1
|
Turco S, Brugneti F, Giubilei I, Silvestri C, Petrović M, Drais MI, Cristofori V, Speranza S, Mazzaglia A, Contarini M, Rossini L. A bud's life: Metabarcoding analysis to characterise hazelnut big buds microbiome biodiversity. Microbiol Res 2024; 287:127851. [PMID: 39094393 DOI: 10.1016/j.micres.2024.127851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 08/04/2024]
Abstract
Despite Corylus avellana L. being an economically important shrub species known for its resilience to adverse environmental conditions, it constantly faces attacks from a plethora of biotic entities. Among these, the mite pest Phytoptus avellanae is gaining importance, causing economic losses every year. This mite colonises the new generative and vegetative buds, leading them to become swollen and reddish, and drastically reducing hazelnut production. The biology behind gall formation is still poorly understood. This study provides a qualitative and quantitative description of the microbiome in both healthy and infested buds of two economically important hazelnut cultivars through metabarcoding of fungal ITS and bacterial 16 S. Potentially pathogenic genera such as Fusarium and Pseudomonas were predominant in the infested buds, along with the obligate intracellular bacterial genus Wolbachia. Akanthomyces muscarius was instead isolated from culture-based methods only from the infested buds. These findings could improve the understanding of gall ecology, supporting the management of mite populations, and they could also serve as a milestone for further studies on low-impact, monitoring-driven, and genetically targeted control strategies.
Collapse
Affiliation(s)
- Silvia Turco
- Dipartimento di Scienze Agrarie e Forestali, Università degli Studi della Tuscia, Via San Camillo de Lellis snc, Viterbo 01100, Italy.
| | - Federico Brugneti
- Dipartimento di Scienze Agrarie e Forestali, Università degli Studi della Tuscia, Via San Camillo de Lellis snc, Viterbo 01100, Italy
| | - Irene Giubilei
- Dipartimento di Scienze Agrarie e Forestali, Università degli Studi della Tuscia, Via San Camillo de Lellis snc, Viterbo 01100, Italy
| | - Cristian Silvestri
- Dipartimento di Scienze Agrarie e Forestali, Università degli Studi della Tuscia, Via San Camillo de Lellis snc, Viterbo 01100, Italy
| | - Miloš Petrović
- Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, Novi Sad, Serbia
| | - Mounira Inas Drais
- Dipartimento di Scienze Agrarie e Forestali, Università degli Studi della Tuscia, Via San Camillo de Lellis snc, Viterbo 01100, Italy
| | - Valerio Cristofori
- Dipartimento di Scienze Agrarie e Forestali, Università degli Studi della Tuscia, Via San Camillo de Lellis snc, Viterbo 01100, Italy
| | - Stefano Speranza
- Dipartimento di Scienze Agrarie e Forestali, Università degli Studi della Tuscia, Via San Camillo de Lellis snc, Viterbo 01100, Italy; Centro de Estudios Parasitológicos y de Vectores (CEPAVE, CONICET-UNLP), La Plata, Argentina
| | - Angelo Mazzaglia
- Dipartimento di Scienze Agrarie e Forestali, Università degli Studi della Tuscia, Via San Camillo de Lellis snc, Viterbo 01100, Italy
| | - Mario Contarini
- Dipartimento di Scienze Agrarie e Forestali, Università degli Studi della Tuscia, Via San Camillo de Lellis snc, Viterbo 01100, Italy
| | - Luca Rossini
- Service d'Automatique et d'Analyse des Systèmes, Université Libre de Bruxelles, Av. F.D. Roosevelt 50, Brussels 1050, Belgium.
| |
Collapse
|
2
|
Liu H, Yang Q, Li J, Yang L, Zhao A, Huang Y, Liu H, Wu S, Jiang M. Microbacterium rhizophilus sp. nov., an indole acetic acid-producing actinobacterium isolated from rhizosphere soil. Antonie Van Leeuwenhoek 2024; 118:2. [PMID: 39269614 DOI: 10.1007/s10482-024-02014-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024]
Abstract
A novel gram-stain-positive, short rod, aerobic, non-motile and non-spore-forming actinobacterial strain, designated GXG1230T was isolated from the rhizosphere soil of a coastal mangrove forest in Beihai city, Guangxi Zhuang Autonomous Region, PR China. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain GXG1230T was affiliated with the genus Microbacterium. Additionally, it demonstrated a high degree of similarity to Microbacterium paludicola US15T (97.9%) and Microbacterium marinilacus YM11-607T (97.3%). Chemotaxonomic characteristics showed that the whole-cell sugars were glucose, xylose, rhamnose and galactose. Menaquinones MK-11 and MK-12 were detected as respiratory quinones. Lysine was found in the peptidoglycan hydrolysate and the polar lipids were diphosphatidylglycerol, one phospholipid and two unidentified glycolipid. The major fatty acids were anteiso-C15:0, iso-C16:0 and anteiso-C17:0. The strain GXG1230T exhibited a genomic DNA G + C content of 71.7%. Furthermore, the average nucleotide identity values of GXG1230T with the reference strains were 75.4% and 81.9%, respectively, while the digital DNA-DNA hybridization values were 20.1% and 25.0%. Based on physiological, chemotaxonomic and phylogenetic information, strain GXG1230T is considered to represent a novel species of the genus Microbacterium, for which the name Microbacterium rhizophilus sp.nov is proposed, with GXG1230T (= MCCC 1K09302T = KCTC 59252T) as the type strain.
Collapse
Affiliation(s)
- Haifei Liu
- School of Marine Science and Biotechnology, Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Minzu University, Nanning, 530008, People's Republic of China
| | - Quan Yang
- School of Marine Science and Biotechnology, Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Minzu University, Nanning, 530008, People's Republic of China
| | - Jiawei Li
- School of Marine Science and Biotechnology, Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Minzu University, Nanning, 530008, People's Republic of China
| | - Lifang Yang
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning, 530008, People's Republic of China
| | - Aolin Zhao
- School of Marine Science and Biotechnology, Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Minzu University, Nanning, 530008, People's Republic of China
| | - Ying Huang
- School of Marine Science and Biotechnology, Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Minzu University, Nanning, 530008, People's Republic of China
| | - Hongcun Liu
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning, 530008, People's Republic of China
| | - Shujing Wu
- School of Marine Science and Biotechnology, Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Minzu University, Nanning, 530008, People's Republic of China
| | - Mingguo Jiang
- School of Marine Science and Biotechnology, Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Minzu University, Nanning, 530008, People's Republic of China.
| |
Collapse
|
3
|
Waheed Z, Iqbal S, Irfan M, Jabeen K, Umar A, Aljowaie RM, Almutairi SM, Gancarz M. Pseudochrobactrum asaccharolyticum mitigates arsenic induced oxidative stress of maize plant by enhancing water status and antioxidant defense system. BMC PLANT BIOLOGY 2024; 24:832. [PMID: 39232682 PMCID: PMC11376096 DOI: 10.1186/s12870-024-05496-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 08/07/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND Oxidative stress mediated by reactive oxygen species (ROS) is a common denominator in arsenic toxicity. Arsenic stress in soil affects the water absorption, decrease stomatal conductance, reduction in osmotic, and leaf water potential, which restrict water uptake and osmotic stress in plants. Arsenic-induced osmotic stress triggers the overproduction of ROS, which causes a number of germination, physiological, biochemical, and antioxidant alterations. Antioxidants with potential to reduce ROS levels ameliorate the arsenic-induced lesions. Plant growth promoting rhizobacteria (PGPR) increase the total soluble sugars and proline, which scavenging OH radicals thereby prevent the oxidative damages cause by ROS. The main objective of this study was to evaluate the potential role of Arsenic resistant PGPR in growth of maize by mitigating arsenic stress. METHODOLOGY Arsenic tolerant PGPR strain MD3 (Pseudochrobactrum asaccharolyticum) was used to dismiss the 'As' induced oxidative stress in maize grown at concentrations of 50 and 100 mg/kg. Previously isolated arsenic tolerant bacterial strain MD3 "Pseudochrobactrum asaccharolyticum was used for this experiment. Further, growth promoting potential of MD3 was done by germination and physio-biochemical analysis of maize seeds. Experimental units were arranged in Completely Randomized Design (CRD). A total of 6 sets of treatments viz., control, arsenic treated (50 & 100 mg/kg), bacterial inoculated (MD3), and arsenic stress plus bacterial inoculated with three replicates were used for Petri plates and pot experiments. After treating with this MD3 strain, seeds of corn were grown in pots filled with or without 50 mg/kg and 100 mg/kg sodium arsenate. RESULTS The plants under arsenic stress (100 mg/kg) decreased the osmotic potential (0.8 MPa) as compared to control indicated the osmotic stress, which caused the reduction in growth, physiological parameters, proline accumulation, alteration in antioxidant enzymes (Superoxide dismutase-SOD, catalase-CAT, peroxidase-POD), increased MDA content, and H2O2 in maize plants. As-tolerant Pseudochrobactrum asaccharolyticum improved the plant growth by reducing the oxidation stress and antioxidant enzymes by proline accumulation. PCA analysis revealed that all six treatments scattered differently across the PC1 and PC2, having 85.51% and 9.72% data variance, respectively. This indicating the efficiency of As-tolerant strains. The heatmap supported the As-tolerant strains were positively correlated with growth parameters and physiological activities of the maize plants. CONCLUSION This study concluded that Pseudochrobactrum asaccharolyticum reduced the 'As' toxicity in maize plant through the augmentation of the antioxidant defense system. Thus, MD3 (Pseudochrobactrum asaccharolyticum) strain can be considered as bio-fertilizer.
Collapse
Affiliation(s)
- Zainab Waheed
- Department of Botany, Lahore College for Women University, Lahore, Pakistan
| | - Sumera Iqbal
- Department of Botany, Lahore College for Women University, Lahore, Pakistan.
| | - Muhammad Irfan
- KAM School of Life Sciences, Forman Christian College, Lahore, Pakistan
| | - Khajista Jabeen
- Department of Botany, Lahore College for Women University, Lahore, Pakistan
| | - Aisha Umar
- Institute of Botany, University of the Punjab, Lahore, Pakistan.
| | - Reem M Aljowaie
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| | - Saeedah Musaed Almutairi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| | - Marek Gancarz
- Faculty of Production and Power Engineering, University of Agriculture in Krakow, Balicka 116B, Krakow, 30-149, Poland
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, Lublin, 20-290, Poland
| |
Collapse
|
4
|
Li F, Lu S, Sun W. Comparison of Rhizosphere Bacterial Communities of Pinus squamata, a Plant Species with Extremely Small Populations (PSESP) in Different Conservation Sites. Microorganisms 2024; 12:638. [PMID: 38674583 PMCID: PMC11051972 DOI: 10.3390/microorganisms12040638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Pinus squamata is one of the most threatened conifer species in the world. It is endemic to northeastern Yunnan Province, China, and has been prioritized as a Plant Species with Extremely Small Populations (PSESP). The integrated study of soil properties and rhizosphere bacteria can assist conservation to understand the required conditions for the protection and survival of rare and endangered species. However, differences between the rhizospheric bacterial communities found in the soil surrounding P. squamata at different conservation sites remain unclear. In this study, Samples were collected from wild, ex situ, and reintroduced sites. Bacterial communities in different conservation sites of P. squamata rhizosphere soils were compared using Illumina sequencing. The soil physicochemical properties were determined, the relationships between the bacterial communities and soil physicochemical factors were analyzed, and the potential bacterial ecological functions were predicted. The reintroduced site Qiaojia (RQ) had the highest richness and diversity of bacterial community. Actinobacteria, Proteobacteria, and Acidobacteriota were the dominant phyla, and Bradyrhizobium, Mycobacterium, Acidothermus were the most abundant genera. Samples were scattered (R = 0.93, p = 0.001), indicating significant difference between the different conservation sites. The abundance of Mycobacterium differed between sites (0.01 < p ≤ 0.05), and the relative abundances of Bradyrhizobium and Acidothermus differed significantly among different sites (0.001 < p ≤ 0.01). Soil total potassium (TK) and available nitrogen (AN) were the main factors driving bacterial community at the phylum level (0.01 < p ≤ 0.05). This study generated the first insights into the diversity, compositions, and potential functions of bacterial communities associated with the rhizosphere soils of P. squamata in different conservation sites and provides a foundation to assess the effect of conservation based on bacterial diversity and plant growth-promoting rhizobacteria (PGPR) to guide future research into the conservation of P. squamata.
Collapse
Affiliation(s)
- Fengrong Li
- School of Life Sciences, Yunnan University, Kunming 650091, China;
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shugang Lu
- School of Life Sciences, Yunnan University, Kunming 650091, China;
| | - Weibang Sun
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| |
Collapse
|
5
|
Hathurusinghe SHK, Azizoglu U, Shin JH. Holistic Approaches to Plant Stress Alleviation: A Comprehensive Review of the Role of Organic Compounds and Beneficial Bacteria in Promoting Growth and Health. PLANTS (BASEL, SWITZERLAND) 2024; 13:695. [PMID: 38475541 DOI: 10.3390/plants13050695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/06/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024]
Abstract
Plants select microorganisms from the surrounding bulk soil, which act as a reservoir of microbial diversity and enrich a rhizosphere microbiome that helps in growth and stress alleviation. Plants use organic compounds that are released through root exudates to shape the rhizosphere microbiome. These organic compounds are of various spectrums and technically gear the interplay between plants and the microbial world. Although plants naturally produce organic compounds that influence the microbial world, numerous efforts have been made to boost the efficiency of the microbiome through the addition of organic compounds. Despite further crucial investigations, synergistic effects from organic compounds and beneficial bacteria combinations have been reported. In this review, we examine the relationship between organic compounds and beneficial bacteria in determining plant growth and biotic and abiotic stress alleviation. We investigate the molecular mechanism and biochemical responses of bacteria to organic compounds, and we discuss the plant growth modifications and stress alleviation done with the help of beneficial bacteria. We then exhibit the synergistic effects of both components to highlight future research directions to dwell on how microbial engineering and metagenomic approaches could be utilized to enhance the use of beneficial microbes and organic compounds.
Collapse
Affiliation(s)
| | - Ugur Azizoglu
- Department of Crop and Animal Production, Safiye Cikrikcioglu Vocational College, Kayseri University, Kayseri 38039, Turkey
- Genome and Stem Cell Research Center, Erciyes University, Kayseri 38039, Turkey
| | - Jae-Ho Shin
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
- Department of Integrative Biology, Kyungpook National University, Daegu 41566, Republic of Korea
- NGS Core Facility, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
6
|
Guo Z, Qin Y, Lv J, Wang X, Ye T, Dong X, Du N, Zhang T, Piao F, Dong H, Shen S. High red/far-red ratio promotes root colonization of Serratia plymuthica A21-4 in tomato by root exudates-stimulated chemotaxis and biofilm formation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108245. [PMID: 38064903 DOI: 10.1016/j.plaphy.2023.108245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 11/08/2023] [Accepted: 11/27/2023] [Indexed: 02/15/2024]
Abstract
Effective colonization on plant roots is a prerequisite for plant growth promoting rhizobacterias (PGPR) to exert beneficial activities. Light is essential for plant growth, development and stress response. However, how light modulates root colonization of PGPR remains unclear. Here, we found that high red/far red (R/FR) light promoted and low R/FR light inhibited the colonization and growth enhancement of Serratia plymuthica A21-4 (S. plymuthica A21-4) on tomato, respectively. Non-targeted metabolomic analysis of root exudates collected from different R/FR ratio treated tomato seedlings with or without S. plymuthica A21-4 inoculation by UPLC-MS/MS showed that 64 primary metabolites in high R/FR light-grown plants significantly increased compared with those determined for low R/FR light-grown plants. Among them, 7 amino acids, 1 organic acid and 1 sugar obviously induced the chemotaxis and biofilm formation of S. plymuthica A21-4 compared to the control. Furthermore, exogenous addition of five artificial root exudate compontents (leucine, methionine, glutamine, 6-aminocaproic acid and melezitose) regained and further increased the colonization ability and growth promoting ability of S. plymuthica A21-4 on tomato under low R/FR light and high R/FR light, respectively, indicating their involvement in high R/FR light-regulated the interaction of tomato root and S. plymuthica A21-4. Taken together, our results, for the first time, clearly demonstrate that high R/FR light-induced root exudates play a key role in chemotaxis, biofilm formation and root colonization of S. plymuthica A21-4. This study can help promote the combined application of light supplementation and PGPR to facilitate crop growth and health in green agricultural production.
Collapse
Affiliation(s)
- Zhixin Guo
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, PR China; International Joint Laboratory of Henan Horticultural Crop Biology, Henan Provincial Facility Horticulture Engineering Technology Research Center, Zhengzhou, 450046, PR China
| | - Yanping Qin
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, PR China
| | - Jingli Lv
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, PR China
| | - Xiaojie Wang
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, PR China
| | - Ting Ye
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, PR China
| | - Xiaoxing Dong
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, PR China
| | - Nanshan Du
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, PR China
| | - Tao Zhang
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, PR China
| | - Fengzhi Piao
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, PR China
| | - Han Dong
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, PR China; International Joint Laboratory of Henan Horticultural Crop Biology, Henan Provincial Facility Horticulture Engineering Technology Research Center, Zhengzhou, 450046, PR China.
| | - Shunshan Shen
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450046, PR China.
| |
Collapse
|
7
|
Abdul Khalil HPS, Jha K, Yahya EB, Panchal S, Patel N, Garai A, Kumari S, Jameel M. Insights into the Potential of Biopolymeric Aerogels as an Advanced Soil-Fertilizer Delivery Systems. Gels 2023; 9:666. [PMID: 37623121 PMCID: PMC10453695 DOI: 10.3390/gels9080666] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/18/2023] [Accepted: 08/15/2023] [Indexed: 08/26/2023] Open
Abstract
Soil fertilizers have the potential to significantly increase crop yields and improve plant health by providing essential nutrients to the soil. The use of fertilizers can also help to improve soil structure and fertility, leading to more resilient and sustainable agricultural systems. However, overuse or improper use of fertilizers can lead to soil degradation, which can reduce soil fertility, decrease crop yields, and damage ecosystems. Thus, several attempts have been made to overcome the issues related to the drawbacks of fertilizers, including the development of an advanced fertilizer delivery system. Biopolymer aerogels show promise as an innovative solution to improve the efficiency and effectiveness of soil-fertilizer delivery systems. Further research and development in this area could lead to the widespread adoption of biopolymer aerogels in agriculture, promoting sustainable farming practices and helping to address global food-security challenges. This review discusses for the first time the potential of biopolymer-based aerogels in soil-fertilizer delivery, going through the types of soil fertilizer and the advert health and environmental effects of overuse or misuse of soil fertilizers. Different types of biopolymer-based aerogels were discussed in terms of their potential in fertilizer delivery and, finally, the review addresses the challenges and future directions of biopolymer aerogels in soil-fertilizer delivery.
Collapse
Affiliation(s)
- H. P. S. Abdul Khalil
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia; (K.J.); (N.P.); (S.K.)
- Green Biopolymer, Coatings and Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia
| | - Kanchan Jha
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia; (K.J.); (N.P.); (S.K.)
| | - Esam Bashir Yahya
- Green Biopolymer, Coatings and Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia
| | - Sandeep Panchal
- Department of Civil Engineering, Government Polytechnic Mankeda, Agra 283102, Uttar Pradesh, India;
| | - Nidhi Patel
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia; (K.J.); (N.P.); (S.K.)
| | - Arindam Garai
- Department of Mathematics, Sonarpur Mahavidyalaya, Kolkata 700149, West Bengal, India;
| | - Soni Kumari
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia; (K.J.); (N.P.); (S.K.)
| | - Mohammed Jameel
- Department of Civil Engineering, College of Engineering, King Khalid University, Abha 61421, Asir, Saudi Arabia;
| |
Collapse
|
8
|
Wang S, Zhou T, Zhao H, Zhang K, Cui J. Temporal and spatial changes in rhizosphere bacterial diversity of mountain Rhododendron mucronulatum. Front Microbiol 2023; 14:1201274. [PMID: 37415822 PMCID: PMC10321304 DOI: 10.3389/fmicb.2023.1201274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/05/2023] [Indexed: 07/08/2023] Open
Abstract
To better conserve the ecology of the wild Rhododendron mucronulatum range, we studied the rhizosphere microenvironment of R. mucronulatum in Beijing's Yunmeng Mountain National Forest Park. R. mucronulatum rhizosphere soil physicochemical properties and enzyme activities changed significantly with temporal and elevational gradients. The correlations between soil water content (SWC), electrical conductivity (EC), organic matter content (OM), total nitrogen content (TN), catalase activity (CAT), sucrose-converting enzyme activity (INV), and urease activity (URE) were significant and positive in the flowering and deciduous periods. The alpha diversity of the rhizosphere bacterial community was significantly higher in the flowering period than in the deciduous period, and the effect of elevation was insignificant. The diversity of the R. mucronulatum rhizosphere bacterial community changed significantly with the change in the growing period. A network analysis of the correlations revealed stronger linkages between the rhizosphere bacterial communities in the deciduous period than in the flowering period. Rhizomicrobium was the dominant genus in both periods, but its relative abundance decreased in the deciduous period. Changes in the relative abundance of Rhizomicrobium may be the main factor influencing the changes in the R. mucronulatum rhizosphere bacterial community. Moreover, the R. mucronulatum rhizosphere bacterial community and soil characteristics were significantly correlated. Additionally, the influence of soil physicochemical properties on the rhizosphere bacterial community was larger than that of enzyme activity on the bacterial community. We mainly analyzed the change patterns in the rhizosphere soil properties and rhizosphere bacterial diversity of R. mucronulatum during temporal and spatial variation, laying the foundation for further understanding of the ecology of wild R. mucronulatum.
Collapse
Affiliation(s)
- Sirui Wang
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, China
| | - Tiantian Zhou
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, China
| | - Hewen Zhao
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, China
| | - Kezhong Zhang
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, China
| | - Jinteng Cui
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, China
- Ancient Tree Health and Culture Engineering Technology Research Center, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
9
|
Cai Q, Xu M, Ma J, Zhang X, Yang G, Long L, Chen C, Wu J, Song C, Xiao Y. Improvement of cadmium immobilization in contaminated paddy soil by using ureolytic bacteria and rice straw. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162594. [PMID: 36870501 DOI: 10.1016/j.scitotenv.2023.162594] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Cadmium (Cd) in paddy soil can be immobilized via microbially induced carbonate precipitation (MICP), but it poses a risk to the properties and eco-function of the soil. In this study, rice straw coupled with Sporosarcina pasteurii (S. pasteurii) was used to treat Cd-contaminated paddy soil with minimizing the detrimental effects of MICP. Results showed that the application of rice straw coupled with S. pasteurii reduced Cd bioavailability. The X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) confirmed that Cd immobilization efficiency was increased in the rice straw coupled with S. pasteurii treatment via co-precipitating with CaCO3. Moreover, rice straw coupled with S. pasteurii enhanced soil fertility and ecological functions as reflected by the high amount of alkaline hydrolysis nitrogen (AN) (14.9 %), available phosphorus (AP) (13.6 %), available potassium (AK) (60.0 %), catalase (9.95 %), dehydrogenase (736 %), and phosphatase (214 %). Further, the relative abundance of dominant phyla such as Proteobacteria and Firmicutes significantly increased when applying both rice straw coupled with S. pasteurii. The most significant environmental factors that affected the composition of the bacterial community were AP (41.2 %), phosphatase (34.2 %), and AK (8.60 %). In conclusion, using rice straw mixed with S. pasteurii is a promising application to treat Cd-contaminated paddy soil due to its positive effects on treating soil Cd as well as its ability to reduce the detrimental effects of the MICP process.
Collapse
Affiliation(s)
- Qian Cai
- College of Environmental Science, Sichuan Agricultural University, Chengdu 611130, China
| | - Min Xu
- College of Environmental Science, Sichuan Agricultural University, Chengdu 611130, China.
| | - Jing Ma
- College of Water Conservancy and Hydropower Engineering, Sichuan Agricultural University, Ya'an 625014, China
| | - Xiaohong Zhang
- College of Environmental Science, Sichuan Agricultural University, Chengdu 611130, China
| | - Gang Yang
- College of Environmental Science, Sichuan Agricultural University, Chengdu 611130, China
| | - Lulu Long
- College of Environmental Science, Sichuan Agricultural University, Chengdu 611130, China
| | - Chao Chen
- College of Environmental Science, Sichuan Agricultural University, Chengdu 611130, China
| | - Jun Wu
- College of Environmental Science, Sichuan Agricultural University, Chengdu 611130, China
| | - Chun Song
- College of Environmental Science, Sichuan Agricultural University, Chengdu 611130, China
| | - Yinlong Xiao
- College of Environmental Science, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
10
|
Devi S, Sharma S, Tiwari A, Bhatt AK, Singh NK, Singh M, Kumar A. Screening for Multifarious Plant Growth Promoting and Biocontrol Attributes in Bacillus Strains Isolated from Indo Gangetic Soil for Enhancing Growth of Rice Crops. Microorganisms 2023; 11:microorganisms11041085. [PMID: 37110508 PMCID: PMC10142854 DOI: 10.3390/microorganisms11041085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 03/28/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Multifarious plant growth-promoting Bacillus strains recovered from rhizospheric soils of the Indo Gangetic plains (IGPs) were identified as Bacillus licheniformis MNNITSR2 and Bacillus velezensis MNNITSR18 based on their biochemical characteristics and 16S rDNA gene analysis. Both strains exhibited the ability to produce IAA, siderophores, ammonia, lytic enzymes, HCN production, and phosphate solubilization capability and strongly inhibited the growth of phytopathogens such as Rhizoctonia solani and Fusariun oxysporum in vitro. In addition, these strains are also able to grow at a high temperature of 50 °C and tolerate up to 10-15% NaCl and 25% PEG 6000. The results of the pot experiment showed that individual seed inoculation and the coinoculation of multifarious plant growth promoting (PGP) Bacillus strains (SR2 and SR18) in rice fields significantly enhanced plant height, root length volume, tiller numbers, dry weight, and yield compared to the untreated control. This indicates that these strains are potential candidates for use as PGP inoculants/biofertilizers to increase rice productivity under field conditions for IGPs in Uttar Pradesh, India.
Collapse
Affiliation(s)
- Shikha Devi
- Department of Microbiology, Himachal Pradesh University, Summerhill, Shimla 171005, India
| | - Shivesh Sharma
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India
| | - Ashish Tiwari
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India
| | - Arvind Kumar Bhatt
- Department of Biotechnology, Himachal Pradesh University, Summerhill, Shimla 171005, India
| | - Nand Kumar Singh
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India
| | - Monika Singh
- Department of Biotechnology, School of Applied and Life Sciences, Uttaranchal University, Dehradun 248007, India
| | - Ajay Kumar
- Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
11
|
Genomic Insights and Functional Analysis Reveal Plant Growth Promotion Traits of Paenibacillus mucilaginosus G78. Genes (Basel) 2023; 14:genes14020392. [PMID: 36833318 PMCID: PMC9956331 DOI: 10.3390/genes14020392] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/21/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023] Open
Abstract
Paenibacillus mucilaginosus has widely been reported as a plant growth-promoting rhizobacteria (PGPR). However, the important genomic insights into plant growth promotion in this species remain undescribed. In this study, the genome of P. mucilaginosus G78 was sequenced using Illumina NovaSeq PE150. It contains 8,576,872 bp with a GC content of 58.5%, and was taxonomically characterized. Additionally, a total of 7337 genes with 143 tRNAs, 41 rRNAs, and 5 ncRNAs were identified. This strain can prohibit the growth of the plant pathogen, but also has the capability to form biofilm, solubilize phosphate, and produce IAA. Twenty-six gene clusters encoding secondary metabolites were identified, and the genotypic characterization indirectly proved its resistant ability to ampicillin, bacitracin, polymyxin and chloramphenicol. The putative exopolysaccharide biosynthesis and biofilm formation gene clusters were explored. According to the genetic features, the potential monosaccharides of its exopolysaccharides for P. mucilaginosus G78 may include glucose, mannose, galactose, fucose, that can probably be acetylated and pyruvated. Conservation of the pelADEFG compared with other 40 Paenibacillus species suggests that Pel may be specific biofilm matrix component in P. mucilaginosus. Several genes relevant to plant growth-promoting traits, i.e., IAA production and phosphate solubilization are well conserved compared with other 40 other Paenibacillus strains. The current study can benefit for understanding the plant growth-promoting traits of P. mucilaginosus as well as its potential application in agriculture as PGPR.
Collapse
|
12
|
Genome insights into the plant growth-promoting bacterium Saccharibacillus brassicae ATSA2 T. AMB Express 2023; 13:9. [PMID: 36680648 PMCID: PMC9867790 DOI: 10.1186/s13568-023-01514-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 01/09/2023] [Indexed: 01/22/2023] Open
Abstract
Endophytes can facilitate the improvement of plant growth and health in agriculturally important crops, yet their genomes and secondary metabolites remain largely unexplored. We previously isolated Saccharibacillus brassicae strain ATSA2T from surface-sterilized seeds of kimchi cabbage and represented a novel species of the genus Saccharibacillus. In this study, we evaluated the plant growth-promoting (PGP) effect of strain ATSA2T in kimchi cabbage, bok choy, and pepper plants grown in soils. We found a significant effect on the shoot and root biomass, and chlorophyll contents following strain ATSA2T treatment. Strain ATSA2T displayed PGP traits such as indole acetic acid (IAA, 62.9 μg/mL) and siderophore production, and phosphate solubilization activity. Furthermore, genome analysis of this strain suggested the presence of gene clusters involved in iron acquisition (fhuABD, afuABC, fbpABC, and fepCDG) and phosphate solubilization (pstABCHS, phoABHLU, and phnCDEP) and other phytohormone biosynthesis genes, including indole-3-acetic acid (trpABCDEFG), in the genome. Interestingly, the secondary metabolites cerecidin, carotenoid, siderophore (staphylobactin), and bacillaene underlying plant growth promotion were found in the whole genome via antiSMASH analysis. Overall, physiological testing and genome analysis data provide comprehensive insights into plant growth-promoting mechanisms, suggesting the relevance of strain ATSA2T in agricultural biotechnology.
Collapse
|
13
|
Aguilera-Torres C, Riveros G, Morales LV, Sierra-Almeida A, Schoebitz M, Hasbún R. Relieving your stress: PGPB associated with Andean xerophytic plants are most abundant and active on the most extreme slopes. Front Microbiol 2023; 13:1062414. [PMID: 36741893 PMCID: PMC9889642 DOI: 10.3389/fmicb.2022.1062414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/30/2022] [Indexed: 01/19/2023] Open
Abstract
Introduction Plants interact with plant growth-promoting bacteria (PGPB), especially under stress condition in natural and agricultural systems. Although a potentially beneficial microbiome has been found associated to plants from alpine systems, this plant- PGPB interaction has been scarcely studied. Nevados de Chillán Complex hold one of the southernmost xerophytic formations in Chile. Plant species living there have to cope with drought and extreme temperatures during the growing season period, microclimatic conditions that become harsher on equatorial than polar slopes, and where the interaction with PGPB could be key for plant survival. Our goal was to study the abundance and activity of different PGPB associated to two abundant plant species of Andean xerophytic formations on contrasting slopes. Methods Twenty individuals of Berberis empetrifolia and Azorella prolifera shrubs were selected growing on a north and south slope nearby Las Fumarolas, at 2,050 m elevation. On each slope, microclimate based on temperature and moisture conditions were monitored throughout the growing period (oct. - apr.). Chemical properties of the soil under plant species canopies were also characterized. Bacterial abundance was measured as Log CFU g-1 from soil samples collected from each individual and slope. Then, the most abundant bacterial colonies were selected, and different hormonal (indoleacetic acid) and enzymatic (nitrogenase, phosphatase, ACC-deaminase) mechanisms that promote plant growth were assessed and measured. Results and Discussion Extreme temperatures were observed in the north facing slope, recording the hottest days (41 vs. 36°C) and coldest nights (-9.9 vs. 6.6°C). Moreover, air and soil moisture were lower on north than on south slope, especially late in the growing season. We found that bacterial abundance was higher in soils on north than on south slope but only under B. empetrifolia canopy. Moreover, the activity of plant growth-promoting mechanisms varied between slopes, being on average higher on north than on south slope, but with plant species-dependent trends. Our work showed how the environmental heterogeneity at microscale in alpine systems (slope and plant species identity) underlies variations in the abundance and plant growth promoting activity of the microorganisms present under the plant canopy of the Andean xerophytic formations and highlight the importance of PGPB from harsh systems as biotechnological tools for restoration.
Collapse
Affiliation(s)
- Carla Aguilera-Torres
- Grupo de Ecofisiología Térmica, Facultad de Ciencias Naturales y Oceanográficas, Departamento de Botánica, Universidad de Concepción, Concepción, Chile,Cape Horn International Center (CHIC), Puerto Williams, Chile,Rizoma, Centro de Estudios Agroecológicos y Botánicos, Valparaíso, Chile
| | - Gustavo Riveros
- Laboratorio de Microbiología de Suelos, Departamento de Suelos y Recursos Naturales, Facultad de Agronomía, Universidad de Concepción, Concepción, Chile
| | - Loreto V. Morales
- Grupo de Ecofisiología Térmica, Facultad de Ciencias Naturales y Oceanográficas, Departamento de Botánica, Universidad de Concepción, Concepción, Chile,Cape Horn International Center (CHIC), Puerto Williams, Chile
| | - Angela Sierra-Almeida
- Grupo de Ecofisiología Térmica, Facultad de Ciencias Naturales y Oceanográficas, Departamento de Botánica, Universidad de Concepción, Concepción, Chile,Cape Horn International Center (CHIC), Puerto Williams, Chile,*Correspondence: Angela Sierra-Almeida,
| | - Mauricio Schoebitz
- Laboratorio de Microbiología de Suelos, Departamento de Suelos y Recursos Naturales, Facultad de Agronomía, Universidad de Concepción, Concepción, Chile,Laboratorio de Biopelículas y Microbiología Ambiental, Centro de Biotecnología, Universidad de Concepción, Concepción, Chile
| | - Rodrigo Hasbún
- Laboratorio de Epigenética Vegetal, Facultad de Ciencias Forestales, Departamento de Silvicultura, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
14
|
Zhang X, Song J, Yan W, Li T, Li R, Wang J, Wang X, Zhou Q. Regulation of rhizospheric microbial network to enhance plant growth and resist pollutants: Unignorable weak electric field. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158888. [PMID: 36165908 DOI: 10.1016/j.scitotenv.2022.158888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
The union of Plant Growth-Promoting Bacteria (PGPB) and rhizosphere confers a series of functions beneficial to plant. However, the lack of an opearable in situ method limits the further understanding on the mechanism. In this study, a weak electric field was designed to regulate rhizospheric microflora in a constructed root-splitting reactor. Compared with the control, the aboveground and underground biomass of rice seedling increased by 17 % and 18 % (p < 0.05) respectively under the exist of weak electric field of 0.14 V/cm. The joint action of rhizosphere and PGPB displayed the detoxification ability in the condition of soluble petroleum hydrocarbons, where the height, stem diameter, biomass and root vigor of the plant was increased by 58 %, 32 %, 43 % and 48 % respectively than the control. The selective reproduction of endophytes and ectophytes (denitrifying, auxin-producing, hydrocarbon-degrading and electroactive bacteria) was observed under applied weak electric field, which enhanced the nitrogen utilization, cellular metabolic activity and resistance to toxic organics of plant. This was further confirmed by the up-regulated OTUs related to the hydrocarbon degradation function, tryptophan metabolism and metabolism of nicotinate and nicotinamide. Moreover, the weak electric field also enhanced the transfer ability of partial endophytes grown in the root to improve plant stress resistance. The results in this work inspired an exercisable method for in situ enrichment of PGPB in the rhizosphere to cope with food crisis and provided a new way to deal with sudden environmental events.
Collapse
Affiliation(s)
- Xiaolin Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Jintong Song
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Wenqing Yan
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Tian Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China.
| | - Ruixiang Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Jinning Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Xin Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Qixing Zhou
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| |
Collapse
|
15
|
Gangwar J, Kadanthottu Sebastian J, Puthukulangara Jaison J, Kurian JT. Nano-technological interventions in crop production-a review. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:93-107. [PMID: 36733843 PMCID: PMC9886790 DOI: 10.1007/s12298-022-01274-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/21/2022] [Accepted: 12/23/2022] [Indexed: 06/18/2023]
Abstract
Agricultural industry is facing huge crisis due to fast changing climate, decreased soil fertility, macro and micronutrient insufficiency, misuse of chemical fertilizers and pesticides, and heavy metal presence in soil. With exponential increase in world's population, food consumption has increased significantly. Maintaining the production to consumption ratio is a significant challenge due to shortage caused by various issues faced by agricultural industry even with the improved agricultural practices. Recent scientific evidence suggests that nanotechnology can positively impact the agriculture sector by reducing the harmful effects of farming operations on human health and nature, as well as improving food productivity and security. Farmers are combining improved agricultural practices like usage of fertilizers, pesticides etc. with nano-based materials to improve the efficiency and productivity of crops. Nano technology is also playing a significant role improving animal health products, food packaging materials, and nanosensors for detecting pathogens, toxins, and heavy metals in soil among others. The nanobased materials have improved the productivity twice with half the resources being utilized. Nanoparticles that are currently in use include titanium dioxide, zinc oxide, silicon oxide, magnesium oxide, gold, and silver used for increasing soil fertility and plant growth. Crop growth, yield, and productivity are improved by controlled release nanofertilizers. In this review we elaborate on the recent developments in the agricultural sector by the usage of nanomaterial based composites which has significantly improved the agricultural sector especially how nanoparticles play an important role in plant growth and soil fertility, in controlling plant diseases by the use of nanopesticides, nanoinsecticides, nanofertilizers, Nanoherbicides, nanobionics, nanobiosensors. The review also highlights the mechanism of migration of nanoparticles in plants and most importantly the effects of nanoparticles in causing plant and soil toxicity.
Collapse
Affiliation(s)
- Jaya Gangwar
- Department of Life Sciences, Christ University, Bangalore, Karnataka 560029 India
| | | | | | - Jissa Theresa Kurian
- Department of Life Sciences, Christ University, Bangalore, Karnataka 560029 India
| |
Collapse
|
16
|
Zhao D, Jiao J, Du B, Liu K, Wang C, Ding Y. Volatile organic compounds from Lysinibacillus macroides regulating the seedling growth of Arabidopsis thaliana. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:1997-2009. [PMID: 36573143 PMCID: PMC9789275 DOI: 10.1007/s12298-022-01268-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Volatile organic compounds (VOCs) have the characteristics of long distance propagation, low concentration, perception, and indirect contact between organisms. In this experiment, Lysinibacillus macroides Xi9 was isolated from cassava residue, and the VOCs produced by this strain were analyzed by the SPME-GC-MS method, mainly including alcohols, esters, and alkanes. By inoculation of L. macroides Xi9, VOCs can promote the growth and change the root-system architecture of Arabidopsis seedlings. The results showed that the number of lateral roots, root density, and fresh weight of Arabidopsis seedlings were significantly higher (p ≤ 0.01), and the number of roots hair was also increased after exposure to strain Xi9. Compared with the control group, the transcriptome analysis of Arabidopsis seedlings treated with strain Xi9 for 5 days revealed a total of 508 genes differentially expressed (p < 0.05). After Gene Ontology enrichment analysis, it was found that genes encoding nitrate transport and assimilation, and the lateral root-related gene ANR1 were up-regulated. The content of NO3 - and amino acid in Arabidopsis seedlings were significantly higher from control group (p ≤ 0.01). Plant cell wall-related EXPA family genes and pectin lyase gene were up-regulated, resulting cell elongation of leaf. SAUR41 and up-regulation of its subfamily members, as well as the down-regulation of auxin efflux carrier protein PILS5 and auxin response factor 20 (ARF20) led to the accumulation of auxin. These results indicated that VOCs of strain Xi9 promote Arabidopsis seedlings growth and development by promoting nitrogen uptake, regulating auxin synthesis, and improving cell wall modification. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-022-01268-3.
Collapse
Affiliation(s)
- Dongying Zhao
- College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 China
| | - Junhui Jiao
- College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 China
| | - Binghai Du
- College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 China
- Shandong Key Laboratory of Agricultural Microbiology, Tai’an, 271018 China
- Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-Alkali Land, Tai’an, 271018 China
| | - Kai Liu
- College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 China
- Shandong Key Laboratory of Agricultural Microbiology, Tai’an, 271018 China
| | - Chengqiang Wang
- College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 China
- Shandong Key Laboratory of Agricultural Microbiology, Tai’an, 271018 China
| | - Yanqin Ding
- College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 China
- Shandong Key Laboratory of Agricultural Microbiology, Tai’an, 271018 China
- Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-Alkali Land, Tai’an, 271018 China
| |
Collapse
|
17
|
Plant Growth Promoting Endophytic Bacteria Bacillus australimaris BLR41 and Enterobacter kobei BLR45 Enhance the Growth of Medicinal Plant Barleria lupulina Lindl. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.4.32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A total of 50 root colonising bacterial endophytes were identified from a medicinal plant in this investigation (Barleria lupulina), and characterized based on morphologically selected isolates, BLR41 were Gram-negative motile, rod-shaped and BLR45 was Gram-positive, rod-shaped, and light yellow in color. The BLR41 isolate was motile and the BLR45 was positive for indole. The strains BLR41 and BLR45 were positive for citrate, amylase, protease, and lipase. Among all the isolates, BLR41 and BLR45 exhibited higher enzymatic test positive in citrate, amylase lipase, and protease. Furthermore, PGP efficacy as maximum production of zinc in BLR41 isolate and phosphate solubilization in BLR45. Solubilization of the highest zinc (2.80 μg/mL) was obtained by the isolate BLR41, followed by BLR23 and then BLR35. The highest level of phosphate (2.60 μg/mL) was recorded with the BLR45, followed by the BLR07 and BLR18. A consortium of bacterial strains performed better results than individual inoculation. The isolate BLR41 and BLR45 were identified as Bacillus australimaris and Enterobacter kobei following the 16S rRNA sequencing. Among all, seed germination was induced by 93% in consortium BLR41+BLR45, compared to control (T1). An increase in the shoot length by 30% was recorded with the treatment of BLR41+BRL45, BLR41 increase (54%), and BLR45 (35%), respectively. On the other hand, the consortium of mixed cultures, BLR41+BLR45, showed an increased fresh and the weight of dry 65% and 58%. The findings of this study indicate that the consortium of B. australimaris BLR41 and E. kobei BLR45 significantly enhances plant growth in the Pot experiment by zinc and phosphate solubilization properties.
Collapse
|
18
|
Wang G, Ren Y, Bai X, Su Y, Han J. Contributions of Beneficial Microorganisms in Soil Remediation and Quality Improvement of Medicinal Plants. PLANTS (BASEL, SWITZERLAND) 2022; 11:3200. [PMID: 36501240 PMCID: PMC9740990 DOI: 10.3390/plants11233200] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/15/2022] [Accepted: 11/20/2022] [Indexed: 06/17/2023]
Abstract
Medicinal plants (MPs) are important resources widely used in the treatment and prevention of diseases and have attracted much attention owing to their significant antiviral, anti-inflammatory, antioxidant and other activities. However, soil degradation, caused by continuous cropping, excessive chemical fertilizers and pesticide residues and heavy metal contamination, seriously restricts the growth and quality formation of MPs. Microorganisms, as the major biota in soil, play a critical role in the restoration of the land ecosystem. Rhizosphere microecology directly or indirectly affects the growth and development, metabolic regulation and active ingredient accumulation of MPs. Microbial resources, with the advantages of economic efficiency, harmless to environment and non-toxic to organisms, have been recommended as a promising alternative to conventional fertilizers and pesticides. The introduction of beneficial microbes promotes the adaptability of MPs to adversity stress by enhancing soil fertility, inhibiting pathogens and inducing systemic resistance. On the other hand, it can improve the medicinal quality by removing soil pollutants, reducing the absorption and accumulation of harmful substances and regulating the synthesis of secondary metabolites. The ecological and economic benefits of the soil microbiome in agricultural practices are increasingly recognized, but the current understanding of the interaction between soil conditions, root exudates and microbial communities and the mechanism of rhizosphere microecology affecting the secondary metabolism of MPs is still quite limited. More research is needed to investigate the effects of the microbiome on the growth and quality of different medicinal species. Therefore, the present review summarizes the main soil issues in medicinal plant cultivation, the functions of microbes in soil remediation and plant growth promotion and the potential mechanism to further guide the use of microbial resources to promote the ecological cultivation and sustainable development of MPs.
Collapse
Affiliation(s)
| | | | | | | | - Jianping Han
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| |
Collapse
|
19
|
Khanna K, Kohli SK, Bhardwaj R, Sharma A. Editorial: Portraying the phytomicrobiome studies during abiotic stresses: Revisiting the past and exploring the future outcomes. Front Microbiol 2022; 13:1015149. [PMID: 36312985 PMCID: PMC9608741 DOI: 10.3389/fmicb.2022.1015149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Kanika Khanna
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
- Department of Microbiology, DAV University, Jalandhar, Punjab, India
- *Correspondence: Kanika Khanna
| | - Sukhmeen Kaur Kohli
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Renu Bhardwaj
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
- Renu Bhardwaj
| | - Anket Sharma
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
20
|
Zuo YW, Zhang JH, Ning DH, Zeng YL, Li WQ, Xia CY, Zhang H, Deng HP. Comparative Analyses of Rhizosphere Bacteria Along an Elevational Gradient of Thuja sutchuenensis. Front Microbiol 2022; 13:881921. [PMID: 35591985 PMCID: PMC9111514 DOI: 10.3389/fmicb.2022.881921] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Thuja sutchuenensis Franch. is an endangered species in southwestern China, primarily distributed in 800-2,100 m of inaccessible mountainous areas. Rhizosphere soil physicochemical properties and bacterial communities play an essential role in managing plant growth and survival. Nonetheless, the study investigating rhizosphere soil properties and bacterial communities of T. sutchuenensis is limited. The present study investigated soil properties, including soil pH, organic matter, water content, nitrogen, phosphorus, and potassium contents, and bacterial communities in nearly all extant T. sutchuenensis populations at five elevational gradients. Our results demonstrated that the increase in elevation decreased rhizosphere and bulk soil phosphorus content but increased potassium content. In addition, the elevational gradient was the dominant driver for the community composition differentiation of soil bacterial community. Proteobacteria and Acidobacteria were the dominant bacterial phyla distributed in the rhizosphere and bulk soils. Co-occurrence network analysis identified key genera, including Bradyrhizobium, Acidicapsa, Catenulispora, and Singulisphaera, that displayed densely connected interactions with many genera in the rhizosphere soil. The dominant KEGG functional pathways of the rhizosphere bacteria included ABC transporters, butanoate metabolism, and methane metabolism. Further correlation analysis found that soil phosphorus and potassium were the dominant drivers for the diversity of soil bacteria, which were distinctively contributed to the phylum of Planctomycetes and the genera of Blastopirellula, Planctomycetes, and Singulisphaera. Collectively, this comprehensive study generated multi-dimensional perspectives for understanding the soil bacterial community structures of T. sutchuenensis, and provided valuable findings for species conservation at large-scale views.
Collapse
Affiliation(s)
- You-wei Zuo
- Center for Biodiversity Conservation and Utilization, School of Life Sciences, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Institute of Resources Botany, Southwest University, Chongqing, China
| | - Jia-hui Zhang
- Center for Biodiversity Conservation and Utilization, School of Life Sciences, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Institute of Resources Botany, Southwest University, Chongqing, China
| | - Deng-hao Ning
- Center for Biodiversity Conservation and Utilization, School of Life Sciences, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Institute of Resources Botany, Southwest University, Chongqing, China
| | - Yu-lian Zeng
- Center for Biodiversity Conservation and Utilization, School of Life Sciences, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Institute of Resources Botany, Southwest University, Chongqing, China
| | - Wen-qiao Li
- Center for Biodiversity Conservation and Utilization, School of Life Sciences, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Institute of Resources Botany, Southwest University, Chongqing, China
| | - Chang-ying Xia
- Center for Biodiversity Conservation and Utilization, School of Life Sciences, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Institute of Resources Botany, Southwest University, Chongqing, China
| | - Huan Zhang
- Center for Biodiversity Conservation and Utilization, School of Life Sciences, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Institute of Resources Botany, Southwest University, Chongqing, China
| | - Hong-ping Deng
- Center for Biodiversity Conservation and Utilization, School of Life Sciences, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Institute of Resources Botany, Southwest University, Chongqing, China
- Chongqing Academy of Science and Technology, Low Carbon and Ecological Environment Protection Research Center, Chongqing, China
| |
Collapse
|
21
|
Yankey R, Omoor INA, Karanja JK, Wang L, Urga RT, Fang CH, Dongmei L, Lin H, Okal JE, Datti IL, Nsanzinshuti A, Rensing C, Lin Z. Metabolic properties, gene functions, and biosafety analysis reveal the action of three rhizospheric plant growth-promoting bacteria of Jujuncao (Pennisetum giganteum). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:38435-38449. [PMID: 35079973 DOI: 10.1007/s11356-021-17854-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 11/26/2021] [Indexed: 06/14/2023]
Abstract
This study aimed to identify the specific genes associated with plant growth promotion and cadmium tolerance in three bacteria strains associated with Pennisetum giganteum as well as to determine their biosafety levels in their potential use as biofertilizers for promoting plant growth and phytoremediation activities. The plant growth-promoting (PGP) abilities of Enterobacter cloacae strain RCB980 (A3), Klebsiella pneumonia strain kpa (A4), and Klebsiella sp. strain XT-2 (A7) were determined by a growth promotion trial and through testing for PGP traits such as 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase enzyme production, phosphorus solubilization, siderophore synthesis, and indole-3 acetic acid (IAA) production. The genes that potentially contribute to the beneficial activities of these three strains were identified through an analysis of their genomes. To establish the biosafety of the candidate PGPB, a pathological study was undertaken whereby 20 Kunming mice were injected intraperitoneally to study and analyze the effects of the strains on growth and lung paraffin sections of the mice. The strains had no obvious toxicity effect on the tested mice and were therefore not considered as highly virulent strains. These strains are thus considered non-toxic, safe, and highly recommended for use in environmental remediation strategies and agricultural production.
Collapse
Affiliation(s)
- Richard Yankey
- China National Engineering Research Center of Juncao Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
- Department of Soil Science, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana.
| | - Ibrahim N A Omoor
- China National Engineering Research Center of Juncao Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Joseph K Karanja
- Center for Plant Water-Use and Nutrition Regulation, Joint International Research Laboratory of Water and Nutrient in Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Lifang Wang
- China National Engineering Research Center of Juncao Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Regassa Terefe Urga
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Chew Hui Fang
- China National Engineering Research Center of Juncao Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Lin Dongmei
- China National Engineering Research Center of Juncao Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Hui Lin
- China National Engineering Research Center of Juncao Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Jacob Eyalira Okal
- China National Engineering Research Center of Juncao Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Ibrahim Lawandi Datti
- China National Engineering Research Center of Juncao Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Aimable Nsanzinshuti
- China National Engineering Research Center of Juncao Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Christopher Rensing
- Institute of Environmental Microbiology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Zhanxi Lin
- China National Engineering Research Center of Juncao Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| |
Collapse
|
22
|
Abstract
Soil salinization has become a major problem for agriculture worldwide, especially because this phenomenon is continuously expanding in different regions of the world. Salinity is a complex mechanism, and in the soil ecosystem, it affects both microorganisms and plants, some of which have developed efficient strategies to alleviate salt stress conditions. Currently, various methods can be used to reduce the negative effects of this problem. However, the use of biological methods, such as plant-growth-promoting bacteria (PGPB), phytoremediation, and amendment, seems to be very advantageous and promising as a remedy for sustainable and ecological agriculture. Other approaches aim to combine different techniques, as well as the utilization of genetic engineering methods. These techniques alone or combined can effectively contribute to the development of sustainable and eco-friendly agriculture.
Collapse
|
23
|
Murgia I, Marzorati F, Vigani G, Morandini P. Plant iron nutrition: the long road from soil to seeds. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1809-1824. [PMID: 34864996 DOI: 10.1093/jxb/erab531] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 12/03/2021] [Indexed: 06/13/2023]
Abstract
Iron (Fe) is an essential plant micronutrient since many cellular processes including photosynthesis, respiration, and the scavenging of reactive oxygen species depend on adequate Fe levels; however, non-complexed Fe ions can be dangerous for cells, as they can act as pro-oxidants. Hence, plants possess a complex homeostatic control system for safely taking up Fe from the soil and transporting it to its various cellular destinations, and for its subcellular compartmentalization. At the end of the plant's life cycle, maturing seeds are loaded with the required amount of Fe needed for germination and early seedling establishment. In this review, we discuss recent findings on how the microbiota in the rhizosphere influence and interact with the strategies adopted by plants to take up iron from the soil. We also focus on the process of seed-loading with Fe, and for crop species we also consider its associated metabolism in wild relatives. These two aspects of plant Fe nutrition may provide promising avenues for a better comprehension of the long pathway of Fe from soil to seeds.
Collapse
Affiliation(s)
- Irene Murgia
- Department of Biosciences, University of Milano, Milano, Italy
| | - Francesca Marzorati
- Department of Environmental Science and Policy, University of Milano, Milano, Italy
| | - Gianpiero Vigani
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Piero Morandini
- Department of Environmental Science and Policy, University of Milano, Milano, Italy
| |
Collapse
|
24
|
Lin Y, Ye Y, Liu S, Wen J, Chen D. Effect Mechanism of Land Consolidation on Soil Bacterial Community: A Case Study in Eastern China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19020845. [PMID: 35055667 PMCID: PMC8775918 DOI: 10.3390/ijerph19020845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 02/04/2023]
Abstract
Farmland consolidation is an effective tool to improve farmland infrastructures, soil quality, and sustain a healthy farmland ecosystem and rural population, generating contributions to food security and regional sustainable development. Previous studies showed that farmland consolidation regulates soil physical and chemical properties. Soil microorganisms also play an important role in soil health and crop performance; however, few studies reported how farmland consolidation influence soil microecology. Here, we used DNA sequencing technology to compare bacterial community structure in farmlands with and without consolidation. DNA sequencing technology is the most advanced technology used to obtain biological information in the world, and it has been widely used in the research of soil micro-ecological environment. In September 2018, we collected soil samples in Jiashan County, Zhejiang Province, China, and used DNA sequence technology to compare the bacterial community structure in farmlands with and without consolidation. Our results found that (1) farmland consolidation had significant impacts on soil microbial characteristics, which were mainly manifested as changes in microbial biomass, microbial diversity and community structure. Farmland consolidation can increase the relative abundance of the three dominant bacteria phyla and the three fungal dominant phyla, but it also negatively affects the relative abundance of the six dominant bacteria phyla and the three fungal dominant phyla. (2) Farmland consolidation had an indirect impact on soil bacterial community structure by adjusting the soil physical and chemical properties. (3) The impact of heavy metals on bacterial community structure varied significantly under different levels of heavy metal pollution in farmland consolidation areas. There were 6, 3, 3, and 5 bacterial genera that had significant correlations with heavy metal content in cultivated land with low pollution, light pollution, medium pollution, and heavy pollution, respectively. The number of heavy metal-tolerant bacteria in the soil generally increased first and then decreased under heavy metal polluted conditions. Our study untangled the relationship between varied farmland consolidation strategies and bacteria through soil physcicochemical properties and metal pollution conditions. Our results can guide farmland consolidation strategies and sustain soil health and ecological balance in agriculture.
Collapse
Affiliation(s)
- Yaoben Lin
- School of Law and Politics, Nanjing Tech University, Nanjing 211816, China;
| | - Yanmei Ye
- Land Academy for National Development (LAND), Zhejiang University, Hangzhou 310058, China; (Y.Y.); (S.L.)
| | - Shuchang Liu
- Land Academy for National Development (LAND), Zhejiang University, Hangzhou 310058, China; (Y.Y.); (S.L.)
| | - Jiahao Wen
- Department of Watershed Sciences, Utah State University, Logan, UT 84321, USA;
| | - Danling Chen
- Department of Land Management, College of Public Administration, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence:
| |
Collapse
|
25
|
Yang N, Nesme J, Røder HL, Li X, Zuo Z, Petersen M, Burmølle M, Sørensen SJ. Emergent bacterial community properties induce enhanced drought tolerance in Arabidopsis. NPJ Biofilms Microbiomes 2021; 7:82. [PMID: 34795326 PMCID: PMC8602335 DOI: 10.1038/s41522-021-00253-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 10/08/2021] [Indexed: 01/04/2023] Open
Abstract
Drought severely restricts plant production and global warming is further increasing drought stress for crops. Much information reveals the ability of individual microbes affecting plant stress tolerance. However, the effects of emergent bacterial community properties on plant drought tolerance remain largely unexplored. Here, we inoculated Arabidopsis plants in vivo with a four-species bacterial consortium (Stenotrophomonas rhizophila, Xanthomonas retroflexus, Microbacterium oxydans, and Paenibacillus amylolyticus, termed as SPMX), which is able to synergistically produce more biofilm biomass together than the sum of the four single-strain cultures, to investigate its effects on plant performance and rhizo-microbiota during drought. We found that SPMX remarkably improved Arabidopsis survival post 21-day drought whereas no drought-tolerant effect was observed when subjected to the individual strains, revealing emergent properties of the SPMX consortium as the underlying cause of the induced drought tolerance. The enhanced drought tolerance was associated with sustained chlorophyll content and endogenous abscisic acid (ABA) signaling. Furthermore, our data showed that the addition of SPMX helped to stabilize the diversity and structure of root-associated microbiomes, which potentially benefits plant health under drought. These SPMX-induced changes jointly confer an increased drought tolerance to plants. Our work may inform future efforts to engineer the emergent bacterial community properties to improve plant tolerance to drought.
Collapse
Affiliation(s)
- Nan Yang
- grid.5254.60000 0001 0674 042XSection of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Joseph Nesme
- grid.5254.60000 0001 0674 042XSection of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Henriette Lyng Røder
- grid.5254.60000 0001 0674 042XSection of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Xuanji Li
- grid.5254.60000 0001 0674 042XSection of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Zhangli Zuo
- grid.5254.60000 0001 0674 042XDepartment of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Morten Petersen
- grid.5254.60000 0001 0674 042XDepartment of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Mette Burmølle
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | - Søren Johannes Sørensen
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
26
|
Prospect and Challenges for Sustainable Management of Climate Change-Associated Stresses to Soil and Plant Health by Beneficial Rhizobacteria. STRESSES 2021. [DOI: 10.3390/stresses1040015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Climate change imposes biotic and abiotic stresses on soil and plant health all across the planet. Beneficial rhizobacterial genera, such as Bacillus, Pseudomonas, Paraburkholderia, Rhizobium, Serratia, and others, are gaining popularity due to their ability to provide simultaneous nutrition and protection of plants in adverse climatic conditions. Plant growth-promoting rhizobacteria are known to boost soil and plant health through a variety of direct and indirect mechanisms. However, various issues limit the wider commercialization of bacterial biostimulants, such as variable performance in different environmental conditions, poor shelf-life, application challenges, and our poor understanding on complex mechanisms of their interactions with plants and environment. This study focused on detecting the most recent findings on the improvement of plant and soil health under a stressful environment by the application of beneficial rhizobacteria. For a critical and systematic review story, we conducted a non-exhaustive but rigorous literature survey to assemble the most relevant literature (sorting of a total of 236 out of 300 articles produced from the search). In addition, a critical discussion deciphering the major challenges for the commercialization of these bioagents as biofertilizer, biostimulants, and biopesticides was undertaken to unlock the prospective research avenues and wider application of these natural resources. The advancement of biotechnological tools may help to enhance the sustainable use of bacterial biostimulants in agriculture. The perspective of biostimulants is also systematically evaluated for a better understanding of the molecular crosstalk between plants and beneficial bacteria in the changing climate towards sustainable soil and plant health.
Collapse
|
27
|
Insights into the relevance between bacterial endophytic communities and resistance of rice cultivars infected by Xanthomonas oryzae pv . oryzicola. 3 Biotech 2021; 11:434. [PMID: 34603912 DOI: 10.1007/s13205-021-02979-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 08/27/2021] [Indexed: 12/13/2022] Open
Abstract
Bacterial leaf streak (BLS) caused by Xanthomonas oryzae pv. oryzicola (Xoc), impacts the production of rice. However, several rice cultivars displayed resistance to Xoc in the field, but scarce information is available about the role of endophytic microbiota in disease resistance. In the present study, the endophytic bacterial communities of resistant and susceptible rice cultivars "CG2" and "IR24", respectively, were analyzed using high throughput 16S rRNA gene amplified sequencing and culture dependent method was further used for bacterial isolation. A total of 452,716 high-quality sequences representing 132 distinct OTUs (Proteobacteria, Actinobacteria, Bacteroidetes, and Firmicutes) and 46 isolates of 16 genera were explored from rice leaves infected with Xoc. Community diversity of endophytic bacteria were higher in the leaves of the resistant cultivars compared to susceptible cultivars upon Xoc infection. Strikingly, this diversity might contribute to natural defense of the resistant cultivar against pathogen. Pantoea, which is pathogen antagonist, was frequently detected in two cultivars and higher abundance were recorded in resistant cultivars. Different abundance genus includes endophytic isolates with marked antagonistic activity to Xoc. The increased proportions of antagonistic bacteria, may contribute to resistance of rice cultivar against Xoc and the Pantoea genus was recruited by Xoc infection play a key role in suppressing the development of BLS disease in rice. Taken together, this work reveals the association between endophytic bacteria and BLS resistance in rice and identification of antagonism-Xoc bacterial communities in rice. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02979-2.
Collapse
|
28
|
Zhang M, Zhang Y, Han X, Wang J, Yang Y, Ren B, Xia M, Li G, Fang R, He H, Jia Y. Whole genome sequencing of Enterobacter mori, an emerging pathogen of kiwifruit and the potential genetic adaptation to pathogenic lifestyle. AMB Express 2021; 11:129. [PMID: 34533621 PMCID: PMC8448808 DOI: 10.1186/s13568-021-01290-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 09/03/2021] [Indexed: 11/10/2022] Open
Abstract
Members of the Enterobacter genus are gram-negative bacteria, which are used as plant growth-promoting bacteria, and increasingly recovered from economic plants as emerging pathogens. A new Enterobacter mori strain, designated CX01, was isolated as an emerging bacterial pathogen of a recent outbreak of kiwifruit canker-like disease in China. The main symptoms associated with this syndrome are bleeding cankers on the trunk and branch, and brown leaf spots. The genome sequence of E. mori CX01 was determined as a single chromosome of 4,966,908 bp with 4640 predicted open reading frames (ORFs). To better understand the features of the genus and its potential pathogenic mechanisms, five available Enterobacter genomes were compared and a pan-genome of 4870 COGs with 3158 core COGs were revealed. An important feature of the E. mori CX01 genome is that it lacks a type III secretion system often found in pathogenic bacteria, instead it is equipped with type I, II, and VI secretory systems. Besides, the genes encoding putative virulence effectors, two-component systems, nutrient acquisition systems, proteins involved in phytohormone synthesis, which may contribute to the virulence and adaption to the host plant niches are included. The genome sequence of E. mori CX01 has high similarity with that of E. mori LMG 25,706, though the rearrangements occur throughout two genomes. Further pathogenicity assay showed that both strains can either invade kiwifruit or mulberry, indicating they may have similar host range. Comparison with a closely related isolate enabled us to understand its pathogenesis and ecology.
Collapse
|
29
|
Berninger T, Dietz N, González López Ó. Water-soluble polymers in agriculture: xanthan gum as eco-friendly alternative to synthetics. Microb Biotechnol 2021; 14:1881-1896. [PMID: 34196103 PMCID: PMC8449660 DOI: 10.1111/1751-7915.13867] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/31/2021] [Accepted: 05/31/2021] [Indexed: 11/28/2022] Open
Abstract
Water-soluble polymers (WSPs) are a versatile group of chemicals used across industries for different purposes such as thickening, stabilizing, adhesion and gelation. Synthetic polymers have tailored characteristics and are chemically homogeneous, whereas plant-derived biopolymers vary more widely in their specifications and are chemically heterogeneous. Between both sources, microbial polysaccharides are an advantageous compromise. They combine naturalness with defined material properties, precisely controlled by optimizing strain selection, fermentation operational parameters and downstream processes. The relevance of such bio-based and biodegradable materials is rising due to increasing environmental awareness of consumers and a tightening regulatory framework, causing both solid and water-soluble synthetic polymers, also termed 'microplastics', to have come under scrutiny. Xanthan gum is the most important microbial polysaccharide in terms of production volume and diversity of applications, and available as different grades with specific properties. In this review, we will focus on the applicability of xanthan gum in agriculture (drift control, encapsulation and soil improvement), considering its potential to replace traditionally used synthetic WSPs. As a spray adjuvant, xanthan gum prevents the formation of driftable fine droplets and shows particular resistance to mechanical shear. Xanthan gum as a component in encapsulated formulations modifies release properties or provides additional protection to encapsulated agents. In geotechnical engineering, soil amended with xanthan gum has proven to increase water retention, reduce water evaporation, percolation and soil erosion - topics of high relevance in the agriculture of the 21st century. Finally, hands-on formulation tips are provided to facilitate exploiting the full potential of xanthan gum in diverse agricultural applications and thus providing sustainable solutions.
Collapse
Affiliation(s)
- Teresa Berninger
- Jungbunzlauer Ladenburg GmbHDr.‐Albert‐Reimann‐Str. 18Ladenburg68526Germany
| | - Natalie Dietz
- Jungbunzlauer Ladenburg GmbHDr.‐Albert‐Reimann‐Str. 18Ladenburg68526Germany
| | - Óscar González López
- Department of Agriculture and FoodUniversidad de la RiojaC/Madre de Dios 53Logroño26006Spain
| |
Collapse
|
30
|
Plant Growth Promoting Rhizobacteria, Arbuscular Mycorrhizal Fungi and Their Synergistic Interactions to Counteract the Negative Effects of Saline Soil on Agriculture: Key Macromolecules and Mechanisms. Microorganisms 2021; 9:microorganisms9071491. [PMID: 34361927 PMCID: PMC8307984 DOI: 10.3390/microorganisms9071491] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/05/2021] [Accepted: 07/09/2021] [Indexed: 11/16/2022] Open
Abstract
Soil saltiness is a noteworthy issue as it results in loss of profitability and development of agrarian harvests and decline in soil health. Microorganisms associated with plants contribute to their growth promotion and salinity tolerance by employing a multitude of macromolecules and pathways. Plant growth promoting rhizobacteria (PGPR) have an immediate impact on improving profitability based on higher crop yield. Some PGPR produce 1-aminocyclopropane-1-carboxylic (ACC) deaminase (EC 4.1.99.4), which controls ethylene production by diverting ACC into α-ketobutyrate and ammonia. ACC deaminase enhances germination rate and growth parameters of root and shoot in different harvests with and without salt stress. Arbuscular mycorrhizal fungi (AMF) show a symbiotic relationship with plants, which helps in efficient uptake of mineral nutrients and water by the plants and also provide protection to the plants against pathogens and various abiotic stresses. The dual inoculation of PGPR and AMF enhances nutrient uptake and productivity of several crops compared to a single inoculation in both normal and stressed environments. Positively interacting PGPR + AMF combination is an efficient and cost-effective recipe for improving plant tolerance against salinity stress, which can be an extremely useful approach for sustainable agriculture.
Collapse
|
31
|
Korshunova TY, Bakaeva MD, Kuzina EV, Rafikova GF, Chetverikov SP, Chetverikova DV, Loginov ON. Role of Bacteria of the Genus Pseudomonas in the Sustainable Development of Agricultural Systems and Environmental Protection (Review). APPL BIOCHEM MICRO+ 2021. [DOI: 10.1134/s000368382103008x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Friends or Foes-Microbial Interactions in Nature. BIOLOGY 2021; 10:biology10060496. [PMID: 34199553 PMCID: PMC8229319 DOI: 10.3390/biology10060496] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/27/2021] [Accepted: 05/31/2021] [Indexed: 12/16/2022]
Abstract
Simple Summary Microorganisms like bacteria, archaea, fungi, microalgae, and viruses mostly form complex interactive networks within the ecosystem rather than existing as single planktonic cells. Interactions among microorganisms occur between the same species, with different species, or even among entirely different genera, families, or even domains. These interactions occur after environmental sensing, followed by converting those signals to molecular and genetic information, including many mechanisms and classes of molecules. Comprehensive studies on microbial interactions disclose key strategies of microbes to colonize and establish in a variety of different environments. Knowledge of the mechanisms involved in the microbial interactions is essential to understand the ecological impact of microbes and the development of dysbioses. It might be the key to exploit strategies and specific agents against different facing challenges, such as chronic and infectious diseases, hunger crisis, pollution, and sustainability. Abstract Microorganisms are present in nearly every niche on Earth and mainly do not exist solely but form communities of single or mixed species. Within such microbial populations and between the microbes and a eukaryotic host, various microbial interactions take place in an ever-changing environment. Those microbial interactions are crucial for a successful establishment and maintenance of a microbial population. The basic unit of interaction is the gene expression of each organism in this community in response to biotic or abiotic stimuli. Differential gene expression is responsible for producing exchangeable molecules involved in the interactions, ultimately leading to community behavior. Cooperative and competitive interactions within bacterial communities and between the associated bacteria and the host are the focus of this review, emphasizing microbial cell–cell communication (quorum sensing). Further, metagenomics is discussed as a helpful tool to analyze the complex genomic information of microbial communities and the functional role of different microbes within a community and to identify novel biomolecules for biotechnological applications.
Collapse
|
33
|
Vega-Celedón P, Bravo G, Velásquez A, Cid FP, Valenzuela M, Ramírez I, Vasconez IN, Álvarez I, Jorquera MA, Seeger M. Microbial Diversity of Psychrotolerant Bacteria Isolated from Wild Flora of Andes Mountains and Patagonia of Chile towards the Selection of Plant Growth-Promoting Bacterial Consortia to Alleviate Cold Stress in Plants. Microorganisms 2021; 9:microorganisms9030538. [PMID: 33807836 PMCID: PMC7998784 DOI: 10.3390/microorganisms9030538] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/02/2021] [Accepted: 03/02/2021] [Indexed: 02/02/2023] Open
Abstract
Cold stress decreases the growth and productivity of agricultural crops. Psychrotolerant plant growth-promoting bacteria (PGPB) may protect and promote plant growth at low temperatures. The aims of this study were to isolate and characterize psychrotolerant PGPB from wild flora of Andes Mountains and Patagonia of Chile and to formulate PGPB consortia. Psychrotolerant strains were isolated from 11 wild plants (rhizosphere and phyllosphere) during winter of 2015. For the first time, bacteria associated with Calycera, Orites, and Chusquea plant genera were reported. More than 50% of the 130 isolates showed ≥33% bacterial cell survival at temperatures below zero. Seventy strains of Pseudomonas, Curtobacterium, Janthinobacterium, Stenotrophomonas, Serratia, Brevundimonas, Xanthomonas, Frondihabitans, Arthrobacter, Pseudarthrobacter, Paenarthrobacter, Brachybacterium, Clavibacter, Sporosarcina, Bacillus, Solibacillus, Flavobacterium, and Pedobacter genera were identified by 16S rRNA gene sequence analyses. Ten strains were selected based on psychrotolerance, auxin production, phosphate solubilization, presence of nifH (nitrogenase reductase) and acdS (1-aminocyclopropane-1-carboxylate (ACC) deaminase) genes, and anti-phytopathogenic activities. Two of the three bacterial consortia formulated promoted tomato plant growth under normal and cold stress conditions. The bacterial consortium composed of Pseudomonas sp. TmR5a & Curtobacterium sp. BmP22c that possesses ACC deaminase and ice recrystallization inhibition activities is a promising candidate for future cold stress studies.
Collapse
Affiliation(s)
- Paulina Vega-Celedón
- Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (G.B.); (A.V.); (M.V.); (I.-N.V.); (I.Á.)
- Center of Biotechnology “Dr. Daniel Alkalay Lowitt”, Universidad Técnica Federico Santa María, General Bari 699, Valparaíso 2390136, Chile;
- Correspondence: (P.V.-C.); (M.S.); Tel.: +56-322654685 (P.V.-C.)
| | - Guillermo Bravo
- Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (G.B.); (A.V.); (M.V.); (I.-N.V.); (I.Á.)
- Center of Biotechnology “Dr. Daniel Alkalay Lowitt”, Universidad Técnica Federico Santa María, General Bari 699, Valparaíso 2390136, Chile;
| | - Alexis Velásquez
- Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (G.B.); (A.V.); (M.V.); (I.-N.V.); (I.Á.)
- Center of Biotechnology “Dr. Daniel Alkalay Lowitt”, Universidad Técnica Federico Santa María, General Bari 699, Valparaíso 2390136, Chile;
| | - Fernanda P. Cid
- Laboratorio de Ecología Microbiana Aplicada (EMALAB), Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Avenida Francisco Salazar 1145, Temuco 4811230, Chile; (F.P.C.); (M.A.J.)
- Center of Plant-Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Avenida Francisco Salazar 1145, Temuco 4811230, Chile
| | - Miryam Valenzuela
- Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (G.B.); (A.V.); (M.V.); (I.-N.V.); (I.Á.)
- Center of Biotechnology “Dr. Daniel Alkalay Lowitt”, Universidad Técnica Federico Santa María, General Bari 699, Valparaíso 2390136, Chile;
| | - Ingrid Ramírez
- Center of Biotechnology “Dr. Daniel Alkalay Lowitt”, Universidad Técnica Federico Santa María, General Bari 699, Valparaíso 2390136, Chile;
| | - Ingrid-Nicole Vasconez
- Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (G.B.); (A.V.); (M.V.); (I.-N.V.); (I.Á.)
- Center of Biotechnology “Dr. Daniel Alkalay Lowitt”, Universidad Técnica Federico Santa María, General Bari 699, Valparaíso 2390136, Chile;
| | - Inaudis Álvarez
- Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (G.B.); (A.V.); (M.V.); (I.-N.V.); (I.Á.)
- Center of Biotechnology “Dr. Daniel Alkalay Lowitt”, Universidad Técnica Federico Santa María, General Bari 699, Valparaíso 2390136, Chile;
| | - Milko A. Jorquera
- Laboratorio de Ecología Microbiana Aplicada (EMALAB), Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Avenida Francisco Salazar 1145, Temuco 4811230, Chile; (F.P.C.); (M.A.J.)
- Center of Plant-Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Avenida Francisco Salazar 1145, Temuco 4811230, Chile
| | - Michael Seeger
- Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (G.B.); (A.V.); (M.V.); (I.-N.V.); (I.Á.)
- Center of Biotechnology “Dr. Daniel Alkalay Lowitt”, Universidad Técnica Federico Santa María, General Bari 699, Valparaíso 2390136, Chile;
- Correspondence: (P.V.-C.); (M.S.); Tel.: +56-322654685 (P.V.-C.)
| |
Collapse
|
34
|
Usmonov A, Yoo SJ, Kim ST, Yang JS, Sang MK, Jung HW. The Bacillus zanthoxyli HS1 Strain Renders Vegetable Plants Resistant and Tolerant against Pathogen Infection and High Salinity Stress. THE PLANT PATHOLOGY JOURNAL 2021; 37:72-78. [PMID: 33551698 PMCID: PMC7847759 DOI: 10.5423/ppj.nt.12.2020.0219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/12/2021] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
Various management systems are being broadly employed to minimize crop yield loss resulting from abiotic and biotic stresses. Here we introduce a Bacillus zanthoxyli HS1 strain as a potent candidate for managing manifold stresses on vegetable plants. Considering 16S rDNA sequence and biochemical characteristics, the strain is closely related to B. zanthoxyli. The B. zanthoxyli HS1's soil-drench confers disease resistance on tomato and paprika plants against infection with Ralstonia solanacearum and Phytophthora capsici, respectively. Root and shoot growths are also increased in B. zanthoxyli HS1-treated cabbage, cucumber, and tomato plants, compared with those in mock-treated plants, after application of high salinity solution. Moreover, the pretreatment of B. zanthoxyli HS1 on cabbage plants inhibits the degradation of chloroplast pigments caused by high salinity stresses, whereas the inhibitory effect is not observed in cucumber plants. These findings suggest that B. zanthoxyli HS1 stain inhibits disease development and confers tolerance to salinity stress on vegetable plants.
Collapse
Affiliation(s)
- Alisher Usmonov
- Department of Applied Bioscience, Dong-A University, Busan 4935, Korea
| | - Sung-Je Yoo
- National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Korea
| | - Sang Tae Kim
- Department of Applied Bioscience, Dong-A University, Busan 4935, Korea
- National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Korea
| | - Ji Sun Yang
- Department of Applied Bioscience, Dong-A University, Busan 4935, Korea
| | - Mee Kyung Sang
- National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Korea
| | - Ho Won Jung
- Department of Molecular Genetics, Dong-A University, Busan 4915, Korea
| |
Collapse
|
35
|
Khatoon Z, Huang S, Rafique M, Fakhar A, Kamran MA, Santoyo G. Unlocking the potential of plant growth-promoting rhizobacteria on soil health and the sustainability of agricultural systems. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 273:111118. [PMID: 32741760 DOI: 10.1016/j.jenvman.2020.111118] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 07/13/2020] [Accepted: 07/19/2020] [Indexed: 05/06/2023]
Abstract
The concept of soil health refers to specific soil properties and the ability to support and sustain crop growth and productivity, while maintaining long-term environmental quality. The key components of healthy soil are high populations of organisms that promote plant growth, such as the plant growth promoting rhizobacteria (PGPR). PGPR plays multiple beneficial and ecological roles in the rhizosphere soil. Among the roles of PGPR in agroecosystems are the nutrient cycling and uptake, inhibition of potential phytopathogens growth, stimulation of plant innate immunity, and direct enhancement of plant growth by producing phytohormones or other metabolites. Other important roles of PGPR are their environmental cleanup capacities (soil bioremediation). In this work, we review recent literature concerning the diverse mechanisms of PGPR in maintaining healthy conditions of agricultural soils, thus reducing (or eliminating) the toxic agrochemicals dependence. In conclusion, this review provides comprehensive knowledge on the current PGPR basic mechanisms and applications as biocontrol agents, plant growth stimulators and soil rhizoremediators, with the final goal of having more agroecological practices for sustainable agriculture.
Collapse
Affiliation(s)
- Zobia Khatoon
- Key Laboratory of Pollution Processes and Environmental Criteria of the Ministry of Education, Key Laboratory of Urban Ecological Environment Rehabilitation and Pollution Control of Tianjin, Numerical Stimulation Group for Water Environment, College of Environmental Science and Engineering Nankai University, Tianjin, 300350, China
| | - Suiliang Huang
- Key Laboratory of Pollution Processes and Environmental Criteria of the Ministry of Education, Key Laboratory of Urban Ecological Environment Rehabilitation and Pollution Control of Tianjin, Numerical Stimulation Group for Water Environment, College of Environmental Science and Engineering Nankai University, Tianjin, 300350, China
| | - Mazhar Rafique
- Department of Soil Science, The University of Haripur, 22630, KPK, Pakistan
| | - Ali Fakhar
- Department of Soil Science, Sindh Agricultural University, Tandojam, Pakistan
| | | | - Gustavo Santoyo
- Genomic Diversity Laboratory, Institute of Biological and Chemical Research, Universidad Michoacana de San Nicolas de Hidalgo, 58030, Morelia, Mexico.
| |
Collapse
|
36
|
Athira S, Anith KN. Plant growth promotion and suppression of bacterial wilt incidence in tomato by rhizobacteria, bacterial endophytes and the root endophytic fungus Piriformospora indica. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/s42360-020-00283-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
37
|
Current Advances in Plant Growth Promoting Bacteria Alleviating Salt Stress for Sustainable Agriculture. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10207025] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Humanity in the modern world is confronted with diverse problems at several levels. The environmental concern is probably the most important as it threatens different ecosystems, food, and farming as well as humans, animals, and plants. More specifically, salinization of agricultural soils is a global concern because of on one side, the permanent increase of the areas affected, and on the other side, the disastrous damage caused to various plants affecting hugely crop productivity and yields. Currently, great attention is directed towards the use of Plant Growth Promoting Bacteria (PGPB). This alternative method, which is healthy, safe, and ecological, seems to be very promising in terms of simultaneous salinity alleviation and improving crop productivity. This review attempts to deal with different aspects of the current advances concerning the use of PGPBs for saline stress alleviation. The objective is to explain, discuss, and present the current progress in this area of research. We firstly discuss the implication of PGPB on soil desalinization. We present the impacts of salinity on crops. We look for the different salinity origin and its impacts on plants. We discuss the impacts of salinity on soil. Then, we review various recent progress of hemophilic PGPB for sustainable agriculture. We categorize the mechanisms of PGPB toward salinity tolerance. We discuss the use of PGPB inoculants under salinity that can reduce chemical fertilization. Finally, we present some possible directions for future investigation. It seems that PGPBs use for saline stress alleviation gain more importance, investigations, and applications. Regarding the complexity of the mechanisms implicated in this domain, various aspects remain to be elucidated.
Collapse
|
38
|
Adu-Oppong B, Mangan SA, Stein C, Catano CP, Myers JA, Dantas G. Prairie plants harbor distinct and beneficial root-endophytic bacterial communities. PLoS One 2020; 15:e0234537. [PMID: 32574172 PMCID: PMC7310688 DOI: 10.1371/journal.pone.0234537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 05/28/2020] [Indexed: 11/19/2022] Open
Abstract
Plant-soil feedback studies attempt to understand the interplay between composition of plant and soil microbial communities. A growing body of literature suggests that plant species can coexist when they interact with a subset of the soil microbial community that impacts plant performance. Most studies focus on the microbial community in the soil rhizosphere; therefore, the degree to which the bacterial community within plant roots (root-endophytic compartment) influences plant-microbe interactions remains relatively unknown. To determine if there is an interaction between conspecific vs heterospecific soil microbes and plant performance, we sequenced root-endophytic bacterial communities of five tallgrass-prairie plant species, each reciprocally grown with soil microbes from each hosts' soil rhizosphere. We found evidence of plant-soil feedbacks for some pairs of plant hosts; however, the strength and direction of feedbacks varied substantially across plant species pairs-from positive to negative feedbacks. Additionally, each plant species harbored a unique subset of root-endophytic bacteria. Conspecifics that hosted similar bacterial communities were more similar in biomass than individuals that hosted different bacterial communities, suggesting an important functional link between root-endophytic bacterial community composition and plant fitness. Our findings suggest a connection between an understudied component of the root-endophytic microbiome and plant performance, which may have important implications in understanding plant community composition and coexistence.
Collapse
Affiliation(s)
- Boahemaa Adu-Oppong
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University in St. Louis School of Medicine, Saint Louis, Missouri, United States of America
| | - Scott A. Mangan
- Department of Biology and Tyson Research Center, Washington University in Saint Louis, Saint Louis, Missouri, United States of America
| | - Claudia Stein
- Department of Biology and Environmental Sciences, Auburn University at Montgomery, Montgomery, Alabama, United States of America
| | - Christopher P. Catano
- Department of Biology and Tyson Research Center, Washington University in Saint Louis, Saint Louis, Missouri, United States of America
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, United States of America
| | - Jonathan A. Myers
- Department of Biology and Tyson Research Center, Washington University in Saint Louis, Saint Louis, Missouri, United States of America
| | - Gautam Dantas
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University in St. Louis School of Medicine, Saint Louis, Missouri, United States of America
- Department of Pathology and Immunology, Washington University in Saint Louis School of Medicine, Saint Louis, Missouri, United States of America
- Department of Molecular Microbiology, Washington University in Saint Louis School of Medicine, Saint Louis, Missouri, United States of America
- Department of Biomedical Engineering, Washington University in Saint Louis, Saint Louis, Missouri, United States of America
| |
Collapse
|
39
|
Xiang DJ, Man LL, Cao S, Liu P, Li ZG, Wang XD. Heterologous expression of an Agropyron cristatum SnRK2 protein kinase gene ( AcSnRK2.11) increases freezing tolerance in transgenic yeast and tobacco. 3 Biotech 2020; 10:209. [PMID: 32351867 DOI: 10.1007/s13205-020-02203-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 04/10/2020] [Indexed: 12/01/2022] Open
Abstract
The sucrose non-fermenting-1 related protein kinase 2 (SnRK2) family plays an important role in the response to abiotic stress. To characterize the function of the SnRK2 gene from Agropyron cristatum in stress protection, we cloned the complete coding sequence of the AcSnRK2.11 gene from A. cristatum and generated AcSnRK2.11-overexpressing tobacco lines. The open reading frame of AcSnRK2.11 was 1083 bp in length and encoded a polypeptide of 360 amino acid residues. The sequence analysis results showed that AcSnRK2.11 contained conserved domains typified in SnRK2 protein kinases. Subcellular localization analysis showed that AcSnRK2.11 was located in the nucleus. AcSnRK2.11 was constitutively expressed in all of the examined tissues, and its transcription was induced by cold, dehydration, and salt stress, but not by abscisic acid treatment. Overexpression of the AcSnRK2.11 gene conferred freezing tolerance in yeast. AcSnRK2.11-overexpressing tobacco lines showed higher tolerance to freezing stress than did wild-type (WT) based on higher survival rates, lower malondialdehyde content and increased relative water content retention, chlorophyll yields, superoxide dismutase activities, reactive oxygen species content, peroxidase levels, and soluble carbohydrates under low-temperature conditions. The transcripts of NtDREB1, NtDREB2, NtERD10A, NtERD10B, NtERD10C, NtERD10D, NtMnSOD, NtCDPK15, and NtMPK9 in AcSnRK2.11-overexpressing tobacco lines were more abundant than in WT plants under low-temperature stress. These results suggest that AcSnRK2.11 may function as a regulatory factor associated with a cold-response pathway and could be used in plant breeding for cold resistance.
Collapse
Affiliation(s)
- Dian-Jun Xiang
- 1College of Agriculture, Inner Mongolia University for Nationalities, Tongliao, 028042 China
| | - Li-Li Man
- 2College of Life Science, Inner Mongolia University for Nationalities, Tongliao, 028042 China
| | - Shuai Cao
- 1College of Agriculture, Inner Mongolia University for Nationalities, Tongliao, 028042 China
| | - Peng Liu
- 1College of Agriculture, Inner Mongolia University for Nationalities, Tongliao, 028042 China
| | - Zhi-Gang Li
- 1College of Agriculture, Inner Mongolia University for Nationalities, Tongliao, 028042 China
| | - Xiao-Dong Wang
- 1College of Agriculture, Inner Mongolia University for Nationalities, Tongliao, 028042 China
| |
Collapse
|
40
|
Galindo FS, Buzetti S, Rodrigues WL, Boleta EHM, Silva VM, Tavanti RFR, Fernandes GC, Biagini ALC, Rosa PAL, Teixeira Filho MCM. Inoculation of Azospirillum brasilense associated with silicon as a liming source to improve nitrogen fertilization in wheat crops. Sci Rep 2020; 10:6160. [PMID: 32273589 PMCID: PMC7145820 DOI: 10.1038/s41598-020-63095-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 03/24/2020] [Indexed: 02/05/2023] Open
Abstract
This research was developed to investigate whether inoculation with Azospirillum brasilense in combination with silicon (Si) can enhance N use efficiency (NUE) in wheat and to evaluate and correlate nutritional and productive components and wheat grain yield. The study was carried out on a Rhodic Hapludox under a no-till system with a completely randomized block design with four replications in a 2 × 2 × 5 factorial scheme: two liming sources (with Ca and Mg silicate as the Si source and limestone); two inoculations (control - without inoculation and seed inoculation with A. brasilense) and five side-dress N rates (0, 50, 100, 150 and 200 kg ha-1). The results of this study showed positive improvements in wheat growth production parameters, NUE and grain yield as a function of inoculation associated with N rates. Inoculation can complement and optimize N fertilization, even with high N application rates. The potential benefits of Si use were less evident; however, the use of Si can favour N absorption, even when associated with A. brasilense. Therefore, studies conducted under tropical conditions with Ca and Mg silicate are necessary to better understand the role of Si applied alone or in combination with growth-promoting bacteria such as A. brasilense.
Collapse
Affiliation(s)
- Fernando Shintate Galindo
- São Paulo State University (UNESP), College of Engineering of Ilha Solteira, Department of Plant Health, Rural Engineering, and Soils, P.O. BOX 15385-000, Av. Brasil Sul, 830 - Centro, Ilha Solteira, state of São Paulo, Brazil
| | - Salatiér Buzetti
- São Paulo State University (UNESP), College of Engineering of Ilha Solteira, Department of Plant Health, Rural Engineering, and Soils, P.O. BOX 15385-000, Av. Brasil Sul, 830 - Centro, Ilha Solteira, state of São Paulo, Brazil
| | - Willian Lima Rodrigues
- São Paulo State University (UNESP), College of Engineering of Ilha Solteira, Department of Plant Health, Rural Engineering, and Soils, P.O. BOX 15385-000, Av. Brasil Sul, 830 - Centro, Ilha Solteira, state of São Paulo, Brazil
| | - Eduardo Henrique Marcandalli Boleta
- São Paulo State University (UNESP), College of Engineering of Ilha Solteira, Department of Plant Health, Rural Engineering, and Soils, P.O. BOX 15385-000, Av. Brasil Sul, 830 - Centro, Ilha Solteira, state of São Paulo, Brazil
| | - Vinicius Martins Silva
- São Paulo State University (UNESP), College of Engineering of Ilha Solteira, Department of Plant Health, Rural Engineering, and Soils, P.O. BOX 15385-000, Av. Brasil Sul, 830 - Centro, Ilha Solteira, state of São Paulo, Brazil
| | - Renan Francisco Rimoldi Tavanti
- São Paulo State University (UNESP), College of Engineering of Ilha Solteira, Department of Plant Health, Rural Engineering, and Soils, P.O. BOX 15385-000, Av. Brasil Sul, 830 - Centro, Ilha Solteira, state of São Paulo, Brazil
| | - Guilherme Carlos Fernandes
- São Paulo State University (UNESP), College of Engineering of Ilha Solteira, Department of Plant Health, Rural Engineering, and Soils, P.O. BOX 15385-000, Av. Brasil Sul, 830 - Centro, Ilha Solteira, state of São Paulo, Brazil
| | - Antônio Leonardo Campos Biagini
- São Paulo State University (UNESP), College of Engineering of Ilha Solteira, Department of Plant Health, Rural Engineering, and Soils, P.O. BOX 15385-000, Av. Brasil Sul, 830 - Centro, Ilha Solteira, state of São Paulo, Brazil
| | - Poliana Aparecida Leonel Rosa
- São Paulo State University (UNESP), College of Engineering of Ilha Solteira, Department of Plant Health, Rural Engineering, and Soils, P.O. BOX 15385-000, Av. Brasil Sul, 830 - Centro, Ilha Solteira, state of São Paulo, Brazil
| | - Marcelo Carvalho Minhoto Teixeira Filho
- São Paulo State University (UNESP), College of Engineering of Ilha Solteira, Department of Plant Health, Rural Engineering, and Soils, P.O. BOX 15385-000, Av. Brasil Sul, 830 - Centro, Ilha Solteira, state of São Paulo, Brazil.
| |
Collapse
|
41
|
Greffe VRG, Michiels J. Desiccation-induced cell damage in bacteria and the relevance for inoculant production. Appl Microbiol Biotechnol 2020; 104:3757-3770. [PMID: 32170388 DOI: 10.1007/s00253-020-10501-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/18/2020] [Accepted: 02/26/2020] [Indexed: 12/21/2022]
Abstract
Plant growth-promoting bacteria show great potential for use in agriculture although efficient application remains challenging to achieve. Cells often lose viability during inoculant production and application, jeopardizing the efficacy of the inoculant. Since desiccation has been documented to be the primary stress factor affecting the decrease in survival, obtaining xerotolerance in plant growth-promoting bacteria is appealing. The molecular damage that occurs by drying bacteria has been broadly investigated, although a complete view is still lacking due to the complex nature of the process. Mechanic, structural, and metabolic changes that occur as a result of water depletion may potentially afflict lethal damage to membranes, DNA, and proteins. Bacteria respond to these harsh conditions by increasing production of exopolysaccharides, changing composition of the membrane, improving the stability of proteins, reducing oxidative stress, and repairing DNA damage. This review provides insight into the complex nature of desiccation stress in bacteria in order to facilitate strategic choices to improve survival and shelf life of newly developed inoculants. KEY POINTS: Desiccation-induced damage affects most major macromolecules in bacteria. Most bacteria are not xerotolerant despite multiple endogenous adaption mechanisms. Sensitivity to drying severely hampers inoculant quality.
Collapse
Affiliation(s)
- Vincent Robert Guy Greffe
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium.,VIB Center for Microbiology, Flanders Institute for Biotechnology, Leuven, Belgium
| | - Jan Michiels
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium. .,VIB Center for Microbiology, Flanders Institute for Biotechnology, Leuven, Belgium.
| |
Collapse
|
42
|
Research Advances of Beneficial Microbiota Associated with Crop Plants. Int J Mol Sci 2020; 21:ijms21051792. [PMID: 32150945 PMCID: PMC7084388 DOI: 10.3390/ijms21051792] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 12/14/2022] Open
Abstract
Plants are associated with hundreds of thousands of microbes that are present outside on the surfaces or colonizing inside plant organs, such as leaves and roots. Plant-associated microbiota plays a vital role in regulating various biological processes and affects a wide range of traits involved in plant growth and development, as well as plant responses to adverse environmental conditions. An increasing number of studies have illustrated the important role of microbiota in crop plant growth and environmental stress resistance, which overall assists agricultural sustainability. Beneficial bacteria and fungi have been isolated and applied, which show potential applications in the improvement of agricultural technologies, as well as plant growth promotion and stress resistance, which all lead to enhanced crop yields. The symbioses of arbuscular mycorrhizal fungi, rhizobia and Frankia species with their host plants have been intensively studied to provide mechanistic insights into the mutual beneficial relationship of plant–microbe interactions. With the advances in second generation sequencing and omic technologies, a number of important mechanisms underlying plant–microbe interactions have been unraveled. However, the associations of microbes with their host plants are more complicated than expected, and many questions remain without proper answers. These include the influence of microbiota on the allelochemical effect caused by one plant upon another via the production of chemical compounds, or how the monoculture of crops influences their rhizosphere microbial community and diversity, which in turn affects the crop growth and responses to environmental stresses. In this review, first, we systematically illustrate the impacts of beneficial microbiota, particularly beneficial bacteria and fungi on crop plant growth and development and, then, discuss the correlations between the beneficial microbiota and their host plants. Finally, we provide some perspectives for future studies on plant–microbe interactions.
Collapse
|
43
|
Revisiting the plant growth-promoting rhizobacteria: lessons from the past and objectives for the future. Arch Microbiol 2019; 202:665-676. [DOI: 10.1007/s00203-019-01779-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 12/14/2022]
|
44
|
Camara MC, Campos EVR, Monteiro RA, do Espirito Santo Pereira A, de Freitas Proença PL, Fraceto LF. Development of stimuli-responsive nano-based pesticides: emerging opportunities for agriculture. J Nanobiotechnology 2019; 17:100. [PMID: 31542052 PMCID: PMC6754856 DOI: 10.1186/s12951-019-0533-8] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 09/14/2019] [Indexed: 01/23/2023] Open
Abstract
Pesticides and fertilizers are widely used to enhance agriculture yields, although the fraction of the pesticides applied in the field that reaches the targets is less than 0.1%. Such indiscriminate use of chemical pesticides is disadvantageous due to the cost implications and increasing human health and environmental concerns. In recent years, the utilization of nanotechnology to create novel formulations has shown great potential for diminishing the indiscriminate use of pesticides and providing environmentally safer alternatives. Smart nano-based pesticides are designed to efficiently delivery sufficient amounts of active ingredients in response to biotic and/or abiotic stressors that act as triggers, employing targeted and controlled release mechanisms. This review discusses the current status of stimuli-responsive release systems with potential to be used in agriculture, highlighting the challenges and drawbacks that need to be overcome in order to accelerate the global commercialization of smart nanopesticides.
Collapse
Affiliation(s)
- Marcela Candido Camara
- São Paulo State University - UNESP, Institute of Science and Technology, Sorocaba, SP, Brazil
| | - Estefânia Vangelie Ramos Campos
- São Paulo State University - UNESP, Institute of Science and Technology, Sorocaba, SP, Brazil
- Human and Natural Sciences Center, Federal University of ABC, Santo André, SP, Brazil
| | | | | | | | | |
Collapse
|
45
|
Environmental pollution effects on plant microbiota: the case study of poplar bacterial-fungal response to silver nanoparticles. Appl Microbiol Biotechnol 2019; 103:8215-8227. [DOI: 10.1007/s00253-019-10071-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/29/2019] [Accepted: 07/29/2019] [Indexed: 01/21/2023]
|
46
|
Majeed A, Muhammad Z, Islam S, Ahmad H. Salinity imposed stress on principal cereal crops and employing seed priming as a sustainable management approach. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.chnaes.2018.09.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
47
|
Nelkner J, Henke C, Lin TW, Pätzold W, Hassa J, Jaenicke S, Grosch R, Pühler A, Sczyrba A, Schlüter A. Effect of Long-Term Farming Practices on Agricultural Soil Microbiome Members Represented by Metagenomically Assembled Genomes (MAGs) and Their Predicted Plant-Beneficial Genes. Genes (Basel) 2019; 10:E424. [PMID: 31163637 PMCID: PMC6627896 DOI: 10.3390/genes10060424] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/23/2019] [Accepted: 05/24/2019] [Indexed: 11/24/2022] Open
Abstract
To follow the hypothesis that agricultural management practices affect structure and function of the soil microbiome regarding soil health and plant-beneficial traits, high-throughput (HT) metagenome analyses were performed on Chernozem soil samples from a long-term field experiment designated LTE-1 carried out at Bernburg-Strenzfeld (Saxony-Anhalt, Germany). Metagenomic DNA was extracted from soil samples representing the following treatments: (i) plough tillage with standard nitrogen fertilization and use of fungicides and growth regulators, (ii) plough tillage with reduced nitrogen fertilization (50%), (iii) cultivator tillage with standard nitrogen fertilization and use of fungicides and growth regulators, and (iv) cultivator tillage with reduced nitrogen fertilization (50%). Bulk soil (BS), as well as root-affected soil (RS), were considered for all treatments in replicates. HT-sequencing of metagenomic DNA yielded approx. 100 Giga bases (Gb) of sequence information. Taxonomic profiling of soil communities revealed the presence of 70 phyla, whereby Proteobacteria, Actinobacteria, Bacteroidetes, Planctomycetes, Acidobacteria, Thaumarchaeota, Firmicutes, Verrucomicrobia and Chloroflexi feature abundances of more than 1%. Functional microbiome profiling uncovered, i.a., numerous potential plant-beneficial, plant-growth-promoting and biocontrol traits predicted to be involved in nutrient provision, phytohormone synthesis, antagonism against pathogens and signal molecule synthesis relevant in microbe-plant interaction. Neither taxonomic nor functional microbiome profiling based on single-read analyses revealed pronounced differences regarding the farming practices applied. Soil metagenome sequences were assembled and taxonomically binned. The ten most reliable and abundant Metagenomically Assembled Genomes (MAGs) were taxonomically classified and metabolically reconstructed. Importance of the phylum Thaumarchaeota for the analyzed microbiome is corroborated by the fact that the four corresponding MAGs were predicted to oxidize ammonia (nitrification), thus contributing to the cycling of nitrogen, and in addition are most probably able to fix carbon dioxide. Moreover, Thaumarchaeota and several bacterial MAGs also possess genes with predicted functions in plant-growth-promotion. Abundances of certain MAGs (species resolution level) responded to the tillage practice, whereas the factors compartment (BS vs. RS) and nitrogen fertilization only marginally shaped MAG abundance profiles. Hence, soil management regimes promoting plant-beneficial microbiome members are very likely advantageous for the respective agrosystem, its health and carbon sequestration and accordingly may enhance plant productivity. Since Chernozem soils are highly fertile, corresponding microbiome data represent a valuable reference resource for agronomy in general.
Collapse
Affiliation(s)
- Johanna Nelkner
- Center for Biotechnology (CeBiTec), Bielefeld University, Genome Research of Industrial Microorganisms, Universitätsstraße 27, 33615 Bielefeld, Germany.
| | - Christian Henke
- Center for Biotechnology (CeBiTec), Bielefeld University, Computational Metagenomics Group, Universitätsstraße 27, 33615 Bielefeld, Germany.
| | - Timo Wentong Lin
- Center for Biotechnology (CeBiTec), Bielefeld University, Genome Research of Industrial Microorganisms, Universitätsstraße 27, 33615 Bielefeld, Germany.
| | - Wiebke Pätzold
- Center for Biotechnology (CeBiTec), Bielefeld University, Computational Metagenomics Group, Universitätsstraße 27, 33615 Bielefeld, Germany.
| | - Julia Hassa
- Center for Biotechnology (CeBiTec), Bielefeld University, Genome Research of Industrial Microorganisms, Universitätsstraße 27, 33615 Bielefeld, Germany.
| | - Sebastian Jaenicke
- Justus-Liebig-University Gießen, Bioinformatics & Systems Biology, Heinrich-Buff-Ring 58, 35392 Gießen, Germany.
| | - Rita Grosch
- Leibniz-Institute of Vegetable and Ornamental Crops (IGZ) Großbeeren/Erfurt eV, Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany.
| | - Alfred Pühler
- Center for Biotechnology (CeBiTec), Bielefeld University, Genome Research of Industrial Microorganisms, Universitätsstraße 27, 33615 Bielefeld, Germany.
| | - Alexander Sczyrba
- Center for Biotechnology (CeBiTec), Bielefeld University, Computational Metagenomics Group, Universitätsstraße 27, 33615 Bielefeld, Germany.
| | - Andreas Schlüter
- Center for Biotechnology (CeBiTec), Bielefeld University, Genome Research of Industrial Microorganisms, Universitätsstraße 27, 33615 Bielefeld, Germany.
| |
Collapse
|
48
|
Hanaka A, Ozimek E, Majewska M, Rysiak A, Jaroszuk-Ściseł J. Physiological Diversity of Spitsbergen Soil Microbial Communities Suggests Their Potential as Plant Growth-Promoting Bacteria. Int J Mol Sci 2019; 20:E1207. [PMID: 30857335 PMCID: PMC6429280 DOI: 10.3390/ijms20051207] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/01/2019] [Accepted: 03/06/2019] [Indexed: 11/16/2022] Open
Abstract
The objective of the study was to assess the physiological diversity and metabolic activity of the soil bacterial communities inhabiting Spitsbergen soils in search of bacterial abilities facilitating plant growth promotion. In the soil, the total number of culturable microorganisms, the number of their individual physiological groups (including Siderophore Synthesizing; SSB and Phosphate Solubilizing Bacteria; PSB), the dehydrogenase (DH) activity, and the ability to utilize sources of C, N, P (EcoPlate) were analysed. In bacterial isolates, siderophores production, ACC (1-aminocyclopropane-1-carboxylate) deaminase (ACCD) activity, IAA (indole-3-acetic acid) synthesis were examined. The isolates were applied to the seeds of Phaseolus coccineus regarding their germination and root length. The results showed differences between copio- and oligotrophic bacteria. A usually high number of SSB was accompanied by the raised number of PSB. A bigger number of SSB was connected with low values of Fe in the soil. High DH activity was assisted by greater number of copio- and oligotrophic bacteria, raised average well color development value, and N and C contents in the soil. Germination index was more alike relative seed germination than relative root growth. IAA concentration and ACCD activity were conversely related. Synthesis of siderophores was matched with ACCD activity and its high level was combined with elevated germination index. In spite of different localization of soil samples, some isolates proved similar traits of activity. Distinct affiliation of isolates and their various localizations were displayed. Among all isolates tested, some possessed one main trait of activity, but most of them had two or more significant features for potential plant growth stimulation. These isolates could be an important source of useful bacteria.
Collapse
Affiliation(s)
- Agnieszka Hanaka
- Department of Plant Physiology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka St. 19, 20-033 Lublin, Poland.
| | - Ewa Ozimek
- Department of Environmental Microbiology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka St. 19, 20-033 Lublin, Poland.
| | - Małgorzata Majewska
- Department of Environmental Microbiology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka St. 19, 20-033 Lublin, Poland.
| | - Anna Rysiak
- Department of Ecology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka St. 19, 20-033 Lublin, Poland.
| | - Jolanta Jaroszuk-Ściseł
- Department of Environmental Microbiology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka St. 19, 20-033 Lublin, Poland.
| |
Collapse
|