1
|
Wang X, Norgate E, Dai J, Benoit F, Bristow T, England RM, Kalapothakis JMD, Barran PE. Conformational landscapes of rigid and flexible molecules explored with variable temperature ion mobility-mass spectrometry. Nat Commun 2025; 16:4183. [PMID: 40324998 PMCID: PMC12052783 DOI: 10.1038/s41467-025-59065-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/10/2025] [Indexed: 05/07/2025] Open
Abstract
Understanding the effect of temperature to the structural integrity of proteins is relevant to diverse areas such as biotechnology and climate change. Variable temperature ion mobility-mass spectrometry (VT-IM-MS) can measure the effect of temperature on conformational landscapes. To delineate collision effects from structural change we report measurements using molecules with different degrees of rigidity namely: poly (L-lysine) (PLL) dendrimer, ubiquitin, β-casein and α-synuclein from 190-350 K. The CCS of PLL dendrimer varies with temperature consistent with collision theory, by contrast, the structure of each protein alters with notable restructuring at 350 K and 250 K, following predicted in vitro stability curves. At 210 K and 190 K we kinetically trap unfolding intermediates. For alpha-synuclein, the 13+ ions present two distinct conformers and VT-IM-MS measurements allow us to calculate the transition rate and activation energies of their conversion. These data exemplify the capacity of VT-IM-MS to provide insights on the thermodynamics of conformational restructuring.
Collapse
Affiliation(s)
- Xudong Wang
- Michael Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology, Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Emma Norgate
- Michael Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology, Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Junxiao Dai
- Michael Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology, Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Florian Benoit
- Michael Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology, Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Tony Bristow
- Chemical Development, Pharmaceutical Technology and Development, Operations, AstraZeneca, Charter Way, Macclesfield, SK102NA, UK
| | - Richard M England
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Macclesfield, SK10 2NA, UK
| | - Jason M D Kalapothakis
- Michael Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology, Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Perdita E Barran
- Michael Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology, Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| |
Collapse
|
2
|
Seixas MH, Munroe JS, Eggleston EM. Bacterial diversity and geomicrobiology of Winter Wonderland ice cave, Utah, USA. Microbiologyopen 2024; 13:e1426. [PMID: 38995161 PMCID: PMC11241547 DOI: 10.1002/mbo3.1426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 06/19/2024] [Accepted: 06/28/2024] [Indexed: 07/13/2024] Open
Abstract
The Winter Wonderland ice cave, located at an elevation of 3140 m above sea level in the Uinta Mountains of northern Utah, USA, maintains a constant sub-zero temperature. Seasonal snowmelt and rain enter the cave, freeze on the surface of the existing ice, and contribute to a 3-m-thick layered ice mass. This ice mass contains organic matter and cryogenic cave carbonates (CCCs) that date back centuries. In this study, samples of ice, liquid water, and exposed CCCs were collected to examine the bacterial communities within the cave and to determine if these communities vary spatially and between sample types. Flow cytometry showed that cell counts are an order of magnitude higher in liquid water samples than in ice. Epifluorescence microscopy and scanning electron microscopy imaging revealed potential coccoid and bacillus microbial morphologies in water samples and putative cells or calcite spherules in the CCCs. The diversity of bacteria associated with soil, identified through sequence-based analysis, supports the hypothesis that water enters the cave by filtering through soil and bedrock. A differential abundance of bacterial taxa was observed between sample types, with the greatest diversity found in CCCs. This supports a geomicrobiological framework where microbes aggregate in the water, sink into a concentrated layer, and precipitate out of the ice with the CCCs, thereby reducing the cell counts in the ice. These CCCs may provide essential nutrients for the bacteria or could themselves be products of biomineralization.
Collapse
Affiliation(s)
- Miranda Herschel Seixas
- Department of Earth and Climate SciencesMiddlebury CollegeMiddleburyVermontUSA
- Biology DepartmentMiddlebury CollegeMiddleburyVermontUSA
| | - Jeffrey S. Munroe
- Department of Earth and Climate SciencesMiddlebury CollegeMiddleburyVermontUSA
| | | |
Collapse
|
3
|
Hulatt CJ, Suzuki H, Détain A, Wijffels RH, Leya T, Posewitz MC. The genome of the Arctic snow alga Limnomonas spitsbergensis (Chlamydomonadales). G3 (BETHESDA, MD.) 2024; 14:jkae086. [PMID: 38662665 PMCID: PMC11228838 DOI: 10.1093/g3journal/jkae086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/16/2024] [Indexed: 07/09/2024]
Abstract
Snow algae are a diverse group of extremophilic microeukaryotes found on melting polar and alpine snowfields. They play an important role in the microbial ecology of the cryosphere, and their propagation on snow and ice surfaces may in part accelerate climate-induced melting of these systems. High-quality snow algae genomes are needed for studies on their unique physiology, adaptive mechanisms, and genome evolution under multiple forms of stress, including cold temperatures and intense sunlight. Here, we assembled and annotated the genome of Limnomonas spitsbergensis, a cryophilic biciliate green alga originally isolated from melting snow on Svalbard, in the Arctic. The L. spitsbergensis genome assembly is based primarily on the use of PacBio long reads and secondly Illumina short reads, with an assembly size of 260.248 Mb in 124 contigs. A combination of 3 alternative annotation strategies was used including protein homology, RNA-seq evidence, and PacBio full-length transcript isoforms. The best merged set of annotations identified 18,277 protein-coding genes, which were 95.2% complete based on Benchmarking Universal Single-Copy Orthologs analysis. We also provide the annotated mitogenome, which is a relatively large 77.942 kb circular mapping sequence containing extensive repeats. The L. spitsbergensis genome will provide a new resource for research on snow algae adaptation, behavior, and natural selection in unique, low-temperature terrestrial environments that are under threat from climate change.
Collapse
Affiliation(s)
- Chris J Hulatt
- Faculty of Biosciences and Aquaculture, Nord University, Mørkvedbukta Research Station, 8020 Bodø, Norway
- Department of Chemistry, Colorado School of Mines, Golden, CO, 80401, USA
| | - Hirono Suzuki
- Faculty of Biosciences and Aquaculture, Nord University, Mørkvedbukta Research Station, 8020 Bodø, Norway
| | - Alexandre Détain
- Faculty of Biosciences and Aquaculture, Nord University, Mørkvedbukta Research Station, 8020 Bodø, Norway
| | - René H Wijffels
- Faculty of Biosciences and Aquaculture, Nord University, Mørkvedbukta Research Station, 8020 Bodø, Norway
- Bioprocess Engineering, AlgaePARC, Wageningen University, Wageningen, 6700 AA, The Netherlands
| | - Thomas Leya
- Fraunhofer Institute for Cell Therapy and Immunology IZI, Branch Bioanalytics and Bioprocesses IZI-BB, Extremophile Research and Biobank CCCryo, 14476 Potsdam-Golm, Germany
| | - Matthew C Posewitz
- Department of Chemistry, Colorado School of Mines, Golden, CO, 80401, USA
| |
Collapse
|
4
|
Rezaei A, Cheniany M, Ahmadzadeh H, Vaezi J. A new isolate cold-adapted Ankistrodesmus sp. OR119838: influence of light, temperature, and nitrogen concentration on growth characteristics and biochemical composition using the two-stage cultivation strategy. Bioprocess Biosyst Eng 2024; 47:341-353. [PMID: 38281211 DOI: 10.1007/s00449-023-02964-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/22/2023] [Indexed: 01/30/2024]
Abstract
Natural-based chemicals from microalgae such as lipids and pigments are the interests in industries and the bioeconomy. Cold-adapted Ankistrodesmus sp. OR119838, an isolated strain from Cheshmeh-Sabz Lake in northeastern Iran, was cultivated using a two-stage culture strategy under different environmental conditions. With doubling the nitrate concentration at the vegetative stage (170 mg/L) and increasing the light intensity (180 µmol photons/m2/s) the highest specific growth rate (0.61 ± 0.02 per day) and biomass productivity (121.1 ± 7.2 mg/L/day) were observed at 25 °C. In the optimal growth condition Chl a and Chl b contents of Ankistrodesmus sp. OR119838 reached the highest amount (11.07 ± 0.14 and 11.23 ± 0.29 µg/mL, respectively) at 25 °C. While carotenoid content correlated negatively with optimum biomass productivity (- 0.708) and had the best value (12.23 ± 0.29 µg/mL) in nitrogen deficiency (42 mg/L) and intense light conditions (180 µmol photons/m2/s) at 15 °C. Lipid content was increased with declined nitrate concentration (42 mg/L), high light intensity, and 180 µmol photons/m2/s at 25 °C. The highest percentage of polyunsaturated fatty acids (71.94%) and α-linolenic acid (57.73 ± 6.63%) was observed in conditions with 170 mg/L nitrate concentration and low light intensity (40 µmol photons/m2/ s) at the low temperature (15 °C). While saturated fatty acids content (43.27%) and palmitic acid reached the highest amount under 40 µmol photons/m2/s, 42 mg/L nitrate at 25 °C (35.02 ± 5.33%). Biomass productivity of Ankistrodesmus sp. OR119838, as a cold-adapted strain, decreased by only 8.2% with a 10-degree decline in temperature. Therefore, this strain has good potential to grow in open ponds by tolerating the daily temperature fluctuations.
Collapse
Affiliation(s)
- Azar Rezaei
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, 91779-48974, Iran
| | - Monireh Cheniany
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, 91779-48974, Iran.
| | - Hossein Ahmadzadeh
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, 91779-48974, Iran.
| | - Jamil Vaezi
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, 91779-48974, Iran
| |
Collapse
|
5
|
Kalra I, Wang X, Zhang R, Morgan-Kiss R. High salt-induced PSI-supercomplex is associated with high CEF and attenuation of state transitions. PHOTOSYNTHESIS RESEARCH 2023; 157:65-84. [PMID: 37347385 PMCID: PMC10484818 DOI: 10.1007/s11120-023-01032-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/05/2023] [Indexed: 06/23/2023]
Abstract
While PSI-driven cyclic electron flow (CEF) and assembly of thylakoid supercomplexes have been described in model organisms like Chlamydomonas reinhardtii, open questions remain regarding their contributions to survival under long-term stress. The Antarctic halophyte, C. priscuii UWO241 (UWO241), possesses constitutive high CEF rates and a stable PSI-supercomplex as a consequence of adaptation to permanent low temperatures and high salinity. To understand whether CEF represents a broader acclimation strategy to short- and long-term stress, we compared high salt acclimation between the halotolerant UWO241, the salt-sensitive model, C. reinhardtii, and a moderately halotolerant Antarctic green alga, C. sp. ICE-MDV (ICE-MDV). CEF was activated under high salt and associated with increased non-photochemical quenching in all three Chlamydomonas species. Furthermore, high salt-acclimated cells of either strain formed a PSI-supercomplex, while state transition capacity was attenuated. How the CEF-associated PSI-supercomplex interferes with state transition response is not yet known. We present a model for interaction between PSI-supercomplex formation, state transitions, and the important role of CEF for survival during long-term exposure to high salt.
Collapse
Affiliation(s)
- Isha Kalra
- Department of Microbiology, Miami University, Oxford, OH 45056 USA
- Present Address: Department of Biology, University of Southern California, Los Angeles, CA 90089 USA
| | - Xin Wang
- Department of Microbiology, Miami University, Oxford, OH 45056 USA
| | - Ru Zhang
- Donald Danforth Plant Science Center, St. Louis, MO 63132 USA
| | | |
Collapse
|
6
|
Broadwell ELM, Pickford RE, Perkins RG, Sgouridis F, Williamson CJ. Adaptation versus plastic responses to temperature, light, and nitrate availability in cultured snow algal strains. FEMS Microbiol Ecol 2023; 99:fiad088. [PMID: 37553143 PMCID: PMC10481995 DOI: 10.1093/femsec/fiad088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/29/2023] [Accepted: 08/07/2023] [Indexed: 08/10/2023] Open
Abstract
Snow algal blooms are widespread, dominating low temperature, high light, and oligotrophic melting snowpacks. Here, we assessed the photophysiological and cellular stoichiometric responses of snow algal genera Chloromonas spp. and Microglena spp. in their vegetative life stage isolated from the Arctic and Antarctic to gradients in temperature (5 - 15°C), nitrate availability (1 - 10 µmol L-1), and light (50 and 500 µmol photons m-2 s-1). When grown under gradients in temperature, measured snow algal strains displayed Fv/Fm values increased by ∼115% and electron transport rates decreased by ∼50% at 5°C compared to 10 and 15°C, demonstrating how low temperatures can mimic high light impacts to photophysiology. When using carrying capacity as opposed to growth rate as a metric for determining the temperature optima, these snow algal strains can be defined as psychrophilic, with carrying capacities ∼90% higher at 5°C than warmer temperatures. All strains approached Redfield C:N stoichiometry when cultured under nutrient replete conditions regardless of temperature (5.7 ± 0.4 across all strains), whereas significant increases in C:N were apparent when strains were cultured under nitrate concentrations that reflected in situ conditions (17.8 ± 5.9). Intra-specific responses in photophysiology were apparent under high light with Chloromonas spp. more capable of acclimating to higher light intensities. These findings suggest that in situ conditions are not optimal for the studied snow algal strains, but they are able to dynamically adjust both their photochemistry and stoichiometry to acclimate to these conditions.
Collapse
Affiliation(s)
- Emily L M Broadwell
- School of Geographical Sciences, University of Bristol, University Road, Bristol, BS8 1SS, United Kingdom
| | - Rachel E Pickford
- School of Geographical Sciences, University of Bristol, University Road, Bristol, BS8 1SS, United Kingdom
| | - Rupert G Perkins
- School of Earth and Environmental Sciences, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, United Kingdom
| | - Fotis Sgouridis
- School of Geographical Sciences, University of Bristol, University Road, Bristol, BS8 1SS, United Kingdom
| | - Christopher J Williamson
- School of Geographical Sciences, University of Bristol, University Road, Bristol, BS8 1SS, United Kingdom
| |
Collapse
|
7
|
Chae H, Kim S, Choi HG, Kim JH, Han SJ, Kim EJ. Arctic Sea Ice Microalga Chlamydomonas latifrons KNF0041: Identification and Statistical Optimization of Medium for Enhanced Biomass and Omega-3/Omega-6. Mar Drugs 2023; 21:454. [PMID: 37623735 PMCID: PMC10456082 DOI: 10.3390/md21080454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023] Open
Abstract
Polar microorganisms produce biologically active compounds that enable them to survive in harsh environments. These compounds have potential biomedical applications. The green microalga Chlamydomonas latifrons KNF0041, isolated from Arctic sea ice, has been found to produce polyunsaturated fatty acids (PUFAs), including omega-3 and omega-6, which have antioxidant properties. To improve the biomass production of strain KNF0041, statistical methods such as the Plackett-Burman design, Box-Behnken design, and response surface methodology (RSM) were utilized for medium optimization. The optimized medium was designed with increased potassium phosphate content and reduced acetic acid (AcOH) content. The use of the optimized medium resulted in an increase in the cell number as biomass of strain KNF0041 by 34.18% and the omega-3 and omega-6 fatty acid (FA) content by 10.04% and 58.29%, respectively, compared to that in normal TAP medium, which is known as the growth medium for Chlamydomonas culture. In this study, Chlamydomonas latifrons was discovered for the first time in the polar region and identified using morphology and molecular phylogenetic analyses, the secondary structures of the internal transcribed spacers, and optimized culture conditions. The results of this study provide an efficient method for the application of polar microalgae for the production of bioactive compounds.
Collapse
Affiliation(s)
- Hyunsik Chae
- Division of Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea; (H.C.)
| | - Sanghee Kim
- Division of Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea; (H.C.)
| | - Han-Gu Choi
- Division of Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea; (H.C.)
| | - Ji Hee Kim
- Division of Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea; (H.C.)
| | - Se Jong Han
- Division of Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea; (H.C.)
- Department of Polar Sciences, University of Science and Technology, Incheon 21990, Republic of Korea
| | - Eun Jae Kim
- Division of Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea; (H.C.)
| |
Collapse
|
8
|
Dorrell RG, Kuo A, Füssy Z, Richardson EH, Salamov A, Zarevski N, Freyria NJ, Ibarbalz FM, Jenkins J, Pierella Karlusich JJ, Stecca Steindorff A, Edgar RE, Handley L, Lail K, Lipzen A, Lombard V, McFarlane J, Nef C, Novák Vanclová AM, Peng Y, Plott C, Potvin M, Vieira FRJ, Barry K, de Vargas C, Henrissat B, Pelletier E, Schmutz J, Wincker P, Dacks JB, Bowler C, Grigoriev IV, Lovejoy C. Convergent evolution and horizontal gene transfer in Arctic Ocean microalgae. Life Sci Alliance 2023; 6:6/3/e202201833. [PMID: 36522135 PMCID: PMC9756366 DOI: 10.26508/lsa.202201833] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
Microbial communities in the world ocean are affected strongly by oceanic circulation, creating characteristic marine biomes. The high connectivity of most of the ocean makes it difficult to disentangle selective retention of colonizing genotypes (with traits suited to biome specific conditions) from evolutionary selection, which would act on founder genotypes over time. The Arctic Ocean is exceptional with limited exchange with other oceans and ice covered since the last ice age. To test whether Arctic microalgal lineages evolved apart from algae in the global ocean, we sequenced four lineages of microalgae isolated from Arctic waters and sea ice. Here we show convergent evolution and highlight geographically limited HGT as an ecological adaptive force in the form of PFAM complements and horizontal acquisition of key adaptive genes. Notably, ice-binding proteins were acquired and horizontally transferred among Arctic strains. A comparison with Tara Oceans metagenomes and metatranscriptomes confirmed mostly Arctic distributions of these IBPs. The phylogeny of Arctic-specific genes indicated that these events were independent of bacterial-sourced HGTs in Antarctic Southern Ocean microalgae.
Collapse
Affiliation(s)
- Richard G Dorrell
- Institut de Biologie de l'ENS, Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France.,CNRS Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, Paris, France
| | - Alan Kuo
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Zoltan Füssy
- Department of Parasitology, BIOCEV, Faculty of Science, Charles University, Prague, Czech Republic
| | - Elisabeth H Richardson
- Division of Infectious Diseases, Department of Medicine, University of Alberta and Department of Biological Sciences, and University of Alberta, Edmonton, Canada
| | - Asaf Salamov
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Nikola Zarevski
- Institut de Biologie de l'ENS, Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France.,CNRS Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, Paris, France
| | - Nastasia J Freyria
- Département de Biologie, Institut de Biologie Intégrative des Systèmes, Université Laval, Quebec, Canada
| | - Federico M Ibarbalz
- Institut de Biologie de l'ENS, Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France.,CNRS Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, Paris, France
| | - Jerry Jenkins
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Juan Jose Pierella Karlusich
- Institut de Biologie de l'ENS, Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France.,CNRS Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, Paris, France
| | - Andrei Stecca Steindorff
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Robyn E Edgar
- Département de Biologie, Institut de Biologie Intégrative des Systèmes, Université Laval, Quebec, Canada
| | - Lori Handley
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Kathleen Lail
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Anna Lipzen
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Vincent Lombard
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - John McFarlane
- Division of Infectious Diseases, Department of Medicine, University of Alberta and Department of Biological Sciences, and University of Alberta, Edmonton, Canada
| | - Charlotte Nef
- Institut de Biologie de l'ENS, Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France.,CNRS Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, Paris, France
| | - Anna Mg Novák Vanclová
- Institut de Biologie de l'ENS, Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France.,CNRS Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, Paris, France
| | - Yi Peng
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Chris Plott
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Marianne Potvin
- Département de Biologie, Institut de Biologie Intégrative des Systèmes, Université Laval, Quebec, Canada
| | - Fabio Rocha Jimenez Vieira
- Institut de Biologie de l'ENS, Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France.,CNRS Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, Paris, France
| | - Kerrie Barry
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Colomban de Vargas
- CNRS Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, Paris, France.,Sorbonne Université, CNRS, Station Biologique de Roscoff, AD2M, UMR 7144, Roscoff, France
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, Marseille, France.,Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Eric Pelletier
- CNRS Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, Paris, France.,Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, Commissariat à l'Énergie Atomique, CNRS, Université Évry, Université Paris-Saclay, Évry, France
| | - Jeremy Schmutz
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Patrick Wincker
- CNRS Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, Paris, France.,Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, Commissariat à l'Énergie Atomique, CNRS, Université Évry, Université Paris-Saclay, Évry, France
| | - Joel B Dacks
- Division of Infectious Diseases, Department of Medicine, University of Alberta and Department of Biological Sciences, and University of Alberta, Edmonton, Canada
| | - Chris Bowler
- Institut de Biologie de l'ENS, Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France.,CNRS Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, Paris, France
| | - Igor V Grigoriev
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA
| | - Connie Lovejoy
- Département de Biologie, Institut de Biologie Intégrative des Systèmes, Université Laval, Quebec, Canada
| |
Collapse
|
9
|
Gao B, Hong J, Chen J, Zhang H, Hu R, Zhang C. The growth, lipid accumulation and adaptation mechanism in response to variation of temperature and nitrogen supply in psychrotrophic filamentous microalga Xanthonema hormidioides (Xanthophyceae). BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:12. [PMID: 36658609 PMCID: PMC9854199 DOI: 10.1186/s13068-022-02249-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Microalgae are promising feedstocks for production of renewable biofuels and value-added bioproducts. Temperature and nitrogen supply are important environmental and nutritional factors affecting the growth and metabolism of microalgae, respectively. In this study, the growth and lipid accumulation of filamentous microalgae Xanthonema hormidioides under different temperatures (5, 7, 10, 15, 20, 25, 27 and 30 °C) and initial nitrogen concentrations (3, 9, 18 mM) were investigated, and its adaptive mechanisms of tolerance to low temperature and nitrogen stress were analysis by proteomics. RESULTS The optimum temperature range for the growth of X. hormidioides was between 15 and 20 °C, and the algal cells had slow growth rate at 5 °C and could not survive at 30 °C. The maximum biomass concentration was 11.73 g L-1 under the temperature of 20 °C, and the highest total lipid content was 56.63% of dry weight. Low temperature did not change the fatty acids profiles but promoted the accumulation of unsaturated fatty acids of X. hormidioides. The maximum contents of palmitoleic acid, eicosapentaenoic acid and total fatty acid were 23.64%, 2.49% and 41.14% of dry weight, respectively. Proteomics was performed under three temperature (7, 15, 25 °C), two nitrogen concentrations (3 and 18 mM) and two cultivation times (day 3 and 12). A total of 6503 proteins were identified. In the low temperature, photosynthesis-related proteins were down-regulated to protect the photosynthetic apparatus. The up-regulation of key enzymes DGAT and PDAT demonstrated the accumulation of TAGs under low nitrogen treatment. The proteins related to ribosome, phosphatidylinositol signaling system, antioxidant system and cold shock proteins (CSPs) in X. hormidioides were co-upregulated under the treatment of low temperature, which can alleviate the damages induced by temperature stress and maintain the normal growth and metabolism of algal cells. CONCLUSIONS X. hormidioides is a psychrotolerant microalga. It is an oleaginous filamentous microalga containing hyper palmitoleic acid and a certain amount of eicosapentaenoic acid with great potential for biofuel development, as well as for applications in nutritional health products and other industries.
Collapse
Affiliation(s)
- Baoyan Gao
- Department of Ecology, Research Center for Hydrobiology, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Jian Hong
- Department of Ecology, Research Center for Hydrobiology, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Jiamin Chen
- Department of Ecology, Research Center for Hydrobiology, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Hu Zhang
- Department of Ecology, Research Center for Hydrobiology, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Ren Hu
- Department of Ecology, Research Center for Hydrobiology, Jinan University, Guangzhou, 510632, People's Republic of China.
| | - Chengwu Zhang
- Department of Ecology, Research Center for Hydrobiology, Jinan University, Guangzhou, 510632, People's Republic of China.
| |
Collapse
|
10
|
Cvetkovska M, Vakulenko G, Smith DR, Zhang X, Hüner NPA. Temperature stress in psychrophilic green microalgae: Minireview. PHYSIOLOGIA PLANTARUM 2022; 174:e13811. [PMID: 36309822 DOI: 10.1111/ppl.13811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/18/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Photosynthetic algae are the main primary producers in polar regions, form the basis of polar food webs, and are responsible for a significant portion of global carbon fixation. Many cold-water algae are psychrophiles that thrive in the cold but cannot grow at moderate temperatures (≥20°C). Polar regions are at risk of rapid warming caused by climate change, and the sensitivity of psychrophilic algae to rising temperatures makes them, and the ecosystems they inhabit, particularly vulnerable. Recent research on the Antarctic psychrophile Chlamydomonas priscuii, an emerging algal model, has revealed unique adaptations to life in the permanent cold. Additionally, genome sequencing of C. priscuii and its relative Chlamydomonas sp. ICE-L has given rise to a plethora of computational tools that can help elucidate the genetic basis of psychrophily. This minireview summarizes new advances in characterizing the heat stress responses in psychrophilic algae and examines their extraordinary sensitivity to temperature increases. Further research in this field will help determine the impact of climate change on psychrophiles from threatened polar environments.
Collapse
Affiliation(s)
- Marina Cvetkovska
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Galyna Vakulenko
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - David R Smith
- Department of Biology, University of Western Ontario, London, Canada
| | - Xi Zhang
- Institute for Comparative Genomics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
| | - Norman P A Hüner
- Department of Biology, University of Western Ontario, London, Canada
| |
Collapse
|
11
|
Schoeters F, Spit J, Azizah RN, Van Miert S. Pilot-Scale Cultivation of the Snow Alga Chloromonas typhlos in a Photobioreactor. Front Bioeng Biotechnol 2022; 10:896261. [PMID: 35757813 PMCID: PMC9218667 DOI: 10.3389/fbioe.2022.896261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
The most studied and cultivated microalgae have a temperature optimum between 20 and 35°C. This temperature range hampers sustainable microalgae growth in countries with colder periods. To overcome this problem, psychrotolerant microalgae, such as the snow alga Chloromonas typhlos, can be cultivated during these colder periods. However, most of the research work has been carried out in the laboratory. The step between laboratory-scale and large-scale cultivation is difficult, making pilot-scale tests crucial to gather more information. Here, we presented a successful pilot-scale growth test of C. typhlos. Seven batch mode growth periods were compared during two longer growth tests in a photobioreactor of 350 L. We demonstrated the potential of this alga to be cultivated at colder ambient temperatures. The tests were performed during winter and springtime to compare ambient temperature and sunlight influences. The growth and CO2 usage were continuously monitored to calculate the productivity and CO2 fixation efficiency. A maximum dry weight of 1.082 g L-1 was achieved while a maximum growth rate and maximum daily volumetric and areal productivities of 0.105 d-1, 0.110 g L-1 d-1, and 2.746 g m-2 d-1, respectively, were measured. Future tests to optimize the cultivation of C. typhlos and production of astaxanthin, for example, will be crucial to explore the potential of biomass production of C. typhlos on a commercial scale.
Collapse
Affiliation(s)
- Floris Schoeters
- Radius, Thomas More University of Applied Sciences, Geel, Belgium
| | - Jornt Spit
- Radius, Thomas More University of Applied Sciences, Geel, Belgium
| | - Rahmasari Nur Azizah
- Radius, Thomas More University of Applied Sciences, Geel, Belgium.,I-BioStat, Data Science Institute, Hasselt University, Hasselt, Belgium
| | - Sabine Van Miert
- Radius, Thomas More University of Applied Sciences, Geel, Belgium
| |
Collapse
|
12
|
Stahl-Rommel S, Kalra I, D'Silva S, Hahn MM, Popson D, Cvetkovska M, Morgan-Kiss RM. Cyclic electron flow (CEF) and ascorbate pathway activity provide constitutive photoprotection for the photopsychrophile, Chlamydomonas sp. UWO 241 (renamed Chlamydomonas priscuii). PHOTOSYNTHESIS RESEARCH 2022; 151:235-250. [PMID: 34609708 DOI: 10.1007/s11120-021-00877-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
Under environmental stress, plants and algae employ a variety of strategies to protect the photosynthetic apparatus and maintain photostasis. To date, most studies on stress acclimation have focused on model organisms which possess limited to no tolerance to stressful extremes. We studied the ability of the Antarctic alga Chlamydomonas sp. UWO 241 (UWO 241) to acclimate to low temperature, high salinity or high light. UWO 241 maintained robust growth and photosynthetic activity at levels of temperature (2 °C) and salinity (700 mM NaCl) which were nonpermissive for a mesophilic sister species, Chlamydomonas raudensis SAG 49.72 (SAG 49.72). Acclimation in the mesophile involved classic mechanisms, including downregulation of light harvesting and shifts in excitation energy between photosystem I and II. In contrast, UWO 241 exhibited high rates of PSI-driven cyclic electron flow (CEF) and a larger capacity for nonphotochemical quenching (NPQ). Furthermore, UWO 241 exhibited constitutively high activity of two key ascorbate cycle enzymes, ascorbate peroxidase and glutathione reductase and maintained a large ascorbate pool. These results matched the ability of the psychrophile to maintain low ROS under short-term photoinhibition conditions. We conclude that tight control over photostasis and ROS levels are essential for photosynthetic life to flourish in a native habitat of permanent photooxidative stress. We propose to rename this organism Chlamydomonas priscuii.
Collapse
Affiliation(s)
- Sarah Stahl-Rommel
- Department of Microbiology, Miami University, Oxford, OH, 45045, USA
- JES Tech, Houston, TX, 77058, USA
| | - Isha Kalra
- Department of Microbiology, Miami University, Oxford, OH, 45045, USA
| | - Susanna D'Silva
- Department of Microbiology, Miami University, Oxford, OH, 45045, USA
| | - Mark M Hahn
- Department of Microbiology, Miami University, Oxford, OH, 45045, USA
| | - Devon Popson
- Department of Microbiology, Miami University, Oxford, OH, 45045, USA
| | - Marina Cvetkovska
- Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Rachael M Morgan-Kiss
- Department of Microbiology, Miami University, Oxford, OH, 45045, USA.
- Department of Microbiology, Miami University, 700 E High St., 212 Pearson Hall, Oxford, OH, 45056, USA.
| |
Collapse
|
13
|
Cvetkovska M, Zhang X, Vakulenko G, Benzaquen S, Szyszka-Mroz B, Malczewski N, Smith DR, Hüner NPA. A constitutive stress response is a result of low temperature growth in the Antarctic green alga Chlamydomonas sp. UWO241. PLANT, CELL & ENVIRONMENT 2022; 45:156-177. [PMID: 34664276 DOI: 10.1111/pce.14203] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 08/25/2021] [Accepted: 08/28/2021] [Indexed: 06/13/2023]
Abstract
The Antarctic green alga Chlamydomonas sp. UWO241 is an obligate psychrophile that thrives in the cold (4-6°C) but is unable to survive at temperatures ≥18°C. Little is known how exposure to heat affects its physiology or whether it mounts a heat stress response in a manner comparable to mesophiles. Here, we dissect the responses of UWO241 to temperature stress by examining its growth, primary metabolome and transcriptome under steady-state low temperature and heat stress conditions. In comparison with Chlamydomonas reinhardtii, UWO241 constitutively accumulates metabolites and proteins commonly considered as stress markers, including soluble sugars, antioxidants, polyamines, and heat shock proteins to ensure efficient protein folding at low temperatures. We propose that this results from life at extreme conditions. A shift from 4°C to a non-permissive temperature of 24°C alters the UWO241 primary metabolome and transcriptome, but growth of UWO241 at higher permissive temperatures (10 and 15°C) does not provide enhanced heat protection. UWO241 also fails to induce the accumulation of HSPs when exposed to heat, suggesting that it has lost the ability to fine-tune its heat stress response. Our work adds to the growing body of research on temperature stress in psychrophiles, many of which are threatened by climate change.
Collapse
Affiliation(s)
- Marina Cvetkovska
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Xi Zhang
- Department of Biology and the Biotron Centre for Experimental Climate Change Research, University of Western Ontario, London, Ontario, Canada
| | - Galyna Vakulenko
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Samuel Benzaquen
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Beth Szyszka-Mroz
- Department of Biology and the Biotron Centre for Experimental Climate Change Research, University of Western Ontario, London, Ontario, Canada
| | - Nina Malczewski
- Department of Biology and the Biotron Centre for Experimental Climate Change Research, University of Western Ontario, London, Ontario, Canada
| | - David R Smith
- Department of Biology and the Biotron Centre for Experimental Climate Change Research, University of Western Ontario, London, Ontario, Canada
| | - Norman P A Hüner
- Department of Biology and the Biotron Centre for Experimental Climate Change Research, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
14
|
Hüner NPA, Smith DR, Cvetkovska M, Zhang X, Ivanov AG, Szyszka-Mroz B, Kalra I, Morgan-Kiss R. Photosynthetic adaptation to polar life: Energy balance, photoprotection and genetic redundancy. JOURNAL OF PLANT PHYSIOLOGY 2022; 268:153557. [PMID: 34922115 DOI: 10.1016/j.jplph.2021.153557] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/27/2021] [Accepted: 10/24/2021] [Indexed: 06/14/2023]
Abstract
The persistent low temperature that characterize polar habitats combined with the requirement for light for all photoautotrophs creates a conundrum. The absorption of too much light at low temperature can cause an energy imbalance that decreases photosynthetic performance that has a negative impact on growth and can affect long-term survival. The goal of this review is to survey the mechanism(s) by which polar photoautotrophs maintain cellular energy balance, that is, photostasis to overcome the potential for cellular energy imbalance in their low temperature environments. Photopsychrophiles are photosynthetic organisms that are obligately adapted to low temperature (0⁰- 15 °C) but usually die at higher temperatures (≥20 °C). In contrast, photopsychrotolerant species can usually tolerate and survive a broad range of temperatures (5⁰- 40 °C). First, we summarize the basic concepts of excess excitation energy, energy balance, photoprotection and photostasis and their importance to survival in polar habitats. Second, we compare the photoprotective mechanisms that underlie photostasis and survival in aquatic cyanobacteria and green algae as well as terrestrial Antarctic and Arctic plants. We show that polar photopsychrophilic and photopsychrotolerant organisms attain energy balance at low temperature either through a regulated reduction in the efficiency of light absorption or through enhanced capacity to consume photosynthetic electrons by the induction of O2 as an alternative electron acceptor. Finally, we compare the published genomes of three photopsychrophilic and one photopsychrotolerant alga with five mesophilic green algae including the model green alga, Chlamydomonas reinhardtii. We relate our genomic analyses to photoprotective mechanisms that contribute to the potential attainment of photostasis. Finally, we discuss how the observed genomic redundancy in photopsychrophilic genomes may confer energy balance, photoprotection and resilience to their harsh polar environment. Primary production in aquatic, Antarctic and Arctic environments is dependent on diverse algal and cyanobacterial communities. Although mosses and lichens dominate the Antarctic terrestrial landscape, only two extant angiosperms exist in the Antarctic. The identification of a single 'molecular key' to unravel adaptation of photopsychrophily and photopsychrotolerance remains elusive. Since these photoautotrophs represent excellent biomarkers to assess the impact of global warming on polar ecosystems, increased study of these polar photoautotrophs remains essential.
Collapse
Affiliation(s)
- Norman P A Hüner
- Dept. of Biology and the Biotron Centre for Experimental Climate Change Research, University of Western Ontario, London, N6A 5B7, Canada.
| | - David R Smith
- Dept. of Biology, University of Western Ontario, London, N6A 5B7, Canada.
| | | | - Xi Zhang
- Dept. of Biology, University of Western Ontario, London, N6A 5B7, Canada.
| | - Alexander G Ivanov
- Dept. of Biology and the Biotron Centre for Experimental Climate Change Research, University of Western Ontario, London, N6A 5B7, Canada; Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, 1113, Bulgaria.
| | - Beth Szyszka-Mroz
- Dept. of Biology and the Biotron Centre for Experimental Climate Change Research, University of Western Ontario, London, N6A 5B7, Canada.
| | - Isha Kalra
- Dept. of Microbiology, Miami University of Ohio, Oxford, OH, 45056, USA.
| | | |
Collapse
|
15
|
Barrett J, Girr P, Mackinder LCM. Pyrenoids: CO 2-fixing phase separated liquid organelles. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2021; 1868:118949. [PMID: 33421532 DOI: 10.1016/j.bbamcr.2021.118949] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/11/2020] [Accepted: 12/12/2020] [Indexed: 02/06/2023]
Abstract
Pyrenoids are non-membrane bound organelles found in chloroplasts of algae and hornwort plants that can be seen by light-microscopy. Pyrenoids are formed by liquid-liquid phase separation (LLPS) of Rubisco, the primary CO2 fixing enzyme, with an intrinsically disordered multivalent Rubisco-binding protein. Pyrenoids are the heart of algal and hornwort biophysical CO2 concentrating mechanisms, which accelerate photosynthesis and mediate about 30% of global carbon fixation. Even though LLPS may underlie the apparent convergent evolution of pyrenoids, our current molecular understanding of pyrenoid formation comes from a single example, the model alga Chlamydomonas reinhardtii. In this review, we summarise current knowledge about pyrenoid assembly, regulation and structural organization in Chlamydomonas and highlight evidence that LLPS is the general principle underlying pyrenoid formation across algal lineages and hornworts. Detailed understanding of the principles behind pyrenoid assembly, regulation and structural organization within diverse lineages will provide a fundamental understanding of this biogeochemically important organelle and help guide ongoing efforts to engineer pyrenoids into crops to increase photosynthetic performance and yields.2.
Collapse
Affiliation(s)
- James Barrett
- Department of Biology, University of York, York YO10 5DD, UK
| | - Philipp Girr
- Department of Biology, University of York, York YO10 5DD, UK
| | | |
Collapse
|
16
|
Gálvez FE, Saldarriaga-Córdoba M, Huovinen P, Silva AX, Gómez I. Revealing the Characteristics of the Antarctic Snow Alga Chlorominima collina gen. et sp. nov. Through Taxonomy, Physiology, and Transcriptomics. FRONTIERS IN PLANT SCIENCE 2021; 12:662298. [PMID: 34163502 PMCID: PMC8215615 DOI: 10.3389/fpls.2021.662298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/10/2021] [Indexed: 05/13/2023]
Abstract
Snow algae play crucial roles in cold ecosystems, however, many aspects related to their biology, adaptations and especially their diversity are not well known. To improve the identification of snow algae from colored snow, in the present study we used a polyphasic approach to describe a new Antarctic genus, Chlorominima with the species type Chlorominima collina. This new taxon was isolated of colored snow collected from the Collins Glacier (King George Island) in the Maritime Antarctic region. Microscopy revealed biflagellated ellipsoidal cells with a rounded posterior end, a C-shaped parietal chloroplast without a pyrenoid, eyespot, and discrete papillae. Several of these characteristics are typical of the genus Chloromonas, but the new isolate differs from the described species of this genus by the unusual small size of the cells, the presence of several vacuoles, the position of the nucleus and the shape of the chloroplast. Molecular analyzes confirm that the isolated alga does not belong to Chloromonas and therefore forms an independent lineage, which is closely related to other unidentified Antarctic and Arctic strains, forming a polar subclade in the Stephanosphaerinia phylogroup within the Chlamydomonadales. Secondary structure comparisons of the ITS2 rDNA marker support the idea that new strain is a distinct taxon within of Caudivolvoxa. Physiological experiments revealed psychrophilic characteristics, which are typical of true snow algae. This status was confirmed by the partial transcriptome obtained at 2°C, in which various cold-responsive and cryoprotective genes were identified. This study explores the systematics, cold acclimatization strategies and their implications for the Antarctic snow flora.
Collapse
Affiliation(s)
- Francisca E. Gálvez
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
- Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia, Chile
- *Correspondence: Francisca E. Gálvez,
| | - Mónica Saldarriaga-Córdoba
- Centro de Investigación en Recursos Naturales y Sustentabilidad (CIRENYS), Universidad Bernardo O’Higgins, Santiago, Chile
| | - Pirjo Huovinen
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
- Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia, Chile
| | - Andrea X. Silva
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
- AUSTRAL-omics, Vicerrectoría de Investigación, Desarrollo y Creación Artística, Universidad Austral de Chile, Valdivia, Chile
| | - Iván Gómez
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
- Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia, Chile
| |
Collapse
|
17
|
Ermilova E. Cold Stress Response: An Overview in Chlamydomonas. FRONTIERS IN PLANT SCIENCE 2020; 11:569437. [PMID: 33013991 PMCID: PMC7494811 DOI: 10.3389/fpls.2020.569437] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/18/2020] [Indexed: 06/01/2023]
Abstract
Low temperature (or cold) is one of the major environmental factors that limit the growth and development of many plants. Various plant species have evolved complex mechanisms to adjust to decreased temperature. Mesophilic chlorophytes are a widely distributed group of eukaryotic photosynthetic organisms, but there is insufficient information about the key molecular processes of their cold acclimation. The best available model for studying how chlorophytes respond to and cope with variations in temperature is the unicellular green alga Chlamydomonas reinhardtii. Chlamydomonas has been widely used for decades as a model system for studying the fundamental mechanisms of the plant heat stress response. At present, unraveling novel cold-regulated events in Chlamydomonas has attracted increasing research attention. This mini-review summarizes recent progress on low-temperature-dependent processes in the model alga, while information on other photosynthetic organisms (cyanobacteria and land plants) was used to strengthen generalizations or specializations of cold-induced mechanisms in plant evolution. Here, we describe recent advances in our understanding of cold stress response in Chlamydomonas, discuss areas of controversy, and highlight potential future directions in cold acclimation research.
Collapse
|
18
|
Raymond JA, Morgan-Kiss R, Stahl-Rommel S. Glycerol Is an Osmoprotectant in Two Antarctic Chlamydomonas Species From an Ice-Covered Saline Lake and Is Synthesized by an Unusual Bidomain Enzyme. FRONTIERS IN PLANT SCIENCE 2020; 11:1259. [PMID: 32973829 PMCID: PMC7468427 DOI: 10.3389/fpls.2020.01259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 07/30/2020] [Indexed: 06/11/2023]
Abstract
Glycerol, a compatible solute, has previously been found to act as an osmoprotectant in some marine Chlamydomonas species and several species of Dunaliella from hypersaline ponds. Recently, Chlamydomonas reinhardtii and Dunaliella salina were shown to make glycerol with an unusual bidomain enzyme, which appears to be unique to algae, that contains a phosphoserine phosphatase and glycerol-3-phosphate dehydrogenase. Here we report that two psychrophilic species of Chlamydomonas (C. spp. UWO241 and ICE-MDV) from Lake Bonney, Antarctica also produce high levels of glycerol to survive in the lake's saline waters. Glycerol concentration increased linearly with salinity and at 1.3 M NaCl, exceeded 400 mM in C. sp. UWO241, the more salt-tolerant strain. We also show that both species expressed several isoforms of the bidomain enzyme. An analysis of one of the isoforms of C. sp. UWO241 showed that it was strongly upregulated by NaCl and is thus the likely source of glycerol. These results reveal another adaptation of the Lake Bonney Chlamydomonas species that allow them to survive in an extreme polar environment.
Collapse
Affiliation(s)
- James A. Raymond
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, United States
| | | | | |
Collapse
|
19
|
Zhang Z, Qu C, Zhang K, He Y, Zhao X, Yang L, Zheng Z, Ma X, Wang X, Wang W, Wang K, Li D, Zhang L, Zhang X, Su D, Chang X, Zhou M, Gao D, Jiang W, Leliaert F, Bhattacharya D, De Clerck O, Zhong B, Miao J. Adaptation to Extreme Antarctic Environments Revealed by the Genome of a Sea Ice Green Alga. Curr Biol 2020; 30:3330-3341.e7. [PMID: 32619486 DOI: 10.1016/j.cub.2020.06.029] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 05/13/2020] [Accepted: 06/08/2020] [Indexed: 01/21/2023]
Abstract
The unicellular green alga Chlamydomonas sp. ICE-L thrives in polar sea ice, where it tolerates extreme low temperatures, high salinity, and broad seasonal fluctuations in light conditions. Despite the high interest in biotechnological uses of this species, little is known about the adaptations that allow it to thrive in this harsh and complex environment. Here, we assembled a high-quality genome sequence of ∼542 Mb and found that retrotransposon proliferation contributed to the relatively large genome size of ICE-L when compared to other chlorophytes. Genomic features that may support the extremophilic lifestyle of this sea ice alga include massively expanded gene families involved in unsaturated fatty acid biosynthesis, DNA repair, photoprotection, ionic homeostasis, osmotic homeostasis, and reactive oxygen species detoxification. The acquisition of multiple ice binding proteins through putative horizontal gene transfer likely contributed to the origin of the psychrophilic lifestyle in ICE-L. Additional innovations include the significant upregulation under abiotic stress of several expanded ICE-L gene families, likely reflecting adaptive changes among diverse metabolic processes. Our analyses of the genome, transcriptome, and functional assays advance general understanding of the Antarctic green algae and offer potential explanations for how green plants adapt to extreme environments.
Collapse
Affiliation(s)
- Zhenhua Zhang
- College of Life Sciences, Nanjing Normal University, 210023 Nanjing, China
| | - Changfeng Qu
- First Institute of Oceanography, Ministry of Natural Resources, 266061 Qingdao, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, 266237 Qingdao, China
| | - Kaijian Zhang
- Novogene Bioinformatics Institute, 100083 Beijing, China
| | - Yingying He
- First Institute of Oceanography, Ministry of Natural Resources, 266061 Qingdao, China
| | - Xing Zhao
- Novogene Bioinformatics Institute, 100083 Beijing, China
| | - Lingxiao Yang
- College of Life Sciences, Nanjing Normal University, 210023 Nanjing, China
| | - Zhou Zheng
- First Institute of Oceanography, Ministry of Natural Resources, 266061 Qingdao, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, 266237 Qingdao, China
| | - Xiaoya Ma
- College of Life Sciences, Nanjing Normal University, 210023 Nanjing, China
| | - Xixi Wang
- First Institute of Oceanography, Ministry of Natural Resources, 266061 Qingdao, China
| | - Wenyu Wang
- First Institute of Oceanography, Ministry of Natural Resources, 266061 Qingdao, China
| | - Kai Wang
- First Institute of Oceanography, Ministry of Natural Resources, 266061 Qingdao, China
| | - Dan Li
- First Institute of Oceanography, Ministry of Natural Resources, 266061 Qingdao, China
| | - Liping Zhang
- First Institute of Oceanography, Ministry of Natural Resources, 266061 Qingdao, China
| | - Xin Zhang
- First Institute of Oceanography, Ministry of Natural Resources, 266061 Qingdao, China
| | - Danyan Su
- College of Life Sciences, Nanjing Normal University, 210023 Nanjing, China
| | - Xin Chang
- College of Life Sciences, Nanjing Normal University, 210023 Nanjing, China
| | - Mengyan Zhou
- Novogene Bioinformatics Institute, 100083 Beijing, China
| | - Dan Gao
- Novogene Bioinformatics Institute, 100083 Beijing, China
| | - Wenkai Jiang
- Novogene Bioinformatics Institute, 100083 Beijing, China
| | - Frederik Leliaert
- Biology Department, Ghent University, 9000 Ghent, Belgium; Meise Botanic Garden, Nieuwelaan 38, 1860 Meise, Belgium
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, USA
| | | | - Bojian Zhong
- College of Life Sciences, Nanjing Normal University, 210023 Nanjing, China.
| | - Jinlai Miao
- First Institute of Oceanography, Ministry of Natural Resources, 266061 Qingdao, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, 266237 Qingdao, China.
| |
Collapse
|
20
|
Zheng Y, Xue C, Chen H, He C, Wang Q. Low-Temperature Adaptation of the Snow Alga Chlamydomonas nivalis Is Associated With the Photosynthetic System Regulatory Process. Front Microbiol 2020; 11:1233. [PMID: 32587584 PMCID: PMC7297934 DOI: 10.3389/fmicb.2020.01233] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 05/14/2020] [Indexed: 12/28/2022] Open
Abstract
The alga Chlamydomonas nivalis thrives in polar snow fields and on high-altitude mountain tops, and contributes significantly on primary production in the polar regions, however, the mechanisms underlying this adaptation to low temperatures are unknown. Here, we compared the growth, photosynthetic activity, membrane lipid peroxidation, and antioxidant activity of C. nivalis with those of the model alga C. reinhardtii, under grow temperature and low temperatures. C. nivalis maintained its photosynthetic activity in these conditions by reducing the light-harvesting ability of photosystem II and enhancing the cyclic electron transfer around photosystem I, both of which limited damage to the photosystem from excess light energy and resulted in ATP production, supporting cellular growth and other physiological processes. Furthermore, the increased cyclic electron transfer rate, carotenoid content, and antioxidant enzyme activities jointly regulated the reactive oxygen species levels in C. nivalis, enabling recovery from excess excitation energy and reduced photooxidative damage to the cell. Therefore, we propose a model in which adaptive mechanisms related to photosynthetic regulation promote the survival and even blooming of C. nivalis under polar environment, suggesting that C. nivalis can provide organic carbon sources as an important primary producer for other surrounding life in the polar regions for maintaining ecosystem.
Collapse
Affiliation(s)
- Yanli Zheng
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chunling Xue
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Hui Chen
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Chenliu He
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Qiang Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China.,Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
21
|
Hoham RW, Remias D. Snow and Glacial Algae: A Review 1. JOURNAL OF PHYCOLOGY 2020; 56:264-282. [PMID: 31825096 PMCID: PMC7232433 DOI: 10.1111/jpy.12952] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/20/2019] [Indexed: 05/03/2023]
Abstract
Snow or glacial algae are found on all continents, and most species are in the Chlamydomonadales (Chlorophyta) and Zygnematales (Streptophyta). Other algal groups include euglenoids, cryptomonads, chrysophytes, dinoflagellates, and cyanobacteria. They may live under extreme conditions of temperatures near 0°C, high irradiance levels in open exposures, low irradiance levels under tree canopies or deep in snow, acidic pH, low conductivity, and desiccation after snow melt. These primary producers may color snow green, golden-brown, red, pink, orange, or purple-grey, and they are part of communities that include other eukaryotes, bacteria, archaea, viruses, and fungi. They are an important component of the global biosphere and carbon and water cycles. Life cycles in the Chlamydomonas-Chloromonas-Chlainomonas complex include migration of flagellates in liquid water and formation of resistant cysts, many of which were identified previously as other algae. Species differentiation has been updated through the use of metagenomics, lipidomics, high-throughput sequencing (HTS), multi-gene analysis, and ITS. Secondary metabolites (astaxanthin in snow algae and purpurogallin in glacial algae) protect chloroplasts and nuclei from damaging PAR and UV, and ice binding proteins (IBPs) and polyunsaturated fatty acids (PUFAs) reduce cell damage in subfreezing temperatures. Molecular phylogenies reveal that snow algae in the Chlamydomonas-Chloromonas complex have invaded the snow habitat at least twice, and some species are polyphyletic. Snow and glacial algae reduce albedo, accelerate the melt of snowpacks and glaciers, and are used to monitor climate change. Selected strains of these algae have potential for producing food or fuel products.
Collapse
Affiliation(s)
- Ronald W. Hoham
- Department of BiologyColgate UniversityHamiltonNew York13346USA
| | - Daniel Remias
- School of EngineeringUniversity of Applied Sciences Upper AustriaWels4600Austria
| |
Collapse
|
22
|
Smith DR, Cvetkovska M, Hüner NPA, Morgan-Kiss R. Presence and absence of light-independent chlorophyll biosynthesis among Chlamydomonas green algae in an ice-covered Antarctic lake. Commun Integr Biol 2019; 12:148-150. [PMID: 31666915 PMCID: PMC6802932 DOI: 10.1080/19420889.2019.1676611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 12/03/2022] Open
Abstract
The cold, permanently ice-covered waters of Lake Bonney, Antarctica, may seem like an uninviting place for an alga, but they are home to a diversity of photosynthetic life, including Chlamydomonas sp. UWO241, a psychrophile residing in the deep photic zone. Recently, we found that UWO241 has lost the genes responsible for light-independent chlorophyll biosynthesis, which is surprising given that this green alga comes from a light-limited environment and experiences extended periods of darkness during the Antarctic winter. Why discard such a process? We argued that it might be linked to the very high dissolved oxygen concentration of Lake Bonney at the depth at which UWO241 is found. Oxygen is the Achilles’ heel of the key enzyme involved in light-independent chlorophyll biosynthesis: DPOR. If this hypothesis is true, then other algae in Lake Bonney should also be susceptible to losing DPOR, such as Chlamydomonas sp. ICE-MDV, which predominantly resides in the chemocline, a depth with an even higher oxygen concentration than that where UWO241 exists. Here, we report that, contrary to our earlier prediction, ICE-MDV has maintained the genes encoding DPOR. We briefly discuss the implications of this finding in relation to the loss of light-independent chlorophyll synthesis in UWO241.
Collapse
Affiliation(s)
- David Roy Smith
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Marina Cvetkovska
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Norman P A Hüner
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | | |
Collapse
|
23
|
Procházková L, Remias D, Řezanka T, Nedbalová L. Ecophysiology of Chloromonas hindakii sp. nov. (Chlorophyceae), Causing Orange Snow Blooms at Different Light Conditions. Microorganisms 2019; 7:microorganisms7100434. [PMID: 31658718 PMCID: PMC6843554 DOI: 10.3390/microorganisms7100434] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/20/2019] [Accepted: 10/02/2019] [Indexed: 12/26/2022] Open
Abstract
Slowly melting snowfields in mountain and polar regions are habitats of snow algae. Orange blooms were sampled in three European mountain ranges. The cysts within the blooms morphologically resembled those of Chloromonas nivalis (Chlorophyceae). Molecular and morphological traits of field and cultured material showed that they represent a new species, Chloromonas hindakii sp. nov. The performance of photosystem II was evaluated by fluorometry. For the first time for a snow alga, cyst stages collected in a wide altitudinal gradient and the laboratory strain were compared. The results showed that cysts were well adapted to medium and high irradiance. Cysts from high light conditions became photoinhibited at three times higher irradiances (600 µmol photons m−2 s−1) than those from low light conditions, or likewise compared to cultured flagellates. Therefore, the physiologic light preferences reflected the conditions in the original habitat. A high content of polyunsaturated fatty acids (about 60% of total lipids) and the accumulation of the carotenoid astaxanthin was observed. They are regarded as adaptations to cope with extreme environmental conditions of snow that include low temperatures, freeze-thaw cycles, and variable light intensity. The intraspecific ability of adaptation of the photosynthetic apparatus to different irradiance regimes seems to be advantageous for thriving in different snow habitats.
Collapse
Affiliation(s)
- Lenka Procházková
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, 12844 Prague, Czech Republic.
| | - Daniel Remias
- School of Engineering, University of Applied Sciences Upper Austria, Stelzhamerstr. 23, 4600 Wels, Austria.
| | - Tomáš Řezanka
- The Czech Academy of Sciences, Institute of Microbiology, Vídeňská 1083, 142 20 Prague, Czech Republic.
| | - Linda Nedbalová
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, 12844 Prague, Czech Republic.
| |
Collapse
|
24
|
Cook G, Teufel A, Kalra I, Li W, Wang X, Priscu J, Morgan-Kiss R. The Antarctic psychrophiles Chlamydomonas spp. UWO241 and ICE-MDV exhibit differential restructuring of photosystem I in response to iron. PHOTOSYNTHESIS RESEARCH 2019; 141:209-228. [PMID: 30729447 DOI: 10.1007/s11120-019-00621-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 01/25/2019] [Indexed: 06/09/2023]
Abstract
Chlamydomonas sp. UWO241 is a psychrophilic alga isolated from the deep photic zone of a perennially ice-covered Antarctic lake (east lobe Lake Bonney, ELB). Past studies have shown that C. sp. UWO241 exhibits constitutive downregulation of photosystem I (PSI) and high rates of PSI-associated cyclic electron flow (CEF). Iron levels in ELB are in the nanomolar range leading us to hypothesize that the unusual PSI phenotype of C. sp. UWO241 could be a response to chronic Fe-deficiency. We studied the impact of Fe availability in C. sp. UWO241, a mesophile, C. reinhardtii SAG11-32c, as well as a psychrophile isolated from the shallow photic zone of ELB, Chlamydomonas sp. ICE-MDV. Under Fe-deficiency, PsaA abundance and levels of photooxidizable P700 (ΔA820/A820) were reduced in both psychrophiles relative to the mesophile. Upon increasing Fe, C. sp. ICE-MDV and C. reinhardtii exhibited restoration of PSI function, while C. sp. UWO241 exhibited only moderate changes in PSI activity and lacked almost all LHCI proteins. Relative to Fe-excess conditions (200 µM Fe2+), C. sp. UWO241 grown in 18 µM Fe2+ exhibited downregulation of light harvesting and photosystem core proteins, as well as upregulation of a bestrophin-like anion channel protein and two CEF-associated proteins (NdsS, PGL1). Key enzymes of starch synthesis and shikimate biosynthesis were also upregulated. We conclude that in response to variable Fe availability, the psychrophile C. sp. UWO241 exhibits physiological plasticity which includes restructuring of the photochemical apparatus, increased PSI-associated CEF, and shifts in downstream carbon metabolism toward storage carbon and secondary stress metabolites.
Collapse
Affiliation(s)
- Greg Cook
- Department of Microbiology, Miami University, 700 E High St., 32 Pearson Hall, Oxford, OH, 45056, USA
| | - Amber Teufel
- Department of Microbiology, Miami University, 700 E High St., 32 Pearson Hall, Oxford, OH, 45056, USA
| | - Isha Kalra
- Department of Microbiology, Miami University, 700 E High St., 32 Pearson Hall, Oxford, OH, 45056, USA
| | - Wei Li
- Land Resources and Environmental Sciences, Montana State University, Bozeman, MT, USA
| | - Xin Wang
- Department of Microbiology, Miami University, 700 E High St., 32 Pearson Hall, Oxford, OH, 45056, USA
| | - John Priscu
- Land Resources and Environmental Sciences, Montana State University, Bozeman, MT, USA
| | - Rachael Morgan-Kiss
- Department of Microbiology, Miami University, 700 E High St., 32 Pearson Hall, Oxford, OH, 45056, USA.
| |
Collapse
|
25
|
Cvetkovska M, Orgnero S, Hüner NPA, Smith DR. The enigmatic loss of light-independent chlorophyll biosynthesis from an Antarctic green alga in a light-limited environment. THE NEW PHYTOLOGIST 2019; 222:651-656. [PMID: 30506801 DOI: 10.1111/nph.15623] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 11/26/2018] [Indexed: 06/09/2023]
Affiliation(s)
- Marina Cvetkovska
- Department of Biology, University of Western Ontario, London, Ontario, N6A 5B7, Canada
| | - Shane Orgnero
- Department of Biology, University of Western Ontario, London, Ontario, N6A 5B7, Canada
| | - Norman P A Hüner
- Department of Biology, University of Western Ontario, London, Ontario, N6A 5B7, Canada
| | - David Roy Smith
- Department of Biology, University of Western Ontario, London, Ontario, N6A 5B7, Canada
| |
Collapse
|
26
|
Cvetkovska M, Szyszka-Mroz B, Possmayer M, Pittock P, Lajoie G, Smith DR, Hüner NPA. Characterization of photosynthetic ferredoxin from the Antarctic alga Chlamydomonas sp. UWO241 reveals novel features of cold adaptation. THE NEW PHYTOLOGIST 2018; 219:588-604. [PMID: 29736931 DOI: 10.1111/nph.15194] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 03/27/2018] [Indexed: 06/08/2023]
Abstract
The objective of this work was to characterize photosynthetic ferredoxin from the Antarctic green alga Chlamydomonas sp. UWO241, a key enzyme involved in distributing photosynthetic reducing power. We hypothesize that ferredoxin possesses characteristics typical of cold-adapted enzymes, namely increased structural flexibility and high activity at low temperatures, accompanied by low stability at moderate temperatures. To address this objective, we purified ferredoxin from UWO241 and characterized the temperature dependence of its enzymatic activity and protein conformation. The UWO241 ferredoxin protein, RNA, and DNA sequences were compared with homologous sequences from related organisms. We provide evidence for the duplication of the main ferredoxin gene in the UWO241 nuclear genome and the presence of two highly similar proteins. Ferredoxin from UWO241 has both high activity at low temperatures and high stability at moderate temperatures, representing a novel class of cold-adapted enzymes. Our study reveals novel insights into how photosynthesis functions in the cold. The presence of two distinct ferredoxin proteins in UWO241 could provide an adaptive advantage for survival at cold temperatures. The primary amino acid sequence of ferredoxin is highly conserved among photosynthetic species, and we suggest that subtle differences in sequence can lead to significant changes in activity at low temperatures.
Collapse
Affiliation(s)
- Marina Cvetkovska
- Department of Biology and the Biotron Centre for Experimental Climate Change Research, University ofWestern Ontario, London, ON, N6A 5B7, Canada
| | - Beth Szyszka-Mroz
- Department of Biology and the Biotron Centre for Experimental Climate Change Research, University ofWestern Ontario, London, ON, N6A 5B7, Canada
| | - Marc Possmayer
- Department of Biology and the Biotron Centre for Experimental Climate Change Research, University ofWestern Ontario, London, ON, N6A 5B7, Canada
| | - Paula Pittock
- Department of Biochemistry and Biological Mass Spectrometry Laboratory, University of Western Ontario, London, ON, N6G 2V4, Canada
| | - Gilles Lajoie
- Department of Biochemistry and Biological Mass Spectrometry Laboratory, University of Western Ontario, London, ON, N6G 2V4, Canada
| | - David R Smith
- Department of Biology and the Biotron Centre for Experimental Climate Change Research, University ofWestern Ontario, London, ON, N6A 5B7, Canada
| | - Norman P A Hüner
- Department of Biology and the Biotron Centre for Experimental Climate Change Research, University ofWestern Ontario, London, ON, N6A 5B7, Canada
| |
Collapse
|
27
|
Zhang Z, An M, Miao J, Gu Z, Liu C, Zhong B. The Antarctic sea ice alga Chlamydomonas sp. ICE-L provides insights into adaptive patterns of chloroplast evolution. BMC PLANT BIOLOGY 2018; 18:53. [PMID: 29614974 PMCID: PMC5883279 DOI: 10.1186/s12870-018-1273-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 03/27/2018] [Indexed: 05/08/2023]
Abstract
BACKGROUND The ice alga Chlamydomonas sp. ICE-L is the main contributor to primary productivity in Antarctic sea ice ecosystems and is well adapted to the extremely harsh environment. However, the adaptive mechanism of Chlamydomonas sp. ICE-L to sea-ice environment remains unclear. To study the adaptive strategies in Chlamydomonas sp. ICE-L, we investigated the molecular evolution of chloroplast photosynthetic genes that are essential for the accumulation of carbohydrate and energy living in Antarctic sea ice. RESULTS The 60 chloroplast protein-coding genes of Chlamydomonas sp. ICE-L were obtained, and the branch-site test detected significant signatures of positive selection on atpB, psaB, and rbcL genes in Chlamydomonas sp. ICE-L associated with the photosynthetic machinery. These positively selected genes were further identified as being under convergent evolution between Chlamydomonas sp. ICE-L and the halotolerant alga Dunaliella salina. CONCLUSIONS Our study provides evidence that the phototrophic component of Chlamydomonas sp. ICE-L exhibits adaptive evolution under extreme environment. The positive Darwinian selection operates on the chloroplast protein-coding genes of Antarctic ice algae adapted to extreme environment following functional-specific and lineages-specific patterns. In addition, three positively selected genes with convergent substitutions in Chlamydomonas sp. ICE-L were identified, and the adaptive modifications in these genes were in functionally important regions of the proteins. Our study provides a foundation for future experiments on the biochemical and physiological impacts of photosynthetic genes in green algae.
Collapse
Affiliation(s)
- Zhenhua Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Meiling An
- Medical College, Qingdao University, Qingdao, China
| | - Jinlai Miao
- Medical College, Qingdao University, Qingdao, China
- Key Laboratory of Marine Bioactive Substance, The First Institute of Oceanography, State Oceanic Administration, Qingdao, China
| | - Zhiqiang Gu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Chang Liu
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Bojian Zhong
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China.
| |
Collapse
|
28
|
Procházková L, Remias D, Řezanka T, Nedbalová L. Chloromonas nivalis subsp. tatrae, subsp. nov. (Chlamydomonadales, Chlorophyta): re-examination of a snow alga from the High Tatra Mountains (Slovakia). FOTTEA (PRAHA) 2018; 18:1-18. [PMID: 30976329 DOI: 10.5507/fot.2017.010.chloromonas] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Melting snow fields populated by aplanozygotes of the genus Chloromonas (Chlamydomonadales, Chlorophyta) are found in polar and alpine habitats. In the High Tatra Mountains (Slovakia), cells causing blooms of brownish-red snow designated as Scotiella tatrae kol turned out to be genetically (18S, ITS1 and ITS2 rDNA, rbcL) very closely related to Chloromonas nivalis (Chodat) Hoham et Mullet from the Austrian Alps. Therefore, Sc. tatrae is transferred into the latter taxon and reduced to a subspecies as Cr. nivalis subsp. tatrae. Both exhibit a similar photosynthetic performance, thrive in similar habitats at open sites above timberline, but differ in astaxanthin accumulation and number of aplanozygote cell wall flanges. In a field sample of Cr. nivalis subsp. tatrae, polyunsaturated fatty acids formed nearly 50 % of total lipids, dominating in phospholipids and glycolipids. Cr. nivalis subsp. tatrae represents likely a variation of a common cryoflora species with distinct morphology.
Collapse
Affiliation(s)
- Lenka Procházková
- Charles University, Faculty of Science, Department of Ecology, Viničná 7, CZ-128 44 Prague, Czech Republic
| | - Daniel Remias
- University of Applied Sciences Upper Austria, Stelzhamerstraße 23, A-4600 Wels, Austria
| | - Tomáš Řezanka
- Institute of Microbiology CAS, Vídeňská 1083, CZ-142 20 Prague, Czech Republic
| | - Linda Nedbalová
- Charles University, Faculty of Science, Department of Ecology, Viničná 7, CZ-128 44 Prague, Czech Republic
| |
Collapse
|
29
|
Procházková L, Remias D, Řezanka T, Nedbalová L. Chloromonas nivalis subsp. tatrae, subsp. nov. (Chlamydomonadales, Chlorophyta): re-examination of a snow alga from the High Tatra Mountains (Slovakia). FOTTEA (PRAHA) 2018; 18:1-18. [PMID: 30976329 PMCID: PMC6456015 DOI: 10.5507/fot.2017.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Melting snow fields populated by aplanozygotes of the genus Chloromonas (Chlamydomonadales, Chlorophyta) are found in polar and alpine habitats. In the High Tatra Mountains (Slovakia), cells causing blooms of brownish-red snow designated as Scotiella tatrae kol turned out to be genetically (18S, ITS1 and ITS2 rDNA, rbcL) very closely related to Chloromonas nivalis (Chodat) Hoham et Mullet from the Austrian Alps. Therefore, Sc. tatrae is transferred into the latter taxon and reduced to a subspecies as Cr. nivalis subsp. tatrae. Both exhibit a similar photosynthetic performance, thrive in similar habitats at open sites above timberline, but differ in astaxanthin accumulation and number of aplanozygote cell wall flanges. In a field sample of Cr. nivalis subsp. tatrae, polyunsaturated fatty acids formed nearly 50 % of total lipids, dominating in phospholipids and glycolipids. Cr. nivalis subsp. tatrae represents likely a variation of a common cryoflora species with distinct morphology.
Collapse
Affiliation(s)
- Lenka Procházková
- Charles University, Faculty of Science, Department of Ecology, Viničná 7, CZ–128 44 Prague, Czech Republic
- Corresponding author
| | - Daniel Remias
- University of Applied Sciences Upper Austria, Stelzhamerstraße 23, A–4600 Wels, Austria
| | - Tomáš Řezanka
- Institute of Microbiology CAS, Vídeňská 1083, CZ–142 20 Prague, Czech Republic
| | - Linda Nedbalová
- Charles University, Faculty of Science, Department of Ecology, Viničná 7, CZ–128 44 Prague, Czech Republic
| |
Collapse
|
30
|
Remias D, Procházková L, Holzinger A, Nedbalová L. Ecology, cytology and phylogeny of the snow alga Scotiella cryophila K-1 (Chlamydomonadales, Chlorophyta) from the Austrian Alps. PHYCOLOGIA 2018; 57:581-592. [PMID: 31007285 PMCID: PMC6469580 DOI: 10.2216/18-45.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Long-lasting, slowly melting snowfields in mountainous regions are frequently populated by specialised microalgae whose diversity is still vastly underestimated. Cysts causing sub-surficial green snow were collected in the Austrian Alps, Tyrol, and morphologically accorded to the snow alga Scotiella cryophila sensu Chodat, initially described from Switzerland. The cytology and photobiology of this population were investigated to understand mechanisms of adaptation to the harsh habitat. Cysts of S. cryophila K-1 had secondary cell walls with pronounced rib-like surface structures and contained several small spherical plastids. The cytoplasm was dominated by lipid bodies, which developed reddish secondary pigmentation. Partial life cycle observations showed that daughter cells lacked structured cell walls. Cysts performed active photosynthesis at temperature conditions close to the freezing point and were photoinhibited at irradiances greater than 70 μmol m-2 s-1. This corresponded exactly to habitat conditions 20 to 40 cm below the snow surface. Phylogenetic analyses using 18S rDNA, rbcL and ITS2 rDNA sequences indicated that S. cryophila K-1 is related to Chloromonas, known to contain several snow algae. The taxon forms an independent lineage and is clearly genetically distinct from the type strain of Chloromonas rosae var. psychrophila from North America that is supposed to have morphologically identical cysts. For a taxonomic treatment including a species assignment of S. cryophila K-1 from Europe within Chloromonas, flagellates will have to be cultivated from cysts or from acquired field material for a detailed morphological description. Acquisition and genetic analysis of cysts that resemble S. cryophila from America could elucidate their relationship to European samples.
Collapse
Affiliation(s)
- Daniel Remias
- University of Applied Sciences, Campus Wels, Stelzhamerstr. 23,
A-4600 Wels, Austria
- Corresponding author
()
| | - Lenka Procházková
- Charles University, Faculty of Science, Department of Ecology,
Viničná7, CZ-128 44 Prague, Czech Republic
| | - Andreas Holzinger
- University of Innsbruck, Department of Botany, Sternwartestr. 15,
A-6020 Innsbruck, Austria
| | - Linda Nedbalová
- Charles University, Faculty of Science, Department of Ecology,
Viničná7, CZ-128 44 Prague, Czech Republic
| |
Collapse
|
31
|
Thermal autecology describes the occurrence patterns of four benthic diatoms in McMurdo Dry Valley streams. Polar Biol 2017. [DOI: 10.1007/s00300-017-2151-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|