1
|
Li T, Chen H, Ma N, Jiang D, Wu J, Zhang X, Li H, Su J, Chen P, Liu Q, Guan Y, Zhu X, Lin J, Zhang J, Wang Q, Guo H, Zhu F. Specificity landscapes of 40 R2R3-MYBs reveal how paralogs target different cis-elements by homodimeric binding. IMETA 2025; 4:e70009. [PMID: 40236784 PMCID: PMC11995187 DOI: 10.1002/imt2.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/11/2025] [Accepted: 02/17/2025] [Indexed: 04/17/2025]
Abstract
Paralogous transcription factors (TFs) frequently recognize highly similar DNA motifs. Homodimerization can help distinguish them according to their different dimeric configurations. Here, by studying R2R3-MYB TFs, we show that homodimerization can also directly change the recognized DNA motifs to distinguish between similar TFs. By high-throughput SELEX, we profiled the specificity landscape for 40 R2R3-MYBs of subfamily VIII and curated 833 motif models. The dimeric models show that homodimeric binding has evoked specificity changes for AtMYBs. Focusing on AtMYB2 as an example, we show that homodimerization has modified its specificity and allowed it to recognize additional cis-regulatory sequences that are different from the closely related CCWAA-box AtMYBs and are unique among all AtMYBs. Genomic sites described by the modified dimeric specificities of AtMYB2 are conserved in evolution and involved in AtMYB2-specific transcriptional activation. Collectively, this study provides rich data on sequence preferences of VIII R2R3-MYBs and suggests an alternative mechanism that guides closely related TFs to respective cis-regulatory sites.
Collapse
Affiliation(s)
- Tian Li
- Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, College of JUNCAO Science and Ecology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems BiologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Hao Chen
- Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, College of JUNCAO Science and Ecology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems BiologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Nana Ma
- Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, College of JUNCAO Science and Ecology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems BiologyFujian Agriculture and Forestry UniversityFuzhouChina
- College of Life ScienceFujian Agriculture and Forestry UniversityFuzhouChina
| | - Dingkun Jiang
- Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, College of JUNCAO Science and Ecology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems BiologyFujian Agriculture and Forestry UniversityFuzhouChina
- College of Life ScienceFujian Agriculture and Forestry UniversityFuzhouChina
| | - Jiacheng Wu
- Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, College of JUNCAO Science and Ecology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems BiologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Xinfeng Zhang
- Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, College of JUNCAO Science and Ecology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems BiologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Hao Li
- Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, College of JUNCAO Science and Ecology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems BiologyFujian Agriculture and Forestry UniversityFuzhouChina
- College of Life ScienceFujian Agriculture and Forestry UniversityFuzhouChina
| | - Jiaqing Su
- College of Resources and EnvironmentFujian Agriculture and Forestry UniversityFuzhouChina
| | - Piaojuan Chen
- Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, College of JUNCAO Science and Ecology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems BiologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Qing Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
| | - Yuefeng Guan
- College of Resources and EnvironmentFujian Agriculture and Forestry UniversityFuzhouChina
| | - Xiaoyue Zhu
- Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, College of JUNCAO Science and Ecology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems BiologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Juncheng Lin
- Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, College of JUNCAO Science and Ecology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems BiologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Jilin Zhang
- Department of Biomedical SciencesCity University of Hong KongHong KongChina
- Tung Biomedical Sciences CentreCity University of Hong KongHong KongChina
- Department of Precision Diagnostic and Therapeutic TechnologyThe City University of Hong Kong Shenzhen Futian Research InstituteShenzhenChina
| | - Qin Wang
- Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, College of JUNCAO Science and Ecology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems BiologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Honghong Guo
- Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, College of JUNCAO Science and Ecology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems BiologyFujian Agriculture and Forestry UniversityFuzhouChina
- College of Life ScienceFujian Agriculture and Forestry UniversityFuzhouChina
| | - Fangjie Zhu
- Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, College of JUNCAO Science and Ecology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems BiologyFujian Agriculture and Forestry UniversityFuzhouChina
| |
Collapse
|
2
|
Zhou SD, Zhou Q, Cui YD, Zhong X, Chen X, Lin XR, Yang ZN, Zhu J. Identification of Nuclear Localization Sequence (NLS) Sites in R2R3-MYB Transcription Factor Involved in Anther Development. Cells 2025; 14:470. [PMID: 40214424 PMCID: PMC11987959 DOI: 10.3390/cells14070470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/01/2025] [Accepted: 03/19/2025] [Indexed: 04/14/2025] Open
Abstract
The R2R3-MYB family of transcription factors (TFs) plays a crucial role in cell specification and secondary metabolism regulation during plant development. In Arabidopsis, MS188, a typical R2R3-MYB protein, is essential for tapetal development and pollen wall formation. However, the nuclear localization sequence (NLS) responsible for directing MS188 into the nucleus has not been fully elucidated. In this study, the subcellular localization of the NLS-containing proteins was determined by GFP tagging in tobacco leaves, and three NLS regions within MS188 were identified: two located at the N-terminus of R2-MYB and one at the C-terminus of R3-MYB. We further narrowed the NLSs located at amino acids (AAs) 12-15, 18-22, and 96-107 via point mutation analysis. Combined with the cytoplasmic protein FBA6, these NLSs fusion proteins could localize in the nucleus. Importantly, the proteins with mutations in AAs 18-22 exhibited completely cytoplasmic signals, whereas other mutated sites partially abolished the nuclear signals. These findings suggest that the NLS at AAs 18-22 is sufficient for nuclear localization. To confirm the NLS functions in vivo, we constructed the vectors including the MS188 gene without the NLS sites, which failed to complement the male sterile phenotype of ms188. We also searched the highly conserved NLSs in other R2R3-MYB TFs and showed they are required for nuclear localization. Collectively, these findings revealed the specific NLS regions within R2R3-MYB transcription factors and highlighted their critical role for subcellular localization in plant developmental regulation.
Collapse
Affiliation(s)
- Si-Da Zhou
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China; (S.-D.Z.); (Q.Z.); (Y.-D.C.); (X.Z.)
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
- Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany
| | - Que Zhou
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China; (S.-D.Z.); (Q.Z.); (Y.-D.C.); (X.Z.)
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Yan-Dan Cui
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China; (S.-D.Z.); (Q.Z.); (Y.-D.C.); (X.Z.)
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Xiang Zhong
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China; (S.-D.Z.); (Q.Z.); (Y.-D.C.); (X.Z.)
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Xing Chen
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China; (S.-D.Z.); (Q.Z.); (Y.-D.C.); (X.Z.)
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Xue-Rong Lin
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China; (S.-D.Z.); (Q.Z.); (Y.-D.C.); (X.Z.)
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Zhong-Nan Yang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China; (S.-D.Z.); (Q.Z.); (Y.-D.C.); (X.Z.)
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Jun Zhu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China; (S.-D.Z.); (Q.Z.); (Y.-D.C.); (X.Z.)
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| |
Collapse
|
3
|
Yang Y, He S, Xu L, Wang M, Chen S, Bai Z, Yang T, Zhao B, Wang L, Zhang H, Zhang J, Zhang R. Transcriptome and WGCNA reveals the potential genetic basis of photoperiod-sensitive male sterility in soybean. BMC Genomics 2025; 26:131. [PMID: 39934659 PMCID: PMC11816801 DOI: 10.1186/s12864-025-11314-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 01/31/2025] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND Soybean (Glycine max (L.) Merr.) is a crucial crop due to its high plant protein and oil content. Previous studies have shown that soybeans exhibit significant heterosis in terms of yield and protein content However, the practical application of soybean heterosis remains difficult, as the molecular mechanisms underlying photoperiod-sensitive genic male sterile (PGMS) is still unclear. RESULTS This study characterized the PGMS line 88-428BY, which is sterile under short-day (SD) conditions and fertile under long-day (LD) conditions. To elucidate the genetic basis for this trait, we collected anthers, from 88-428BY under SD and LD conditions at three developmental stages, resulting in the identification of differentially expressed genes (DEGs) (2333, 2727 and 7282 DEGs, respectively) using Illumina transcriptome analysis. Using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses, we fund that among the DEGs, enriched genes were associated with photoperiod stress, light stimulus, oxidation-reduction processes, multicellular organism development and protein phosphorylation. Additionally, weighted correlation network analysis identified four modules (blue, brown, red, and yellow) that were significantly correlated with PGMS, revealing co-expressed hub genes with potential regulatory roles. Functional annotation of 224 DEGs with|KME| >0.9 across the four modules in seven databases highlighted their involvement in light stimulus, oxidation-reduction processes, multicellular organism development, and protein phosphorylation, suggesting their importance in soybean PGMS. By integrating fertility-related genes previously identified by other studies with the DEGs from our analysis, we identified eight candidate genes associated with the photosensitive sterility in soybeans. CONCLUSIONS This study enhances the understanding of PGMS in soybean and establishes the genetic basis for a two-line hybrid seed production system in soybean.
Collapse
Affiliation(s)
- Yuhua Yang
- Center of Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan, Shanxi, 030031, China.
- Houji laboratory in Shanxi Province, Shanxi Agricultural University, Taiyuan, Shanxi, 030031, China.
| | - Suqin He
- Houji laboratory in Shanxi Province, Shanxi Agricultural University, Taiyuan, Shanxi, 030031, China
- College of Agricultural, Shanxi Agricultural University, Taigu, 030801, China
| | - Lihong Xu
- Center of Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan, Shanxi, 030031, China
- College of Agricultural, Shanxi Agricultural University, Taigu, 030801, China
| | - Minggui Wang
- Center of Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan, Shanxi, 030031, China
- College of Agricultural, Shanxi Agricultural University, Taigu, 030801, China
| | - Shuichun Chen
- Center of Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan, Shanxi, 030031, China
- College of Agricultural, Shanxi Agricultural University, Taigu, 030801, China
| | - Zhiyuan Bai
- Center of Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan, Shanxi, 030031, China
| | - Tingting Yang
- College of Agricultural, Shanxi Agricultural University, Taigu, 030801, China
| | - Bo Zhao
- Houji laboratory in Shanxi Province, Shanxi Agricultural University, Taiyuan, Shanxi, 030031, China
- College of Agricultural, Shanxi Agricultural University, Taigu, 030801, China
| | - Lixiang Wang
- Houji laboratory in Shanxi Province, Shanxi Agricultural University, Taiyuan, Shanxi, 030031, China
- College of Agricultural, Shanxi Agricultural University, Taigu, 030801, China
| | - Haiping Zhang
- Center of Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan, Shanxi, 030031, China
| | - Jiangjiang Zhang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China.
| | - Ruijun Zhang
- Center of Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan, Shanxi, 030031, China.
| |
Collapse
|
4
|
Ma R, Zhang Y, Zhao J, Zheng Y, Xue L, Lei J. A systematic regulatory network related to bulbil formation in Lilium lancifolium based on metabolome and transcriptome analyses. BMC PLANT BIOLOGY 2024; 24:969. [PMID: 39407139 PMCID: PMC11481762 DOI: 10.1186/s12870-024-05654-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Lilium lancifolium is a special wild triploid species native to China and can produce abundant bulbils on its stem under natural conditions, which is very valuable to study bulbil organogenesis in plants. Although similar to the lateral and tillering principles, the molecular mechanism underlying bulbil formation has remained incompletely understood. RESULTS The metabolome and transcriptome of L. lancifolium bulbils across four development stages were analyzed. The pairwise comparison of metabolomes across the four stages identified 17 differential hormones, predominantly auxin (IAA), cytokinin (CK), and jasmonic acid (JA). Short Time-series Expression Miner (STEM) trend analysis of differential genes revealed four significant trends across these stages. The KEGG enrichment analysis of the four clusters highlighted pathways, such as plant hormone signal transduction, which were speculated to play a crucial role in development stages. these pathways were speculated to play a crucial role in development stages. To explore the key differential expressed genes and transcription factors associated with bulbil occurrence, two periods were focused on: Ll_UN and Ll_DN, which represented the stages with and without bulbils, respectively. Through correlation analysis and qRT-PCR analysis, 11 candidate differentially expressed genes and 27 candidate transcription factors were selected. By spraying exogenous hormones to validate these candidates, LlbHLH128, LlTIFY10A, LlbHLH93, and LlMYB108, were identified as the key genes for L. lancifolium bulbils. CONCLUSION A regulatory network of L. lancifolium bulbil development was predicted. LlTIFY10A and LlbHLH93 might be involved in the JA and auxin signal transduction pathways, which jointly formed a regulatory network to affect the occurrence of L. lancifolium bulbil. This study not only provided more information about the differentially expressed genes and metabolites through transcriptome and metabolomics analyses, but also provided a clearer understanding of the effect of hormones on bulbil formation in lily.
Collapse
Affiliation(s)
- Ruiyi Ma
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yan Zhang
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Jun Zhao
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yang Zheng
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Li Xue
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Jiajun Lei
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
5
|
Kim H, Lee N, Kim Y, Choi G. The phytochrome-interacting factor genes PIF1 and PIF4 are functionally diversified due to divergence of promoters and proteins. THE PLANT CELL 2024; 36:2778-2797. [PMID: 38593049 PMCID: PMC11289632 DOI: 10.1093/plcell/koae110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 03/19/2024] [Accepted: 03/23/2024] [Indexed: 04/11/2024]
Abstract
Phytochrome-interacting factors (PIFs) are basic helix-loop-helix transcription factors that regulate light responses downstream of phytochromes. In Arabidopsis (Arabidopsis thaliana), 8 PIFs (PIF1-8) regulate light responses, either redundantly or distinctively. Distinctive roles of PIFs may be attributed to differences in mRNA expression patterns governed by promoters or variations in molecular activities of proteins. However, elements responsible for the functional diversification of PIFs have yet to be determined. Here, we investigated the role of promoters and proteins in the functional diversification of PIF1 and PIF4 by analyzing transgenic lines expressing promoter-swapped PIF1 and PIF4, as well as chimeric PIF1 and PIF4 proteins. For seed germination, PIF1 promoter played a major role, conferring dominance to PIF1 gene with a minor contribution from PIF1 protein. Conversely, for hypocotyl elongation under red light, PIF4 protein was the major element conferring dominance to PIF4 gene with the minor contribution from PIF4 promoter. In contrast, both PIF4 promoter and PIF4 protein were required for the dominant role of PIF4 in promoting hypocotyl elongation at high ambient temperatures. Together, our results support that the functional diversification of PIF1 and PIF4 genes resulted from contributions of both promoters and proteins, with their relative importance varying depending on specific light responses.
Collapse
Affiliation(s)
- Hanim Kim
- Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| | - Nayoung Lee
- Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| | - Yeojae Kim
- Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| | - Giltsu Choi
- Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| |
Collapse
|
6
|
Li WF, Zhou Q, Ma ZH, Zuo CW, Chu MY, Mao J, Chen BH. Regulatory mechanism of GA 3 application on grape (Vitis vinifera L.) berry size. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108543. [PMID: 38554534 DOI: 10.1016/j.plaphy.2024.108543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 02/21/2024] [Accepted: 03/16/2024] [Indexed: 04/01/2024]
Abstract
Gibberellin A3 (GA3) is often used as a principal growth regulator to increase plant size. Here, we applied Tween-20 (2%)-formulated GA3 (T1:40 mg/L; T2:70 mg/L) by dipping the clusters at the initial expansion phase of 'Red Globe' grape (Vitis vinifera L.) in 2018 and 2019. Tween-20 (2%) was used as a control. The results showed that GA3 significantly increased fruit cell length, cell size, diameter, and volume. The hormone levels of auxin (IAA) and zeatin (ZT) were significantly increased at 2 h (0 d) -1 d after application (DAA0-1) and remained significantly higher at DAA1 until maturity. Conversely, ABA exhibited an opposite trend. The mRNA and non-coding sequencing results yielded 436 differentially expressed mRNA (DE_mRNAs), 79 DE_lncRNAs and 17 DE_miRNAs. These genes are linked to hormone pathways like cysteine and methionine metabolism (ko00270), glutathione metabolism (ko00480) and plant hormone signal transduction (ko04075). GA3 application reduced expression of insensitive dwarf 2 (GID2, VIT_07s0129g01000), small auxin-upregulated RNA (SAUR, VIT_08s0007g03120) and 1-aminocyclopropane-1-carboxylate synthase (ACS, VIT_18s0001g08520), but increased SAUR (VIT_04s0023g00560) expression. These four genes were predicted to be negatively regulated by vvi-miR156, vvi-miR172, vvi-miR396, and vvi-miR159, corresponding to specific lncRNAs. Therefore, miRNAs could affect grape size by regulating key genes GID2, ACS and SAUR. The R2R3 MYB family member VvRAX2 (VIT_08s0007g05030) was upregulated in response to GA3 application. Overexpression of VvRAX2 in tomato transgenic lines increased fruit size in contrast to the wild type. This study provides a basis and genetic resources for elucidating the novel role of ncRNAs in fruit development.
Collapse
Affiliation(s)
- Wen-Fang Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Qi Zhou
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, PR China; School of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, PR China
| | - Zong-Huan Ma
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Cun-Wu Zuo
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Ming-Yu Chu
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Juan Mao
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, PR China.
| | - Bai-Hong Chen
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, PR China.
| |
Collapse
|
7
|
Li T, Zhang S, Li Y, Zhang L, Song W, Chen C. Overexpression of AtMYB2 Promotes Tolerance to Salt Stress and Accumulations of Tanshinones and Phenolic Acid in Salvia miltiorrhiza. Int J Mol Sci 2024; 25:4111. [PMID: 38612919 PMCID: PMC11012609 DOI: 10.3390/ijms25074111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/31/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024] Open
Abstract
Salvia miltiorrhiza is a prized traditional Chinese medicinal plant species. Its red storage roots are primarily used for the treatment of cardiovascular and cerebrovascular diseases. In this study, a transcription factor gene AtMYB2 was cloned and introduced into Salvia miltiorrhiza for ectopic expression. Overexpression of AtMYB2 enhanced salt stress resistance in S. miltiorrhiza, leading to a more resilient phenotype in transgenic plants exposed to high-salinity conditions. Physiological experiments have revealed that overexpression of AtMYB2 can decrease the accumulation of reactive oxygen species (ROS) during salt stress, boost the activity of antioxidant enzymes, and mitigate oxidative damage to cell membranes. In addition, overexpression of AtMYB2 promotes the synthesis of tanshinones and phenolic acids by upregulating the expression of biosynthetic pathway genes, resulting in increased levels of these secondary metabolites. In summary, our findings demonstrate that AtMYB2 not only enhances plant tolerance to salt stress, but also increases the accumulation of secondary metabolites in S. miltiorrhiza. Our study lays a solid foundation for uncovering the molecular mechanisms governed by AtMYB2 and holds significant implications for the molecular breeding of high-quality S. miltiorrhiza varieties.
Collapse
Affiliation(s)
| | | | | | | | | | - Chengbin Chen
- College of Life Sciences, Nankai University, Tianjin 300071, China; (T.L.); (S.Z.); (Y.L.); (L.Z.); (W.S.)
| |
Collapse
|
8
|
Yang Q, Yuan C, Cong T, Zhang Q. The Secrets of Meristems Initiation: Axillary Meristem Initiation and Floral Meristem Initiation. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091879. [PMID: 37176937 PMCID: PMC10181267 DOI: 10.3390/plants12091879] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/29/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023]
Abstract
The branching phenotype is an extremely important agronomic trait of plants, especially for horticultural crops. It is not only an important yield character of fruit trees, but also an exquisite ornamental trait of landscape trees and flowers. The branching characteristics of plants are determined by the periodic initiation and later development of meristems, especially the axillary meristem (AM) in the vegetative stage and the floral meristem (FM) in the reproductive stage, which jointly determine the above-ground plant architecture. The regulation of meristem initiation has made great progress in model plants in recent years. Meristem initiation is comprehensively regulated by a complex regulatory network composed of plant hormones and transcription factors. However, as it is an important trait, studies on meristem initiation in horticultural plants are very limited, and the mechanism of meristem initiation regulation in horticultural plants is largely unknown. This review summarizes recent research advances in axillary meristem regulation and mainly reviews the regulatory networks and mechanisms of AM and FM initiation regulated by transcription factors and hormones. Finally, considering the existing problems in meristem initiation studies and the need for branching trait improvement in horticulture plants, we prospect future studies to accelerate the genetic improvement of the branching trait in horticulture plants.
Collapse
Affiliation(s)
- Qingqing Yang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing 100083, China
- National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing 100083, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing 100083, China
- Engineering Research Center of Landscape Environment of Ministry of Education, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing 100083, China
- School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Cunquan Yuan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing 100083, China
- National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing 100083, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing 100083, China
- Engineering Research Center of Landscape Environment of Ministry of Education, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing 100083, China
- School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Tianci Cong
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing 100083, China
- National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing 100083, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing 100083, China
- Engineering Research Center of Landscape Environment of Ministry of Education, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing 100083, China
- School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Qixiang Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing 100083, China
- National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing 100083, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing 100083, China
- Engineering Research Center of Landscape Environment of Ministry of Education, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing 100083, China
- School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
9
|
Guan J, Li J, Yao Q, Liu Z, Feng H, Zhang Y. Identification of two tandem genes associated with primary rosette branching in flowering Chinese cabbage. FRONTIERS IN PLANT SCIENCE 2022; 13:1083528. [PMID: 36600928 PMCID: PMC9806259 DOI: 10.3389/fpls.2022.1083528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Branching is an important agronomic trait determining plant architecture and yield; however, the molecular mechanisms underlying branching in the stalk vegetable, flowering Chinese cabbage, remain unclear. The present study identified two tandem genes responsible for primary rosette branching in flowering Chinese cabbage by GradedPool-Seq (GPS) combined with Kompetitive Allele Specific PCR (KASP) genotyping. A 900 kb candidate region was mapped in the 28.0-28.9 Mb interval of chromosome A07 through whole-genome sequencing of three graded-pool samples from the F2 population derived by crossing the branching and non-branching lines. KASP genotyping narrowed the candidate region to 24.6 kb. Two tandem genes, BraA07g041560.3C and BraA07g041570.3C, homologous to AT1G78440 encoding GA2ox1 oxidase, were identified as the candidate genes. The BraA07g041560.3C sequence was identical between the branching and non-branching lines, but BraA07g041570.3C had a synonymous single nucleotide polymorphic (SNP) mutation in the first exon (290th bp, A to G). In addition, an ERE cis-regulatory element was absent in the promoter of BraA07g041560.3C, and an MYB cis-regulatory element in the promoter of BraA07g041570.3C in the branching line. Gibberellic acid (GA3) treatment decreased the primary rosette branch number in the branching line, indicating the significant role of GA in regulating branching in flowering Chinese cabbage. These results provide valuable information for revealing the regulatory mechanisms of branching and contributing to the breeding programs of developing high-yielding species in flowering Chinese cabbage.
Collapse
|
10
|
A Novel R2R3-MYB Transcription Factor SbMYB12 Positively Regulates Baicalin Biosynthesis in Scutellaria baicalensis Georgi. Int J Mol Sci 2022; 23:ijms232415452. [PMID: 36555123 PMCID: PMC9778813 DOI: 10.3390/ijms232415452] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/22/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Scutellaria baicalensis Georgi is an annual herb from the Scutellaria genus that has been extensively used as a traditional medicine for over 2000 years in China. Baicalin and other flavonoids have been identified as the principal bioactive ingredients. The biosynthetic pathway of baicalin in S. baicalensis has been elucidated; however, the specific functions of R2R3-MYB TF, which regulates baicalin synthesis, has not been well characterized in S. baicalensis to date. Here, a S20 R2R3-MYB TF (SbMYB12), which encodes 263 amino acids with a length of 792 bp, was expressed in all tested tissues (mainly in leaves) and responded to exogenous hormone methyl jasmonate (MeJA) treatment. The overexpression of SbMYB12 significantly promoted the accumulation of flavonoids such as baicalin and wogonoside in S. baicalensis hairy roots. Furthermore, biochemical experiments revealed that SbMYB12 is a nuclear-localized transcription activator that binds to the SbCCL7-4, SbCHI-2, and SbF6H-1 promoters to activate their expression. These results illustrate that SbMYB12 positively regulates the generation of baicalin and wogonoside. In summary, this work revealed a novel S20 R2R3-MYB regulator and enhances our understanding of the transcriptional and regulatory mechanisms of baicalin biosynthesis, as well as sheds new light on metabolic engineering in S. baicalensis.
Collapse
|
11
|
Martí-Guillén JM, Pardo-Hernández M, Martínez-Lorente SE, Almagro L, Rivero RM. Redox post-translational modifications and their interplay in plant abiotic stress tolerance. FRONTIERS IN PLANT SCIENCE 2022; 13:1027730. [PMID: 36388514 PMCID: PMC9644032 DOI: 10.3389/fpls.2022.1027730] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/10/2022] [Indexed: 05/27/2023]
Abstract
The impact of climate change entails a progressive and inexorable modification of the Earth's climate and events such as salinity, drought, extreme temperatures, high luminous intensity and ultraviolet radiation tend to be more numerous and prolonged in time. Plants face their exposure to these abiotic stresses or their combination through multiple physiological, metabolic and molecular mechanisms, to achieve the long-awaited acclimatization to these extreme conditions, and to thereby increase their survival rate. In recent decades, the increase in the intensity and duration of these climatological events have intensified research into the mechanisms behind plant tolerance to them, with great advances in this field. Among these mechanisms, the overproduction of molecular reactive species stands out, mainly reactive oxygen, nitrogen and sulfur species. These molecules have a dual activity, as they participate in signaling processes under physiological conditions, but, under stress conditions, their production increases, interacting with each other and modifying and-or damaging the main cellular components: lipids, carbohydrates, nucleic acids and proteins. The latter have amino acids in their sequence that are susceptible to post-translational modifications, both reversible and irreversible, through the different reactive species generated by abiotic stresses (redox-based PTMs). Some research suggests that this process does not occur randomly, but that the modification of critical residues in enzymes modulates their biological activity, being able to enhance or inhibit complete metabolic pathways in the process of acclimatization and tolerance to the exposure to the different abiotic stresses. Given the importance of these PTMs-based regulation mechanisms in the acclimatization processes of plants, the present review gathers the knowledge generated in recent years on this subject, delving into the PTMs of the redox-regulated enzymes of plant metabolism, and those that participate in the main stress-related pathways, such as oxidative metabolism, primary metabolism, cell signaling events, and photosynthetic metabolism. The aim is to unify the existing information thus far obtained to shed light on possible fields of future research in the search for the resilience of plants to climate change.
Collapse
Affiliation(s)
- José M. Martí-Guillén
- Department of Plant Nutrition, Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas, Murcia, Spain
- Department of Plant Biology, Faculty of Biology, University of Murcia, Murcia, Spain
| | - Miriam Pardo-Hernández
- Department of Plant Nutrition, Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas, Murcia, Spain
| | - Sara E. Martínez-Lorente
- Department of Plant Nutrition, Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas, Murcia, Spain
| | - Lorena Almagro
- Department of Plant Biology, Faculty of Biology, University of Murcia, Murcia, Spain
| | - Rosa M. Rivero
- Department of Plant Nutrition, Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas, Murcia, Spain
| |
Collapse
|
12
|
Zhang L, Fang W, Chen F, Song A. The Role of Transcription Factors in the Regulation of Plant Shoot Branching. PLANTS (BASEL, SWITZERLAND) 2022; 11:1997. [PMID: 35956475 PMCID: PMC9370718 DOI: 10.3390/plants11151997] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 11/23/2022]
Abstract
Transcription factors, also known as trans-acting factors, balance development and stress responses in plants. Branching plays an important role in plant morphogenesis and is closely related to plant biomass and crop yield. The apical meristem produced during plant embryonic development repeatedly produces the body of the plant, and the final aerial structure is regulated by the branching mode generated by axillary meristem (AM) activities. These branching patterns are regulated by two processes: AM formation and axillary bud growth. In recent years, transcription factors involved in regulating these processes have been identified. In addition, these transcription factors play an important role in various plant hormone pathways and photoresponses regulating plant branching. In this review, we start from the formation and growth of axillary meristems, including the regulation of hormones, light and other internal and external factors, and focus on the transcription factors involved in regulating plant branching and development to provide candidate genes for improving crop architecture through gene editing or directed breeding.
Collapse
Affiliation(s)
| | | | - Fadi Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (L.Z.); (W.F.)
| | - Aiping Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (L.Z.); (W.F.)
| |
Collapse
|
13
|
Park SJ, Bae EK, Choi H, Yoon SK, Jang HA, Choi YI, Lee H. Knockdown of PagSAP11 Confers Drought Resistance and Promotes Lateral Shoot Growth in Hybrid Poplar ( Populus alba × Populus tremula var. glandulosa). FRONTIERS IN PLANT SCIENCE 2022; 13:925744. [PMID: 35812954 PMCID: PMC9263715 DOI: 10.3389/fpls.2022.925744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Plants have evolved defense mechanisms to overcome unfavorable climatic conditions. The growth and development of plants are regulated in response to environmental stress. In this study, we investigated the molecular and physiological characteristics of a novel gene PagSAP11 in hybrid poplar (Populus alba × Populus tremula var. glandulosa) under drought stress. PagSAP11, a stress-associated protein (SAP) family gene, encodes a putative protein containing an A20 and AN1 zinc-finger domain at its N- and C-termini, respectively. Knockdown of PagSAP11 transgenic poplars (SAP11-Ri) enhanced their tolerance to drought stress compared with wild type plants. Moreover, the RNAi lines showed increased branching of lateral shoots that led to a gain in fresh weight, even when grown in the living modified organism (LMO) field. In SAP11-Ri transgenic plants, the expression levels of genes involved in axillary bud outgrowth and cell proliferation such as DML10, CYP707A and RAX were increased while the DRM gene which involved in bud dormancy was down-regulated. Taken together, these results indicate that PagSAP11 represents a promising candidate gene for engineering trees with improved stress tolerance and growth during unfavorable conditions.
Collapse
Affiliation(s)
- Su Jin Park
- Department of Forest Bioresources, National Institute of Forest Science, Suwon, South Korea
| | - Eun-Kyung Bae
- Department of Forest Bioresources, National Institute of Forest Science, Suwon, South Korea
| | - Hyunmo Choi
- Forest Biomaterials Research Center, National Institute of Forest Science, Jinju, South Korea
| | - Seo-Kyung Yoon
- Department of Forest Sciences, Seoul National University, Seoul, South Korea
| | - Hyun-A Jang
- Department of Forest Bioresources, National Institute of Forest Science, Suwon, South Korea
| | - Young-Im Choi
- National Forest Seed and Variety Center, Forest Service, Chungju, South Korea
| | - Hyoshin Lee
- Department of Forest Bioresources, National Institute of Forest Science, Suwon, South Korea
| |
Collapse
|
14
|
The R2R3 MYB Transcription Factor MYB71 Regulates Abscisic Acid Response in Arabidopsis. PLANTS 2022; 11:plants11101369. [PMID: 35631794 PMCID: PMC9143609 DOI: 10.3390/plants11101369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/16/2022] [Accepted: 05/19/2022] [Indexed: 11/17/2022]
Abstract
Abscisic acid (ABA) regulates plant responses to abiotic stresses via regulating the expression of downstream genes, yet the functions of many ABA responsive genes remain unknown. We report here the characterization of MYB71, a R2R3 MYB transcription factor in regulating ABA responses in Arabidopsis. RT-PCR results show that the expression level of MYB71 was increased in response to ABA treatment. Arabidopsis protoplasts transfection results show that MYB71 was specifically localized in nucleus and it activated the Gal4:GUS reporter gene when recruited to the Gal4 promoter by a fused DNA binding domain GD. Roles of MYB71 in regulating plant response to ABA were analyzed by generating Arabidopsis transgenic plants overexpression MYB71 and gene edited mutants of MYB71. The results show that ABA sensitivity was increased in the transgenic plants overexpression MYB71, but decreased in the MYB71 mutants. By using a DEX inducible system, we further identified genes are likely regulated by MYB71, and found that they are enriched in biological process to environmental stimuli including abiotic stresses, suggesting that MYB71 may regulate plant response to abiotic stresses. Taken together, our results suggest that MYB71 is an ABA responsive gene, and MYB71 functions as a transcription activator and it positively regulates ABA response in Arabidopsis.
Collapse
|
15
|
Wei Q, Liu Y, Lan K, Wei X, Hu T, Chen R, Zhao S, Yin X, Xie T. Identification and Analysis of MYB Gene Family for Discovering Potential Regulators Responding to Abiotic Stresses in Curcuma wenyujin. Front Genet 2022; 13:894928. [PMID: 35547255 PMCID: PMC9081655 DOI: 10.3389/fgene.2022.894928] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 04/08/2022] [Indexed: 11/17/2022] Open
Abstract
MYB superfamily is one of the most abundant families in plants, and plays critical role in plant growth, development, metabolism regulation, and stress response. Curcuma wenyujin is the main source plant of three traditional Chinese medicines, which are widely used in clinical treatment due to its diverse pharmacological activities. In present study, 88 CwMYBs were identified and analyzed in C. wenyujin, including 43 MYB-related genes, 42 R2R3-MYB genes, two 3R-MYB genes, and one 4R-MYB gene. Forty-three MYB-related proteins were classified into several types based on conserved domains and specific motifs, including CCA1-like type, R-R type, Myb-CC type, GARP-like type, and TBR-like type. The analysis of motifs in MYB DBD and no-MYB regions revealed the relevance of protein structure and function. Comparative phylogeny analysis divided 42 R2R3-MYB proteins into 19 subgroups and provided a reference for understanding the functions of some CwMYBs based on orthologs of previously characterized MYBs. Expression profile analysis of CwMYB genes revealed the differentially expressed genes responding to various abiotic stresses. Four candidate MYB genes were identified by combining the results of phylogeny analysis and expression analysis. CwMYB10, CwMYB18, CwMYB39, and CwMYB41 were significantly induced by cold, NaCl, and MeJA stress treatments. CwMYB18 and CwMYB41 were proved as regulators with activity of transcriptional activation, whereas CwMYB39 and CwMYB10 were not. They may participate in the response to abiotic stresses through different mechanisms in C. wenyujin. This study was the first step toward understanding the CwMYB family and the response to abiotic stresses in C. wenyujin.
Collapse
Affiliation(s)
- Qiuhui Wei
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Yuyang Liu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Kaer Lan
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Xin Wei
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Tianyuan Hu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Rong Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Shujuan Zhao
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Xiaopu Yin
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
16
|
Song J, Chen Y, Li X, Ma Q, Liu Q, Pan Y, Jiang B. Cloning and Functional Verification of CmRAX2 Gene Associated with Chrysanthemum Lateral Branches Development. Genes (Basel) 2022; 13:genes13050779. [PMID: 35627164 PMCID: PMC9140354 DOI: 10.3390/genes13050779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/23/2022] [Accepted: 04/26/2022] [Indexed: 12/04/2022] Open
Abstract
Chrysanthemum (Chrysanthemum morifolium), as one of the four major cut flowers in the world, occupies a large position in the world’s fresh cut flower market. The RAX2 gene is an R2R3 MYB transcription factor that is associated with the development of the axillary bud. In this study, the CmRAX2 gene cloned by homologous cloning in Chrysanthemum morifolium ‘Jinba’ is localized in the nucleus and cytoplasm, having a complete open reading frame (ORF) of 1050 bp and encoding 350 amino acids. The transactivation assay in yeast indicates that CmRAX2 is a transcriptional activator. Quantitative Real-Time PCR (qRT-PCR) Analysis indicated that CmRAX2 was preferentially expressed in the lateral branches and roots of Chrysanthemum morifolium ‘Jinba’, 14.11 and 10.69 times more than in leaves. After the overexpression vector of CmRAX2 was constructed and transformed into Chrysanthemum morifolium ‘Jinba’, it was found that the number of lateral branches and plant height increased, and the emergence time of lateral branches and rooting time advanced after the overexpression of CmRAX2. The results showed that CmRAX2 can promote the lateral bud development of the chrysanthemum, which provides an important theoretical basis for the subsequent molecular breeding and standardized production of the chrysanthemum.
Collapse
|
17
|
Wang L, Gao J, Wang C, Xu Y, Li X, Yang J, Chen K, Kang Y, Wang Y, Cao P, Xie X. Comprehensive Analysis of Long Non-coding RNA Modulates Axillary Bud Development in Tobacco ( Nicotiana tabacum L.). FRONTIERS IN PLANT SCIENCE 2022; 13:809435. [PMID: 35237286 PMCID: PMC8884251 DOI: 10.3389/fpls.2022.809435] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Long non-coding RNAs (lncRNAs) regulate gene expression and are crucial for plant growth and development. However, the mechanisms underlying the effects of activated lncRNAs on axillary bud development remain largely unknown. By lncRNA transcriptomes of axillary buds in topped and untopped tobacco plants, we identified a total of 13,694 lncRNAs. LncRNA analysis indicated that the promoted growth of axillary bud by topping might be partially ascribed to the genes related to hormone signal transduction and glycometabolism, trans-regulated by differentially expressed lncRNAs, such as MSTRG.52498.1, MSTRG.60026.1, MSTRG.17770.1, and MSTRG.32431.1. Metabolite profiling indicated that auxin, abscisic acid and gibberellin were decreased in axillary buds of topped tobacco lines, while cytokinin was increased, consistent with the expression levels of related lncRNAs. MSTRG.52498.1, MSTRG.60026.1, MSTRG.17770.1, and MSTRG.32431.1 were shown to be influenced by hormones and sucrose treatments, and were associated with changes of axillary bud growth in the overexpression of NtCCD8 plants (with reduced axillary buds) and RNA interference of NtTB1 plants (with increased axillary buds). Moreover, MSTRG.28151.1 was identified as the antisense lncRNA of NtTB1. Silencing of MSTRG.28151.1 in tobacco significantly attenuated the expression of NtTB1 and resulted in larger axillary buds, suggesting the vital function of MSTRG.28151.1 axillary bud developmen by NtTB1. Our findings shed light on lncRNA-mRNA interactions and their functional roles in axillary bud growth, which would improve our understanding of lncRNAs as important regulators of axillary bud development and plant architecture.
Collapse
Affiliation(s)
- Lin Wang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| | - Junping Gao
- China Tobacco Hunan Industrial Co., Ltd., Changsha, China
| | - Chen Wang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| | - Yalong Xu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| | - Xiaoxu Li
- China Tobacco Hunan Industrial Co., Ltd., Changsha, China
| | - Jun Yang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| | - Kai Chen
- China Tobacco Hunan Industrial Co., Ltd., Changsha, China
| | - Yile Kang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| | - Yaofu Wang
- China Tobacco Hunan Industrial Co., Ltd., Changsha, China
| | - Peijian Cao
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| | - Xiaodong Xie
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| |
Collapse
|
18
|
Pande A, Mun BG, Rahim W, Khan M, Lee DS, Lee GM, Al Azzawi TNI, Hussain A, Kim CK, Yun BW. Phytohormonal Regulation Through Protein S-Nitrosylation Under Stress. FRONTIERS IN PLANT SCIENCE 2022; 13:865542. [PMID: 35401598 PMCID: PMC8988057 DOI: 10.3389/fpls.2022.865542] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 02/18/2022] [Indexed: 05/18/2023]
Abstract
The liaison between Nitric oxide (NO) and phytohormones regulates a myriad of physiological processes at the cellular level. The interaction between NO and phytohormones is mainly influenced by NO-mediated post-translational modifications (PTMs) under basal as well as induced conditions. Protein S-nitrosylation is the most prominent and widely studied PTM among others. It is the selective but reversible redox-based covalent addition of a NO moiety to the sulfhydryl group of cysteine (Cys) molecule(s) on a target protein to form S-nitrosothiols. This process may involve either direct S-nitrosylation or indirect S-nitrosylation followed by transfer of NO group from one thiol to another (transnitrosylation). During S-nitrosylation, NO can directly target Cys residue (s) of key genes involved in hormone signaling thereby regulating their function. The phytohormones regulated by NO in this manner includes abscisic acid, auxin, gibberellic acid, cytokinin, ethylene, salicylic acid, jasmonic acid, brassinosteroid, and strigolactone during various metabolic and physiological conditions and environmental stress responses. S-nitrosylation of key proteins involved in the phytohormonal network occurs during their synthesis, degradation, or signaling roles depending upon the response required to maintain cellular homeostasis. This review presents the interaction between NO and phytohormones and the role of the canonical NO-mediated post-translational modification particularly, S-nitrosylation of key proteins involved in the phytohormonal networks under biotic and abiotic stresses.
Collapse
Affiliation(s)
- Anjali Pande
- Laboratory of Plant Molecular Pathology and Functional Genomics, Department of Plant Biosciences, School of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University, Daegu, South Korea
| | - Bong Gyu Mun
- Laboratory of Plant Molecular Pathology and Functional Genomics, Department of Plant Biosciences, School of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University, Daegu, South Korea
| | - Waqas Rahim
- Laboratory of Plant Molecular Pathology and Functional Genomics, Department of Plant Biosciences, School of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University, Daegu, South Korea
| | - Murtaza Khan
- Laboratory of Plant Molecular Pathology and Functional Genomics, Department of Plant Biosciences, School of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University, Daegu, South Korea
| | - Da Sol Lee
- Laboratory of Plant Molecular Pathology and Functional Genomics, Department of Plant Biosciences, School of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University, Daegu, South Korea
| | - Geun Mo Lee
- Laboratory of Plant Molecular Pathology and Functional Genomics, Department of Plant Biosciences, School of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University, Daegu, South Korea
| | - Tiba Nazar Ibrahim Al Azzawi
- Laboratory of Plant Molecular Pathology and Functional Genomics, Department of Plant Biosciences, School of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University, Daegu, South Korea
| | - Adil Hussain
- Laboratory of Cell Biology, Department of Entomology, Abdul Wali Khan University, Mardan, Pakistan
| | - Chang Kil Kim
- Department of Horticultural Sciences, Kyungpook National University, Daegu, South Korea
- *Correspondence: Chang Kil Kim,
| | - Byung Wook Yun
- Laboratory of Plant Molecular Pathology and Functional Genomics, Department of Plant Biosciences, School of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University, Daegu, South Korea
- Byung Wook Yun,
| |
Collapse
|