1
|
Raha P, Khatua I, Saha G, Adhikari S, Gantait S, Bandyopadhyay TK. Morpho-histology of co-occurrence of somatic embryos, shoots, and inflorescences within a callus of Limonium 'Misty Blue'. PHYSIOLOGIA PLANTARUM 2024; 176:e14389. [PMID: 38887935 DOI: 10.1111/ppl.14389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/11/2024] [Accepted: 05/29/2024] [Indexed: 06/20/2024]
Abstract
This is the first attempt to report the co-occurrence of somatic embryos, shoots, and inflorescences and their sequential development from stem cell niches of an individual callus mass through morpho-histological study of any angiosperm. In the presence of a proper auxin/cytokinin combination, precambial stem cells from the middle layer of a compact callus, which was derived from the thin cell layer of the inflorescence rachis of Limonium, expressed the highest level of totipotency and pluripotency and simultaneously developed somatic embryos, shoots, and inflorescences. This study also proposed the concept of programmed cell death during bipolar somatic embryo and unipolar shoot bud pattern formation. The unique feature of this research was the stepwise histological description of in vitro racemose inflorescence development. Remarkably, during the initiation of inflorescence development, either a unipolar structure with open vascular elements or an independent bipolar structure with closed vascular elements were observed. The protocol predicted the production of 6.6 ± 0.24 and 7.4 ± 0.24 somatic embryos and shoots, respectively, from 400 mg of callus, which again multiplied, rooted, and acclimatised. The plants' ploidy level and genetic fidelity were assessed randomly before acclimatisation by flow cytometry and inter simple sequence repeats (ISSR) marker analysis. Finally, the survivability and flower quality of the regenerated plants were evaluated in the field.
Collapse
Affiliation(s)
- Priyanka Raha
- Department of Molecular Biology and Biotechnology, University of Kalyani, Nadia, West Bengal, India
| | - Ishita Khatua
- Department of Molecular Biology and Biotechnology, University of Kalyani, Nadia, West Bengal, India
| | - Gourab Saha
- Department of Molecular Biology and Biotechnology, University of Kalyani, Nadia, West Bengal, India
| | - Sinchan Adhikari
- Department of Botany, University of Kalyani, Nadia, West Bengal, India
| | - Saikat Gantait
- Crop Research Unit (Genetics and Plant Breeding), Bidhan Chandra Krishi Viswavidyalaya, Nadia, West Bengal, India
| | | |
Collapse
|
2
|
Campos-Boza S, Vinas M, Solórzano-Cascante P, Holst A, Steinmacher DA, Guerra MP, Jiménez VM. Somatic embryogenesis and plant regeneration from transverse thin cell layers of adult peach palm ( Bactris gasipaes) lateral offshoots. FRONTIERS IN PLANT SCIENCE 2022; 13:995307. [PMID: 36247585 PMCID: PMC9554471 DOI: 10.3389/fpls.2022.995307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/31/2022] [Indexed: 06/16/2023]
Abstract
In this work, we report a successful protocol to obtain in vitro peach palm (Bactris gasipaes Kunth) "Diamantes 10" plants through somatic embryogenesis from transverse thin cell layer (TCL) explants, dissected from three sections (basal, medial, and apical) of lateral offshoots of adult plants cultured on different concentrations of 4-amino-3,5,6-trichloropicolonic acid (picloram). After swelling and development of primary callus in all treatments, without any strong effect of explant origin or picloram concentration, it was possible to observe the formation of embryogenic structures and the exact point from where they developed. Browning was also observed and correlated to the induction treatments, although it was not an impairment for the production of embryogenic structures. Subsequent maturation and conversion of somatic embryos into plantlets allowed their acclimatization 17 months after culture initiation (ACI), which was quicker than previous reports with juvenile tissues (from embryos or seed-germinated plantlets). To the best of our knowledge, this is the first report on peach palm regeneration through somatic embryogenesis from TCL explants from adult plants and could constitute, after fine-tuning the acclimatization stage, a tool for mass clonal propagation of elite genotypes of this open-pollinated crop, as well as for the establishment of conservation strategies of in situ gene bank plant accessions endangered due to aging and other threats.
Collapse
Affiliation(s)
- Stefanny Campos-Boza
- Centro para Investigaciones en Granos y Semillas (CIGRAS), Universidad de Costa Rica, San Pedro, Costa Rica
| | - María Vinas
- Centro para Investigaciones en Granos y Semillas (CIGRAS), Universidad de Costa Rica, San Pedro, Costa Rica
| | - Paul Solórzano-Cascante
- Centro para Investigaciones en Granos y Semillas (CIGRAS), Universidad de Costa Rica, San Pedro, Costa Rica
| | - Andrea Holst
- Centro para Investigaciones en Granos y Semillas (CIGRAS), Universidad de Costa Rica, San Pedro, Costa Rica
| | | | - Miguel P. Guerra
- Plant Developmental Physiology and Genetics Laboratory, Department of Plant Science, Federal University of Santa Catarina, Florianópolis, Brazil
- Graduate Program in Agricultural and Natural Ecosystems, Federal University of Santa Catarina, Curitibanos, Brazil
| | - Víctor M. Jiménez
- Centro para Investigaciones en Granos y Semillas (CIGRAS), Universidad de Costa Rica, San Pedro, Costa Rica
- Instituto de Investigaciones Agrícolas (IIA) and Cátedra Humboldt, Universidad de Costa Rica, San Pedro, Costa Rica
| |
Collapse
|
3
|
de Araújo Silva-Cardoso IM, Gomes ACMM, Scherwinski-Pereira JE. Cellular responses of oil palm genotypes during somatic embryogenesis involve participation of procambial cells, DNA demethylation, and auxin accumulation. PLANT CELL REPORTS 2022; 41:1875-1893. [PMID: 35776139 DOI: 10.1007/s00299-022-02898-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Cell markers of somatic embryogenesis initiation from leaf tissues in oil palm involve the participation of procambial cells, DNA demethylation, and auxin accumulation. Low callogenesis and genotype-dependent response have been mentioned in the development of somatic embryogenesis protocols of Elaeis oleifera × E. guineensis elite hybrids, which requires more detailed investigations of the process. Thus, the initial cellular responses of immature leaves of adult genotypes of this hybrid were investigated for the first time, emphasizing histological, epigenetic, and endogenous auxin changes. Leaf segments from two genotypes, one responsive to somatic embryogenesis (B351733) and another non-responsive (B352933), were inoculated in Murashige and Skoog medium with 450 µM of 4-amino-3, 5, 6-trichloropicolinic acid. For anatomical analysis, samples of both genotypes were collected at 0, 20, 90, and 105 days of cultivation. Samples of both genotypes were also taken at different cultivation periods to analyze DNA methylation status (% 5-mC-5 methylcytosine) via ELISA test. Immunolocalization assays were performed with anti-indole-3-acetic acid and anti-5-methyl-deoxycytosine antibodies from samples of hybrid B351733. We distinguished two groups of cells reactive to the induction of embryogenic callogenesis, parenchymatous sheath cells, and procambial cells; however, only the latter are directly involved with the formation of calluses. The data obtained indicate that the formation of calluses in hybrid B351733 is related to DNA hypomethylation, while the non-responsiveness of leaf explants in hybrid B352932 is related to DNA hypermethylation. The in situ immunolocalization enabled the identification of initial markers of the callogenic process, such as IAA accumulation and hypomethylation. Identifying these events brings the possibility of establishing strategies for efficient manipulation of somatic embryogenesis protocols in palm trees.
Collapse
Affiliation(s)
| | | | - Jonny Everson Scherwinski-Pereira
- Laboratório de Microscopia, Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil.
- Laboratório de Cultura de Tecidos e Genética Vegetal, Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil.
| |
Collapse
|
4
|
Bull T, Michelmore R. Molecular Determinants of in vitro Plant Regeneration: Prospects for Enhanced Manipulation of Lettuce ( Lactuca sativa L.). FRONTIERS IN PLANT SCIENCE 2022; 13:888425. [PMID: 35615120 PMCID: PMC9125155 DOI: 10.3389/fpls.2022.888425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/31/2022] [Indexed: 05/12/2023]
Abstract
In vitro plant regeneration involves dedifferentiation and molecular reprogramming of cells in order to regenerate whole organs. Plant regeneration can occur via two pathways, de novo organogenesis and somatic embryogenesis. Both pathways involve intricate molecular mechanisms and crosstalk between auxin and cytokinin signaling. Molecular determinants of both pathways have been studied in detail in model species, but little is known about the molecular mechanisms controlling de novo shoot organogenesis in lettuce. This review provides a synopsis of our current knowledge on molecular determinants of de novo organogenesis and somatic embryogenesis with an emphasis on the former as well as provides insights into applying this information for enhanced in vitro regeneration in non-model species such as lettuce (Lactuca sativa L.).
Collapse
Affiliation(s)
- Tawni Bull
- The Genome Center, University of California, Davis, Davis, CA, United States
- Graduate Group in Horticulture and Agronomy, University of California, Davis, Davis, CA, United States
| | - Richard Michelmore
- The Genome Center, University of California, Davis, Davis, CA, United States
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| |
Collapse
|
5
|
Henao Ramírez AM, Urrea Trujillo AI, Atehortúa Garcés L. In vitro germination and vegetative propagation through bud development of sacha inchi (Plukenetia volubilis L.). ACTA BIOLÓGICA COLOMBIANA 2021. [DOI: 10.15446/abc.v27n1.88727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
This study describes the in vitro seed germination and micropropagation of Plukenetia volubilis (sacha inchi), an oilseed crop rich in omega-3 fatty acids, with health benefits and several industrial applications. Seed germination was evaluated in different culture media (MS and 1/2 MS), seed coat presence/absence and culture temperature (18 °C and 28 °C). Micropropagation was performed using axillary bud development (ABD) on nodal segments from in vitro seedlings. KIN, BAP and 2-ip were evaluated for ABD, and the effect of modified MS in 453 mg L-1 CaCl2 and 351.62 mg L-1 MgSO4 on ABD and shoot survival was assessed to improve the process. Finally, six treatments were evaluated to optimize ABD and shoot leaf formation. Seed germination of 91.6 % was achieved in MS at 28 °C when the seed coat was removed. ABD was obtained in 45 % and 40 % with 0.4 mg L-1 KIN and 0.6 mg L-1 2-ip, respectively, with the least CAL. The modification in 453 mg L-1 CaCl2 then allowed 76 % ABD and 82 % explant survival. ABD response was optimized to 95 % and 2.45 leaves with MS medium + CaCl2 modification + 10 % coconut water + 0.4 mg L-1 KIN. The same results were obtained by replacing the latter with 0.6 mg L-1 2-ip. Rooting was achieved in MS without PGR, and acclimatization was successful. The results indicate that plant production via germination and vegetative propagation is effective for commercial purposes.
Collapse
|
6
|
Regeneration of Pinus halepensis (Mill.) through Organogenesis from Apical Shoot Buds. FORESTS 2021. [DOI: 10.3390/f12030363] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Organogenesis and somatic embryogenesis have been widely applied as the two main regeneration pathways in plant tissue cultures. However, recalcitrance is still the main restriction in the clonal propagation of many woody species, especially in conifers. They undergo a “phase change” that leads to significant loss of vegetative propagation capacity, reducing the aptitude of tissues and organs to be regenerated in vitro beyond this point. In line with this, the in vitro regeneration of mature conifer trees has been a long-cherished goal in many laboratories worldwide. Based on previous works in Pinus species regeneration from adult trees, we now present data about the culture of apical shoot buds in an attempt to induce organogenesis and somatic embryogenesis to clone mature trees of Aleppo pine (Pinus halepensis). Reinvigorated axillary shoots were submitted to conditions usually applied to induce somatic embryogenesis through the manipulation of culture media, including the use of auxins such as 2,4-Dichlorophenoxyacetic acid and 1-Naphthaleneacetic acid, cytokinins (6-benzyladenine and kinetin), and phytosulfokine (50, 100, and 200 nM). Although somatic embryos could not be obtained, an embryogenic-like tissue was produced, followed by the emergence of actively proliferating non-embryogenic calli. Variations in the consistence, texture, and color of non-embryogenic calli were observed; especially those arising in the media containing phytosulfokine. Reinvigorated shoots, induced by 22 or 44 µM 6-benzyladenine, were obtained through organogenesis and acclimatized, and phenotypically normal plants were obtained.
Collapse
|
7
|
Meira FS, Luis ZG, Cardoso IMAS, Scherwinski-Pereira JE. Somatic embryogenesis from leaf tissues of macaw palm [Acrocomia aculeata (Jacq.) Lodd. ex Mart.]. AN ACAD BRAS CIENC 2020; 92:e20180709. [PMID: 33206795 DOI: 10.1590/0001-3765202020180709] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 12/04/2018] [Indexed: 11/22/2022] Open
Abstract
A somatic embryogenesis protocol was developed from the immature leaves of adult plants of the macaw palm. Leaf explants from different regions of the palm heart were used for callus initiation in a modified Y3 medium, supplemented with 2,4-D or Picloram at 450 μM. Calli were separated from the leaf explants at 6-, 9- and 12-month periods and transferred to a fresh culture medium of the same composition. They were multiplied for up to 120 days. Reduced concentrations of 2,4-D and Picloram were used to differentiate somatic embryos. They were then germinated in a medium without plant growth regulators. Morphological and anatomical analyses were conducted at different stages of the embryogenic process. The best results for callus induction were achieved by Picloram, when explants were maintained for up to 9 months on culture medium (64.9%). The farthest portions of the apical meristem were those that provided the biggest calli formation. The formation of the somatic embryos was observed from the calli multiplication phase. Reduction in concentrations of growth regulators failed to promote the formation of complete plants. Picloram at 450 μM promotes high callogenesis in leaf tissues of macaw palm, with a potential for somatic embryo formation.
Collapse
Affiliation(s)
- Filipe S Meira
- Programa de Pós-Graduação em Biotecnologia e Biodiversidade, Universidade de Brasília/UNB, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Rede Pró-Centro-Oeste, Campus Universitário Darcy Ribeiro, Asa Norte, 70910-900 Brasília, DF, Brazil
| | - Zanderluce G Luis
- Universidade Federal do Sul e Sudeste do Pará/UNIFESSPA, Instituto de Estudo em Saúde e Biológicas/IESB, Residencial Total Ville, Nova Marabá, 68507-590 Marabá, PA, Brazil
| | - InaÊ MariÊ A S Cardoso
- Pós-Doutoranda, Embrapa Recursos Genéticos e Biotecnologia, Av. W5 Norte final, PqEB, Asa Norte, 70770-917 Brasília, DF, Brazil
| | - Jonny E Scherwinski-Pereira
- Embrapa Recursos Genéticos e Biotecnologia, Av. W5 Norte (final), PqEB, Asa Norte, 70770-917 Brasília, DF, Brazil
| |
Collapse
|
8
|
Godel-Jedrychowska K, Kulinska-Lukaszek K, Horstman A, Soriano M, Li M, Malota K, Boutilier K, Kurczynska EU. Symplasmic isolation marks cell fate changes during somatic embryogenesis. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2612-2628. [PMID: 31974549 PMCID: PMC7210756 DOI: 10.1093/jxb/eraa041] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 01/22/2020] [Indexed: 05/05/2023]
Abstract
Cell-to-cell signalling is a major mechanism controlling plant morphogenesis. Transport of signalling molecules through plasmodesmata is one way in which plants promote or restrict intercellular signalling over short distances. Plasmodesmata are membrane-lined pores between cells that regulate the intercellular flow of signalling molecules through changes in their size, creating symplasmic fields of connected cells. Here we examine the role of plasmodesmata and symplasmic communication in the establishment of plant cell totipotency, using somatic embryo induction from Arabidopsis explants as a model system. Cell-to-cell communication was evaluated using fluorescent tracers, supplemented with histological and ultrastructural analysis, and correlated with expression of a WOX2 embryo reporter. We showed that embryogenic cells are isolated symplasmically from non-embryogenic cells regardless of the explant type (immature zygotic embryos or seedlings) and inducer system (2,4-dichlorophenoxyacetic acid or the BABY BOOM (BBM) transcription factor), but that the symplasmic domains in different explants differ with respect to the maximum size of molecule capable of moving through the plasmodesmata. Callose deposition in plasmodesmata preceded WOX2 expression in future sites of somatic embryo development, but later was greatly reduced in WOX2-expressing domains. Callose deposition was also associated with a decrease DR5 auxin response in embryogenic tissue. Treatment of explants with the callose biosynthesis inhibitor 2-deoxy-D-glucose supressed somatic embryo formation in all three systems studied, and also blocked the observed decrease in DR5 expression. Together these data suggest that callose deposition at plasmodesmata is required for symplasmic isolation and establishment of cell totipotency in Arabidopsis.
Collapse
Affiliation(s)
- Kamila Godel-Jedrychowska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Katarzyna Kulinska-Lukaszek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Anneke Horstman
- Bioscience, Wageningen University and Research, AA Wageningen, Netherlands
- Laboratory of Molecular Biology, Wageningen University and Research, AA Wageningen, Netherlands
| | - Mercedes Soriano
- Bioscience, Wageningen University and Research, AA Wageningen, Netherlands
| | - Mengfan Li
- Bioscience, Wageningen University and Research, AA Wageningen, Netherlands
- Laboratory of Molecular Biology, Wageningen University and Research, AA Wageningen, Netherlands
| | - Karol Malota
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in KatowiceKatowice, Poland
| | - Kim Boutilier
- Bioscience, Wageningen University and Research, AA Wageningen, Netherlands
| | - Ewa U Kurczynska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
9
|
de Araújo Silva-Cardoso IM, Meira FS, Gomes ACMM, Scherwinski-Pereira JE. Histology, histochemistry and ultrastructure of pre-embryogenic cells determined for direct somatic embryogenesis in the palm tree Syagrus oleracea. PHYSIOLOGIA PLANTARUM 2020; 168:845-875. [PMID: 31517991 DOI: 10.1111/ppl.13026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 07/01/2019] [Accepted: 09/10/2019] [Indexed: 05/11/2023]
Abstract
Somatic embryogenesis in palm trees is, in general, a slow and highly complex process, with a predominance of the indirect route and, consequently, a lack of knowledge about the direct route. We present new knowledge related to the morphological, histochemical and ultrastructural aspects of the transition from somatic to embryogenic cells and direct formation of somatic embryos from mature zygotic embryos of Syagrus oleracea, a palm tree. The results support the general concept that 2,4-dichlorophenoxyacetic acid plays a critical role for the formation of somatic embryos of direct and multicellular origin. Seven days in medium with auxin were enough for the identification of embryogenic cells. These cells had a set of characteristics corresponding to totipotent stem cells. At 14 days on induction medium, nodular formations were observed in the distal region of inoculated embryos, which evolved into globular somatic embryos. At 120 days on induction medium, the quality of the somatic embryos was compromised. The dynamics of the mobilization of reserve compounds was also demonstrated, with emphasis on starch and protein as energy sources required for the embryogenic process. This study shows for the first time the anatomical and ultrastructural events involved in direct somatic embryogenesis in a palm tree and incites the scientific community to return to the discussion of classical concepts related to direct somatic embryogenesis, especially regarding the characteristics and location of determined pre-embryogenic cells.
Collapse
Affiliation(s)
- Inaê M de Araújo Silva-Cardoso
- Department of Forest Engineering, University of Brasília, Brasília, DF, Brazil
- Laboratory of Plant Tissue Culture II, Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil
| | - Filipe S Meira
- Department of Cell Biology, University of Brasília, Brasília, DF, Brazil
| | - Ana C M M Gomes
- Laboratory of Bioimaging and Microscopy, Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil
| | - Jonny E Scherwinski-Pereira
- Laboratory of Plant Tissue Culture II, Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil
- Laboratory of Bioimaging and Microscopy, Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil
| |
Collapse
|
10
|
Xu KD, Wang W, Yu DS, Li XL, Chen JM, Feng BJ, Zhao YW, Cheng MJ, Liu XX, Li CW. NAA at a high concentration promotes efficient plant regeneration via direct somatic embryogenesis and SE-mediated transformation system in Ranunculus sceleratus. Sci Rep 2019; 9:18321. [PMID: 31797961 PMCID: PMC6892856 DOI: 10.1038/s41598-019-54538-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 11/15/2019] [Indexed: 01/08/2023] Open
Abstract
The novel methods for efficient plant regeneration via direct somatic embryogenesis (SE) and SE-mediated transformation system under high concentration of NAA in Ranunculus sceleratus were established. On MS media containing a high concentration of NAA (10.0 mg/L) in the dark, all inoculated explants (root, stem and leaf) formed somatic embryos at high frequencies, respectively, 66.03, 126.47 and 213.63 embryoids per explant, and 100% of the embryoids developed into plantlets on 1/2 MS rooting media. Morphological and histological analyses revealed that SE in R. sceleratus followed a classical pattern. All inoculated explants can be used as receptors for genetic transformation in R. sceleratus, through direct SE-mediated method after Agrobacterium infection. RcLEC1-B, as a marker gene, changed the number and morphology of flower organs and the development of cuticle in R. sceleratus, which indicated that the efficient transgenic system of R. sceleratus was established. To our knowledge, this is the first observation that both direct SE and transgenic transformation system, via induction of a single plant growth regulator, have been successfully constructed in R. sceleratus.
Collapse
Affiliation(s)
- Ke-Dong Xu
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou, 466001, China.,Henan Key Laboratory of Crop Molecular Breeding and Bioreactor, Zhoukou Normal University, Zhoukou, 466001, China
| | - Wei Wang
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou, 466001, China.,Henan Key Laboratory of Crop Molecular Breeding and Bioreactor, Zhoukou Normal University, Zhoukou, 466001, China
| | - De-Shui Yu
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou, 466001, China.,Henan Key Laboratory of Crop Molecular Breeding and Bioreactor, Zhoukou Normal University, Zhoukou, 466001, China
| | - Xiao-Li Li
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou, 466001, China.,Henan Key Laboratory of Crop Molecular Breeding and Bioreactor, Zhoukou Normal University, Zhoukou, 466001, China
| | - Jia-Min Chen
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou, 466001, China.,Henan Key Laboratory of Crop Molecular Breeding and Bioreactor, Zhoukou Normal University, Zhoukou, 466001, China
| | - Bo-Jin Feng
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou, 466001, China.,Henan Key Laboratory of Crop Molecular Breeding and Bioreactor, Zhoukou Normal University, Zhoukou, 466001, China
| | - Ya-Wen Zhao
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou, 466001, China.,Henan Key Laboratory of Crop Molecular Breeding and Bioreactor, Zhoukou Normal University, Zhoukou, 466001, China
| | - Meng-Jia Cheng
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou, 466001, China.,Henan Key Laboratory of Crop Molecular Breeding and Bioreactor, Zhoukou Normal University, Zhoukou, 466001, China
| | - Xin-Xin Liu
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou, 466001, China.,Henan Key Laboratory of Crop Molecular Breeding and Bioreactor, Zhoukou Normal University, Zhoukou, 466001, China
| | - Cheng-Wei Li
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou, 466001, China. .,College of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453003, China. .,Henan Key Laboratory of Crop Molecular Breeding and Bioreactor, Zhoukou Normal University, Zhoukou, 466001, China.
| |
Collapse
|
11
|
Rose RJ. Somatic Embryogenesis in the Medicago truncatula Model: Cellular and Molecular Mechanisms. FRONTIERS IN PLANT SCIENCE 2019; 10:267. [PMID: 30984208 PMCID: PMC6447896 DOI: 10.3389/fpls.2019.00267] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 02/19/2019] [Indexed: 05/02/2023]
Abstract
Medicago truncatula is now widely regarded as a legume model where there is an increasing range of genomic resources. Highly regenerable lines have been developed from the wild-type Jemalong cultivar, most likely due to epigenetic changes. These lines with high rates of somatic embryogenesis (SE) can be compared with wild-type where SE is rare. Much of the research has been with the high SE genotype Jemalong 2HA (2HA). SE can be induced from leaf tissue explants or isolated mesophyll protoplasts. In 2HA, the exogenous phytohormones 1-naphthaleneacetic acid (NAA) and 6-benzylaminopurine (BAP) are central to SE. However, there are interactions with ethylene, abscisic acid (ABA), and gibberellic acid (GA) which produce maximum SE. In the main, somatic embryos are derived from dedifferentiated cells, undergo organellar changes, and produce stem-like cells. There is evidence that the SE is induced as a result of a stress and hormone interaction and this is discussed. In M. truncatula, there are connections between stress and specific up-regulated genes and specific hormones and up-regulated genes during the SE induction phase. Some of the transcription factors have been knocked down using RNAi to show they are critical for SE induction (MtWUSCHEL, MtSERF1). SE research in M. truncatula has utilized high throughput transcriptomic and proteomic studies and the more detailed investigation of some individual genes. In this review, these studies are integrated to suggest a framework and timeline for some of the key events of SE induction in M. truncatula.
Collapse
Affiliation(s)
- Ray J. Rose
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
12
|
Fehér A. Callus, Dedifferentiation, Totipotency, Somatic Embryogenesis: What These Terms Mean in the Era of Molecular Plant Biology? FRONTIERS IN PLANT SCIENCE 2019; 10:536. [PMID: 31134106 PMCID: PMC6524723 DOI: 10.3389/fpls.2019.00536] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 04/08/2019] [Indexed: 05/18/2023]
Abstract
Recent findings call for the critical overview of some incorrectly used plant cell and tissue culture terminology such as dedifferentiation, callus, totipotency, and somatic embryogenesis. Plant cell and tissue culture methods are efficient means to preserve and propagate genotypes with superior germplasm as well as to increase genetic variability for breading. Besides, they are useful research tools and objects of plant developmental biology. The history of plant cell and tissue culture dates back to more than a century. Its basic methodology and terminology were formulated preceding modern plant biology. Recent progress in molecular and cell biology techniques allowed unprecedented insights into the underlying processes of plant cell/tissue culture and regeneration. The main aim of this review is to provide a theoretical framework supported by recent experimental findings to reconsider certain historical, even dogmatic, statements widely used by plant scientists and teachers such as "plant cells are totipotent" or "callus is a mass of dedifferentiated cells," or "somatic embryos have a single cell origin." These statements are based on a confused terminology. Clarification of it might help to avoid further misunderstanding and to overcome potential "terminology-raised" barriers in plant research.
Collapse
Affiliation(s)
- Attila Fehér
- Department of Plant Biology, University of Szeged, Szeged, Hungary
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
- *Correspondence: Attila Fehér, ;
| |
Collapse
|
13
|
Pizarro A, Díaz-Sala C. Cellular dynamics during maturation-related decline of adventitious root formation in forest tree species. PHYSIOLOGIA PLANTARUM 2019; 165:73-80. [PMID: 29884985 DOI: 10.1111/ppl.12768] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 05/22/2018] [Accepted: 05/28/2018] [Indexed: 05/21/2023]
Abstract
Adventitious root formation is a process in which roots are induced, from determined or differentiated cells that have not been specified to develop a root, at positions where they do not normally occur during development. In forest tree species, a decline in the capacity to form adventitious roots from similar cell types in stem cuttings is associated with tree age and maturity. This decline limits the success of vegetative propagation of selected adult trees. The joint action of local signals and a dynamic cascade of regulatory changes in gene expression, resulting in stereotypical cell division patterns, regulate cell fate changes that enable a somatic differentiated cell to reactivate meristem programs toward the induction of an adventitious root meristem.
Collapse
Affiliation(s)
- Alberto Pizarro
- Department of Life Sciences, University of Alcalá, Madrid, 28805, Spain
| | - Carmen Díaz-Sala
- Department of Life Sciences, University of Alcalá, Madrid, 28805, Spain
| |
Collapse
|
14
|
Rocha DI, Vieira LM, Koehler AD, Otoni WC. Cellular and Morpho-histological Foundations of In Vitro Plant Regeneration. Methods Mol Biol 2018; 1815:47-68. [PMID: 29981113 DOI: 10.1007/978-1-4939-8594-4_3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In vitro plant regeneration systems have turned into invaluable tools to plant biotechnology. Despite being poorly understood, the molecular mechanisms underlying the control of both morphogenetic pathways, de novo organogenesis and somatic embryogenesis, have been supported by recent findings involving proteome-, metabolome-, and transcriptome-based profiles. Notwithstanding, the integration of molecular data with structural aspects has been an important strategy of study attempting to elucidate the basis of the cell competence acquisition to further follow commitment and determination to specific a particular in vitro regeneration pathway. In that sense, morpho-histological tools have allowed to recognize cellular markers and patterns of gene expression at cellular level and this way have collaborated in the identification of the cell types with high regenerative capacity. This chapter ties together up those fundamental and important microscopy techniques that help to elucidate that regeneration occurs, most of the time, from epidermis or subepidermal cells and from the procambial cells (pericycle and vascular parenchyma). Important findings are discussed toward ultrastructural differences observed in the nuclear organization among pluripotent and totipotent cells, implying that regeneration occurs from two cellular mechanisms based on cellular reprogramming or reactivation.
Collapse
Affiliation(s)
- Diego Ismael Rocha
- Instituto de Biociências, Universidade Federal de Goiás, Jataí, GO, Brazil
| | - Lorena Melo Vieira
- Laboratório de Cultura de Tecidos-LCT, Instituto de Biotecnologia Aplicada à Agropecuária-BIOAGRO/Departamento de Biologia Vegetal, Campus Universitário, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Andréa Dias Koehler
- Laboratório de Cultura de Tecidos-LCT, Instituto de Biotecnologia Aplicada à Agropecuária-BIOAGRO/Departamento de Biologia Vegetal, Campus Universitário, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Wagner Campos Otoni
- Laboratório de Cultura de Tecidos-LCT, Instituto de Biotecnologia Aplicada à Agropecuária-BIOAGRO/Departamento de Biologia Vegetal, Campus Universitário, Universidade Federal de Viçosa, Viçosa, MG, Brazil.
| |
Collapse
|
15
|
Betekhtin A, Rojek M, Jaskowiak J, Milewska-Hendel A, Kwasniewska J, Kostyukova Y, Kurczynska E, Rumyantseva N, Hasterok R. Nuclear genome stability in long-term cultivated callus lines of Fagopyrum tataricum (L.) Gaertn. PLoS One 2017; 12:e0173537. [PMID: 28278222 PMCID: PMC5344457 DOI: 10.1371/journal.pone.0173537] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Accepted: 02/21/2017] [Indexed: 12/29/2022] Open
Abstract
Long-term cultivated Fagopyrum tataricum (L.) Gaertn. (Tartary buckwheat) morphogenic and non-morphogenic callus lines are interesting systems for gaining a better understanding of the mechanisms that are responsible for the genetic stability and instability of a plant tissue culture. In this work, we used histological sections and transmission electron microscopy to identify and describe the morphology of the nuclei of all of the analysed callus lines. We demonstrated that the embryogenic callus cells had prominent round nuclei that did not contain heterochromatin clumps in contrast to the non-morphogenic callus lines, in which we found nuclei that had multiple lobes. Flow cytometry analysis revealed significant differences in the relative DNA content between the analysed calli. All of the analysed morphogenic callus lines had peaks from 2C to 8C as compared to the non-morphogenic callus lines, whose peaks did not reflect any regular DNA content and exceeded 8C and 16C for the line 6p1 and 16C and 32C for the callus line 10p2A. The results showed that non-morphogenic calli are of an aneuploid nature. The TUNEL test enabled us to visualise the nuclei that had DNA fragmentation in both the morphogenic and non-morphogenic lines. We revealed significantly higher frequencies of positively labelled nuclei in the non-morphogenic lines than in the morphogenic lines. In the case of the morphogenic lines, the highest observed frequency of TUNEL-positive nuclei was 7.7% for lines 2-3. In the non-morphogenic calli, the highest level of DNA damage (68.5%) was revealed in line 6p1. These results clearly indicate greater genome stability in the morphogenic lines.
Collapse
Affiliation(s)
- Alexander Betekhtin
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Magdalena Rojek
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Joanna Jaskowiak
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Anna Milewska-Hendel
- Department of Cell Biology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Jolanta Kwasniewska
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Yulia Kostyukova
- Kazan Institute of Biochemistry and Biophysics of Kazan Science Centre of the Russian Academy of Sciences, Laboratory of Physiology and Genetics of Plant Cell Cultures, Kazan, Russia
| | - Ewa Kurczynska
- Department of Cell Biology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Natalya Rumyantseva
- Kazan Institute of Biochemistry and Biophysics of Kazan Science Centre of the Russian Academy of Sciences, Laboratory of Physiology and Genetics of Plant Cell Cultures, Kazan, Russia
- Kazan Federal University, Institute of Fundamental Medicine and Biology, Department of Botany and Plant Physiology, Kazan, Russia
| | - Robert Hasterok
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
16
|
Kareem A, Radhakrishnan D, Sondhi Y, Aiyaz M, Roy MV, Sugimoto K, Prasad K. De novo assembly of plant body plan: a step ahead of Deadpool. REGENERATION (OXFORD, ENGLAND) 2016; 3:182-197. [PMID: 27800169 PMCID: PMC5084358 DOI: 10.1002/reg2.68] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Revised: 08/12/2016] [Accepted: 08/24/2016] [Indexed: 12/20/2022]
Abstract
While in the movie Deadpool it is possible for a human to recreate an arm from scratch, in reality plants can even surpass that. Not only can they regenerate lost parts, but also the whole plant body can be reborn from a few existing cells. Despite the decades old realization that plant cells possess the ability to regenerate a complete shoot and root system, it is only now that the underlying mechanisms are being unraveled. De novo plant regeneration involves the initiation of regenerative mass, acquisition of the pluripotent state, reconstitution of stem cells and assembly of regulatory interactions. Recent studies have furthered our understanding on the making of a complete plant system in the absence of embryonic positional cues. We review the recent studies probing the molecular mechanisms of de novo plant regeneration in response to external inductive cues and our current knowledge of direct reprogramming of root to shoot and vice versa. We further discuss how de novo regeneration can be exploited to meet the demands of green culture industries and to serve as a general model to address the fundamental questions of regeneration across the plant kingdom.
Collapse
Affiliation(s)
- Abdul Kareem
- School of BiologyIndian Institute of Science Education and ResearchThiruvananthapuramKerala695016India
| | - Dhanya Radhakrishnan
- School of BiologyIndian Institute of Science Education and ResearchThiruvananthapuramKerala695016India
| | - Yash Sondhi
- School of BiologyIndian Institute of Science Education and ResearchThiruvananthapuramKerala695016India
| | - Mohammed Aiyaz
- School of BiologyIndian Institute of Science Education and ResearchThiruvananthapuramKerala695016India
| | - Merin V. Roy
- School of BiologyIndian Institute of Science Education and ResearchThiruvananthapuramKerala695016India
| | - Kaoru Sugimoto
- Department of Applied Biological ScienceFaculty of Science and TechnologyTokyo University of Science2641 YamazakiNodaChiba278‐8510Japan
| | - Kalika Prasad
- School of BiologyIndian Institute of Science Education and ResearchThiruvananthapuramKerala695016India
| |
Collapse
|
17
|
Rocha DI, Pinto DLP, Vieira LM, Tanaka FAO, Dornelas MC, Otoni WC. Cellular and molecular changes associated with competence acquisition during passion fruit somatic embryogenesis: ultrastructural characterization and analysis of SERK gene expression. PROTOPLASMA 2016; 253:595-609. [PMID: 26008651 DOI: 10.1007/s00709-015-0837-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 05/17/2015] [Indexed: 05/18/2023]
Abstract
The integration of cellular and molecular data is essential for understanding the mechanisms involved in the acquisition of competence by plant somatic cells and the cytological changes that underlie this process. In the present study, we investigated the dynamics and fate of Passiflora edulis Sims cotyledon explants that were committed to somatic embryogenesis by characterizing the associated ultrastructural events and analysing the expression of a putative P. edulis ortholog of the Somatic Embryogenesis Receptor-like Kinase (SERK) gene. Embryogenic calli were obtained from zygotic embryo explants cultured on Murashige and Skoog medium supplemented with 2,4-dichlorophenoxyacetic acid and 6-benzyladenine. Callus formation was initiated by the division of cells derived from the protodermal and subprotodermal cells on the abaxial side of the cotyledons. The isodiametric protodermal cells of the cotyledon explants adopted a columnar shape and became meristematic at the onset of PeSERK expression, which was not initially detected in explant cells. Therefore, we propose that these changes represent the first observable steps towards the acquisition of a competent state within this regeneration system. PeSERK expression was limited to the early stages of somatic embryogenesis; the expression of this gene was confined to proembryogenic zones and was absent in the embryos after the globular stage. Our data also demonstrated that the dynamics of the mobilization of reserve compounds correlated with the differentiation of the embryogenic callus.
Collapse
Affiliation(s)
- Diego Ismael Rocha
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Rua Monteiro Lobato 255, Campinas, SP, 13083-862, Brazil
| | - Daniela Lopes Paim Pinto
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà, Pisa, TC, 56127, Italy
| | - Lorena Melo Vieira
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Av. P.H. Rolfs, Viçosa, MG, 36570-900, Brazil
| | - Francisco André Ossamu Tanaka
- Departamento de Fitopatologia e Nematologia, Núcleo de Apoio à Pesquisa em Microscopia Eletrônica Aplicada à Agricultura, Universidade de São Paulo, Piracicaba, SP, 13418-900, Brazil
| | - Marcelo Carnier Dornelas
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Rua Monteiro Lobato 255, Campinas, SP, 13083-862, Brazil
| | - Wagner Campos Otoni
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Av. P.H. Rolfs, Viçosa, MG, 36570-900, Brazil.
- Departamento de Biologia Vegetal, Laboratório de Cultura de Tecidos/BIOAGRO, Campus Universitário, Universidade Federal de Viçosa, Avenida Peter Henry Rolfs s/n, 36570-900, Viçosa, MG, Brazil.
| |
Collapse
|
18
|
Jouannet V, Brackmann K, Greb T. (Pro)cambium formation and proliferation: two sides of the same coin? CURRENT OPINION IN PLANT BIOLOGY 2015; 23:54-60. [PMID: 25449727 PMCID: PMC4353845 DOI: 10.1016/j.pbi.2014.10.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 10/16/2014] [Accepted: 10/16/2014] [Indexed: 05/17/2023]
Abstract
The body of higher plants is usually pervaded by the (pro)cambium, a reticulate system of meristematic cells harboring the potential for producing vascular tissues at critical times and places. The (pro)cambium thereby provides the basis for the differential modulation of long-distance transport capacities and plant body stability. Distinct regulatory networks responsible for the initiation and proliferation of (pro)cambium cells have been identified. However, although a tight interaction between these networks can be expected, connections have been established only sporadically. Here we highlight recent discoveries of how (pro)cambium development is regulated and discuss possible interfaces between networks regulating two processes: (pro)cambium formation and cambium proliferation.
Collapse
Affiliation(s)
- Virginie Jouannet
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria; Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Klaus Brackmann
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Thomas Greb
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria; Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany.
| |
Collapse
|
19
|
Abarca D, Pizarro A, Hernández I, Sánchez C, Solana SP, del Amo A, Carneros E, Díaz-Sala C. The GRAS gene family in pine: transcript expression patterns associated with the maturation-related decline of competence to form adventitious roots. BMC PLANT BIOLOGY 2014; 14:354. [PMID: 25547982 PMCID: PMC4302573 DOI: 10.1186/s12870-014-0354-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Accepted: 11/27/2014] [Indexed: 05/21/2023]
Abstract
BACKGROUND Adventitious rooting is an organogenic process by which roots are induced from differentiated cells other than those specified to develop roots. In forest tree species, age and maturation are barriers to adventitious root formation by stem cuttings. The mechanisms behind the respecification of fully differentiated progenitor cells, which underlies adventitious root formation, are unknown. RESULTS Here, the GRAS gene family in pine is characterized and the expression of a subset of these genes during adventitious rooting is reported. Comparative analyses of protein structures showed that pine GRAS members are conserved compared with their relatives in angiosperms. Relatively high GRAS mRNA levels were measured in non-differentiated proliferating embryogenic cultures and during embryo development. The mRNA levels of putative GRAS family transcription factors, including Pinus radiata's SCARECROW (SCR), PrSCR, and SCARECROW-LIKE (SCL) 6, PrSCL6, were significantly reduced or non-existent in adult tissues that no longer had the capacity to form adventitious roots, but were maintained or induced after the reprogramming of adult cells in rooting-competent tissues. A subset of genes, SHORT-ROOT (PrSHR), PrSCL1, PrSCL2, PrSCL10 and PrSCL12, was also expressed in an auxin-, age- or developmental-dependent manner during adventitious root formation. CONCLUSIONS The GRAS family of pine has been characterized by analyzing protein structures, phylogenetic relationships, conserved motifs and gene expression patterns. Individual genes within each group have acquired different and specialized functions, some of which could be related to the competence and reprogramming of adult cells to form adventitious roots.
Collapse
Affiliation(s)
- Dolores Abarca
- />Department of Life Sciences, University of Alcalá, Ctra. de Barcelona Km 33.600, 28805 Alcalá de Henares, Madrid Spain
| | - Alberto Pizarro
- />Department of Life Sciences, University of Alcalá, Ctra. de Barcelona Km 33.600, 28805 Alcalá de Henares, Madrid Spain
| | - Inmaculada Hernández
- />Department of Life Sciences, University of Alcalá, Ctra. de Barcelona Km 33.600, 28805 Alcalá de Henares, Madrid Spain
| | - Conchi Sánchez
- />Department of Plant Physiology, Instituto de Investigaciones Agrobiológicas de Galicia (CSIC), Apartado 122, 15080 Santiago de Compostela, Spain
| | - Silvia P Solana
- />Department of Life Sciences, University of Alcalá, Ctra. de Barcelona Km 33.600, 28805 Alcalá de Henares, Madrid Spain
| | - Alicia del Amo
- />Department of Life Sciences, University of Alcalá, Ctra. de Barcelona Km 33.600, 28805 Alcalá de Henares, Madrid Spain
| | - Elena Carneros
- />Department of Life Sciences, University of Alcalá, Ctra. de Barcelona Km 33.600, 28805 Alcalá de Henares, Madrid Spain
| | - Carmen Díaz-Sala
- />Department of Life Sciences, University of Alcalá, Ctra. de Barcelona Km 33.600, 28805 Alcalá de Henares, Madrid Spain
| |
Collapse
|
20
|
Delporte F, Pretova A, du Jardin P, Watillon B. Morpho-histology and genotype dependence of in vitro morphogenesis in mature embryo cultures of wheat. PROTOPLASMA 2014; 251:1455-70. [PMID: 24763701 PMCID: PMC4209243 DOI: 10.1007/s00709-014-0647-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 04/08/2014] [Indexed: 05/08/2023]
Abstract
Cellular totipotency is one of the basic principles of plant biotechnology. Currently, the success of the procedure used to produce transgenic plants is directly proportional to the successful insertion of foreign DNA into the genome of suitable target tissue/cells that are able to regenerate plants. The mature embryo (ME) is increasingly recognized as a valuable explant for developing regenerable cell lines in wheat biotechnology. We have previously developed a regeneration procedure based on fragmented ME in vitro culture. Before we can use this regeneration system as a model for molecular studies of the morphogenic pathway induced in vitro and investigate the functional links between regenerative capacity and transformation receptiveness, some questions need to be answered. Plant regeneration from cultured tissues is genetically controlled. Factors such as age/degree of differentiation and physiological conditions affect the response of explants to culture conditions. Plant regeneration in culture can be achieved through embryogenesis or organogenesis. In this paper, the suitability of ME tissues for tissue culture and the chronological series of morphological data observed at the macroscopic level are documented. Genetic variability at each step of the regeneration process was evaluated through a varietal comparison of several elite wheat cultivars. A detailed histological analysis of the chronological sequence of morphological events during ontogeny was conducted. Compared with cultures of immature zygotic embryos, we found that the embryogenic pathway occurs slightly earlier and is of a different origin in our model. Cytological, physiological, and some biochemical aspects of somatic embryo formation in wheat ME culture are discussed.
Collapse
Affiliation(s)
- Fabienne Delporte
- Department of Life Sciences, Bioengineering Unit, Walloon Agricultural Research Centre (CRA-W), Chaussée de Charleroi 234, 5030 Gembloux, Belgium
| | - Anna Pretova
- Institute of Plant Genetics and Biotechnology, Slovak Academy of Sciences, Akademicka 2, P.O. Box 39 A, 950 07 Nitra, Slovakia
- Department of Biology- Faculty of Natural Sciences, University of SS Cyril and Methodius in Trnava, Nám. J. Herdu 2, SK 917 01 Trnava, Slovak Republic
| | - Patrick du Jardin
- Gembloux Agro-Bio Tech, Plant Biology Unit, University of Liège (ULg), Passage des Déportés, 2, 5030 Gembloux, Belgium
| | - Bernard Watillon
- Department of Life Sciences, Bioengineering Unit, Walloon Agricultural Research Centre (CRA-W), Chaussée de Charleroi 234, 5030 Gembloux, Belgium
| |
Collapse
|
21
|
Micro-cloning of an economic rattan palm Calamus thwaitesii for eco-restoration programme. Biologia (Bratisl) 2014. [DOI: 10.2478/s11756-014-0359-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
Díaz-Sala C. Direct reprogramming of adult somatic cells toward adventitious root formation in forest tree species: the effect of the juvenile-adult transition. FRONTIERS IN PLANT SCIENCE 2014; 5:310. [PMID: 25071793 PMCID: PMC4083218 DOI: 10.3389/fpls.2014.00310] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 06/10/2014] [Indexed: 05/12/2023]
Abstract
Cellular plasticity refers, among others, to the capability of differentiated cells to switch the differentiation process and acquire new fates. One way by which plant cell plasticity is manifested is through de novo regeneration of organs from somatic differentiated cells in an ectopic location. However, switching the developmental program of adult cells prior to organ regeneration is difficult in many plant species, especially in forest tree species. In these species, a decline in the capacity to regenerate shoots, roots, or embryos from somatic differentiated cells is associated with tree age and maturation. The decline in the ability to form adventitious roots from stem cuttings is one of the most dramatic effects of maturation, and has been the subject of investigations on the basic nature of the process. Cell fate switches, both in plants and animals, are characterized by remarkable changes in the pattern of gene expression, as cells switch from the characteristic expression pattern of a somatic cell to a new one directing a new developmental pathway. Therefore, determining the way by which cells reset their gene expression pattern is crucial to understand cellular plasticity. The presence of specific cellular signaling pathways or tissue-specific factors underlying the establishment, maintenance, and redirection of gene expression patterns in the tissues involved in adventitious root formation could be crucial for cell fate switch and for the control of age-dependent cellular plasticity.
Collapse
Affiliation(s)
- Carmen Díaz-Sala
- *Correspondence: Carmen Díaz-Sala, Department of Life Sciences, University of Alcalá, Carretera Madrid–Barcelona Km 33.600, 28805 Alcalá de Henares, Madrid, Spain e-mail:
| |
Collapse
|
23
|
Abstract
Plants have evolved powerful regeneration abilities to recover from damage. Studies on plant regeneration are of high significance as the underlying mechanisms of plant regeneration are not only linking to the fundamental researches in many fields but also to the development of widely used plant biotechnology. Higher plants show three main types of regeneration: tissue regeneration, de novo organogenesis, and somatic embryogenesis. In this review, we summarize recent research on plant regeneration, mainly focusing on Arabidopsis thaliana and moss. New data suggest that plant hormones trigger regeneration and that several key transcription factors respond to hormone signals to determine cell-fate transition. Cell-fate transition requires genome-wide changes in gene expression, which are regulated via epigenetic pathways. Certain epigenetic factors may be recruited by transcription factors to relocate to new loci and regulate gene expression. Cross talk among hormone signaling, transcription factors, and epigenetic factors is involved in different types of plant regeneration, suggesting that elegant and complex regulatory mechanisms control which type of regeneration is triggered in plants under different circumstances. Since regeneration is initiated by wounding, identification of the wound signal is an important objective for future research.
Collapse
Affiliation(s)
- Lin Xu
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Hai Huang
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
24
|
Graner ÉM, Oberschelp GPJ, Brondani GE, Batagin-Piotto KD, de Almeida CV, de Almeida M. TDZ pulsing evaluation on the in vitro morphogenesis of peach palm. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2013; 19:283-8. [PMID: 24431497 PMCID: PMC3656191 DOI: 10.1007/s12298-012-0160-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Peach palm (Bactris gasipaes Kunth.) cropping is an excellent alternative to native species exploitation; nevertheless, the problems with seed germination and conventional propagation justify the use of in vitro culturing. Aiming to asses TDZ pulsing effect on B. gasipaes morphogenesis, explants obtained from unarmed microplants were maintained in two treatments, half of them in MS free medium (without growth regulator) and the other half in MS with TDZ (0.36 μM). Both groups were transferred to growth regulator-free MS medium following 14 days of culture. After 84 days of culture, TDZ pulsing increased the growth and development of the shoots, restricted the growth and development of the roots, with no influence on adventitious bud induction or somatic embryogenesis. Furthermore, development of prickles, thickening of roots and chlorotic leaves were noted under TDZ pulsing. Leaf sheath histological analysis showed an epidermal origin and no vascularization of these prickles.
Collapse
Affiliation(s)
- Érika Mendes Graner
- />Escola Superior de Agricultura “Luiz de Queiroz”, Depto. de Ciências Biológicas, PPG em Fisiologia e Bioquímica de Plantas, Universidade de São Paulo, Av. Pádua Dias, n° 11, Caixa Postal 09, 13418-900 Piracicaba, São Paulo Brasil
| | - Gustavo Pedro Javier Oberschelp
- />Escola Superior de Agricultura “Luiz de Queiroz”, Depto. de Ciências Florestais, PPG em Recursos Florestais, Universidade de São Paulo, Av. Pádua Dias, n° 11, Caixa Postal 09, 13418-900 Piracicaba, São Paulo Brasil
- />Instituto Nacional de Tecnología Agropecuaria, EEA Concordia, Estación Yuquerí s/n s/n CC 54, Concordia, Entre Ríos Argentina
| | - Gilvano Ebling Brondani
- />Engenheiro Florestal, Dr., Departamento de Engenharia Florestal, Universidade Federal de Mato Grosso, Av. Fernando Corrêa da Costa, 2367, Bairro Boa Esperança, 78060-900 Cuiabá, Mato Grosso Brasil
| | - Katherine Derlene Batagin-Piotto
- />Escola Superior de Agricultura “Luiz de Queiroz”, Depto. de Ciências Biológicas, PPG em Fisiologia e Bioquímica de Plantas, Universidade de São Paulo, Av. Pádua Dias, n° 11, Caixa Postal 09, 13418-900 Piracicaba, São Paulo Brasil
| | | | - Marcílio de Almeida
- />Escola Superior de Agricultura “Luiz de Queiroz”, Depto. de Ciências Biológicas, PPG em Fisiologia e Bioquímica de Plantas, Universidade de São Paulo, Av. Pádua Dias, n° 11, Caixa Postal 09, 13418-900 Piracicaba, São Paulo Brasil
- />Escola Superior de Agricultura “Luiz de Queiroz”, Depto. de Ciências Florestais, PPG em Recursos Florestais, Universidade de São Paulo, Av. Pádua Dias, n° 11, Caixa Postal 09, 13418-900 Piracicaba, São Paulo Brasil
| |
Collapse
|