1
|
Zhang H, Wang XY, Sun TF, Chen TJ, Ding JL, Feng MG, Ying SH. A family of nitronate monooxygenase-domain proteins are essential for biocontrol potential of the insect mycopathogen Beauveria bassiana. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 208:106317. [PMID: 40015909 DOI: 10.1016/j.pestbp.2025.106317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/22/2025] [Accepted: 01/30/2025] [Indexed: 03/01/2025]
Abstract
Beauveria bassiana has been assumed a promising biocontrol agent in integrated pest management. Nitronate monooxygenase (NMO) catalyzes the conversion of alkyl nitronates into aldehydes and nitrite as well as nitroalkanes into the corresponding carbonyl compounds and nitrite. In fungi, enzymatic characteristics have been biochemically determined for NMOs; however, the understanding of their biological functions remains largely unknown in entomopathogenic fungi. In this study, a domain annotation analysis revealed that there were eight NMO proteins (BbNmo1-BbNmo8) in the entomopathogenic fungus B. bassiana. The first six NMO proteins contained peroxisomal targeting signal type 1 (PTS1), in which BbNmo2 carried an atypical one. Except for BbNMO1 and BbNMO4, other NMO genes were functionally analyzed. The gene loss of six genes did not cause significant change in fungal vegetative growth, but resulted in convergent defects in fungal resistance to cell-wall integrity stress and conidial hydrophobicity. In addition, BbNmo3 was also required for fungal response to oxidative, osmotic, and nitro-compound stresses as well as extracellular acidification. All these six genes were required for fungal conidiation; however, except for BbNMO3, the other five contributed to blastospore formation. All tested NMO genes were involved in fungal virulence; significantly, BbNMO3 had the greatest contribution. The functionally-characterized NMO proteins were localized to peroxisomes and cytoplasm, which was in accordance with whether they had the PTS1. Current findings indicate that the NMO-domain proteins play essential roles in unique lifestyle in the insect pathogenic fungi.
Collapse
Affiliation(s)
- Hao Zhang
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xin-Yi Wang
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ting-Fei Sun
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Tian-Jing Chen
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jin-Li Ding
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ming-Guang Feng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Sheng-Hua Ying
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
2
|
Ren M, Hu A, Zhao Z, Yao X, Kimirei IA, Zhang L, Wang J. Trait-environmental relationships reveal microbial strategies of environmental adaptation. Ecology 2025; 106:e70047. [PMID: 40040342 DOI: 10.1002/ecy.70047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 11/29/2024] [Accepted: 12/13/2024] [Indexed: 03/06/2025]
Abstract
Microbial trait variation along environmental gradients is crucial to understanding their ecological adaptation mechanisms. With the increasing availability of microbial genomes, making full use of the genome-based traits to decipher their adaptation strategies becomes promising and urgent. Here, we examined microbial communities in water and sediments of 20 East African lakes with pH values ranging from 7.2 to 10.1 through taxonomic profiling and genome-centric metagenomics. We identified functional traits important for microbial adaptation to the stresses of alkalinity and salinity based on the significant trait-environment relationships (TERs), including those involved in cytoplasmic pH homeostasis, compatible solute accumulation, cell envelope modification, and energy requisition. By integrating these significant traits, we further developed an environmental adaptation index to quantify the species-level adaptive capacity for environmental stresses, such as high pH environments. The adaptation index of pH showed consistently significant positive relationships with species pH optima across regional and global genomic datasets from freshwater, marine, and soda lake ecosystems. The generality of the index for quantifying environmental adaptation was demonstrated by showing significant relationships with the species niche optima for the gradients of soil temperature and seawater salinity. These results highlight the importance of TERs in facilitating the inference of microbial genomic-based adaptation mechanisms and expand our understanding of ecological adaptive strategies along environmental gradients.
Collapse
Affiliation(s)
- Minglei Ren
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Ang Hu
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Zhonghua Zhao
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Xiaolong Yao
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | | | - Lu Zhang
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Nanjing, China
| | - Jianjun Wang
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|
3
|
Bednarek JM, Brown JCS. Elements of dissemination in cryptococcosis. mBio 2024; 15:e0215523. [PMID: 39470312 PMCID: PMC11633103 DOI: 10.1128/mbio.02155-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024] Open
Abstract
As healthcare improves and our ability to support patients with compromised immune systems increases, such patients become more vulnerable to microbes in the environment. These include fungal pathogens such as Cryptococcus neoformans, the primary cause of fungal meningitis and a top priority pathogen on the World Health Organization fungal pathogen list. Like many other environmental pathogens, C. neoformans must adapt to and thrive in diverse environments in order to cause disease: (i) the environmental niche, (ii) the lungs following inhalation of infectious particles, (iii) the bloodstream and/or lymphatic system during dissemination, and (iv) the central nervous system (CNS), where it causes a deadly cryptococcal meningoencephalitis. Because CNS infection is the driver of mortality and the presenting illness, understanding the dissemination process from both host and fungal perspectives is important for treating these infections. In this review, we discuss the different stages of dissemination, how fungal cells interact with host cells during disease, and the ability to adapt to different environments within hosts.
Collapse
Affiliation(s)
- Joseph M. Bednarek
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Jessica C. S. Brown
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
4
|
Perchat S, Nevers A, Kranzler M, Ehling-Schulz M, Lereclus D, Gohar M. The megaplasmid pCER270 of Bacillus cereus emetic strain affects the timing of the sporulation process, spore resistance properties, and germination. Appl Environ Microbiol 2024; 90:e0102924. [PMID: 39158315 PMCID: PMC11409700 DOI: 10.1128/aem.01029-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/22/2024] [Indexed: 08/20/2024] Open
Abstract
The Bacillus cereus group includes closely related spore-forming Gram-positive bacteria. In this group, plasmids play a crucial role in species differentiation and are essential for pathogenesis and adaptation to ecological niches. The B. cereus emetic strains are characterized by the presence of the pCER270 megaplasmid, which encodes the non-ribosomal peptide synthetase for the production of cereulide, the emetic toxin. This plasmid carries several genes that may be involved in the sporulation process. Furthermore, a transcriptomic analysis has revealed that pCER270 influences the expression of chromosome genes, particularly under sporulation conditions. In this study, we investigated the role of pCER270 on spore properties in different species of the B. cereus group. We showed that pCER270 plays a role in spore wet heat resistance and germination, with varying degrees of impact depending on the genetic background. In addition, pCER270 ensures that sporulation occurs at the appropriate time by delaying the expression of sporulation genes. This regulation of sporulation timing is controlled by the pCER270-borne Rap-Phr system, which likely regulates the phosphorylation state of Spo0A. Acquisition of the pCER270 plasmid by new strains could give them an advantage in adapting to new environments and lead to the emergence of new pathogenic strains. IMPORTANCE The acquisition of new mobile genetic elements, such as plasmids, is essential for the pathogenesis and adaptation of bacteria belonging to the Bacillus cereus group. This can confer new phenotypic traits and beneficial functions that enable bacteria to adapt to changing environments and colonize new ecological niches. Emetic B. cereus strains cause food poisoning linked to the production of cereulide, the emetic toxin whose synthesis is due to the presence of plasmid pCER270. In the environment, cereulide provides a competitive advantage in producing bacteria against various competitors or predators. This study demonstrates that pCER270 also regulates the sporulation process, resulting in spores with improved heat resistance and germination capacity. The transfer of plasmid pCER270 among different strains of the B. cereus group may enhance their adaptation to new environments. This raises the question of the emergence of new pathogenic strains, which could pose a serious threat to human health.
Collapse
Affiliation(s)
- Stéphane Perchat
- Université Paris-Saclay, INRAe, AgroPariTech, Micalis Institute, Jouy-en-Josas, France
| | - Alicia Nevers
- Université Paris-Saclay, INRAe, AgroPariTech, Micalis Institute, Jouy-en-Josas, France
| | - Markus Kranzler
- Department of Biological Sciences and Pathobiology, Institute of Microbiology, University of Veterinary Medicine, Vienna, Austria
| | - Monika Ehling-Schulz
- Department of Biological Sciences and Pathobiology, Institute of Microbiology, University of Veterinary Medicine, Vienna, Austria
| | - Didier Lereclus
- Université Paris-Saclay, INRAe, AgroPariTech, Micalis Institute, Jouy-en-Josas, France
| | - Michel Gohar
- Université Paris-Saclay, INRAe, AgroPariTech, Micalis Institute, Jouy-en-Josas, France
| |
Collapse
|
5
|
Sunani SK, Koti PS, Sunitha NC, Choudhary M, Jeevan B, Anilkumar C, Raghu S, Gadratagi BG, Bag MK, Acharya LK, Ram D, Bashyal BM, Das Mohapatra S. Ustilaginoidea virens, an emerging pathogen of rice: the dynamic interplay between the pathogen virulence strategies and host defense. PLANTA 2024; 260:92. [PMID: 39261328 DOI: 10.1007/s00425-024-04523-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 08/30/2024] [Indexed: 09/13/2024]
Abstract
MAIN CONCLUSION The Ustilaginoidea virens -rice pathosystem has been used as a model for flower-infecting fungal pathogens. The molecular biology of the interactions between U. virens and rice, with an emphasis on the attempt to get a deeper comprehension of the false smut fungus's genomes, proteome, host range, and pathogen biology, has been investigated. Meta-QTL analysis was performed to identify potential QTL hotspots for use in marker-assisted breeding. The Rice False Smut (RFS) caused by the fungus Ustilaginoidea virens currently threatens rice cultivators across the globe. RFS infects rice panicles, causing a significant reduction in grain yield. U. virens can also parasitize other hosts though they play only a minor role in its life cycle. Furthermore, because it produces mycotoxins in edible rice grains, it puts both humans and animals at risk of health problems. Although fungicides are used to control the disease, some fungicides have enabled the pathogen to develop resistance, making its management challenging. Several QTLs have been reported but stable gene(s) that confer RFS resistance have not been discovered yet. This review offers a comprehensive overview of the pathogen, its virulence mechanisms, the genome and proteome of U. virens, and its molecular interactions with rice. In addition, information has been compiled on reported resistance QTLs, facilitating the development of a consensus genetic map using meta-QTL analysis for identifying potential QTL hotspots. Finally, this review highlights current developments and trends in U. virens-rice pathosystem research while identifying opportunities for future investigations.
Collapse
Affiliation(s)
- Sunil Kumar Sunani
- Department of Plant Pathology, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India
- ICAR-Indian Institute of Pulse Research (RS), Bhubaneswar, Odisha, India
| | - Prasanna S Koti
- University of Agricultural Sciences, GKVK, Bangalore, Karnataka, India
| | - N C Sunitha
- ICAR-National Rice Research Institute, Cuttack, Odisha, India
| | - Manoj Choudhary
- Plant Pathology Department, University of Florida, Gainesville, FL, USA
- ICAR-National Centre for Integrated Pest Management, New Delhi, India
| | - B Jeevan
- Department of Plant Pathology, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India.
- ICAR-National Rice Research Institute, Cuttack, Odisha, India.
| | - C Anilkumar
- ICAR-National Rice Research Institute, Cuttack, Odisha, India.
- Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, MN, USA.
| | - S Raghu
- ICAR-National Rice Research Institute, Cuttack, Odisha, India
| | | | - Manas Kumar Bag
- ICAR-National Rice Research Institute, Cuttack, Odisha, India
| | | | - Dama Ram
- Department of Plant Pathology, Agriculture University, Jodhpur, Rajasthan, India
| | | | | |
Collapse
|
6
|
Rezaie M, Rafiee Z, Choi S. Unlocking Wearable Microbial Fuel Cells for Advanced Wound Infection Treatment. ACS APPLIED MATERIALS & INTERFACES 2024; 16:36117-36130. [PMID: 38950522 DOI: 10.1021/acsami.4c06303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Better infection control will accelerate wound healing and alleviate associated healthcare burdens. Traditional antibacterial dressings often inadequately control infections, inadvertently promoting antibacterial resistance. Our research unveils a novel, dual-functional living dressing that autonomously generates antibacterial agents and delivers electrical stimulation, harnessing the power of spore-forming Bacillus subtilis. This dressing is built on an innovative wearable microbial fuel cell (MFC) framework, using B. subtilis endospores as a powerful, dormant biocatalyst. The endospores are resilient, reactivating in nutrient-rich wound exudate to produce electricity and antibacterial compounds. The combination allows B. subtilis to outcompete pathogens for food and other resources, thus fighting infections. The strategy is enhanced by the extracellular synthesis of tin oxide and copper oxide nanoparticles on the endospore surface, boosting antibacterial action, and electrical stimulation. Moreover, the MFC framework introduces a pioneering dressing design featuring a conductive hydrogel embedded within a paper-based substrate. The arrangement ensures cell stability and sustains a healing-friendly moist environment. Our approach has proven very effective against three key pathogens in biofilms: Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus aureus demonstrating exceptional capabilities in both in vitro and ex vivo models. Our innovation marks a significant leap forward in wearable MFC-based wound care, offering a potent solution for treating infected wounds.
Collapse
Affiliation(s)
- Maryam Rezaie
- Bioelectronics & Microsystems Laboratory, Department of Electrical & Computer Engineering, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Zahra Rafiee
- Bioelectronics & Microsystems Laboratory, Department of Electrical & Computer Engineering, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Seokheun Choi
- Bioelectronics & Microsystems Laboratory, Department of Electrical & Computer Engineering, State University of New York at Binghamton, Binghamton, New York 13902, United States
- Center for Research in Advanced Sensing Technologies & Environmental Sustainability, State University of New York at Binghamton, Binghamton, New York 13902, United States
| |
Collapse
|
7
|
Ávila M, Pinelo J, Casas E, Capinha C, Pabst R, Szczesniak I, Domingues E, Pinto C, Santos V, Gil A, Arbelo M. Assessing the Presence of Pithomyces chartarum in Pastureland Using IoT Sensors and Remote Sensing: The Case Study of Terceira Island (Azores, Portugal). SENSORS (BASEL, SWITZERLAND) 2024; 24:4485. [PMID: 39065883 PMCID: PMC11281258 DOI: 10.3390/s24144485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/27/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024]
Abstract
Spores from the fungus Pithomyces chartarum are commonly found on Azorean pastures. When consumed by cattle along with the grass, these spores cause health issues in the cattle, resulting in animal suffering and financial losses. For approximately two years, we monitored meteorological parameters using weather stations and collected and analyzed grass samples in a laboratory to control for the presence of spores. The data confirmed a connection between meteorology and sporulation, enabling the prediction of sporulation risk. To detect the presence of spores in pastures rather than predict it, we employed field spectrometry and Sentinel-2 reflectance data to measure the spectral signatures of grass while controlling for spores. Our findings indicate that meteorological variables from the past 90 days can be used to predict sporulation, which can enhance the accuracy of a web-based alert system used by farmers to manage the risk. We did not detect significant differences in spectral signatures between grass with and without spores. These studies contribute to a deeper understanding of P. chartarum sporulation and provide actionable information for managing cattle, ultimately improving animal welfare and reducing financial losses.
Collapse
Affiliation(s)
- Mariana Ávila
- Atlantic International Research Centre, 9700 Angra do Heroísmo, Portugal; (M.Á.)
- Departamento de Física, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Spain
| | - João Pinelo
- Atlantic International Research Centre, 9700 Angra do Heroísmo, Portugal; (M.Á.)
| | - Enrique Casas
- Departamento de Física, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Spain
| | - César Capinha
- Centro de Estudos Geográficos, Instituto de Geografia e Ordenamento do Território da Universidade de Lisboa, Universidade de Lisboa, 1600 Lisbon, Portugal
- Laboratório Associado Terra, 1349 Lisbon, Portugal
| | - Rebecca Pabst
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, 1349 Lisbon, Portugal
| | - Iga Szczesniak
- Atlantic International Research Centre, 9700 Angra do Heroísmo, Portugal; (M.Á.)
| | | | - Carlos Pinto
- Faculdade de Ciências Agrárias e do Ambiente (FCAA), Universidade dos Açores, 9700 Angra do Heroísmo, Portugal
| | - Valentina Santos
- Laboratório Regional de Veterinária, 9700 Angra do Heroísmo, Portugal
| | - Artur Gil
- Instituto de Investigação em Vulcanologia e Avaliação de Riscos (IVAR), Universidade dos Açores, 9500 Ponta Delgada, Portugal
| | - Manuel Arbelo
- Departamento de Física, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Spain
| |
Collapse
|
8
|
Robison ZL, Ren Q, Zhang Z. How to Survive without Water: A Short Lesson on the Desiccation Tolerance of Budding Yeast. Int J Mol Sci 2024; 25:7514. [PMID: 39062766 PMCID: PMC11277543 DOI: 10.3390/ijms25147514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Water is essential to all life on earth. It is a major component that makes up living organisms and plays a vital role in multiple biological processes. It provides a medium for chemical and enzymatic reactions in the cell and is a major player in osmoregulation and the maintenance of cell turgidity. Despite this, many organisms, called anhydrobiotes, are capable of surviving under extremely dehydrated conditions. Less is known about how anhydrobiotes adapt and survive under desiccation stress. Studies have shown that morphological and physiological changes occur in anhydrobiotes in response to desiccation stress. Certain disaccharides and proteins, including heat shock proteins, intrinsically disordered proteins, and hydrophilins, play important roles in the desiccation tolerance of anhydrobiotes. In this review, we summarize the recent findings of desiccation tolerance in the budding yeast Saccharomyces cerevisiae. We also propose that the yeast under desiccation could be used as a model to study neurodegenerative disorders.
Collapse
Affiliation(s)
| | | | - Zhaojie Zhang
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA; (Z.L.R.); (Q.R.)
| |
Collapse
|
9
|
Bouaicha O, Maver M, Mimmo T, Cesco S, Borruso L. Microplastic influences the ménage à trois among the plant, a fungal pathogen, and a plant growth-promoting fungal species. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 279:116518. [PMID: 38820874 DOI: 10.1016/j.ecoenv.2024.116518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 05/14/2024] [Accepted: 05/26/2024] [Indexed: 06/02/2024]
Abstract
Microplastics (MP) can influence a plethora of fungal species within the rhizosphere. Nevertheless, there are few studies on the direct impacts of MPs on soil fungi and their intricate interplay with plants. Here, we investigated the impact of polyethylene microspheres (PEMS) on the ecological interactions between Fusarium solani, a plant pathogenic fungus, and Trichoderma viride, a fungal plant growth promotor, within the rhizosphere of Solanum lycopersicum (tomato). Spores of F. solani and T. viride were pre-incubated with PEMS at two concentrations, 100 and 1000 mg L-1. Mycelium growth, sporulation, spore germination, and elongation were evaluated. Tomato seeds were exposed to fungal spore suspensions treated with PEMS, and plant development was subsequently assessed after 4 days. The results showed that PEMS significantly enhanced the sporulation (106.0 % and 70.1 %) but compromised the spore germination (up to 27.3 % and 32.2 %) and radial growth (up to -5.2% and -21.7 %) of F. solani and T. viride, respectively. Furthermore, the 100 and 1000 mg L-1 concentrations of PEMS significantly (p<0.05) enhanced the mycelium density of T. viride (9.74 % and 22.30 %, respectively), and impaired the germ-tube elongation of F. solani after 4 h (16.16 % and 11.85 %, respectively) and 8 h (4 % and 17.10 %, respectively). In addition, PEMS amplified the pathogenicity of F. solani and boosted the bio-enhancement effect of T. viride on tomato root growth. Further, PEMS enhanced the bio-fungicidal effect of T. viride toward F. solani (p<0.05). In summary, PEMS had varying effects on F. solani and T. viride, impacting their interactions and influencing their relationship with tomato plants. It intensified the beneficial effects of T. viride and increased the aggressiveness of F. solani. This study highlights concerns regarding the effects of MPs on fungal interactions in the rhizosphere, which are essential for crop soil colonization and resource utilization.
Collapse
Affiliation(s)
- Oussama Bouaicha
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Bolzano, Italy.
| | - Mauro Maver
- Competence Centre for Plant Health, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Tanja Mimmo
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Bolzano, Italy; Competence Centre for Plant Health, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Stefano Cesco
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Luigimaria Borruso
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Bolzano, Italy.
| |
Collapse
|
10
|
Ramakanth S, Kennedy T, Yalcinkaya B, Neupane S, Tadic N, Buchler NE, Argüello-Miranda O. Deep learning-driven imaging of cell division and cell growth across an entire eukaryotic life cycle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.25.591211. [PMID: 38712227 PMCID: PMC11071524 DOI: 10.1101/2024.04.25.591211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
The life cycle of biomedical and agriculturally relevant eukaryotic microorganisms involves complex transitions between proliferative and non-proliferative states such as dormancy, mating, meiosis, and cell division. New drugs, pesticides, and vaccines can be created by targeting specific life cycle stages of parasites and pathogens. However, defining the structure of a microbial life cycle often relies on partial observations that are theoretically assembled in an ideal life cycle path. To create a more quantitative approach to studying complete eukaryotic life cycles, we generated a deep learning-driven imaging framework to track microorganisms across sexually reproducing generations. Our approach combines microfluidic culturing, life cycle stage-specific segmentation of microscopy images using convolutional neural networks, and a novel cell tracking algorithm, FIEST, based on enhancing the overlap of single cell masks in consecutive images through deep learning video frame interpolation. As proof of principle, we used this approach to quantitatively image and compare cell growth and cell cycle regulation across the sexual life cycle of Saccharomyces cerevisiae. We developed a fluorescent reporter system based on a fluorescently labeled Whi5 protein, the yeast analog of mammalian Rb, and a new High-Cdk1 activity sensor, LiCHI, designed to report during DNA replication, mitosis, meiotic homologous recombination, meiosis I, and meiosis II. We found that cell growth preceded the exit from non-proliferative states such as mitotic G1, pre-meiotic G1, and the G0 spore state during germination. A decrease in the total cell concentration of Whi5 characterized the exit from non-proliferative states, which is consistent with a Whi5 dilution model. The nuclear accumulation of Whi5 was developmentally regulated, being at its highest during meiotic exit and spore formation. The temporal coordination of cell division and growth was not significantly different across three sexually reproducing generations. Our framework could be used to quantitatively characterize other single-cell eukaryotic life cycles that remain incompletely described. An off-the-shelf user interface Yeastvision provides free access to our image processing and single-cell tracking algorithms.
Collapse
Affiliation(s)
- Shreya Ramakanth
- Department of Plant and Microbial Biology, North Carolina State University
| | - Taylor Kennedy
- Department of Plant and Microbial Biology, North Carolina State University
| | - Berk Yalcinkaya
- Department of Plant and Microbial Biology, North Carolina State University
| | - Sandhya Neupane
- Department of Plant and Microbial Biology, North Carolina State University
| | - Nika Tadic
- Department of Plant and Microbial Biology, North Carolina State University
| | - Nicolas E Buchler
- Department of Molecular Biomedical Sciences, North Carolina State University
| | | |
Collapse
|
11
|
Ortiz SC, Hull CM. Biogenesis, germination, and pathogenesis of Cryptococcus spores. Microbiol Mol Biol Rev 2024; 88:e0019623. [PMID: 38440970 PMCID: PMC10966950 DOI: 10.1128/mmbr.00196-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024] Open
Abstract
SUMMARYSpores are primary infectious propagules for the majority of human fungal pathogens; however, relatively little is known about their fundamental biology. One strategy to address this deficiency has been to develop the basidiospores of Cryptococcus into a model for pathogenic spore biology. Here, we provide an update on the state of the field with a comprehensive review of the data generated from the study of Cryptococcus basidiospores from their formation (sporulation) and differentiation (germination) to their roles in pathogenesis. Importantly, we provide support for the presence of basidiospores in nature, define the key characteristics that distinguish basidiospores from yeast cells, and clarify their likely roles as infectious particles. This review is intended to demonstrate the importance of basidiospores in the field of Cryptococcus research and provide a solid foundation from which researchers who wish to study sexual spores in any fungal system can launch their studies.
Collapse
Affiliation(s)
- Sébastien C. Ortiz
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Christina M. Hull
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
12
|
Peng Z, Yang Y, Liu Y, Bu L, Qi J, Gao H, Chen S, Pan H, Chen B, Liang C, Li X, An Y, Wang S, Wei G, Jiao S. The neglected roles of adjacent natural ecosystems in maintaining bacterial diversity in agroecosystems. GLOBAL CHANGE BIOLOGY 2024; 30:e16996. [PMID: 37916454 DOI: 10.1111/gcb.16996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 11/03/2023]
Abstract
A central aim of community ecology is to understand how local species diversity is shaped. Agricultural activities are reshaping and filtering soil biodiversity and communities; however, ecological processes that structure agricultural communities have often overlooked the role of the regional species pool, mainly owing to the lack of large datasets across several regions. Here, we conducted a soil survey of 941 plots of agricultural and adjacent natural ecosystems (e.g., forest, wetland, grassland, and desert) in 38 regions across diverse climatic and soil gradients to evaluate whether the regional species pool of soil microbes from adjacent natural ecosystems is important in shaping agricultural soil microbial diversity and completeness. Using a framework of multiscales community assembly, we revealed that the regional species pool was an important predictor of agricultural bacterial diversity and explained a unique variation that cannot be predicted by historical legacy, large-scale environmental factors, and local community assembly processes. Moreover, the species pool effects were associated with microbial dormancy potential, where taxa with higher dormancy potential exhibited stronger species pool effects. Bacterial diversity in regions with higher agricultural intensity was more influenced by species pool effects than that in regions with low intensity, indicating that the maintenance of agricultural biodiversity in high-intensity regions strongly depends on species present in the surrounding landscape. Models for community completeness indicated the positive effect of regional species pool, further implying the community unsaturation and increased potential in bacterial diversity of agricultural ecosystems. Overall, our study reveals the indubitable role of regional species pool from adjacent natural ecosystems in predicting bacterial diversity, which has useful implication for biodiversity management and conservation in agricultural systems.
Collapse
Affiliation(s)
- Ziheng Peng
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Yunfeng Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Yu Liu
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Lianyan Bu
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Jiejun Qi
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Hang Gao
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Shi Chen
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Haibo Pan
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Beibei Chen
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Chunling Liang
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaomeng Li
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Yining An
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Shaopeng Wang
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| | - Gehong Wei
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Shuo Jiao
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
13
|
Wu X, Almatari AL, Cyr WA, Williams DE, Pfiffner SM, Rivkina EM, Lloyd KG, Vishnivetskaya TA. Microbial life in 25-m-deep boreholes in ancient permafrost illuminated by metagenomics. ENVIRONMENTAL MICROBIOME 2023; 18:33. [PMID: 37055869 PMCID: PMC10103415 DOI: 10.1186/s40793-023-00487-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
This study describes the composition and potential metabolic adaptation of microbial communities in northeastern Siberia, a repository of the oldest permafrost in the Northern Hemisphere. Samples of contrasting depth (1.75 to 25.1 m below surface), age (from ~ 10 kyr to 1.1 Myr) and salinity (from low 0.1-0.2 ppt and brackish 0.3-1.3 ppt to saline 6.1 ppt) were collected from freshwater permafrost (FP) of borehole AL1_15 on the Alazeya River, and coastal brackish permafrost (BP) overlying marine permafrost (MP) of borehole CH1_17 on the East Siberian Sea coast. To avoid the limited view provided with culturing work, we used 16S rRNA gene sequencing to show that the biodiversity decreased dramatically with permafrost age. Nonmetric multidimensional scaling (NMDS) analysis placed the samples into three groups: FP and BP together (10-100 kyr old), MP (105-120 kyr old), and FP (> 900 kyr old). Younger FP/BP deposits were distinguished by the presence of Acidobacteriota, Bacteroidota, Chloroflexota_A, and Gemmatimonadota, older FP deposits had a higher proportion of Gammaproteobacteria, and older MP deposits had much more uncultured groups within Asgardarchaeota, Crenarchaeota, Chloroflexota, Patescibacteria, and unassigned archaea. The 60 recovered metagenome-assembled genomes and un-binned metagenomic assemblies suggested that despite the large taxonomic differences between samples, they all had a wide range of taxa capable of fermentation coupled to nitrate utilization, with the exception of sulfur reduction present only in old MP deposits.
Collapse
Affiliation(s)
- Xiaofen Wu
- Center for Environmental Biotechnology, University of Tennessee, 1416 Circle Drive, Knoxville, TN, 37996-1605, USA
| | - Abraham L Almatari
- Center for Environmental Biotechnology, University of Tennessee, 1416 Circle Drive, Knoxville, TN, 37996-1605, USA
| | - Wyatt A Cyr
- Center for Environmental Biotechnology, University of Tennessee, 1416 Circle Drive, Knoxville, TN, 37996-1605, USA
| | - Daniel E Williams
- Center for Environmental Biotechnology, University of Tennessee, 1416 Circle Drive, Knoxville, TN, 37996-1605, USA
| | - Susan M Pfiffner
- Center for Environmental Biotechnology, University of Tennessee, 1416 Circle Drive, Knoxville, TN, 37996-1605, USA
| | - Elizaveta M Rivkina
- Soil Cryology Laboratory, Institute of Physicochemical and Biological Problems in Soil Science, Russian Academy of Sciences, Pushchino, Russia, 142290
| | - Karen G Lloyd
- Department of Microbiology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Tatiana A Vishnivetskaya
- Center for Environmental Biotechnology, University of Tennessee, 1416 Circle Drive, Knoxville, TN, 37996-1605, USA.
- Soil Cryology Laboratory, Institute of Physicochemical and Biological Problems in Soil Science, Russian Academy of Sciences, Pushchino, Russia, 142290.
- Department of Microbiology, University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|
14
|
Corona Ramírez A, Lee KS, Odriozola A, Kaminek M, Stocker R, Zuber B, Junier P. Multiple roads lead to Rome: unique morphology and chemistry of endospores, exospores, myxospores, cysts and akinetes in bacteria. MICROBIOLOGY (READING, ENGLAND) 2023; 169. [PMID: 36804869 DOI: 10.1099/mic.0.001299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
The production of specialized resting cells is a remarkable survival strategy developed by many organisms to withstand unfavourable environmental factors such as nutrient depletion or other changes in abiotic and/or biotic conditions. Five bacterial taxa are recognized to form specialized resting cells: Firmicutes, forming endospores; Actinobacteria, forming exospores; Cyanobacteria, forming akinetes; the δ-Proteobacterial order Myxococcales, forming myxospores; and Azotobacteraceae, forming cysts. All these specialized resting cells are characterized by low-to-absent metabolic activity and higher resistance to environmental stress (desiccation, heat, starvation, etc.) when compared to vegetative cells. Given their similarity in function, we tested the potential existence of a universal morpho-chemical marker for identifying these specialized resting cells. After the production of endospores, exospores, akinetes and cysts in model organisms, we performed the first cross-species morphological and chemical comparison of bacterial sporulation. Cryo-electron microscopy of vitreous sections (CEMOVIS) was used to describe near-native morphology of the resting cells in comparison to the morphology of their respective vegetative cells. Resting cells shared a thicker cell envelope as their only common morphological feature. The chemical composition of the different specialized resting cells at the single-cell level was investigated using confocal Raman microspectroscopy. Our results show that the different specialized cells do not share a common chemical signature, but rather each group has a unique signature with a variable conservation of the signature of the vegetative cells. Additionally, we present the validation of Raman signatures associated with calcium dipicolinic acid (CaDPA) and their variation across individual cells to develop specific sorting thresholds for the isolation of endospores. This provides a proof of concept of the feasibility of isolating bacterial spores using a Raman-activated cell-sorting platform. This cross-species comparison and the current knowledge of genetic pathways inducing the formation of the resting cells highlights the complexity of this convergent evolutionary strategy promoting bacterial survival.
Collapse
Affiliation(s)
- Andrea Corona Ramírez
- Laboratory of Microbiology, Institute of Biology, University of Neuchatel, Neuchatel, Switzerland
| | - Kang Soo Lee
- Department of Civil, Institute for Environmental Engineering, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland
| | | | - Marek Kaminek
- Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Roman Stocker
- Department of Civil, Institute for Environmental Engineering, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland
| | - Benoît Zuber
- Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Pilar Junier
- Laboratory of Microbiology, Institute of Biology, University of Neuchatel, Neuchatel, Switzerland
| |
Collapse
|
15
|
Hou J, Ding JL, Peng YJ, Feng MG, Ying SH. Genome-wide identification of BCS1 domain-containing proteins reveals the mitochondrial bcs1 essential for growth, stress response, and virulence of the filamentous entomopathogenic fungus Beauveria bassiana. Microbiol Res 2023; 267:127262. [PMID: 36450212 DOI: 10.1016/j.micres.2022.127262] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 11/21/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
In yeasts, bcs1 is a mitochondrial AAA protein (ATPase associated with diverse cellular activities) and required for biogenesis of the complex III in mitochondrial electron transfer chain. However, the presence and biological roles of bcs1 remain largely unknown in the filamentous fungi. In present study, genome-wide identification revealed that there were six BCS1-domain containing proteins (Bbbcs1a through f) in the filamentous insect pathogenic fungus Beauveria bassiana, five of which (except for Bbbcs1f) were functionally analyzed. Phenotypic evaluation revealed that only Bbbcs1b and Bbbcs1c contributed to fungal physiologies, and they localized to nuclei and mitochondria, respectively. Hence, Bbbcs1c is considered as the ortholog of yeast bcs1 in B. bassiana. Ablation of Bbbcs1c did not affect biogenesis of mitochondria, but its loss significantly attenuated mitochondrial functionality (e.g., ATP synthesis and mitochondrial targeting of proteins) significantly. ΔBbbcs1c mutant displayed the impaired phenotypes in vegetative growth, stress response, development, and virulence. Notably, ΔBbbcs1c mutant displayed the increased sensitivity to linoleic acid (LA) stress and lost the intracellular fatty acid homeostasis. The Bbbcs1c loss compromised the mitochondrial membrane potential, and LA stress exacerbated this damage. These findings indicate that Bbbcs1c is a functional homolog of yeast bcs1 in B. bassiana and links mitochondrial functionality to unique lifestyle in the entomopathogenic fungi.
Collapse
Affiliation(s)
- Jia Hou
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jin-Li Ding
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yue-Jin Peng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ming-Guang Feng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Sheng-Hua Ying
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
16
|
Ultrastructure and Physiological Characterization of Morchella Mitospores and Their Relevance in the Understanding of the Morel Life Cycle. Microorganisms 2023; 11:microorganisms11020345. [PMID: 36838309 PMCID: PMC9960803 DOI: 10.3390/microorganisms11020345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/25/2023] [Accepted: 01/25/2023] [Indexed: 02/01/2023] Open
Abstract
Morels, which belong to the Ascomycete genus Morchella, are highly valued edible fungi treasured by gourmet chefs worldwide. Some species are saprotrophic and others are able to form facultative mycorrhizal-like associations with plant roots without establishing true ectomycorrhizal symbioses. In general, it is considered that the formation of asexual spores, or mitospores, is an important step in the life cycle of morels. However, ultrastructure characterization and physiological attributes of morel mitospores have received little attention. In this contribution, the mitospores of M. sextelata were successfully induced under laboratory conditions and their ultrastructure, occurrence, germination, physiological characteristics and mating type gene structure were studied. Mitospore production was closely related to aeration, nutrition and humidity conditions. The average germination rate of mitospores on different media and under various induction stimuli was very low, with an average of 1/100,000. Based on the ultrastructure characterization, low germination rate, growth rate decline, rapid aging and mating genotyping, it was concluded that the mitospores of M. sextelata had lost their conventional function as conidia and might act more as mate sperm-like (gamete) structures. Thus, this study contributed to a deeper understanding of the life cycle of the economically and ecologically important morel fungal group.
Collapse
|
17
|
Ankrah AO, Lawal IO, Dierckx RAJO, Sathekge MM, Glaudemans AWJM. Imaging of Invasive Fungal Infections- The Role of PET/CT. Semin Nucl Med 2023; 53:57-69. [PMID: 35933165 DOI: 10.1053/j.semnuclmed.2022.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 01/28/2023]
Abstract
Over the last decades, the population at risk for invasive fungal disease (IFD) has increased because of medical therapy advances and diseases compromising patients' immune systems. The high morbidity and mortality associated with invasive fungal disease in the immunocompromised present the challenge of early diagnosis of the IFD and the need to closely monitor the infection during treatment. The definitive diagnosis of invasive fungal disease based on culture or histopathological methods often has reduced diagnostic accuracy in the immunocompromised and may be very invasive. Less invasive and indirect evidence of the fungal infection by serology and imaging has been used for the early diagnosis of fungal infection before definitive results are available or when the definitive methods of diagnosis are suboptimal. Imaging in invasive fungal disease is a non-invasive biomarker that helps in the early diagnosis of invasive fungal disease but helps follow-up the infection during treatment. Different imaging modalities are used in the workup to evaluate fungal disease. The different imaging modalities have advantages and disadvantages at different sites in the body and may complement each other in the management of IFD. Positron emission tomography integrated with computed tomography with [18F]Fluorodeoxyglucose (FDG PET/CT) has helped manage IFD. The combined functional data from PET and anatomical data from the CT from almost the whole body allows noninvasive evaluation of IFD and provides a semiquantitative means of assessing therapy. FDG PET/CT adds value to anatomic-based only imaging modalities. The nonspecificity of FDG uptake has led to the evaluation of other tracers in the assessment of IFD. However, these are mainly still at the preclinical level and are yet to be translated to humans. FDG PET/CT remains the most widely evaluated radionuclide-based imaging modality in IFD management. The limitations of FDG PET/CT must be well understood, and more extensive prospective studies in uniform populations are needed to validate its role in the management of IFD that can be international guidelines.
Collapse
Affiliation(s)
- Alfred O Ankrah
- National Centre for Radiotherapy Oncology and Nuclear Medicine, Korle Bu Teaching Hospital, Accra GA, Ghana; Department of Nuclear Medicine, University of Pretoria, Steve Biko Academic Hospital, Pretoria, South Africa; Medical Imaging Center, University Medical Center Groningen, University of Groningen, RB Groningen, The Netherlands.
| | - Ismaheel O Lawal
- Department of Nuclear Medicine, University of Pretoria, Steve Biko Academic Hospital, Pretoria, South Africa; Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA
| | - Rudi A J O Dierckx
- Medical Imaging Center, University Medical Center Groningen, University of Groningen, RB Groningen, The Netherlands
| | - Mike M Sathekge
- Department of Nuclear Medicine, University of Pretoria, Steve Biko Academic Hospital, Pretoria, South Africa
| | - Andor W J M Glaudemans
- Medical Imaging Center, University Medical Center Groningen, University of Groningen, RB Groningen, The Netherlands
| |
Collapse
|
18
|
Regulatory basis for reproductive flexibility in a meningitis-causing fungal pathogen. Nat Commun 2022; 13:7938. [PMID: 36566249 PMCID: PMC9790007 DOI: 10.1038/s41467-022-35549-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 12/09/2022] [Indexed: 12/25/2022] Open
Abstract
Pathogenic fungi of the genus Cryptococcus can undergo two sexual cycles, involving either bisexual diploidization (after fusion of haploid cells of different mating type) or unisexual diploidization (by autodiploidization of a single cell). Here, we construct a gene-deletion library for 111 transcription factor genes in Cryptococcus deneoformans, and explore the roles of these regulatory networks in the two reproductive modes. We show that transcription factors crucial for bisexual syngamy induce the expression of known mating determinants as well as other conserved genes of unknown function. Deletion of one of these genes, which we term FMP1, leads to defects in bisexual reproduction in C. deneoformans, its sister species Cryptococcus neoformans, and the ascomycete Neurospora crassa. Furthermore, we show that a recently evolved regulatory cascade mediates pre-meiotic unisexual autodiploidization, supporting that this reproductive process is a recent evolutionary innovation. Our findings indicate that genetic circuits with different evolutionary ages govern hallmark events distinguishing unisexual and bisexual reproduction in Cryptococcus.
Collapse
|
19
|
Genome-wide quantification of contributions to sexual fitness identifies genes required for spore viability and health in fission yeast. PLoS Genet 2022; 18:e1010462. [DOI: 10.1371/journal.pgen.1010462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/16/2022] [Accepted: 10/03/2022] [Indexed: 11/07/2022] Open
Abstract
Numerous genes required for sexual reproduction remain to be identified even in simple model species like Schizosaccharomyces pombe. To address this, we developed an assay in S. pombe that couples transposon mutagenesis with high-throughput sequencing (TN-seq) to quantitatively measure the fitness contribution of nonessential genes across the genome to sexual reproduction. This approach identified 532 genes that contribute to sex, including more than 200 that were not previously annotated to be involved in the process, of which more than 150 have orthologs in vertebrates. Among our verified hits was an uncharacterized gene, ifs1 (important for sex), that is required for spore viability. In two other hits, plb1 and alg9, we observed a novel mutant phenotype of poor spore health wherein viable spores are produced, but the spores exhibit low fitness and are rapidly outcompeted by wild type. Finally, we fortuitously discovered that a gene previously thought to be essential, sdg1 (social distancing gene), is instead required for growth at low cell densities and can be rescued by conditioned medium. Our assay will be valuable in further studies of sexual reproduction in S. pombe and identifies multiple candidate genes that could contribute to sexual reproduction in other eukaryotes, including humans.
Collapse
|
20
|
Succinate Dehydrogenase Subunit C Contributes to Mycelial Growth and Development, Stress Response, and Virulence in the Insect Parasitic Fungus Beauveria bassiana. Microbiol Spectr 2022; 10:e0289122. [PMID: 35972281 PMCID: PMC9602434 DOI: 10.1128/spectrum.02891-22] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Succinate dehydrogenase (SDH), also known as respiratory chain complex II, plays a crucial role in energy production in which SdhC functions as an anchored subunit in the inner membrane of mitochondria. In this study, domain annotation analyses revealed that two SdhC domain-containing proteins were present in the filamentous insect-pathogenic fungus Beauveria bassiana, and they were named BbSdhC1 and BbSdhC2, respectively. Only BbSdhC1 localized to mitochondria; hence, this protein is considered the ortholog of SdhC in B. bassiana. Ablation of BbSdhC1 led to significantly reduced vegetative growth on various nutrients. The ΔBbsdhc1 mutant displayed the significantly reduced ATP synthesis and abnormal differentiation under aerial and submerged conditions. Notably, the BbSdhC1 loss resulted in enhanced intracellular levels of reactive oxygen species (ROS) and impaired growth of mycelia under oxidative stress. Finally, insect bioassays (via cuticle and intrahemocoel injection infection) revealed that disruption of BbSdhC1 significantly attenuated fungal virulence against the insect hosts. These findings indicate that BbSdhC1 contributes to vegetative growth, resistance to oxidative stress, differentiation, and virulence of B. bassiana due to its roles in energy generation and maintaining the homeostasis of the intracellular ROS levels. IMPORTANCE The electron transport chain (ETC) is critical for energy supply by mediating the electron flow along the mitochondrial membrane. Succinate dehydrogenase (SDH) is also known as complex II in the ETC, in which SdhC is a subunit anchored in mitochondrial membrane. However, the physiological roles of SdhC remain enigmatic in filamentous fungi. In filamentous insect-pathogenic fungus B. bassiana, SdhC is required for maintaining mitochondrial functionality, which is critical for fungal stress response, development, and pathogenicity. These findings improve our understanding of physiological mechanisms of ETC components involved in pathogenicity of the entomopathogenic fungi.
Collapse
|
21
|
Rahman MA, Heme UH, Parvez MAK. In silico functional annotation of hypothetical proteins from the Bacillus paralicheniformis strain Bac84 reveals proteins with biotechnological potentials and adaptational functions to extreme environments. PLoS One 2022; 17:e0276085. [PMID: 36228026 PMCID: PMC9560612 DOI: 10.1371/journal.pone.0276085] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/28/2022] [Indexed: 11/26/2022] Open
Abstract
Members of the Bacillus genus are industrial cell factories due to their capacity to secrete significant quantities of biomolecules with industrial applications. The Bacillus paralicheniformis strain Bac84 was isolated from the Red Sea and it shares a close evolutionary relationship with Bacillus licheniformis. However, a significant number of proteins in its genome are annotated as functionally uncharacterized hypothetical proteins. Investigating these proteins' functions may help us better understand how bacteria survive extreme environmental conditions and to find novel targets for biotechnological applications. Therefore, the purpose of our research was to functionally annotate the hypothetical proteins from the genome of B. paralicheniformis strain Bac84. We employed a structured in-silico approach incorporating numerous bioinformatics tools and databases for functional annotation, physicochemical characterization, subcellular localization, protein-protein interactions, and three-dimensional structure determination. Sequences of 414 hypothetical proteins were evaluated and we were able to successfully attribute a function to 37 hypothetical proteins. Moreover, we performed receiver operating characteristic analysis to assess the performance of various tools used in this present study. We identified 12 proteins having significant adaptational roles to unfavorable environments such as sporulation, formation of biofilm, motility, regulation of transcription, etc. Additionally, 8 proteins were predicted with biotechnological potentials such as coenzyme A biosynthesis, phenylalanine biosynthesis, rare-sugars biosynthesis, antibiotic biosynthesis, bioremediation, and others. Evaluation of the performance of the tools showed an accuracy of 98% which represented the rationality of the tools used. This work shows that this annotation strategy will make the functional characterization of unknown proteins easier and can find the target for further investigation. The knowledge of these hypothetical proteins' potential functions aids B. paralicheniformis strain Bac84 in effectively creating a new biotechnological target. In addition, the results may also facilitate a better understanding of the survival mechanisms in harsh environmental conditions.
Collapse
Affiliation(s)
- Md. Atikur Rahman
- Institute of Microbiology, Friedrich Schiller University Jena, Thuringia, Germany
| | - Uzma Habiba Heme
- Faculty of Biological Sciences, Friedrich Schiller University Jena, Thuringia, Germany
| | | |
Collapse
|
22
|
Kikuchi K, Galera-Laporta L, Weatherwax C, Lam JY, Moon EC, Theodorakis EA, Garcia-Ojalvo J, Süel GM. Electrochemical potential enables dormant spores to integrate environmental signals. Science 2022; 378:43-49. [PMID: 36201591 PMCID: PMC10593254 DOI: 10.1126/science.abl7484] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
The dormant state of bacterial spores is generally thought to be devoid of biological activity. We show that despite continued dormancy, spores can integrate environmental signals over time through a preexisting electrochemical potential. Specifically, we studied thousands of individual Bacillus subtilis spores that remain dormant when exposed to transient nutrient pulses. Guided by a mathematical model of bacterial electrophysiology, we modulated the decision to exit dormancy by genetically and chemically targeting potassium ion flux. We confirmed that short nutrient pulses result in step-like changes in the electrochemical potential of persistent spores. During dormancy, spores thus gradually release their stored electrochemical potential to integrate extracellular information over time. These findings reveal a decision-making mechanism that operates in physiologically inactive cells.
Collapse
Affiliation(s)
- Kaito Kikuchi
- Molecular Biology Section, Division of Biological Sciences, University of California San Diego; La Jolla, CA 92093, USA
| | - Leticia Galera-Laporta
- Molecular Biology Section, Division of Biological Sciences, University of California San Diego; La Jolla, CA 92093, USA
| | - Colleen Weatherwax
- Molecular Biology Section, Division of Biological Sciences, University of California San Diego; La Jolla, CA 92093, USA
| | - Jamie Y Lam
- Department of Chemistry and Biochemistry, University of California San Diego; La Jolla, CA 92093, USA
| | - Eun Chae Moon
- Molecular Biology Section, Division of Biological Sciences, University of California San Diego; La Jolla, CA 92093, USA
| | - Emmanuel A Theodorakis
- Department of Chemistry and Biochemistry, University of California San Diego; La Jolla, CA 92093, USA
| | - Jordi Garcia-Ojalvo
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra; 08003 Barcelona, Spain
- Senior author
| | - Gürol M Süel
- Molecular Biology Section, Division of Biological Sciences, University of California San Diego; La Jolla, CA 92093, USA
- San Diego Center for Systems Biology, University of California San Diego; La Jolla, CA 92093-0380, USA
- Center for Microbiome Innovation, University of California San Diego; La Jolla, CA 92093-0380, USA
- Senior author
| |
Collapse
|
23
|
Cea-Sánchez S, Corrochano-Luque M, Gutiérrez G, Glass NL, Cánovas D, Corrochano LM. Transcriptional Regulation by the Velvet Protein VE-1 during Asexual Development in the Fungus Neurospora crassa. mBio 2022; 13:e0150522. [PMID: 35913159 PMCID: PMC9426599 DOI: 10.1128/mbio.01505-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/13/2022] [Indexed: 11/23/2022] Open
Abstract
Asexual reproduction in fungi facilitates the dispersal and colonization of new substrates and, in pathogenic fungi, allows infection of plants and animals. The velvet complex is a fungus-specific protein complex that participates in the regulation of gene expression in response to environmental signals like light, as well as developmental processes, pathogenesis, and secondary metabolism. The velvet complex in the fungus Neurospora crassa is composed of three proteins, VE-1, VE-2, and LAE-1. Mutations in ve-1 or ve-2, but not in lae-1, led to shorter heights of aerial tissue, a mixture of aerial hyphae and developing macroconidia, and increased microconidiation when they were combined with mutations in the transcription factor gene fl. VE-2 and LAE-1 were detected during vegetative growth and conidiation, unlike VE-1, which was mostly observed in samples obtained from submerged vegetative hyphae. We propose that VE-1 is the limiting component of the velvet complex during conidiation and has a major role in the transcriptional regulation of conidiation. Characterization of the role of VE-1 during mycelial growth and asexual development (conidiation) by transcriptome sequencing (RNA-seq) experiments allowed the identification of a set of genes regulated by VE-1 that participate in the regulation of conidiation, most notably the transcription factor genes vib-1 and fl. We propose that VE-1 and VE-2 regulate the development of aerial tissue and the balance between macro- and microconidiation in coordination with FL and VIB-1. IMPORTANCE Most fungi disperse in nature and infect new hosts by producing vegetative spores or conidia during asexual development. This is a process that is regulated by environmental signals like light and the availability of nutrients. A protein complex, the velvet complex, participates in the integration of environmental signals to regulate conidiation. We have found that a key component of this complex in the fungus Neurospora crassa, VE-1, has a major role in the regulation of transcription during conidiation. VE-1 regulates a large number of genes, including the genes for the transcription factors FL and VIB-1. Our results will help to understand how environmental signals are integrated in the fungal cell to regulate development.
Collapse
Affiliation(s)
- Sara Cea-Sánchez
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | | | - Gabriel Gutiérrez
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - N. Louise Glass
- Plant and Microbial Biology Department, University of California, Berkeley, Berkeley, California, USA
| | - David Cánovas
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Luis M. Corrochano
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
24
|
Abstract
Bacteria have evolved numerous strategies to use resources efficiently. However, bacterial economies depend on both the physiological context of the organisms as well as their growth state - whether they are growing, non-growing or reinitiating growth. In this essay, we discuss some of the features that make bacteria efficient under these different conditions and during the transitions between them. We also highlight the many outstanding questions regarding the physiology of non-growing bacterial cells. Lastly, we examine how efficiency is apparent in both the mode and tempo of bacterial evolution.
Collapse
Affiliation(s)
- Roberto Kolter
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA.
| | - Nathalie Balaban
- Racah Institute of Physics, Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Thomas Julou
- Biozentrum and Swiss Institute of Bioinformatics, University of Basel, Basel, CH 4056, Switzerland
| |
Collapse
|
25
|
Hou J, Lin H, Ding J, Feng M, Ying S. Peroxins in Peroxisomal Receptor Export System Contribute to Development, Stress Response, and Virulence of Insect Pathogenic Fungus Beauveria bassiana. J Fungi (Basel) 2022; 8:622. [PMID: 35736105 PMCID: PMC9224678 DOI: 10.3390/jof8060622] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 02/06/2023] Open
Abstract
In filamentous fungi, recycling of receptors responsible for protein targeting to peroxisomes depends on the receptor export system (RES), which consists of peroxins Pex1, Pex6, and Pex26. This study seeks to functionally characterize these peroxins in the entomopathogenic fungus Beauveria bassiana. BbPex1, BbPex6, and BbPex26 are associated with peroxisomes and interact with each other. The loss of these peroxins did not completely abolish the peroxisome biogenesis. Three peroxins were all absolutely required for PTS1 pathway; however, only BbPex6 and BbPex26 were required for protein translocation via PTS2 pathway. Three gene disruption mutants displayed the similar phenotypic defects in assimilation of nutrients (e.g., fatty acid, protein, and chitin), stress response (e.g., oxidative and osmotic stress), and virulence. Notably, all disruptant displayed significantly enhanced sensitivity to linoleic acid, a polyunsaturated fatty acid. This study reinforces the essential roles of the peroxisome in the lifecycle of entomopathogenic fungi and highlights peroxisomal roles in combating the host defense system.
Collapse
Affiliation(s)
| | | | | | | | - Shenghua Ying
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (J.H.); (H.L.); (J.D.); (M.F.)
| |
Collapse
|
26
|
Custer GF, Bresciani L, Dini-Andreote F. Ecological and Evolutionary Implications of Microbial Dispersal. Front Microbiol 2022; 13:855859. [PMID: 35464980 PMCID: PMC9019484 DOI: 10.3389/fmicb.2022.855859] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/14/2022] [Indexed: 12/04/2022] Open
Abstract
Dispersal is simply defined as the movement of species across space and time. Despite this terse definition, dispersal is an essential process with direct ecological and evolutionary implications that modulate community assembly and turnover. Seminal ecological studies have shown that environmental context (e.g., local edaphic properties, resident community), dispersal timing and frequency, and species traits, collectively account for patterns of species distribution resulting in either their persistence or unsuccessful establishment within local communities. Despite the key importance of this process, relatively little is known about how dispersal operates in microbiomes across divergent systems and community types. Here, we discuss parallels of macro- and micro-organismal ecology with a focus on idiosyncrasies that may lead to novel mechanisms by which dispersal affects the structure and function of microbiomes. Within the context of ecological implications, we revise the importance of short- and long-distance microbial dispersal through active and passive mechanisms, species traits, and community coalescence, and how these align with recent advances in metacommunity theory. Conversely, we enumerate how microbial dispersal can affect diversification rates of species by promoting gene influxes within local communities and/or shifting genes and allele frequencies via migration or de novo changes (e.g., horizontal gene transfer). Finally, we synthesize how observed microbial assemblages are the dynamic outcome of both successful and unsuccessful dispersal events of taxa and discuss these concepts in line with the literature, thus enabling a richer appreciation of this process in microbiome research.
Collapse
Affiliation(s)
| | | | - Francisco Dini-Andreote
- Department of Plant Science and Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
27
|
Pištěková H, Jančová P, Buňková L, Šopík T, Maršálková K, Berčíková L, Buňka F. Detection and relative quantification of amine oxidase gene ( yobN) in Bacillus subtilis: application of real-time quantitative PCR. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:909-916. [PMID: 35185199 PMCID: PMC8814243 DOI: 10.1007/s13197-021-05090-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/28/2021] [Accepted: 04/01/2021] [Indexed: 10/21/2022]
Abstract
Degradation of undesirable biogenic amines (BAs) in foodstuffs by microorganisms is considered one of the most effective ways of eliminating their toxicity. In this study, we design two sets of primers for the detection and quantification of the amine oxidase gene (yobN) and endogenous (housekeeping) gene (gyrB) in Bacillus subtilis. Moreover, these sets can be used for relative quantification of yobN by real-time PCR (qPCR). We also tested the degradation of BAs by three bacterial strains (B. subtilis strains: IB1a, CCM 2216, CCM 2267) in a mineral medium over a two-day period. Their degradation abilities were verified by high performance liquid chromatography with UV detection (HPLC/UV). According to the results, two strains significantly (P < 0.05) reduced histamine, tyramine, putrescine, and cadaverine. Moreover, our results indicate that the degradation ability of B. subtilis strains could be limited by sporulation because the gene encoding amine oxidase (yobN) is no longer expressed in the spores.
Collapse
Affiliation(s)
- Hana Pištěková
- Department of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 275, 76001 Zlín, Czech Republic
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Tř. T. Bati 5678, 760 01 Zlín, Czech Republic
| | - Petra Jančová
- Department of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 275, 76001 Zlín, Czech Republic
| | - Leona Buňková
- Department of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 275, 76001 Zlín, Czech Republic
| | - Tomáš Šopík
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Tř. T. Bati 5678, 760 01 Zlín, Czech Republic
- Department of Food Technology, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 275, 76001 Zlín, Czech Republic
| | - Kristýna Maršálková
- Department of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 275, 76001 Zlín, Czech Republic
| | - Lucie Berčíková
- Department of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 275, 76001 Zlín, Czech Republic
| | - František Buňka
- Faculty of Military Leadership, University of Defence in Brno, Kounicova 65, 662 10 Brno, Czech Republic
- University Institute, Tomas Bata University in Zlín, Nad Ovčírnou 8685, 760 01 Zlín, Czech Republic
| |
Collapse
|
28
|
Proteomic and Phosphoryproteomic Investigations Reveal that Autophagy-Related Protein 1, a Protein Kinase for Autophagy Initiation, Synchronously Deploys Phosphoregulation on the Ubiquitin-Like Conjugation System in the Mycopathogen Beauveria bassiana. mSystems 2022; 7:e0146321. [PMID: 35133188 PMCID: PMC8823290 DOI: 10.1128/msystems.01463-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Autophagy is a conserved intracellular degradation mechanism in eukaryotes and is initiated by the protein kinase autophagy-related protein 1 (Atg1). However, except for the autophosphorylation activity of Atg1, the target proteins phosphorylated by Atg1 are largely unknown in filamentous fungi. In Beauveria bassiana (a filamentous insect-pathogenic fungus), Atg1 is indispensable for autophagy and is associated with fungal development. Comparative omics-based analyses revealed that B. bassiana Atg1 (BbAtg1) has key influence on the proteome and phosphoproteome during conidiogenesis. In terms of its physiological functions, the BbAtg1-mediated phosphoproteome is primarily associated with metabolism, signal transduction, cell cycle, and autophagy. At the proteomic level, BbAtg1 mainly regulates genes involved in protein synthesis, protein fate, and protein with binding function. Furthermore, integrative analyses of phosphoproteomic and proteomic data led to the identification of several potential targets regulated by BbAtg1 phosphorylation activity. Notably, we demonstrated that BbAtg1 phosphorylated BbAtg3, an essential component of the ubiquitin-like conjugation system in autophagic progress. Our findings indicate that in addition to being a critical component of the autophagy initiation, Atg1 orchestrates autophagosome elongation via its phosphorylation activity. The data from our study will facilitate future studies on the noncanonical targets of Atg1 and help decipher the Atg1-mediated phosphorylation networks. IMPORTANCE Autophagy-related protein 1 (Atg1) is a serine/threonine protein kinase for autophagy initiation. In contrast to the unicellular yeast, the target proteins phosphorylated by Atg1 are largely unknown in filamentous fungi. In this study, the entomopathogenic fungus Beauveria bassiana was used as a representative of filamentous fungi due to its importance in the applied and fundamental research. We revealed that Atg1 mediates the comprehensive proteome and phosphoproteome, which differ from those revealed in yeast. Further investigation revealed that Atg1 directly phosphorylates the E2-like enzyme Atg3 of the ubiquitin-like conjugation system (ULCS), and the phosphorylation of Atg3 is indispensable for ULCS functionality. Interestingly, the phosphorylation site of Atg3 is conserved among a set of insect- and plant-pathogenic fungi but not in human-pathogenic fungi. This study reveals new regulatory mechanisms of autophagy and provides new insights into the evolutionary diversity of the Atg1 kinase signaling pathways among different pathogenic fungi.
Collapse
|
29
|
Han Y, Zeng X, Guo C, Zhang Q, Chen F, Ren L, Chen W, Qin L. Reproduction response of Colletotrichum fungi under the fungicide stress reveals new aspects of chemical control of fungal diseases. Microb Biotechnol 2022; 15:431-441. [PMID: 33470538 PMCID: PMC8867994 DOI: 10.1111/1751-7915.13754] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/28/2020] [Accepted: 01/02/2021] [Indexed: 11/29/2022] Open
Abstract
Systemic fungicides and antifungals are used as frontline treatments for fungal diseases in plants and humans. It is generally accepted that fungicides will bring significant negative side-effects to the environment and result in fungicide resistance in the pathogenic fungi. Although previous research has focused on fungicide application rates and fungal resistance for a long time, little attention has been paid to fungicide residues after treatment, especially their potential role in fungal growth and sporulation. Here we investigated the effect of fungicides at sublethal concentrations on fungal sporulation. The results showed that two kinds of 14α-demethylase inhibitors (DMIs) fungicides increased the number of isolates of Colletotrichum spp. to sporulate on PDA. Both on PDA medium and plant tissue, low concentration of DMI fungicides could promote spore production of Colletotrichum spp., whereas pyraclostrobin, a quinone outside inhibitor (QoIs), had no significant effects on sporulation of Colletotrichum spp. Transcriptomic analysis suggested that the DMIs fungicide stress signal may be transmitted to the central regulatory pathway through the FluG-mediated signalling pathway, and further confirmed the morphological effect of DMI fungicide on promoting sporulation of Colletotrichum. To our knowledge, this is the first study to provide insights into the reproductive response of fungi in response to fungicide stress. Our findings indicate that fungicides have two-way effects on the growth and reproduction of pathogenic fungi and provide a new basis for the scientific and rational use of fungicides.
Collapse
Affiliation(s)
- Yong‐chao Han
- Hubei Academy of Agricultural SciencesHubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic ImprovementInstitute of Industrial CropsWuhan430064China
| | - Xiang‐guo Zeng
- Hubei Academy of Agricultural SciencesHubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic ImprovementInstitute of Industrial CropsWuhan430064China
| | - Cong Guo
- Hubei Academy of Agricultural SciencesHubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic ImprovementInstitute of Industrial CropsWuhan430064China
| | - Qing‐hua Zhang
- Hubei Academy of Agricultural SciencesHubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic ImprovementInstitute of Industrial CropsWuhan430064China
| | - Feng‐ying Chen
- Hubei Academy of Agricultural SciencesHubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic ImprovementInstitute of Industrial CropsWuhan430064China
| | - Li Ren
- Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesWuhan430062China
| | - Wei‐dong Chen
- United States Department of AgricultureAgricultural Research ServiceWashington State UniversityPullmanWAUSA
| | - Li Qin
- Department of BiologyCollege of Arts and ScienceUniversity of Saskatchewan, SaskatoonSKS7N 5E2Canada
| |
Collapse
|
30
|
von Grüning H, Coradin M, Mendoza MR, Reader J, Sidoli S, Garcia BA, Birkholtz LM. A dynamic and combinatorial histone code drives malaria parasite asexual and sexual development. Mol Cell Proteomics 2022; 21:100199. [PMID: 35051657 PMCID: PMC8941266 DOI: 10.1016/j.mcpro.2022.100199] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 02/07/2023] Open
Abstract
Histone posttranslational modifications (PTMs) frequently co-occur on the same chromatin domains or even in the same molecule. It is now established that these “histone codes” are the result of cross talk between enzymes that catalyze multiple PTMs with univocal readout as compared with these PTMs in isolation. Here, we performed a comprehensive identification and quantification of histone codes of the malaria parasite, Plasmodium falciparum. We used advanced quantitative middle-down proteomics to identify combinations of PTMs in both the proliferative, asexual stages and transmissible, sexual gametocyte stages of P. falciparum. We provide an updated, high-resolution compendium of 77 PTMs on H3 and H3.3, of which 34 are newly identified in P. falciparum. Coexisting PTMs with unique stage distinctions were identified, indicating that many of these combinatorial PTMs are associated with specific stages of the parasite life cycle. We focused on the code H3R17me2K18acK23ac for its unique presence in mature gametocytes; chromatin proteomics identified a gametocyte-specific SAGA-like effector complex including the transcription factor AP2-G2, which we tied to this specific histone code, as involved in regulating gene expression in mature gametocytes. Ultimately, this study unveils previously undiscovered histone PTMs and their functional relationship with coexisting partners. These results highlight that investigating chromatin regulation in the parasite using single histone PTM assays might overlook higher-order gene regulation for distinct proliferation and differentiation processes. First middle-down chromatin proteomics compendium of the malaria parasite, Plasmodium falciparum. Novel histone PTMs (including arginine methylation) in both asexual parasites and transmissible gametocytes. Histone PTM cross talk is dynamic life cycle stage stratified. Gametocytes rely on histone PTM connectivity to allow onward transmission. AP2-G2 is an important effector of H3K18acK23ac in mature gametocytes.
Collapse
Affiliation(s)
- Hilde von Grüning
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Private bag X20, Hatfield, Pretoria, South Africa; Institute for Sustainable Malaria Control, University of Pretoria, Private bag X20, Hatfield, Pretoria, South Africa
| | - Mariel Coradin
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mariel R Mendoza
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Janette Reader
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Private bag X20, Hatfield, Pretoria, South Africa
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Benjamin A Garcia
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lyn-Marie Birkholtz
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Private bag X20, Hatfield, Pretoria, South Africa; Institute for Sustainable Malaria Control, University of Pretoria, Private bag X20, Hatfield, Pretoria, South Africa.
| |
Collapse
|
31
|
Mattoo AJ, Nonzom S. Investigating diverse methods for inducing sporulation in endophytic fungi. STUDIES IN FUNGI 2022. [DOI: 10.48130/sif-2022-0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
|
32
|
Liu Y, Zeng D, Qu L, Wang Z, Ning Z. Multi-Enzyme Supplementation Modifies the Gut Microbiome and Metabolome in Breeding Hens. Front Microbiol 2021; 12:711905. [PMID: 34925250 PMCID: PMC8678520 DOI: 10.3389/fmicb.2021.711905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 11/04/2021] [Indexed: 11/13/2022] Open
Abstract
Laying and reproductive performance, egg quality, and disease resistance of hens decrease during the late laying period. Exogenous enzymes promote nutrient digestibility and utilization and improve the intestinal environment. However, the specific regulation of the gut microbiome and metabolome by exogenous enzymes remains unelucidated. This study was conducted to evaluate effects of dietary multi-enzyme supplementation on egg and reproductive performance, egg quality, ileum microbiome, and metabolome of breeders. Here, 224 Hy-Line Brown breeding hens (55 weeks old) were randomly allocated to two groups: dietary controls fed basal diet (DC), and test hens fed 0.2 g/kg corn enzyme diet (CE). Serum levels of total protein, globulin, immunoglobulin Y, and antibodies against the Newcastle disease virus and avian influenza H9 strain were significantly increased (p < 0.05). Egg albumen height, Haugh unit, and fertilization and hatching rates were also significantly increased (p < 0.05) in the CE-fed group. 16S rRNA sequence analysis showed that CE strongly affected both α- and β-diversity of the ileal microbiota. LEfSe analysis revealed that the potentially beneficial genera Lactobacillus, Enterococcus, Faecalicoccus, and Streptococcus were enriched as biomarkers in the CE-fed group. Microbial functional analysis revealed that the functional genes associated with harmful-substance biodegradation was significantly increased in the CE-fed group. Additionally, Spearman correlation analysis indicated that changes in microbial genera were correlated with differential metabolites. In summary, dietary multi-enzyme addition can improve egg quality, humoral immunity, and reproductive performance and regulate the intestinal microbiome and metabolome in breeders. Therefore, multi-enzymes could be used as feed additive to extend breeder service life.
Collapse
Affiliation(s)
- Yuchen Liu
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Dan Zeng
- Huayu Agricultural Science and Technology Co., Ltd., Handan, China
| | - Lujiang Qu
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhong Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhonghua Ning
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
33
|
Bahram M, Netherway T. Fungi as mediators linking organisms and ecosystems. FEMS Microbiol Rev 2021; 46:6468741. [PMID: 34919672 PMCID: PMC8892540 DOI: 10.1093/femsre/fuab058] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/15/2021] [Indexed: 12/03/2022] Open
Abstract
Fungi form a major and diverse component of most ecosystems on Earth. They are both micro and macroorganisms with high and varying functional diversity as well as great variation in dispersal modes. With our growing knowledge of microbial biogeography, it has become increasingly clear that fungal assembly patterns and processes differ from other microorganisms such as bacteria, but also from macroorganisms such as plants. The success of fungi as organisms and their influence on the environment lies in their ability to span multiple dimensions of time, space, and biological interactions, that is not rivalled by other organism groups. There is also growing evidence that fungi mediate links between different organisms and ecosystems, with the potential to affect the macroecology and evolution of those organisms. This suggests that fungal interactions are an ecological driving force, interconnecting different levels of biological and ecological organisation of their hosts, competitors, and antagonists with the environment and ecosystem functioning. Here we review these emerging lines of evidence by focusing on the dynamics of fungal interactions with other organism groups across various ecosystems. We conclude that the mediating role of fungi through their complex and dynamic ecological interactions underlie their importance and ubiquity across Earth's ecosystems.
Collapse
Affiliation(s)
- Mohammad Bahram
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Ulls väg 16, 756 51 Sweden.,Institute of Ecology and Earth Sciences, University of Tartu, Tartu, 40 Lai St. Estonia
| | - Tarquin Netherway
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Ulls väg 16, 756 51 Sweden
| |
Collapse
|
34
|
Woyzichovski J, Shchepin O, Dagamac NH, Schnittler M. A workflow for low-cost automated image analysis of myxomycete spore numbers, size and shape. PeerJ 2021; 9:e12471. [PMID: 34820196 PMCID: PMC8605758 DOI: 10.7717/peerj.12471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 10/20/2021] [Indexed: 11/29/2022] Open
Abstract
Measuring spore size is a standard method for the description of fungal taxa, but in manual microscopic analyses the number of spores that can be measured and information on their morphological traits are typically limited. To overcome this weakness we present a method to analyze the size and shape of large numbers of spherical bodies, such as spores or pollen, by using inexpensive equipment. A spore suspension mounted on a slide is treated with a low-cost, high-vibration device to distribute spores uniformly in a single layer without overlap. Subsequently, 10,000 to 50,000 objects per slide are measured by automated image analysis. The workflow involves (1) slide preparation, (2) automated image acquisition by light microscopy, (3) filtering to separate high-density clusters, (4) image segmentation by applying a machine learning software, Waikato Environment for Knowledge Analysis (WEKA), and (5) statistical evaluation of the results. The technique produced consistent results and compared favorably with manual measurements in terms of precision. Moreover, measuring spore size distribution yields information not obtained by manual microscopic analyses, as shown for the myxomycete Physarum albescens. The exact size distribution of spores revealed irregularities in spore formation resulting from the influence of environmental conditions on spore maturation. A comparison of the spore size distribution within and between sporocarp colonies showed large environmental and likely genetic variation. In addition, the comparison identified specimens with spores roughly twice the normal size. The successful implementation of the presented method for analyzing myxomycete spores also suggests potential for other applications.
Collapse
Affiliation(s)
- Jan Woyzichovski
- Institute of Botany and Landscape Ecology, Greifswald University, Greifswald, Mecklenburg-Western Pomerania, Germany
| | - Oleg Shchepin
- Institute of Botany and Landscape Ecology, Greifswald University, Greifswald, Mecklenburg-Western Pomerania, Germany.,Laboratory of Systematics and Geography of Fungi, Komarov Botanical Institute of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Nikki Heherson Dagamac
- Institute of Botany and Landscape Ecology, Greifswald University, Greifswald, Mecklenburg-Western Pomerania, Germany.,Department of Biological Sciences and Research Center for the Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines
| | - Martin Schnittler
- Institute of Botany and Landscape Ecology, Greifswald University, Greifswald, Mecklenburg-Western Pomerania, Germany
| |
Collapse
|
35
|
Marshall PJ, Houser TM, Weiss SM. The Shared Origins of Embodiment and Development. Front Syst Neurosci 2021; 15:726403. [PMID: 34483853 PMCID: PMC8416067 DOI: 10.3389/fnsys.2021.726403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 07/21/2021] [Indexed: 11/13/2022] Open
Abstract
As a domain of study centering on the nature of the body in the functioning of the individual organism, embodiment encompasses a diverse array of topics and questions. One useful organizing framework places embodiment as a bridge construct connecting three standpoints on the body: the form of the body, the body as actively engaged in and with the world, and the body as lived experience. Through connecting these standpoints, the construct of embodiment shows that they are not mutually exclusive: inherent in form is the capacity for engagement, and inherent in engagement is a lived perspective that confers agency and meaning. Here, we employ this framework to underscore the deep connections between embodiment and development. We begin with a discussion of the origins of multicellularity, highlighting how the evolution of bodies was the evolution of development itself. The evolution of the metazoan (animal) body is of particular interest, because most animals possess complex bodies with sensorimotor capacities for perceiving and acting that bring forth a particular sort of embodiment. However, we also emphasize that the thread of embodiment runs through all living things, which share an organizational property of self-determination that endows them with a specific kind of autonomy. This realization moves us away from a Cartesian machine metaphor and instead puts an emphasis on the lived perspective that arises from being embodied. This broad view of embodiment presents opportunities to transcend the boundaries of individual disciplines to create a novel integrative vision for the scientific study of development.
Collapse
|
36
|
Discovery of Fungus-Specific Targets and Inhibitors Using Chemical Phenotyping of Pathogenic Spore Germination. mBio 2021; 12:e0167221. [PMID: 34311572 PMCID: PMC8406298 DOI: 10.1128/mbio.01672-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
There is a critical need for new antifungal drugs; however, the lack of available fungus-specific targets is a major hurdle in the development of antifungal therapeutics. Spore germination is a differentiation process absent in humans that could harbor uncharacterized fungus-specific targets. To capitalize on this possibility, we developed novel phenotypic assays to identify and characterize inhibitors of spore germination of the human fungal pathogen Cryptococcus. Using these assays, we carried out a high-throughput screen of ∼75,000 drug-like small molecules and identified and characterized 191 novel inhibitors of spore germination, many of which also inhibited yeast replication and demonstrated low cytotoxicity against mammalian cells. Using an automated, microscopy-based, quantitative germination assay (QGA), we discovered that germinating spore populations can exhibit unique phenotypes in response to chemical inhibitors. Through the characterization of these spore population dynamics in the presence of the newly identified inhibitors, we classified 6 distinct phenotypes based on differences in germination synchronicity, germination rates, and overall population behavior. Similar chemical phenotypes were induced by inhibitors that targeted the same cellular function or had shared substructures. Leveraging these features, we used QGAs to identify outliers among compounds that fell into similar structural groups and thus refined relevant structural moieties, facilitating target identification. This approach led to the identification of complex II of the electron transport chain as the putative target of a promising structural cluster of germination inhibitory compounds. These inhibitors showed high potency against Cryptococcus spore germination while maintaining low cytotoxicity against mammalian cells, making them prime candidates for development into novel antifungal therapeutics.
Collapse
|
37
|
Hazan R, Schoemann M, Klutstein M. Endurance of extremely prolonged nutrient prevention across kingdoms of life. iScience 2021; 24:102745. [PMID: 34258566 PMCID: PMC8258982 DOI: 10.1016/j.isci.2021.102745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Numerous observations demonstrate that microorganisms can survive very long periods of nutrient deprivation and starvation. Moreover, it is evident that prolonged periods of starvation are a feature of many habitats, and many cells in all kingdoms of life are found in prolonged starvation conditions. Bacteria exhibit a range of responses to long-term starvation. These include genetic adaptations such as the long-term stationary phase and the growth advantage in stationary phase phenotypes characterized by mutations in stress-signaling genes and elevated mutation rates. Here, we suggest using the term "endurance of prolonged nutrient prevention" (EPNP phase), to describe this phase, which was also recently described in eukaryotes. Here, we review this literature and describe the current knowledge about the adaptations to very long-term starvation conditions in bacteria and eukaryotes, its conceptual and structural conservation across all kingdoms of life, and point out possible directions that merit further research.
Collapse
Affiliation(s)
- Ronen Hazan
- Institute of Biomedical and Oral Research, Faculty of Dental Medicine, The Hebrew University of Jerusalem, P.O.B. 12272, Ein Kerem, Jerusalem 9112001, Israel
| | - Miriam Schoemann
- Institute of Biomedical and Oral Research, Faculty of Dental Medicine, The Hebrew University of Jerusalem, P.O.B. 12272, Ein Kerem, Jerusalem 9112001, Israel
| | - Michael Klutstein
- Institute of Biomedical and Oral Research, Faculty of Dental Medicine, The Hebrew University of Jerusalem, P.O.B. 12272, Ein Kerem, Jerusalem 9112001, Israel
| |
Collapse
|
38
|
Hurtado-Bautista E, Pérez Sánchez LF, Islas-Robles A, Santoyo G, Olmedo-Alvarez G. Phenotypic plasticity and evolution of thermal tolerance in bacteria from temperate and hot spring environments. PeerJ 2021; 9:e11734. [PMID: 34386300 PMCID: PMC8312496 DOI: 10.7717/peerj.11734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 06/16/2021] [Indexed: 01/02/2023] Open
Abstract
Phenotypic plasticity allows individuals to respond to the selective forces of a new environment, followed by adaptive evolution. We do not know to what extent phenotypic plasticity allows thermal tolerance evolution in bacteria at the border of their physiological limits. We analyzed growth and reaction norms to temperature of strains of two bacterial lineages, Bacillus cereus sensu lato and Bacillus subtilis sensu lato, that evolved in two contrasting environments, a temperate lagoon (T) and a hot spring (H). Our results showed that despite the co-occurrence of members of both lineages in the two contrasting environments, norms of reactions to temperature exhibited a similar pattern only in strains within the lineages, suggesting fixed phenotypic plasticity. Additionally, strains from the H environment showed only two to three degrees centigrade more heat tolerance than strains from the T environment. Their viability decreased at temperatures above their optimal for growth, particularly for the B. cereus lineage. However, sporulation occurred at all temperatures, consistent with the known cell population heterogeneity that allows the Bacillus to anticipate adversity. We suggest that these mesophilic strains survive in the hot-spring as spores and complete their life cycle of germination and growth during intermittent opportunities of moderate temperatures. The limited evolutionary changes towards an increase in heat tolerance in bacteria should alert us of the negative impact of climate change on all biological cycles in the planet, which at its most basic level depends on microorganisms.
Collapse
Affiliation(s)
- Enrique Hurtado-Bautista
- Departamento de Ingeniería Genética, Unidad Irapuato, de (Centro de Investigación y de Estudios Avanzados) del IPN, Irapuato, Guanajuato, México
| | - Laura F Pérez Sánchez
- Departamento de Ingeniería Genética, Unidad Irapuato, de (Centro de Investigación y de Estudios Avanzados) del IPN, Irapuato, Guanajuato, México
| | - Africa Islas-Robles
- Departamento de Ingeniería Genética, Unidad Irapuato, de (Centro de Investigación y de Estudios Avanzados) del IPN, Irapuato, Guanajuato, México
| | - Gustavo Santoyo
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México
| | - Gabriela Olmedo-Alvarez
- Departamento de Ingeniería Genética, Unidad Irapuato, de (Centro de Investigación y de Estudios Avanzados) del IPN, Irapuato, Guanajuato, México
| |
Collapse
|
39
|
Liu Y, Cheng X, Zhen W, Zeng D, Qu L, Wang Z, Ning Z. Yeast Culture Improves Egg Quality and Reproductive Performance of Aged Breeder Layers by Regulating Gut Microbes. Front Microbiol 2021; 12:633276. [PMID: 33815314 PMCID: PMC8018237 DOI: 10.3389/fmicb.2021.633276] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/15/2021] [Indexed: 12/19/2022] Open
Abstract
This study aimed to investigate the effects of dietary yeast culture (YC) supplementation on egg production, egg quality, reproductive performance, immune functions, antioxidant capacity, and intestinal microbial structure of aged hens. A total of 224 Hy-Line Brown layers (54 weeks old) were randomly assigned to two dietary treatments. The control group was fed a basal diet and the YC group was supplemented with YC at 2.0 g/kg of their diet. Each group had seven replicates with 16 hens each. The study was conducted over a period of 8 weeks. Results indicated that YC addition had no significant effect on laying performance. However, it significantly improved egg quality and hatching rate, enhanced ileum crude fat digestibility, increased the serum parameters of lysozyme (LZM) and total antioxidation capacity (T-AOC) (P < 0.05), and reduced serum aspartate aminotransferase (AST) levels (P < 0.05). Using 16S rRNA analysis, we found that addition of YC significantly altered ileum microbial composition. Linear discriminant analysis of effect size (LEfSe) showed significant enrichment of Bacilli and Lactobacilli in the YC group. PICRUSt analysis of the ileal microbiota found that glutathione metabolism, ubiquinone, and other terpenoid-quinone biosynthesis and lipopolysaccharide biosynthesis protein pathways were highly enriched in the YC group compared with the basal diet group. In summary, the addition of YC can improve egg quality, immune functions, antioxidant capacity, reproduction efficiency, and digestive absorption by increasing the abundance of Lactobacilli and Bacilli. Furthermore, it also improves the biosynthesis of lipopolysaccharide proteins, glutathione metabolism, and the synthesis of ubiquinone and other terpenoid-quinone metabolic pathways.
Collapse
Affiliation(s)
- Yuchen Liu
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xue Cheng
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Wenrui Zhen
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Dan Zeng
- Huayu Agricultural Science and Technology Co., Ltd., Handan, China
| | - Lujiang Qu
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhong Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhonghua Ning
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
40
|
Sun G, Yang M, Jiang L, Huang M. Regulation of pro-σ K activation: a key checkpoint in Bacillus subtilis sporulation. Environ Microbiol 2021; 23:2366-2373. [PMID: 33538382 DOI: 10.1111/1462-2920.15415] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 11/30/2022]
Abstract
The Gram-positive bacterium Bacillus subtilis initiates the sporulation process under conditions of nutrient limitation. Here, we review related work in this field, focusing on the protein processing of the pro-σK activation. The purpose of this review is to illustrate the mechanism of pro-σK activation and provide structural insights into the regulation of spore production. Sporulation is not only important in basic science but also provides mechanistic insight for bacterial control in applications in, e.g., food industry.
Collapse
Affiliation(s)
- Gaohui Sun
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350016, China
| | - Moua Yang
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Longguang Jiang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350016, China.,Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Mingdong Huang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350016, China
| |
Collapse
|
41
|
Bahram M, Netherway T, Frioux C, Ferretti P, Coelho LP, Geisen S, Bork P, Hildebrand F. Metagenomic assessment of the global diversity and distribution of bacteria and fungi. Environ Microbiol 2021; 23:316-326. [PMID: 33185929 PMCID: PMC7898879 DOI: 10.1111/1462-2920.15314] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 10/22/2020] [Accepted: 11/09/2020] [Indexed: 12/17/2022]
Abstract
Bacteria and fungi are of uttermost importance in determining environmental and host functioning. Despite close interactions between animals, plants, their associated microbiomes, and the environment they inhabit, the distribution and role of bacteria and especially fungi across host and environments as well as the cross-habitat determinants of their community compositions remain little investigated. Using a uniquely broad global dataset of 13 483 metagenomes, we analysed the microbiome structure and function of 25 host-associated and environmental habitats, focusing on potential interactions between bacteria and fungi. We found that the metagenomic relative abundance ratio of bacteria-to-fungi is a distinctive microbial feature of habitats. Compared with fungi, the cross-habitat distribution pattern of bacteria was more strongly driven by habitat type. Fungal diversity was depleted in host-associated communities compared with those in the environment, particularly terrestrial habitats, whereas this diversity pattern was less pronounced for bacteria. The relative gene functional potential of bacteria or fungi reflected their diversity patterns and appeared to depend on a balance between substrate availability and biotic interactions. Alongside helping to identify hotspots and sources of microbial diversity, our study provides support for differences in assembly patterns and processes between bacterial and fungal communities across different habitats.
Collapse
Affiliation(s)
- Mohammad Bahram
- Department of EcologySwedish University of Agricultural SciencesUppsalaUlls väg 16, 756 51Sweden
- Department of BotanyInstitute of Ecology and Earth Sciences, University of TartuTartu40 Lai St.Estonia
| | - Tarquin Netherway
- Department of EcologySwedish University of Agricultural SciencesUppsalaUlls väg 16, 756 51Sweden
| | - Clémence Frioux
- Gut Microbes and HealthQuadram Institute BioscienceNorwich, NorfolkUK
- Digital BiologyEarlham InstituteNorwich, NorfolkUK
| | - Pamela Ferretti
- Structural and Computational BiologyEuropean Molecular Biology LaboratoryHeidelbergGermany
| | - Luis Pedro Coelho
- Structural and Computational BiologyEuropean Molecular Biology LaboratoryHeidelbergGermany
| | - Stefan Geisen
- Department of Terrestrial EcologyNetherlands Institute of Ecology NIOO‐KNAWWageningen6708 PBThe Netherlands
| | - Peer Bork
- Structural and Computational BiologyEuropean Molecular Biology LaboratoryHeidelbergGermany
- Max Delbrück Centre for Molecular MedicineBerlinGermany
| | - Falk Hildebrand
- Gut Microbes and HealthQuadram Institute BioscienceNorwich, NorfolkUK
- Digital BiologyEarlham InstituteNorwich, NorfolkUK
| |
Collapse
|
42
|
Farag MA, Mesak MA, Saied DB, Ezzelarab NM. Uncovering the dormant food hazards, a review of foodborne microbial spores' detection and inactivation methods with emphasis on their application in the food industry. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2020.10.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
43
|
Plante S, Landry CR. Closely related budding yeast species respond to different ecological signals for spore activation. Yeast 2020; 38:81-89. [PMID: 33202071 DOI: 10.1002/yea.3538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/27/2020] [Accepted: 11/10/2020] [Indexed: 01/20/2023] Open
Abstract
Spore activation is one of the most important developmental decisions in fungi as it initiates the transition from dormant and stress-resistant cells to vegetative cells. Because in many species mating follows spore activation and germination, signals that trigger this developmental transition can also contribute to species reproductive barriers. Here, we examine the biochemical signals triggering spore activation in a natural species complex of budding yeast, Saccharomyces paradoxus (lineages SpA, SpB, SpC and SpC*). We first demonstrate that we can quantitatively monitor spore activation in these closely related lineages. Second, we dissect the composition of culture media to identify components necessary and/or sufficient to activate spores in the four lineages. We show that, contrary to expectation, glucose is necessary but not sufficient to trigger spore activation. We also show that two of the North American lineages (SpC and SpC*) diverge from the other North American (SpB) and European (SpA) lineages in terms of germination signal as their spore activation requires inorganic phosphate. Our results show that the way budding yeast interpret environmental conditions during spore activation diverged among closely related and incipient species, which means that it may play a role in their ecological differentiation and reproductive isolation. TAKE AWAY: Sensing of multiple compounds allows spore activation in non-domesticated budding yeast. Spore activation cues differ among Saccharomyces paradoxus lineages. Dextrose and phosphate signal activation in SpC and SpC* spores.
Collapse
Affiliation(s)
- Samuel Plante
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, Canada.,Regroupement Québécois de Recherche sur la Fonction, l'Ingénierie et les Applications des Protéines, (PROTEO), Université Laval, Québec, Québec, Canada.,Département de biologie, Université Laval, Québec, Québec, Canada.,Département de biochimie, microbiologie et bio-informatique, Université Laval, Québec, Québec, Canada.,Centre de recherche en données massives (CRDM), Université Laval, Québec, Québec, Canada
| | - Christian R Landry
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, Canada.,Regroupement Québécois de Recherche sur la Fonction, l'Ingénierie et les Applications des Protéines, (PROTEO), Université Laval, Québec, Québec, Canada.,Département de biologie, Université Laval, Québec, Québec, Canada.,Département de biochimie, microbiologie et bio-informatique, Université Laval, Québec, Québec, Canada.,Centre de recherche en données massives (CRDM), Université Laval, Québec, Québec, Canada
| |
Collapse
|
44
|
Ravoitytė B, Lukša J, Yurchenko V, Serva S, Servienė E. Saccharomyces paradoxus Transcriptional Alterations in Cells of Distinct Phenotype and Viral dsRNA Content. Microorganisms 2020; 8:microorganisms8121902. [PMID: 33266158 PMCID: PMC7761358 DOI: 10.3390/microorganisms8121902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 11/28/2020] [Accepted: 11/29/2020] [Indexed: 01/23/2023] Open
Abstract
Killer yeasts are attractive antifungal agents with great potential applications in the food industry. Natural Saccharomyces paradoxus isolates provide new dsRNA-based killer systems available for investigation. The presence of viral dsRNA may alter transcriptional profile of S. paradoxus. To test this possibility, a high-throughput RNA sequencing was employed to compare the transcriptomes of S. paradoxus AML 15-66 K66 killer strains after curing them of either M-66 alone or both M-66 and L-A-66 dsRNA viruses. The S. paradoxus cells cured of viral dsRNA(s) showed respiration deficient or altered sporulation patterns. We have identified numerous changes in the transcription profile of genes including those linked to ribosomes and amino acid biosynthesis, as well as mitochondrial function. Our work advance studies of transcriptional adaptations of Saccharomyces spp. induced by changes in phenotype and set of dsRNA viruses, reported for the first time.
Collapse
Affiliation(s)
- Bazilė Ravoitytė
- Laboratory of Genetics, Institute of Botany, Nature Research Centre, Akademijos str. 2, 08412 Vilnius, Lithuania;
- Correspondence: (B.R.); (E.S.)
| | - Juliana Lukša
- Laboratory of Genetics, Institute of Botany, Nature Research Centre, Akademijos str. 2, 08412 Vilnius, Lithuania;
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00 Ostrava, Czech Republic;
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, Malaya Pirogovskaya str. 20, 119435 Moscow, Russia
| | - Saulius Serva
- Department of Biochemistry and Molecular Biology, Institute of Biosciences, Vilnius University, Saulėtekio al. 7, 10257 Vilnius, Lithuania;
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Saulėtekio al. 11, 10223 Vilnius, Lithuania
| | - Elena Servienė
- Laboratory of Genetics, Institute of Botany, Nature Research Centre, Akademijos str. 2, 08412 Vilnius, Lithuania;
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Saulėtekio al. 11, 10223 Vilnius, Lithuania
- Correspondence: (B.R.); (E.S.)
| |
Collapse
|
45
|
Yu QK, Han LT, Wu YJ, Liu TB. The Role of Oxidoreductase-Like Protein Olp1 in Sexual Reproduction and Virulence of Cryptococcus neoformans. Microorganisms 2020; 8:microorganisms8111730. [PMID: 33158259 PMCID: PMC7694259 DOI: 10.3390/microorganisms8111730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/31/2020] [Accepted: 11/03/2020] [Indexed: 11/16/2022] Open
Abstract
Cryptococcus neoformans is a basidiomycete human fungal pathogen causing lethal meningoencephalitis, mainly in immunocompromised patients. Oxidoreductases are a class of enzymes that catalyze redox, playing a crucial role in biochemical reactions. In this study, we identified one Cryptococcus oxidoreductase-like protein-encoding gene OLP1 and investigated its role in the sexual reproduction and virulence of C. neoformans. Gene expression patterns analysis showed that the OLP1 gene was expressed in each developmental stage of Cryptococcus, and the Olp1 protein was located in the cytoplasm of Cryptococcus cells. Although it produced normal major virulence factors such as melanin and capsule, the olp1Δ mutants showed growth defects on the yeast extract peptone dextrose (YPD) medium supplemented with lithium chloride (LiCl) and 5-fluorocytosine (5-FC). The fungal mating analysis showed that Olp1 is also essential for fungal sexual reproduction, as olp1Δ mutants show significant defects in hyphae growth and basidiospores production during bisexual reproduction. The fungal nuclei imaging showed that during the bilateral mating of olp1Δ mutants, the nuclei failed to undergo meiosis after fusion in the basidia, indicating that Olp1 is crucial for regulating meiosis during mating. Moreover, Olp1 was also found to be required for fungal virulence in C. neoformans, as the olp1Δ mutants showed significant virulence attenuation in a murine inhalation model. In conclusion, our results showed that the oxidoreductase-like protein Olp1 is required for both fungal sexual reproduction and virulence in C. neoformans.
Collapse
Affiliation(s)
- Qi-Kun Yu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; (Q.-K.Y.); (L.-T.H.); (Y.-J.W.)
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Lian-Tao Han
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; (Q.-K.Y.); (L.-T.H.); (Y.-J.W.)
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Yu-Juan Wu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; (Q.-K.Y.); (L.-T.H.); (Y.-J.W.)
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Tong-Bao Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; (Q.-K.Y.); (L.-T.H.); (Y.-J.W.)
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
- Correspondence: ; Tel.: +86-23-6825-1088
| |
Collapse
|
46
|
Hu P, Liu L, Ke W, Tian X, Wang L. A cyclin protein governs the infectious and sexual life cycles of Cryptococcus neoformans. SCIENCE CHINA-LIFE SCIENCES 2020; 64:1336-1345. [PMID: 33165808 DOI: 10.1007/s11427-020-1697-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 04/29/2020] [Indexed: 12/19/2022]
Abstract
Cell cycle is a fundamental process underlying growth and development in evolutionarily diverse organisms, including fungi. In human fungal pathogens, cell cycle control generally determines their life cycles, either in the environment or during infections. Thus, cell cycle components can potentially serve as important targets for the development of antifungal strategy against fungal infections. Here, in Cryptococcus neoformans, the most common cause of fatal fungal meningitis, we show that a previously uncharacterized B-type cyclin named Cbc1 is essential for both its infectious and sexual cycles. We reveal that Cbc1 coordinates various sexual differentiation and molecular processes, including meiosis. Especially, the absence of Cbc1 abolishes formation of sexual spores in C. neoformans, which are presumed infectious particles. Cbc1 is also required for the major Cryptococcus pathogenic attributes. Virulence assessment using the murine model of cryptococcosis revealed that the cbc1 mutant is avirulent. Together, our results provide an important insight into how C. neoformans employs shared cell cycle regulation to coordinate its infectious and sexual cycles, which are considered crucial for virulence evolution and the production of infectious spores.
Collapse
Affiliation(s)
- Pengjie Hu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Linxia Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Weixin Ke
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiuyun Tian
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Linqi Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
47
|
HapX, an Indispensable bZIP Transcription Factor for Iron Acquisition, Regulates Infection Initiation by Orchestrating Conidial Oleic Acid Homeostasis and Cytomembrane Functionality in Mycopathogen Beauveria bassiana. mSystems 2020; 5:5/5/e00695-20. [PMID: 33051379 PMCID: PMC7567583 DOI: 10.1128/msystems.00695-20] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Conidial maturation and germination are highly coupled physiological processes in filamentous fungi that are critical for the pathogenicity of mycopathogens. Compared to the mechanisms involved in conidial germination, those of conidial reserves during maturation are less understood. The insect-pathogenic fungus Beauveria bassiana, as a representative species of filamentous fungi, is important for applied and fundamental research. In addition to its conserved roles in fungal adaptation to iron status, the bZIP transcription factor HapX acts as a master regulator involved in conidial virulence and regulates fatty acid/lipid metabolism. Further investigation revealed that the Δ9-fatty acid desaturase gene (Ole1) is a direct downstream target of HapX. This study reveals the HapX-Ole1 pathway involved in the fatty acid/lipid accumulation associated with conidial maturation and provides new insights into the startup mechanism of infection caused by spores from pathogenic fungi. In pathogenic filamentous fungi, conidial germination not only is fundamental for propagation in the environment but is also a critical step of infection. In the insect mycopathogen Beauveria bassiana, we genetically characterized the role of the basic leucine zipper (bZIP) transcription factor HapX (BbHapX) in conidial nutrient reserves and pathogen-host interaction. Ablation of BbHapX resulted in an almost complete loss of virulence in the topical inoculation and intrahemocoel injection assays. Comparative transcriptomic analysis revealed that BbHapX is required for fatty acid (FA)/lipid metabolism, and biochemical analyses indicated that BbHapX loss caused a significant reduction in conidial FA contents. Exogenous oleic acid could partially or completely restore the impaired phenotypes of the ΔBbHapX mutant, including germination rate, membrane integrity, vegetative growth, and virulence. BbHapX mediates fungal iron acquisition which is not required for desaturation of stearic acid. Additionally, inactivation of the Δ9-fatty acid desaturase gene (BbOle1) generated defects similar to those of the ΔBbHapX mutant; oleic acid also had significant restorative effects on the defective phenotypes of the ΔBbOle1 mutant. A gel retarding assay revealed that BbHapX directly regulated the expression of BbOle1. Lipidomic analyses indicated that both BbHapX and BbOle1 contributed to the homeostasis of phospholipids with nonpolar tails derived from oleic acid; therefore, exogenous phospholipids could significantly restore membrane integrity. These data reveal that the HapX-Ole1 pathway contributes to conidial fatty acid/lipid reserves and that there are important links between the lipid biology and membrane functionality involved in the early stages of infection caused by B.bassiana. IMPORTANCE Conidial maturation and germination are highly coupled physiological processes in filamentous fungi that are critical for the pathogenicity of mycopathogens. Compared to the mechanisms involved in conidial germination, those of conidial reserves during maturation are less understood. The insect-pathogenic fungus Beauveria bassiana, as a representative species of filamentous fungi, is important for applied and fundamental research. In addition to its conserved roles in fungal adaptation to iron status, the bZIP transcription factor HapX acts as a master regulator involved in conidial virulence and regulates fatty acid/lipid metabolism. Further investigation revealed that the Δ9-fatty acid desaturase gene (Ole1) is a direct downstream target of HapX. This study reveals the HapX-Ole1 pathway involved in the fatty acid/lipid accumulation associated with conidial maturation and provides new insights into the startup mechanism of infection caused by spores from pathogenic fungi.
Collapse
|
48
|
Hapala I, Griac P, Holic R. Metabolism of Storage Lipids and the Role of Lipid Droplets in the Yeast Schizosaccharomyces pombe. Lipids 2020; 55:513-535. [PMID: 32930427 DOI: 10.1002/lipd.12275] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/14/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022]
Abstract
Storage lipids, triacylglycerols (TAG), and steryl esters (SE), are predominant constituents of lipid droplets (LD) in fungi. In several yeast species, metabolism of TAG and SE is linked to various cellular processes, including cell division, sporulation, apoptosis, response to stress, and lipotoxicity. In addition, TAG are an important source for the generation of value-added lipids for industrial and biomedical applications. The fission yeast Schizosaccharomyces pombe is a widely used unicellular eukaryotic model organism. It is a powerful tractable system used to study various aspects of eukaryotic cellular and molecular biology. However, the knowledge of S. pombe neutral lipids metabolism is quite limited. In this review, we summarize and discuss the current knowledge of the homeostasis of storage lipids and of the role of LD in the fission yeast S. pombe with the aim to stimulate research of lipid metabolism and its connection with other essential cellular processes. We also discuss the advantages and disadvantages of fission yeast in lipid biotechnology and recent achievements in the use of S. pombe in the biotechnological production of valuable lipid compounds.
Collapse
Affiliation(s)
- Ivan Hapala
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia
| | - Peter Griac
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia
| | - Roman Holic
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia
| |
Collapse
|
49
|
Abstract
Spores are required for long-term survival of many organisms, including most fungi. For the majority of fatal human fungal pathogens, spore germination is the key process required to initiate vegetative growth and ultimately cause disease. Because germination is required for pathogenesis, the process could hold fungal-specific targets for new antifungal drug development. Compounds that inhibit germination could be developed into high efficacy, low-toxicity drugs for use in the prevention and/or treatment of fungal spore-mediated diseases. To identify drugs with the ability to inhibit pathogenic fungal spore germination, we developed a novel luciferase-based germination assay, using spores of the meningitis-causing yeast Cryptococcus. We screened the L1300 Selleck Library of FDA-approved drugs and identified 27 that inhibit germination. Of these, 22 inhibited both germination and yeast growth, and 21 have not been previously indicated for use in the treatment of fungal diseases. We quantitated the inhibition phenotypes of 10 specific germination/growth inhibitors in detail and tested one drug, the antiparasitic compound pentamidine, in our mouse intranasal model of cryptococcal infection. We discovered that pentamidine was effective at reducing lung fungal burdens when used in either prophylaxis (before infection) or treatment (after establishing an infection). Due to its efficacy in vivo and low intranasal toxicity, pentamidine is a lead candidate for repurposing for broader use as an antigerminant to prevent spore-mediated disease in immunocompromised patients. Not only does pentamidine provide an opportunity for prophylaxis against fungal spores, but it also provides proof of concept for targeting pathogenic spore germination for antifungal drug development.
Collapse
|
50
|
Miles S, Li LH, Melville Z, Breeden LL. Ssd1 and the cell wall integrity pathway promote entry, maintenance, and recovery from quiescence in budding yeast. Mol Biol Cell 2019; 30:2205-2217. [PMID: 31141453 PMCID: PMC6743469 DOI: 10.1091/mbc.e19-04-0190] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/15/2019] [Accepted: 05/22/2019] [Indexed: 12/21/2022] Open
Abstract
Wild Saccharomyces cerevisiae strains are typically diploid. When faced with glucose and nitrogen limitation they can undergo meiosis and sporulate. Diploids can also enter a protective, nondividing cellular state or quiescence. The ability to enter quiescence is highly reproducible but shows broad natural variation. Some wild diploids can only enter cellular quiescence, which indicates that there are conditions in which sporulation is lost or selected against. Others only sporulate, but if sporulation is disabled by heterozygosity at the IME1 locus, those diploids can enter quiescence. W303 haploids can enter quiescence, but their diploid counterparts cannot. This is the result of diploidy, not mating type regulation. Introduction of SSD1 to W303 diploids switches fate, in that it rescues cellular quiescence and disrupts the ability to sporulate. Ssd1 and another RNA-binding protein, Mpt5 (Puf5), have parallel roles in quiescence in haploids. The ability of these mutants to enter quiescence, and their long-term survival in the quiescent state, can be rescued by exogenously added trehalose. The cell wall integrity pathway also promotes entry, maintenance, and recovery from quiescence through the Rlm1 transcription factor.
Collapse
Affiliation(s)
- Shawna Miles
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Li Hong Li
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Zephan Melville
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032
| | | |
Collapse
|