Center and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Giovanni Stracquadanio
- High-Throughput Biological Center and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
- School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Joel S. Bader
- High-Throughput Biological Center and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Jef D. Boeke
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY 11201, USA
| | - Junbiao Dai
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Matthew Wook Chang
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456, Singapore
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Wilmar-NUS Corporate Laboratory (WIL@NUS), National University of Singapore, Singapore 117599, Singapore
| |
Collapse
|
4
|
Moresi NG, Geck RC, Skophammer R, Godin D, Students YE, Taylor MB, Dunham MJ. Caffeine-tolerant mutations selected through an at-home yeast experimental evolution teaching lab. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000749. [PMID: 36855741 PMCID: PMC9968401 DOI: 10.17912/micropub.biology.000749] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/02/2023] [Accepted: 01/01/1970] [Indexed: 03/02/2023]
Abstract
yEvo is a curriculum for high school students centered around evolution experiments in S. cerevisiae . To adapt the curriculum for remote instruction, we created a new protocol to evolve non-engineered yeast in the presence of caffeine. Evolved strains had increased caffeine tolerance and distinct colony morphologies. Many possessed copy number variations, transposon insertions, and mutations affecting genes with known relationships to caffeine and TOR signaling - which is inhibited by caffeine - and in other genes not previously connected with caffeine. This demonstrates that our accessible, at-home protocol is sufficient to permit novel insights into caffeine tolerance.
Collapse
Affiliation(s)
- Naomi G Moresi
- Genome Sciences, University of Washington, Seattle, Washington, United States
| | - Renee C Geck
- Genome Sciences, University of Washington, Seattle, Washington, United States
| | | | - Dennis Godin
- Genome Sciences, University of Washington, Seattle, Washington, United States
| | - yEvo Students
- Westridge School, Pasadena, California, United States
| | - M Bryce Taylor
- Program in Biology, Loras College, Dubuque, Iowa, United States
| | - Maitreya J Dunham
- Genome Sciences, University of Washington, Seattle, Washington, United States
| |
Collapse
|
5
|
Moresi NG, Geck RC, Skophammer R, Godin D, yEvo Students, Taylor MB, Dunham MJ. Caffeine-tolerant mutations selected through an at-home yeast experimental evolution teaching lab. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.17.524437. [PMID: 36712001 PMCID: PMC9882195 DOI: 10.1101/2023.01.17.524437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
yEvo is a curriculum for high school students centered around evolution experiments in S. cerevisiae . To adapt the curriculum for remote instruction, we created a new protocol to evolve non-GMO yeast in the presence of caffeine. Evolved strains had increased caffeine tolerance and distinct colony morphologies. Many possessed copy number variations, transposon insertions, and mutations affecting genes with known relationships to caffeine and TOR signaling - which is inhibited by caffeine - and in other genes not previously connected with caffeine. This demonstrates that our accessible, at-home protocol is sufficient to permit novel insights into caffeine tolerance.
Collapse
Affiliation(s)
- Naomi G. Moresi
- Department of Genome Sciences, University of Washington, Seattle, WA 98195
| | - Renee C. Geck
- Department of Genome Sciences, University of Washington, Seattle, WA 98195
| | | | - Dennis Godin
- Department of Genome Sciences, University of Washington, Seattle, WA 98195
| | | | | | - Maitreya J. Dunham
- Department of Genome Sciences, University of Washington, Seattle, WA 98195
| |
Collapse
|
6
|
Moro S, Moscoso-Romero E, Poddar A, Mulet JM, Perez P, Chen Q, Valdivieso MH. Exomer Is Part of a Hub Where Polarized Secretion and Ionic Stress Connect. Front Microbiol 2021; 12:708354. [PMID: 34349749 PMCID: PMC8326576 DOI: 10.3389/fmicb.2021.708354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/18/2021] [Indexed: 11/13/2022] Open
Abstract
Plasma membrane and membranous organelles contribute to the physiology of the Eukaryotic cell by participating in vesicle trafficking and the maintenance of ion homeostasis. Exomer is a protein complex that facilitates vesicle transport from the trans-Golgi network to the plasma membrane, and its absence leads to the retention of a set of selected cargoes in this organelle. However, this retention does not explain all phenotypes observed in exomer mutants. The Schizosaccharomyces pombe exomer is composed of Cfr1 and Bch1, and cfr1Δ and bch1Δ were sensitive to high concentrations of potassium salts but not sorbitol, which showed sensitivity to ionic but not osmotic stress. Additionally, the activity of the plasma membrane ATPase was higher in exomer mutants than in the wild-type, pointing to membrane hyperpolarization, which caused an increase in intracellular K+ content and mild sensitivity to Na+, Ca2+, and the aminoglycoside antibiotic hygromycin B. Moreover, in response to K+ shock, the intracellular Ca2+ level of cfr1Δ cells increased significantly more than in the wild-type, likely due to the larger Ca2+ spikes in the mutant. Microscopy analyses showed a defective endosomal morphology in the mutants. This was accompanied by an increase in the intracellular pools of the K+ exporting P-type ATPase Cta3 and the plasma membrane Transient Receptor Potential (TRP)-like Ca2+ channel Pkd2, which were partially diverted from the trans-Golgi network to the prevacuolar endosome. Despite this, most Cta3 and Pkd2 were delivered to the plasma membrane at the cell growing sites, showing that their transport from the trans-Golgi network to the cell surface occurred in the absence of exomer. Nevertheless, shortly after gene expression in the presence of KCl, the polarized distribution of Cta3 and Pkd2 in the plasma membrane was disturbed in the mutants. Finally, the use of fluorescent probes suggested that the distribution and dynamics of association of some lipids to the plasma membrane in the presence of KCl were altered in the mutants. Thus, exomer participation in the response to K+ stress was multifaceted. These results supported the notion that exomer plays a general role in protein sorting at the trans-Golgi network and in polarized secretion, which is not always related to a function as a selective cargo adaptor.
Collapse
Affiliation(s)
- Sandra Moro
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas, Salamanca, Spain.,Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
| | - Esteban Moscoso-Romero
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas, Salamanca, Spain.,Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
| | - Abhishek Poddar
- Department of Biological Sciences, University of Toledo, Toledo, OH, United States
| | - Jose M Mulet
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Pilar Perez
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas, Salamanca, Spain
| | - Qian Chen
- Department of Biological Sciences, University of Toledo, Toledo, OH, United States
| | - M-Henar Valdivieso
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas, Salamanca, Spain.,Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
| |
Collapse
|
7
|
Chen X, Iwatani S, Kitamoto T, Chibana H, Kajiwara S. The Lack of SNARE Protein Homolog Syn8 Influences Biofilm Formation of Candida glabrata. Front Cell Dev Biol 2021; 9:607188. [PMID: 33644045 PMCID: PMC7907433 DOI: 10.3389/fcell.2021.607188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/22/2021] [Indexed: 11/13/2022] Open
Abstract
Biofilm formation of Candida species is considered to be a pathogenic factor of host infection. Since biofilm formation of Candida glabrata has not been as well studied as that of Candida albicans, we performed genetic screening of C. glabrata, and three candidate genes associated with biofilm formation were identified. Candida glabrata SYN8 (CAGL0H06325g) was selected as the most induced gene in biofilm cells for further research. Our results indicated that the syn8Δ mutant was defective not only in biofilm metabolic activity but also in biofilm morphological structure and biomass. Deletion of SYN8 seemed to have no effect on extracellular matrix production, but it led to a notable decrease in adhesion ability during biofilm formation, which may be linked to the repression of two adhesin genes, EPA10 and EPA22. Furthermore, hypersensitivity to hygromycin B and various ions in addition to the abnormal vacuolar morphology in the syn8Δ mutant suggested that active vacuolar function is required for biofilm formation of C. glabrata. These findings enhance our understanding of biofilm formation in this fungus and provide information for the development of future clinical treatments.
Collapse
Affiliation(s)
- Xinyue Chen
- School of Life Sciences and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Shun Iwatani
- School of Life Sciences and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Toshitaka Kitamoto
- School of Materials and Chemical Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Hiroji Chibana
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Susumu Kajiwara
- School of Life Sciences and Technology, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
8
|
Ruta LL, Farcasanu IC. Saccharomyces cerevisiae and Caffeine Implications on the Eukaryotic Cell. Nutrients 2020; 12:nu12082440. [PMID: 32823708 PMCID: PMC7468979 DOI: 10.3390/nu12082440] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 02/07/2023] Open
Abstract
Caffeine-a methylxanthine analogue of the purine bases adenine and guanine-is by far the most consumed neuro-stimulant, being the active principle of widely consumed beverages such as coffee, tea, hot chocolate, and cola. While the best-known action of caffeine is to prevent sleepiness by blocking the adenosine receptors, caffeine exerts a pleiotropic effect on cells, which lead to the activation or inhibition of various cell integrity pathways. The aim of this review is to present the main studies set to investigate the effects of caffeine on cells using the model eukaryotic microorganism Saccharomyces cerevisiae, highlighting the caffeine synergy with external cell stressors, such as irradiation or exposure to various chemical hazards, including cigarette smoke or chemical carcinogens. The review also focuses on the importance of caffeine-related yeast phenotypes used to resolve molecular mechanisms involved in cell signaling through conserved pathways, such as target of rapamycin (TOR) signaling, Pkc1-Mpk1 mitogen activated protein kinase (MAPK) cascade, or Ras/cAMP protein kinase A (PKA) pathway.
Collapse
|
9
|
Carpinone EM, Li Z, Mills MK, Foltz C, Brannon ER, Carlow CKS, Starai VJ. Identification of putative effectors of the Type IV secretion system from the Wolbachia endosymbiont of Brugia malayi. PLoS One 2018; 13:e0204736. [PMID: 30261054 PMCID: PMC6160203 DOI: 10.1371/journal.pone.0204736] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 09/13/2018] [Indexed: 11/19/2022] Open
Abstract
Wolbachia is an unculturable, intracellular bacterium that persists within an extremely broad range of arthropod and parasitic nematode hosts, where it is transmitted maternally to offspring via vertical transmission. In the filarial nematode Brugia malayi, a causative agent of human lymphatic filariasis, Wolbachia is an endosymbiont, and its presence is essential for proper nematode development, survival, and pathogenesis. While the elucidation of Wolbachia:nematode interactions that promote the bacterium’s intracellular persistence is of great importance, research has been hampered due to the fact that Wolbachia cannot be cultured in the absence of host cells. The Wolbachia endosymbiont of B. malayi (wBm) has an active Type IV secretion system (T4SS). Here, we have screened 47 putative T4SS effector proteins of wBm for their ability to modulate growth or the cell biology of a typical eukaryotic cell, Saccharomyces cerevisiae. Five candidates strongly inhibited yeast growth upon expression, and 6 additional proteins showed toxicity in the presence of zinc and caffeine. Studies on the uptake of an endocytic vacuole-specific fluorescent marker, FM4-64, identified 4 proteins (wBm0076 wBm00114, wBm0447 and wBm0152) involved in vacuole membrane dynamics. The WAS(p)-family protein, wBm0076, was found to colocalize with yeast cortical actin patches and disrupted actin cytoskeleton dynamics upon expression. Deletion of the Arp2/3-activating protein, Abp1p, provided resistance to wBm0076 expression, suggesting a role for wBm0076 in regulating eukaryotic actin dynamics and cortical actin patch formation. Furthermore, wBm0152 was found to strongly disrupt endosome:vacuole cargo trafficking in yeast. This study provides molecular insight into the potential role of the T4SS in the Wolbachia endosymbiont:nematode relationship.
Collapse
Affiliation(s)
- Emily M. Carpinone
- Department of Microbiology, University of Georgia, Athens, GA, United States of America
| | - Zhiru Li
- Division of Genome Biology, New England Biolabs, Ipswich, MA, United States of America
| | - Michael K. Mills
- Department of Microbiology, University of Georgia, Athens, GA, United States of America
| | - Clemence Foltz
- Division of Genome Biology, New England Biolabs, Ipswich, MA, United States of America
| | - Emma R. Brannon
- Department of Microbiology, University of Georgia, Athens, GA, United States of America
| | - Clotilde K. S. Carlow
- Division of Genome Biology, New England Biolabs, Ipswich, MA, United States of America
| | - Vincent J. Starai
- Department of Microbiology, University of Georgia, Athens, GA, United States of America
- Department of Infectious Diseases, University of Georgia, Athens, GA, United States of America
- * E-mail:
| |
Collapse
|
10
|
Sze H, Chanroj S. Plant Endomembrane Dynamics: Studies of K +/H + Antiporters Provide Insights on the Effects of pH and Ion Homeostasis. PLANT PHYSIOLOGY 2018; 177:875-895. [PMID: 29691301 PMCID: PMC6053008 DOI: 10.1104/pp.18.00142] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/04/2018] [Indexed: 05/17/2023]
Abstract
Plants remodel their cells through the dynamic endomembrane system. Intracellular pH is important for membrane trafficking, but the determinants of pH homeostasis are poorly defined in plants. Electrogenic proton (H+) pumps depend on counter-ion fluxes to establish transmembrane pH gradients at the plasma membrane and endomembranes. Vacuolar-type H+-ATPase-mediated acidification of the trans-Golgi network is crucial for secretion and membrane recycling. Pump and counter-ion fluxes are unlikely to fine-tune pH; rather, alkali cation/H+ antiporters, which can alter pH and/or cation homeostasis locally and transiently, are prime candidates. Plants have a large family of predicted cation/H+ exchangers (CHX) of obscure function, in addition to the well-studied K+(Na+)/H+ exchangers (NHX). Here, we review the regulation of cytosolic and vacuolar pH, highlighting the similarities and distinctions of NHX and CHX members. In planta, alkalinization of the trans-Golgi network or vacuole by NHXs promotes membrane trafficking, endocytosis, cell expansion, and growth. CHXs localize to endomembranes and/or the plasma membrane and contribute to male fertility, pollen tube guidance, pollen wall construction, stomatal opening, and, in soybean (Glycine max), tolerance to salt stress. Three-dimensional structural models and mutagenesis of Arabidopsis (Arabidopsis thaliana) genes have allowed us to infer that AtCHX17 and AtNHX1 share a global architecture and a translocation core like bacterial Na+/H+ antiporters. Yet, the presence of distinct residues suggests that some CHXs differ from NHXs in pH sensing and electrogenicity. How H+ pumps, counter-ion fluxes, and cation/H+ antiporters are linked with signaling and membrane trafficking to remodel membranes and cell walls awaits further investigation.
Collapse
Affiliation(s)
- Heven Sze
- Department of Cell Biology and Molecular Genetics and Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland 20742
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Salil Chanroj
- Department of Biotechnology, Burapha University, Chon-Buri 20131, Thailand
| |
Collapse
|
11
|
Ukai H, Araki Y, Kira S, Oikawa Y, May AI, Noda T. Gtr/Ego-independent TORC1 activation is achieved through a glutamine-sensitive interaction with Pib2 on the vacuolar membrane. PLoS Genet 2018; 14:e1007334. [PMID: 29698392 PMCID: PMC5919408 DOI: 10.1371/journal.pgen.1007334] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 03/15/2018] [Indexed: 12/18/2022] Open
Abstract
TORC1 is a central regulator of cell growth in response to amino acids. The role of the evolutionarily conserved Gtr/Rag pathway in the regulation of TORC1 is well-established. Recent genetic studies suggest that an additional regulatory pathway, depending on the activity of Pib2, plays a role in TORC1 activation independently of the Gtr/Rag pathway. However, the interplay between the Pib2 pathway and the Gtr/Rag pathway remains unclear. In this study, we show that Pib2 and Gtr/Ego form distinct complexes with TORC1 in a mutually exclusive manner, implying dedicated functional relationships between TORC1 and Pib2 or Gtr/Rag in response to specific amino acids. Furthermore, simultaneous depletion of Pib2 and the Gtr/Ego system abolishes TORC1 activity and completely compromises the vacuolar localization of TORC1. Thus, the amino acid-dependent activation of TORC1 is achieved through the Pib2 and Gtr/Ego pathways alone. Finally, we show that glutamine induces a dose-dependent increase in Pib2-TORC1 complex formation, and that glutamine binds directly to the Pib2 complex. These data provide strong preliminary evidence for Pib2 functioning as a putative glutamine sensor in the regulation of TORC1. TORC1 is a central regulator of cell growth in response to amino acids. The evolutionarily conserved Gtr/Rag pathway is a well-established TORC1 regulatory pathway. In this study, we show that two molecular machineries, Pib2 and Gtr/Ego, form distinct complexes with TORC1 in a mutually exclusive manner, implying an exclusive functional relationship between TORC1 and Pib2 or Gtr/Rag in response to various amino acids. We also show that the amino acid-dependent activation of TORC1 is achieved through the Pib2 and Gtr/Ego pathways by anchoring them to the vacuolar membrane. Finally, we show that glutamine binds directly to the Pib2 complex and that glutamine enhances Pib2-TORC1 complex formation. Collectively we provide evidence supporting a role for Pib2 as an element of a putative glutamine sensor.
Collapse
Affiliation(s)
- Hirofumi Ukai
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Yasuhiro Araki
- Graduate School of Dentistry, Osaka University, Osaka, Japan
- * E-mail: (TN); (YA)
| | - Shintaro Kira
- Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Yu Oikawa
- Research Center of Cell Biology, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Alexander I. May
- Research Center of Cell Biology, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Takeshi Noda
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
- Graduate School of Dentistry, Osaka University, Osaka, Japan
- * E-mail: (TN); (YA)
| |
Collapse
|
12
|
Hassett MR, Sternberg AR, Riegel BE, Thomas CJ, Roepe PD. Heterologous Expression, Purification, and Functional Analysis of Plasmodium falciparum Phosphatidylinositol 3′-Kinase. Biochemistry 2017; 56:4335-4345. [DOI: 10.1021/acs.biochem.7b00416] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Matthew R. Hassett
- Department of Chemistry and Department of Biochemistry & Cellular & Molecular Biology, Georgetown University, 37th and O Streets NW, Washington, D.C. 20057, United States
| | - Anna R. Sternberg
- Department of Chemistry and Department of Biochemistry & Cellular & Molecular Biology, Georgetown University, 37th and O Streets NW, Washington, D.C. 20057, United States
| | - Bryce E. Riegel
- Department of Chemistry and Department of Biochemistry & Cellular & Molecular Biology, Georgetown University, 37th and O Streets NW, Washington, D.C. 20057, United States
| | - Craig J. Thomas
- Division
of Preclinical Innovation, National Center for Advancing Translational
Sciences, National Institutes of Health, Rockville, Maryland 20892, United States
| | - Paul D. Roepe
- Department of Chemistry and Department of Biochemistry & Cellular & Molecular Biology, Georgetown University, 37th and O Streets NW, Washington, D.C. 20057, United States
| |
Collapse
|
13
|
Zhu X, Zeng Y, Zhao X, Zou S, He YW, Liang Y. A genetic screen in combination with biochemical analysis in Saccharomyces cerevisiae indicates that phenazine-1-carboxylic acid is harmful to vesicular trafficking and autophagy. Sci Rep 2017; 7:1967. [PMID: 28512289 PMCID: PMC5434042 DOI: 10.1038/s41598-017-01452-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 03/30/2017] [Indexed: 11/17/2022] Open
Abstract
The environmentally friendly antibiotic phenazine-1-carboxylic acid (PCA) protects plants, mammals and humans effectively against various fungal pathogens. However, the mechanism by which PCA inhibits or kills fungal pathogens is not fully understood. We analyzed the effects of PCA on the growth of two fungal model organisms, Saccharomyces cerevisiae and Candida albicans, and found that PCA inhibited yeast growth in a dose-dependent manner which was inversely dependent on pH. In contrast, the commonly used antibiotic hygromycin B acted in a dose-dependent manner as pH increased. We then screened a yeast mutant library to identify genes whose mutation or deletion conferred resistance or sensitivity to PCA. We isolated 193 PCA-resistant or PCA-sensitive mutants in clusters, including vesicle-trafficking- and autophagy-defective mutants. Further analysis showed that unlike hygromycin B, PCA significantly altered intracellular vesicular trafficking under growth conditions and blocked autophagy under starvation conditions. These results suggest that PCA inhibits or kills pathogenic fungi in a complex way, in part by disrupting vesicular trafficking and autophagy.
Collapse
Affiliation(s)
- Xiaolong Zhu
- College of Life Sciences, Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yan Zeng
- College of Life Sciences, Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiu Zhao
- College of Life Sciences, Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shenshen Zou
- College of Life Sciences, Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ya-Wen He
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yongheng Liang
- College of Life Sciences, Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
14
|
Ejzykowicz DE, Locken KM, Ruiz FJ, Manandhar SP, Olson DK, Gharakhanian E. Hygromycin B hypersensitive (hhy) mutants implicate an intact trans-Golgi and late endosome interface in efficient Tor1 vacuolar localization and TORC1 function. Curr Genet 2016; 63:531-551. [PMID: 27812735 DOI: 10.1007/s00294-016-0660-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 10/20/2016] [Accepted: 10/22/2016] [Indexed: 12/18/2022]
Abstract
Saccharomyces cerevisiae vacuoles are functionally analogous to mammalian lysosomes. Both also serve as physical platforms for Tor Complex 1 (TORC1) signal transduction, the master regulator of cellular growth and proliferation. Hygromycin B is a eukaryotic translation inhibitor. We recently reported on hygromycin B hypersensitive (hhy) mutants that fail to grow at subtranslation inhibitory concentrations of the drug and exhibit vacuolar defects (Banuelos et al. in Curr Genet 56:121-137, 2010). Here, we show that hhy phenotype is not due to increased sensitivity to translation inhibition and establish a super HHY (s-HHY) subgroup of genes comprised of ARF1, CHC1, DRS2, SAC1, VPS1, VPS34, VPS45, VPS52, and VPS54 that function exclusively or inclusively at trans-Golgi and late endosome interface. Live cell imaging of s-hhy mutants revealed that hygromycin B treatment disrupts vacuolar morphology and the localization of late endosome marker Pep12, but not that of late endosome-independent vacuolar SNARE Vam3. This, along with normal post-late endosome trafficking of the vital dye FM4-64, establishes that severe hypersensitivity to hygromycin B correlates specifically with compromised trans-Golgi and late endosome interface. We also show that Tor1p vacuolar localization and TORC1 anabolic functions, including growth promotion and phosphorylation of its direct substrate Sch9, are compromised in s-hhy mutants. Thus, an intact trans-Golgi and late endosome interface is a requisite for efficient Tor1 vacuolar localization and TORC1 function.
Collapse
Affiliation(s)
- Daniele E Ejzykowicz
- Department of Biological Sciences, California State University Long Beach, 1250 Bellflower Blvd, Long Beach, CA, 90840, USA
| | - Kristopher M Locken
- Department of Biological Sciences, California State University Long Beach, 1250 Bellflower Blvd, Long Beach, CA, 90840, USA
| | - Fiona J Ruiz
- Department of Biological Sciences, California State University Long Beach, 1250 Bellflower Blvd, Long Beach, CA, 90840, USA.,Department of Radiation Oncology, Cancer Biology Division, Washington University School of Medicine, Saint Louis, MO, 63108, USA
| | - Surya P Manandhar
- Department of Biological Sciences, California State University Long Beach, 1250 Bellflower Blvd, Long Beach, CA, 90840, USA
| | - Daniel K Olson
- Department of Biological Sciences, California State University Long Beach, 1250 Bellflower Blvd, Long Beach, CA, 90840, USA.,Inouye Center for Microbial Oceanography, Research and Education, University of Hawaii, Manoa, Honolulu, HI, 96822, USA
| | - Editte Gharakhanian
- Department of Biological Sciences, California State University Long Beach, 1250 Bellflower Blvd, Long Beach, CA, 90840, USA.
| |
Collapse
|
15
|
Kim A, Cunningham KW. A LAPF/phafin1-like protein regulates TORC1 and lysosomal membrane permeabilization in response to endoplasmic reticulum membrane stress. Mol Biol Cell 2015; 26:4631-45. [PMID: 26510498 PMCID: PMC4678020 DOI: 10.1091/mbc.e15-08-0581] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 10/19/2015] [Indexed: 01/13/2023] Open
Abstract
The controlled permeabilization of lysosomes and vacuoles may represent an ancient manner of programmed cell death. It is shown that TORC1 is required for lysosomal membrane permeabilization and death of yeast cells that have been exposed to antifungals, and that a novel FYVE-domain protein regulates TORC1 signaling in these conditions. Lysosomal membrane permeabilization (LMP) is a poorly understood regulator of programmed cell death that involves leakage of luminal lysosomal or vacuolar hydrolases into the cytoplasm. In Saccharomyces cerevisiae, LMP can be induced by antifungals and endoplasmic reticulum stressors when calcineurin also has been inactivated. A genome-wide screen revealed Pib2, a relative of LAPF/phafin1 that regulates LMP in mammals, as a pro-LMP protein in yeast. Pib2 associated with vacuolar and endosomal limiting membranes in unstressed cells in a manner that depended on its FYVE domain and on phosphatidylinositol 3-phosphate (PI(3)P) biosynthesis. Genetic experiments suggest that Pib2 stimulates the activity of TORC1, a vacuole-associated protein kinase that is sensitive to rapamycin, in a pathway parallel to the Ragulator/EGO complex containing the GTPases Gtr1 and Gtr2. A hyperactivating mutation in the catalytic subunit of TORC1 restored LMP to the gtr1∆ and pib2∆ mutants and also prevented the synthetic lethality of the double mutants. These findings show novel roles of PI(3)P and Pib2 in the regulation of TORC1, which in turn promoted LMP and nonapoptotic death of stressed cells. Rapamycin prevented the death of the pathogenic yeast Candida albicans during exposure to fluconazole plus a calcineurin inhibitor, suggesting that TORC1 broadly promotes sensitivity to fungistats in yeasts.
Collapse
Affiliation(s)
- Adam Kim
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218
| | - Kyle W Cunningham
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218
| |
Collapse
|
16
|
Fröhlich F, Petit C, Kory N, Christiano R, Hannibal-Bach HK, Graham M, Liu X, Ejsing CS, Farese RV, Walther TC. The GARP complex is required for cellular sphingolipid homeostasis. eLife 2015; 4. [PMID: 26357016 PMCID: PMC4600884 DOI: 10.7554/elife.08712] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 09/09/2015] [Indexed: 12/11/2022] Open
Abstract
Sphingolipids are abundant membrane components and important signaling molecules in eukaryotic cells. Their levels and localization are tightly regulated. However, the mechanisms underlying this regulation remain largely unknown. In this study, we identify the Golgi-associated retrograde protein (GARP) complex, which functions in endosome-to-Golgi retrograde vesicular transport, as a critical player in sphingolipid homeostasis. GARP deficiency leads to accumulation of sphingolipid synthesis intermediates, changes in sterol distribution, and lysosomal dysfunction. A GARP complex mutation analogous to a VPS53 allele causing progressive cerebello-cerebral atrophy type 2 (PCCA2) in humans exhibits similar, albeit weaker, phenotypes in yeast, providing mechanistic insights into disease pathogenesis. Inhibition of the first step of de novo sphingolipid synthesis is sufficient to mitigate many of the phenotypes of GARP-deficient yeast or mammalian cells. Together, these data show that GARP is essential for cellular sphingolipid homeostasis and suggest a therapeutic strategy for the treatment of PCCA2. DOI:http://dx.doi.org/10.7554/eLife.08712.001 Every cell is enveloped by a membrane that forms a barrier between the cell and its environment. This membrane contains fat molecules called ‘sphingolipids’, which help to maintain the structure of the membrane and enable it to work correctly. These molecules are also used as signals to send information around the interior of the cell and are required for the cell to grow and divide normally. The levels of sphingolipids in the membrane have to be tightly controlled because any imbalance can cause stress to the cell and can lead to serious diseases. Sphingolipids are made inside the cell and are then sent to a compartment called the Golgi before being delivered to the membrane. To regulate the amount of sphingolipids in the membrane, these molecules are routinely returned to the interior of the cell in small structures called endosomes. From here, they can either be broken down or recycled back to the membrane via the Golgi. A group of proteins known as the Golgi-associated retrograde protein complex (or GARP) is involved in the movement of endosomes from the membrane to the Golgi. People that have a mutation in the gene that encodes GARP suffer from a severe neurodegenerative disease known as ‘progressive cerebello-cerebral atrophy type 2’ (PCCA2) in which brain cells die prematurely. Researchers have assumed that the most important role of GARP is to sort proteins, and that the missorting of proteins leads to PCCA2. Here, Frohlich et al. used a combination of genetic analysis and biochemical techniques to study GARP in yeast cells. The experiments show that GARP is critical for sphingolipid recycling, and that a lack of GARP leads to more sphingolipids being degraded, which results in a build-up of toxic molecules. Frohlich et al. generated yeast cells that have the same mutations in the gene that encodes GARP as those in human patients with PCCA2. These cells grew much slower than normal yeast and were less able to transport sphingolipids from the endosome to the Golgi. Like the yeast cells, human cells in which the gene that encodes GARP was less active also accumulated toxic molecules. Together, these findings suggest that a build-up of toxic fat molecules may be responsible for the symptoms observed in PCCA2 patients. A future challenge is to find out whether this also applies to patients with Alzheimer's disease and other conditions that also affect endosomes. DOI:http://dx.doi.org/10.7554/eLife.08712.002
Collapse
Affiliation(s)
- Florian Fröhlich
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, United States.,Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Constance Petit
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, United States.,Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Nora Kory
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, United States.,Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Romain Christiano
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, United States.,Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Hans-Kristian Hannibal-Bach
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | - Morven Graham
- Center for Cellular and Molecular Imaging, Yale School of Medicine, New Haven, United States
| | - Xinran Liu
- Center for Cellular and Molecular Imaging, Yale School of Medicine, New Haven, United States.,Department of Cell Biology, Yale School of Medicine, New Haven, United States
| | - Christer S Ejsing
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | - Robert V Farese
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, United States.,Department of Cell Biology, Harvard Medical School, Boston, United States.,Broad Institute, Cambridge, United States
| | - Tobias C Walther
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, United States.,Department of Cell Biology, Harvard Medical School, Boston, United States.,Broad Institute, Cambridge, United States.,Howard Hughes Medical Institute, Harvard T.H. Chan School of Public Health, Boston, United States
| |
Collapse
|
17
|
Jose M, Tollis S, Nair D, Mitteau R, Velours C, Massoni-Laporte A, Royou A, Sibarita JB, McCusker D. A quantitative imaging-based screen reveals the exocyst as a network hub connecting endocytosis and exocytosis. Mol Biol Cell 2015; 26:2519-34. [PMID: 25947137 PMCID: PMC4571305 DOI: 10.1091/mbc.e14-11-1527] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 04/29/2015] [Indexed: 12/15/2022] Open
Abstract
The mechanisms governing the spatial organization of endocytosis and exocytosis are ill defined. A quantitative imaging screen and high-density single-vesicle tracking are used to identify mutants that are defective in endocytic and exocytic vesicle organization. The screen identifies a role for the exocyst complex in connecting the two pathways. The coupling of endocytosis and exocytosis underlies fundamental biological processes ranging from fertilization to neuronal activity and cellular polarity. However, the mechanisms governing the spatial organization of endocytosis and exocytosis require clarification. Using a quantitative imaging-based screen in budding yeast, we identified 89 mutants displaying defects in the localization of either one or both pathways. High-resolution single-vesicle tracking revealed that the endocytic and exocytic mutants she4∆ and bud6∆ alter post-Golgi vesicle dynamics in opposite ways. The endocytic and exocytic pathways display strong interdependence during polarity establishment while being more independent during polarity maintenance. Systems analysis identified the exocyst complex as a key network hub, rich in genetic interactions with endocytic and exocytic components. Exocyst mutants displayed altered endocytic and post-Golgi vesicle dynamics and interspersed endocytic and exocytic domains compared with control cells. These data are consistent with an important role for the exocyst in coordinating endocytosis and exocytosis.
Collapse
Affiliation(s)
- Mini Jose
- Dynamics of Cell Growth and Division, European Institute of Chemistry and Biology, F-33607 Bordeaux, France Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, Université Bordeaux, F-33000 Bordeaux, France Centre for Neuroscience, Indian Institute of Science, Bangalore 560012, India
| | - Sylvain Tollis
- Dynamics of Cell Growth and Division, European Institute of Chemistry and Biology, F-33607 Bordeaux, France Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, Université Bordeaux, F-33000 Bordeaux, France
| | - Deepak Nair
- Centre for Neuroscience, Indian Institute of Science, Bangalore 560012, India Institut Interdisciplinaire de Neurosciences, CNRS UMR 5297, Université Bordeaux, F-33000 Bordeaux, France
| | - Romain Mitteau
- Dynamics of Cell Growth and Division, European Institute of Chemistry and Biology, F-33607 Bordeaux, France Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, Université Bordeaux, F-33000 Bordeaux, France
| | - Christophe Velours
- Dynamics of Cell Growth and Division, European Institute of Chemistry and Biology, F-33607 Bordeaux, France Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, Université Bordeaux, F-33000 Bordeaux, France
| | - Aurelie Massoni-Laporte
- Dynamics of Cell Growth and Division, European Institute of Chemistry and Biology, F-33607 Bordeaux, France Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, Université Bordeaux, F-33000 Bordeaux, France
| | - Anne Royou
- Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, Université Bordeaux, F-33000 Bordeaux, France Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, Université Bordeaux, F-33000 Bordeaux, France
| | - Jean-Baptiste Sibarita
- Institut Interdisciplinaire de Neurosciences, CNRS UMR 5297, Université Bordeaux, F-33000 Bordeaux, France
| | - Derek McCusker
- Dynamics of Cell Growth and Division, European Institute of Chemistry and Biology, F-33607 Bordeaux, France Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, Université Bordeaux, F-33000 Bordeaux, France
| |
Collapse
|
18
|
Mota S, Vieira N, Barbosa S, Delaveau T, Torchet C, Le Saux A, Garcia M, Pereira A, Lemoine S, Coulpier F, Darzacq X, Benard L, Casal M, Devaux F, Paiva S. Role of the DHH1 gene in the regulation of monocarboxylic acids transporters expression in Saccharomyces cerevisiae. PLoS One 2014; 9:e111589. [PMID: 25365506 PMCID: PMC4218774 DOI: 10.1371/journal.pone.0111589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 09/26/2014] [Indexed: 01/05/2023] Open
Abstract
Previous experiments revealed that DHH1, a RNA helicase involved in the regulation of mRNA stability and translation, complemented the phenotype of a Saccharomyces cerevisiae mutant affected in the expression of genes coding for monocarboxylic-acids transporters, JEN1 and ADY2 (Paiva S, Althoff S, Casal M, Leao C. FEMS Microbiol Lett, 1999, 170:301-306). In wild type cells, JEN1 expression had been shown to be undetectable in the presence of glucose or formic acid, and induced in the presence of lactate. In this work, we show that JEN1 mRNA accumulates in a dhh1 mutant, when formic acid was used as sole carbon source. Dhh1 interacts with the decapping activator Dcp1 and with the deadenylase complex. This led to the hypothesis that JEN1 expression is post-transcriptionally regulated by Dhh1 in formic acid. Analyses of JEN1 mRNAs decay in wild-type and dhh1 mutant strains confirmed this hypothesis. In these conditions, the stabilized JEN1 mRNA was associated to polysomes but no Jen1 protein could be detected, either by measurable lactate carrier activity, Jen1-GFP fluorescence detection or western blots. These results revealed the complexity of the expression regulation of JEN1 in S. cerevisiae and evidenced the importance of DHH1 in this process. Additionally, microarray analyses of dhh1 mutant indicated that Dhh1 plays a large role in metabolic adaptation, suggesting that carbon source changes triggers a complex interplay between transcriptional and post-transcriptional effects.
Collapse
Affiliation(s)
- Sandra Mota
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, Braga, Portugal
- Centre of Health and Environmental Research (CISA), School of Allied Health Sciences, Polytechnic Institute of Porto, Vila Nova de Gaia, Portugal
| | - Neide Vieira
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Sónia Barbosa
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Thierry Delaveau
- Sorbonne Universités, Université Pierre et Marie Curie, UMR7238, Laboratoire de Biologie computationnelle et quantitative, Paris, France
- CNRS, UMR7238, Laboratoire de Biologie computationnelle et quantitative, Paris, France
| | - Claire Torchet
- CNRS, UMR8226, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, Paris, France
- Sorbonne Universités, Université Pierre et Marie Curie UPMC, UMR8226, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, Paris, France
| | - Agnès Le Saux
- CNRS, FRE3630, Laboratoire de l’Expression Génétique Microbienne, Institut de Biologie Physico-Chimique, Paris, France
| | - Mathilde Garcia
- Sorbonne Universités, Université Pierre et Marie Curie, UMR7238, Laboratoire de Biologie computationnelle et quantitative, Paris, France
- CNRS, UMR7238, Laboratoire de Biologie computationnelle et quantitative, Paris, France
| | - Ana Pereira
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Sophie Lemoine
- École normale supérieure, Institut de Biologie de l’ENS, IBENS, Paris, France
- Inserm, U1024, Paris, France
- CNRS, UMR 8197, Paris, France
| | - Fanny Coulpier
- École normale supérieure, Institut de Biologie de l’ENS, IBENS, Paris, France
- Inserm, U1024, Paris, France
- CNRS, UMR 8197, Paris, France
| | - Xavier Darzacq
- École normale supérieure, Institut de Biologie de l’ENS, IBENS, Paris, France
- Inserm, U1024, Paris, France
- CNRS, UMR 8197, Paris, France
| | - Lionel Benard
- CNRS, UMR8226, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, Paris, France
- Sorbonne Universités, Université Pierre et Marie Curie UPMC, UMR8226, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, Paris, France
| | - Margarida Casal
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Frédéric Devaux
- Sorbonne Universités, Université Pierre et Marie Curie, UMR7238, Laboratoire de Biologie computationnelle et quantitative, Paris, France
- CNRS, UMR7238, Laboratoire de Biologie computationnelle et quantitative, Paris, France
| | - Sandra Paiva
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, Braga, Portugal
| |
Collapse
|
19
|
Kwon YS, Kim SG, Chung WS, Bae H, Jeong SW, Shin SC, Jeong MJ, Park SC, Kwak YS, Bae DW, Lee YB. Proteomic analysis of Rhizoctonia solani AG-1 sclerotia maturation. Fungal Biol 2014; 118:433-43. [PMID: 24863472 DOI: 10.1016/j.funbio.2014.02.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 01/09/2014] [Accepted: 02/04/2014] [Indexed: 12/20/2022]
Abstract
Rhizoctonia solani (R. solani), a soil-borne necrotrophic pathogen, causes various plant diseases. Rhizoctonia solani is a mitosporic fungus, the sclerotium of which is the primary inoculum and ensures survival of the fungus during the offseason of the host crop. Since the fungus does not produce any asexual or sexual spores, understanding the biology of sclerotia is important to examine pathogen ecology and develop more efficient methods for crop protection. Here, one- and two-dimensional gel electrophoresis (1-DE and 2-DE, respectively) were used to examine protein regulation during the maturation of fungal sclerotia. A total of 75 proteins (20 proteins from 1-DE using matrix-assisted laser desorption/ionization (MALDI)-time of flight (TOF) mass spectrometry (MS) and 55 proteins from 2-DE using MALDI-TOF MS or MALDI-TOF/TOF MS) were differentially expressed during sclerotial maturation. The identified proteins were classified into ten categories based on their biological functions, including genetic information processing, carbohydrate metabolism, cell defense, amino acid metabolism, nucleotide metabolism, cellular processes, pathogenicity and mycotoxin production, and hypothetical or unknown functions. Interestingly, two vacuole function-related proteins were highly up-regulated throughout sclerotial maturation, which was confirmed at the transcript level by reverse transcriptase polymerase chain reaction (RT-PCR) analysis. These findings contribute to our understanding of the biology of R. solani sclerotia.
Collapse
Affiliation(s)
- Young Sang Kwon
- Division of Applied Life Science (BK21 Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Sang Gon Kim
- Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Woo Sik Chung
- Division of Applied Life Science (BK21 Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Hanhong Bae
- School of Biotechnology, Yeungnam University, Gyeongsang 712-749, Republic of Korea
| | - Sung Woo Jeong
- Department of Chemistry, Research Institute of Life Science, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Sung Chul Shin
- Department of Chemistry, Research Institute of Life Science, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Mi-Jeong Jeong
- Bio-crop Development Division, National Academy of Agricultural Science, Rural Development Administration, Suwon 441-707, Republic of Korea
| | - Soo-Chul Park
- Bio-crop Development Division, National Academy of Agricultural Science, Rural Development Administration, Suwon 441-707, Republic of Korea
| | - Youn-Sig Kwak
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Dong-Won Bae
- Central Instrument Facility, Gyeongsang National University, Jinju 660-701, Republic of Korea.
| | - Yong Bok Lee
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 660-701, Republic of Korea.
| |
Collapse
|
20
|
Panepinto JC, Heinz E, Traven A. The cellular roles of Ccr4-NOT in model and pathogenic fungi-implications for fungal virulence. Front Genet 2013; 4:302. [PMID: 24391665 PMCID: PMC3868889 DOI: 10.3389/fgene.2013.00302] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 12/09/2013] [Indexed: 11/13/2022] Open
Abstract
The fungal Ccr4-NOT complex has been implicated in orchestrating gene expression networks that impact on pathways key for virulence in pathogenic species. The activity of Ccr4-NOT regulates cell wall integrity, antifungal drug susceptibility, adaptation to host temperature, and the developmental switches that enable the formation of pathogenic structures, such as filamentous hyphae. Moreover, Ccr4-NOT impacts on DNA repair pathways and genome stability, opening the possibility that this gene regulator could control adaptive responses in pathogens that are driven by chromosomal alterations. Here we provide a synthesis of the cellular roles of the fungal Ccr4-NOT, focusing on pathways important for virulence toward animals. Our review is based on studies in models yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe, and two species that cause serious human infections, Candida albicans and Cryptococcus neoformans. We hypothesize that the activity of Ccr4-NOT could be targeted for future antifungal drug discovery, a proposition supported by the fact that inactivation of the genes encoding subunits of Ccr4-NOT in C. albicans and C. neoformans reduces virulence in the mouse infection model. We performed bioinformatics analysis to identify similarities and differences between Ccr4-NOT subunits in fungi and animals, and discuss this knowledge in the context of future antifungal strategies.
Collapse
Affiliation(s)
- John C Panepinto
- Department of Microbiology and Immunology, University at Buffalo, The State University of New York Buffalo, NY, USA
| | - Eva Heinz
- Department of Microbiology, Monash University Clayton, VIC, Australia ; Victorian Bioinformatics Consortium, School of Biomedical Sciences, Monash University Clayton, VIC, Australia
| | - Ana Traven
- Department of Biochemistry and Molecular Biology, Monash University Clayton, VIC, Australia
| |
Collapse
|
21
|
Shimobayashi M, Oppliger W, Moes S, Jenö P, Hall MN. TORC1-regulated protein kinase Npr1 phosphorylates Orm to stimulate complex sphingolipid synthesis. Mol Biol Cell 2013; 24:870-81. [PMID: 23363605 PMCID: PMC3596256 DOI: 10.1091/mbc.e12-10-0753] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 01/16/2013] [Accepted: 01/18/2013] [Indexed: 11/15/2022] Open
Abstract
The evolutionarily conserved Orm1 and Orm2 proteins mediate sphingolipid homeostasis. However, the homologous Orm proteins and the signaling pathways modulating their phosphorylation and function are incompletely characterized. Here we demonstrate that inhibition of nutrient-sensitive target of rapamycin complex 1 (TORC1) stimulates Orm phosphorylation and synthesis of complex sphingolipids in Saccharomyces cerevisiae. TORC1 inhibition activates the kinase Npr1 that directly phosphorylates and activates the Orm proteins. Npr1-phosphorylated Orm1 and Orm2 stimulate de novo synthesis of complex sphingolipids downstream of serine palmitoyltransferase. Complex sphingolipids in turn stimulate plasma membrane localization and activity of the nutrient scavenging general amino acid permease 1. Thus activation of Orm and complex sphingolipid synthesis upon TORC1 inhibition is a physiological response to starvation.
Collapse
Affiliation(s)
| | | | - Suzette Moes
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Paul Jenö
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | | |
Collapse
|
22
|
LegC3, an effector protein from Legionella pneumophila, inhibits homotypic yeast vacuole fusion in vivo and in vitro. PLoS One 2013; 8:e56798. [PMID: 23437241 PMCID: PMC3577674 DOI: 10.1371/journal.pone.0056798] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 01/15/2013] [Indexed: 12/12/2022] Open
Abstract
During infection, the intracellular pathogenic bacterium Legionella pneumophila causes an extensive remodeling of host membrane trafficking pathways, both in the construction of a replication-competent vacuole comprised of ER-derived vesicles and plasma membrane components, and in the inhibition of normal phagosome:endosome/lysosome fusion pathways. Here, we identify the LegC3 secreted effector protein from L. pneumophila as able to inhibit a SNARE- and Rab GTPase-dependent membrane fusion pathway in vitro, the homotypic fusion of yeast vacuoles (lysosomes). This vacuole fusion inhibition appeared to be specific, as similar secreted coiled-coiled domain containing proteins from L. pneumophila, LegC7/YlfA and LegC2/YlfB, did not inhibit vacuole fusion. The LegC3-mediated fusion inhibition was reversible by a yeast cytosolic extract, as well as by a purified soluble SNARE, Vam7p. LegC3 blocked the formation of trans-SNARE complexes during vacuole fusion, although we did not detect a direct interaction of LegC3 with the vacuolar SNARE protein complexes required for fusion. Additionally, LegC3 was incapable of inhibiting a defined synthetic model of vacuolar SNARE-driven membrane fusion, further suggesting that LegC3 does not directly inhibit the activity of vacuolar SNAREs, HOPS complex, or Sec17p/18p during membrane fusion. LegC3 is likely utilized by Legionella to modulate eukaryotic membrane fusion events during pathogenesis.
Collapse
|
23
|
Rogers DW, McConnell E, Greig D. Molecular quantification of Saccharomyces cerevisiae α-pheromone secretion. FEMS Yeast Res 2012; 12:668-74. [PMID: 22672638 DOI: 10.1111/j.1567-1364.2012.00817.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 05/29/2012] [Accepted: 05/31/2012] [Indexed: 11/29/2022] Open
Abstract
Saccharomyces cerevisiae yeast cells court each other by producing an attractive sex pheromone specific to their mating type. Cells detect the sex pheromone from potential mates using a well-defined intracellular signalling cascade that has become a model for studying signal transduction. In contrast, the factors contributing to the production of pheromone itself are poorly characterized, despite the widespread use of the S. cerevisiae α-pheromone secretion pathway in industrial fungal protein expression systems. Progress in understanding pheromone secretion has been hindered by a lack of a precise and quantitative pheromone production assay. Here, we present an ELISA-based method for the quantification of α-pheromone secretion. In the absence of pheromone from the opposite mating type, we found that each cell secretes over 550 mature α-pheromone peptides per second; 90% of this total was produced from MF α1. The addition of a-pheromone more than doubled total α-pheromone secretion. This technique offers several improvements on current methods for measuring α-pheromone production and will allow detailed investigation of the factors regulating pheromone production in yeast.
Collapse
Affiliation(s)
- David W Rogers
- Max Planck Institute for Evolutionary Biology, Plön, Germany.
| | | | | |
Collapse
|
24
|
Bridges D, Fisher K, Zolov SN, Xiong T, Inoki K, Weisman LS, Saltiel AR. Rab5 proteins regulate activation and localization of target of rapamycin complex 1. J Biol Chem 2012; 287:20913-21. [PMID: 22547071 PMCID: PMC3375515 DOI: 10.1074/jbc.m111.334060] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The mechanistic target of rapamycin (mTOR) complex 1 is regulated by small GTPase activators and localization signals. We examine here the role of the small GTPase Rab5 in the localization and activation of TORC1 in yeast and mammalian cells. Rab5 mutants disrupt mTORC1 activation and localization in mammalian cells, whereas disruption of the Rab5 homolog in yeast, Vps21, leads to decreased TORC1 function. Additionally, regulation of PI(3)P synthesis by Rab5 and Vps21 is essential for TORC1 function in both contexts.
Collapse
Affiliation(s)
| | | | | | - Tingting Xiong
- From the Life Sciences Institute and ,Molecular and Integrative Physiology, and
| | - Ken Inoki
- From the Life Sciences Institute and ,Molecular and Integrative Physiology, and
| | - Lois S. Weisman
- From the Life Sciences Institute and ,Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Alan R. Saltiel
- From the Life Sciences Institute and ,Departments of Internal Medicine, ,Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, To whom correspondence should be addressed: Life Sciences Institute, University of Michigan, 210 Washtenaw Ave., Ann Arbor, MI 48109. Tel.: 734-615-9787; Fax: 734-763-6492; E-mail:
| |
Collapse
|
25
|
Chanroj S, Lu Y, Padmanaban S, Nanatani K, Uozumi N, Rao R, Sze H. Plant-specific cation/H+ exchanger 17 and its homologs are endomembrane K+ transporters with roles in protein sorting. J Biol Chem 2011; 286:33931-41. [PMID: 21795714 PMCID: PMC3190763 DOI: 10.1074/jbc.m111.252650] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 07/08/2011] [Indexed: 11/30/2022] Open
Abstract
The complexity of intracellular compartments in eukaryotic cells evolved to provide distinct environments to regulate processes necessary for cell proliferation and survival. A large family of predicted cation/proton exchangers (CHX), represented by 28 genes in Arabidopsis thaliana, are associated with diverse endomembrane compartments and tissues in plants, although their roles are poorly understood. We expressed a phylogenetically related cluster of CHX genes, encoded by CHX15-CHX20, in yeast and bacterial cells engineered to lack multiple cation-handling mechanisms. Of these, CHX16-CHX20 were implicated in pH homeostasis because their expression rescued the alkaline pH-sensitive growth phenotype of the host yeast strain. A smaller subset, CHX17-CHX19, also conferred tolerance to hygromycin B. Further differences were observed in K(+)- and low pH-dependent growth phenotypes. Although CHX17 did not alter cytoplasmic or vacuolar pH in yeast, CHX20 elicited acidification and alkalization of the cytosol and vacuole, respectively. Using heterologous expression in Escherichia coli strains lacking K(+) uptake systems, we provide evidence for K(+) ((86)Rb) transport mediated by CHX17 and CHX20. Finally, we show that CHX17 and CHX20 affected protein sorting as measured by carboxypeptidase Y secretion in yeast mutants grown at alkaline pH. In plant cells, CHX20-RFP co-localized with an endoplasmic reticulum marker, whereas RFP-tagged CHX17-CHX19 co-localized with prevacuolar compartment and endosome markers. Together, these results suggest that in response to environmental cues, multiple CHX transporters differentially modulate K(+) and pH homeostasis of distinct intracellular compartments, which alter membrane trafficking events likely to be critical for adaptation and survival.
Collapse
Affiliation(s)
- Salil Chanroj
- From the Department of Cell Biology and Molecular Genetics and the Maryland Agricultural Experiment Station, University of Maryland, College Park, Maryland 20742
| | - Yongxian Lu
- From the Department of Cell Biology and Molecular Genetics and the Maryland Agricultural Experiment Station, University of Maryland, College Park, Maryland 20742
| | - Senthilkumar Padmanaban
- From the Department of Cell Biology and Molecular Genetics and the Maryland Agricultural Experiment Station, University of Maryland, College Park, Maryland 20742
| | - Kei Nanatani
- the Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
| | - Nobuyuki Uozumi
- the Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
| | - Rajini Rao
- the Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, and
| | - Heven Sze
- From the Department of Cell Biology and Molecular Genetics and the Maryland Agricultural Experiment Station, University of Maryland, College Park, Maryland 20742
| |
Collapse
|
26
|
A genome-wide immunodetection screen in S. cerevisiae uncovers novel genes involved in lysosomal vacuole function and morphology. PLoS One 2011; 6:e23696. [PMID: 21912603 PMCID: PMC3166051 DOI: 10.1371/journal.pone.0023696] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 07/22/2011] [Indexed: 11/19/2022] Open
Abstract
Vacuoles of yeast Saccharomyces cerevisiae are functionally analogous to mammalian lysosomes. Both are cellular organelles responsible for macromolecular degradation, ion/pH homeostasis, and stress survival. We hypothesized that undefined gene functions remain at post-endosomal stage of vacuolar events and performed a genome-wide screen directed at such functions at the late endosome and vacuole interface – ENV genes. The immunodetection screen was designed to identify mutants that internally accumulate precursor form of the vacuolar hydrolase carboxypeptidase Y (CPY). Here, we report the uncovering and initial characterizations of twelve ENV genes. The small size of the collection and the lack of genes previously identified with vacuolar events are suggestive of the intended exclusive functional interface of the screen. Most notably, the collection includes four novel genes ENV7, ENV9, ENV10, and ENV11, and three genes previously linked to mitochondrial processes – MAM3, PCP1, PPE1. In all env mutants, vesicular trafficking stages were undisturbed in live cells as assessed by invertase and active α-factor secretion, as well as by localization of the endocytic fluorescent marker FM4-64 to the vacuole. Several mutants exhibit defects in stress survival functions associated with vacuoles. Confocal fluorescence microscopy revealed the collection to be significantly enriched in vacuolar morphologies suggestive of fusion and fission defects. These include the unique phenotype of lumenal vesicles within vacuoles in the novel env9Δ mutant and severely fragmented vacuoles upon deletion of GET4, a gene recently implicated in tail anchored membrane protein insertion. Thus, our results establish new gene functions in vacuolar function and morphology, and suggest a link between vacuolar and mitochondrial events.
Collapse
|
27
|
Identification of yeast genes involved in k homeostasis: loss of membrane traffic genes affects k uptake. G3-GENES GENOMES GENETICS 2011; 1:43-56. [PMID: 22384317 PMCID: PMC3276120 DOI: 10.1534/g3.111.000166] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 03/24/2011] [Indexed: 11/18/2022]
Abstract
Using the homozygous diploid Saccharomyces deletion collection, we searched for strains with defects in K(+) homeostasis. We identified 156 (of 4653 total) strains unable to grow in the presence of hygromycin B, a phenotype previously shown to be indicative of ion defects. The most abundant group was that with deletions of genes known to encode membrane traffic regulators. Nearly 80% of these membrane traffic defective strains showed defects in uptake of the K(+) homolog, (86)Rb(+). Since Trk1, a plasma membrane protein localized to lipid microdomains, is the major K(+) influx transporter, we examined the subcellular localization and Triton-X 100 insolubility of Trk1 in 29 of the traffic mutants. However, few of these showed defects in the steady state levels of Trk1, the localization of Trk1 to the plasma membrane, or the localization of Trk1 to lipid microdomains, and most defects were mild compared to wild-type. Three inositol kinase mutants were also identified, and in contrast, loss of these genes negatively affected Trk1 protein levels. In summary, this work reveals a nexus between K(+) homeostasis and membrane traffic, which does not involve traffic of the major influx transporter, Trk1.
Collapse
|
28
|
Gharakhanian E, Chima-Okereke O, Olson DK, Frost C, Kathleen Takahashi M. env1 Mutant of VPS35 gene exhibits unique protein localization and processing phenotype at Golgi and lysosomal vacuole in Saccharomyces cerevisiae. Mol Cell Biochem 2010; 346:187-95. [PMID: 20936498 DOI: 10.1007/s11010-010-0604-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Accepted: 09/23/2010] [Indexed: 11/26/2022]
Abstract
The yeast vacuole is functionally and structurally equivalent to the mammalian lysosome. Delivery of resident and cargo proteins to the lysosome is vital for proper cellular operations, and failure to correctly target proteins to the organelle is correlated with the development of neurodegenerative and lysosomal storage diseases. We previously reported a novel mutant screen for vacuolar trafficking defects in yeast Saccharomyces cerevisiae that resulted in the isolation of env1, an allelic mutant of VPS35. As a member of the retromer complex, Vps35p binds directly to cargos and facilitates their retrograde transport to trans Golgi from endosomes. Our previous studies established that env1 exhibits unique pleiotropic phenotype in comparison to other tested VPS35 alleles including severe growth sensitivity to hygromycin B and internal accumulation of the precursor form of the vacuolar enzyme carboxypeptidase Y. Here, through a combination of sub-cellular fractionation and indirect immunofluorescence microscopy, we confirm and extend the unique phenotype of env1 to processing and localization of additional proteins within the vacuolar trafficking pathway. In comparative studies with a null and an allelic mutant of VPS35, env1 exhibited unique processing defects of retromer-independent vacuolar membrane enzyme alkaline phosphatase at the vacuole and significant Golgi localization of retromer cargos Vps10p and Kex2p despite compromised trafficking at the Golgi and late endosome interface.
Collapse
Affiliation(s)
- Editte Gharakhanian
- Department of Biological Sciences, California State University at Long Beach, 1250 Bellflower Blvd, Long Beach, CA 90840, USA.
| | | | | | | | | |
Collapse
|
29
|
Current awareness on yeast. Yeast 2010. [DOI: 10.1002/yea.1721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|