1
|
Widaatalla Y, Wolswijk T, Khan MD, Halilaj I, Mosterd K, Woodruff HC, Lambin P. Radiomics in Dermatological Optical Coherence Tomography (OCT): Feature Repeatability, Reproducibility, and Integration into Diagnostic Models in a Prospective Study. Cancers (Basel) 2025; 17:768. [PMID: 40075619 PMCID: PMC11899706 DOI: 10.3390/cancers17050768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/14/2025] [Accepted: 02/17/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND/OBJECTIVES Radiomics has seen substantial growth in medical imaging; however, its potential in optical coherence tomography (OCT) has not been widely explored. We systematically evaluate the repeatability and reproducibility of handcrafted radiomics features (HRFs) from OCT scans of benign nevi and examine the impact of bin width (BW) selection on HRF stability. The effect of using stable features on a radiomics classification model was also assessed. METHODS In this prospective study, 20 volunteers underwent test-retest OCT imaging of 40 benign nevi, resulting in 80 scans. The repeatability and reproducibility of HRFs extracted from manually delineated regions of interest (ROIs) were assessed using concordance correlation coefficients (CCCs) across BWs ranging from 5 to 50. A unique set of stable HRFs was identified at each BW after removing highly correlated features to eliminate redundancy. These robust features were incorporated into a multiclass radiomics classifier trained to distinguish benign nevi, basal cell carcinoma (BCC), and Bowen's disease. RESULTS Six stable HRFs were identified across all BWs, with a BW of 25 emerging as the optimal choice, balancing repeatability and the ability to capture meaningful textural details. Additionally, intermediate BWs (20-25) yielded 53 reproducible features. A classifier trained with six stable features achieved a 90% accuracy and AUCs of 0.96 and 0.94 for BCC and Bowen's disease, respectively, compared to a 76% accuracy and AUCs of 0.86 and 0.80 for a conventional feature selection approach. CONCLUSIONS This study highlights the critical role of BW selection in enhancing HRF stability and provides a methodological framework for optimizing preprocessing in OCT radiomics. By demonstrating the integration of stable HRFs into diagnostic models, we establish OCT radiomics as a promising tool to aid non-invasive diagnosis in dermatology.
Collapse
Affiliation(s)
- Yousif Widaatalla
- The D-Lab, Department of Precision Medicine, Maastricht University, 6200 MD Maastricht, The Netherlands; (M.D.K.); (I.H.); (H.C.W.); (P.L.)
- GROW Research Institute for Oncology and Reproduction, Maastricht University, 6200 MD Maastricht, The Netherlands; (T.W.); (K.M.)
| | - Tom Wolswijk
- GROW Research Institute for Oncology and Reproduction, Maastricht University, 6200 MD Maastricht, The Netherlands; (T.W.); (K.M.)
- Department of Dermatology, Maastricht University Medical Center+, 6229 HX Maastricht, The Netherlands
| | - Muhammad Danial Khan
- The D-Lab, Department of Precision Medicine, Maastricht University, 6200 MD Maastricht, The Netherlands; (M.D.K.); (I.H.); (H.C.W.); (P.L.)
- GROW Research Institute for Oncology and Reproduction, Maastricht University, 6200 MD Maastricht, The Netherlands; (T.W.); (K.M.)
| | - Iva Halilaj
- The D-Lab, Department of Precision Medicine, Maastricht University, 6200 MD Maastricht, The Netherlands; (M.D.K.); (I.H.); (H.C.W.); (P.L.)
- GROW Research Institute for Oncology and Reproduction, Maastricht University, 6200 MD Maastricht, The Netherlands; (T.W.); (K.M.)
| | - Klara Mosterd
- GROW Research Institute for Oncology and Reproduction, Maastricht University, 6200 MD Maastricht, The Netherlands; (T.W.); (K.M.)
- Department of Dermatology, Maastricht University Medical Center+, 6229 HX Maastricht, The Netherlands
| | - Henry C. Woodruff
- The D-Lab, Department of Precision Medicine, Maastricht University, 6200 MD Maastricht, The Netherlands; (M.D.K.); (I.H.); (H.C.W.); (P.L.)
- GROW Research Institute for Oncology and Reproduction, Maastricht University, 6200 MD Maastricht, The Netherlands; (T.W.); (K.M.)
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center+, 6229 HX Maastricht, The Netherlands
| | - Philippe Lambin
- The D-Lab, Department of Precision Medicine, Maastricht University, 6200 MD Maastricht, The Netherlands; (M.D.K.); (I.H.); (H.C.W.); (P.L.)
- GROW Research Institute for Oncology and Reproduction, Maastricht University, 6200 MD Maastricht, The Netherlands; (T.W.); (K.M.)
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center+, 6229 HX Maastricht, The Netherlands
| |
Collapse
|
2
|
Laskov V, Rothbauer D, Malikova H. Robustness of radiomic features in 123I-ioflupane-dopamine transporter single-photon emission computer tomography scan. PLoS One 2024; 19:e0301978. [PMID: 38603674 PMCID: PMC11008844 DOI: 10.1371/journal.pone.0301978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/26/2024] [Indexed: 04/13/2024] Open
Abstract
Radiomic features are usually used to predict target variables such as the absence or presence of a disease, treatment response, or time to symptom progression. One of the potential clinical applications is in patients with Parkinson's disease. Robust radiomic features for this specific imaging method have not yet been identified, which is necessary for proper feature selection. Thus, we are assessing the robustness of radiomic features in dopamine transporter imaging (DaT). For this study, we made an anthropomorphic head phantom with tissue heterogeneity using a personal 3D printer (polylactide 82% infill); the bone was subsequently reproduced with plaster. A surgical cotton ball with radiotracer (123I-ioflupane) was inserted. Scans were performed on the two-detector hybrid camera with acquisition parameters corresponding to international guidelines for DaT single photon emission tomography (SPECT). Reconstruction of SPECT was performed on a clinical workstation with iterative algorithms. Open-source LifeX software was used to extract 134 radiomic features. Statistical analysis was made in RStudio using the intraclass correlation coefficient (ICC) and coefficient of variation (COV). Overall, radiomic features in different reconstruction parameters showed a moderate reproducibility rate (ICC = 0.636, p <0.01). Assessment of ICC and COV within CT attenuation correction (CTAC) and non-attenuation correction (NAC) groups and within particular feature classes showed an excellent reproducibility rate (ICC > 0.9, p < 0.01), except for an intensity-based NAC group, where radiomic features showed a good repeatability rate (ICC = 0.893, p <0.01). By our results, CTAC becomes the main threat to feature stability. However, many radiomic features were sensitive to the selected reconstruction algorithm irrespectively to the attenuation correction. Radiomic features extracted from DaT-SPECT showed moderate to excellent reproducibility rates. These results make them suitable for clinical practice and human studies, but awareness of feature selection should be held, as some radiomic features are more robust than others.
Collapse
Affiliation(s)
- Viktor Laskov
- Department of Radiology and Nuclear Medicine, Third Faculty of Medicine, Charles University and University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - David Rothbauer
- Department of Radiology and Nuclear Medicine, Third Faculty of Medicine, Charles University and University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Hana Malikova
- Department of Radiology and Nuclear Medicine, Third Faculty of Medicine, Charles University and University Hospital Kralovske Vinohrady, Prague, Czech Republic
| |
Collapse
|
3
|
Grizzi F, Spadaccini M, Chiriva-Internati M, Hegazi MAAA, Bresalier RS, Hassan C, Repici A, Carrara S. Fractal nature of human gastrointestinal system: Exploring a new era. World J Gastroenterol 2023; 29:4036-4052. [PMID: 37476585 PMCID: PMC10354580 DOI: 10.3748/wjg.v29.i25.4036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/26/2023] [Accepted: 06/13/2023] [Indexed: 06/28/2023] Open
Abstract
The morphological complexity of cells and tissues, whether normal or pathological, is characterized by two primary attributes: Irregularity and self-similarity across different scales. When an object exhibits self-similarity, its shape remains unchanged as the scales of measurement vary because any part of it resembles the whole. On the other hand, the size and geometric characteristics of an irregular object vary as the resolution increases, revealing more intricate details. Despite numerous attempts, a reliable and accurate method for quantifying the morphological features of gastrointestinal organs, tissues, cells, their dynamic changes, and pathological disorders has not yet been established. However, fractal geometry, which studies shapes and patterns that exhibit self-similarity, holds promise in providing a quantitative measure of the irregularly shaped morphologies and their underlying self-similar temporal behaviors. In this context, we explore the fractal nature of the gastrointestinal system and the potential of fractal geometry as a robust descriptor of its complex forms and functions. Additionally, we examine the practical applications of fractal geometry in clinical gastroenterology and hepatology practice.
Collapse
Affiliation(s)
- Fabio Grizzi
- Department of Immunology and Inflammation, IRCCS Humanitas Research Hospital, Rozzano 20089, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele 20072, Milan, Italy
| | - Marco Spadaccini
- Division of Gastroenterology and Digestive Endoscopy, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Rozzano 20089, Milan, Italy
| | - Maurizio Chiriva-Internati
- Departments of Gastroenterology, Hepatology & Nutrition, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
| | - Mohamed A A A Hegazi
- Department of Immunology and Inflammation, IRCCS Humanitas Research Hospital, Rozzano 20089, Milan, Italy
| | - Robert S Bresalier
- Departments of Gastroenterology, Hepatology & Nutrition, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
| | - Cesare Hassan
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele 20072, Milan, Italy
- Division of Gastroenterology and Digestive Endoscopy, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Rozzano 20089, Milan, Italy
| | - Alessandro Repici
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele 20072, Milan, Italy
- Division of Gastroenterology and Digestive Endoscopy, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Rozzano 20089, Milan, Italy
| | - Silvia Carrara
- Division of Gastroenterology and Digestive Endoscopy, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Rozzano 20089, Milan, Italy
| |
Collapse
|
4
|
Alsyed E, Smith R, Bartley L, Marshall C, Spezi E. A heterogeneous phantom study for investigating the stability of PET images radiomic features with varying reconstruction settings. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2023; 3:1078536. [PMID: 39380957 PMCID: PMC11459985 DOI: 10.3389/fnume.2023.1078536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/18/2023] [Indexed: 10/10/2024]
Abstract
The purpose of this work was to assess the capability of radiomic features in distinguishing PET image regions with different uptake patterns. Furthermore, we assessed the stability of PET radiomic features with varying image reconstruction settings. An in-house phantom was designed and constructed, consisting of homogenous and heterogenous artificial phantom inserts. Four artificially constructed inserts were placed into a water filled phantom and filled with varying levels of radioactivity to simulate homogeneous and heterogeneous uptake patterns. The phantom was imaged for 80 min. PET images were reconstructed whilst varying reconstruction parameters. The parameters adjusted included, number of ordered subsets, number of iterations, use of time-of-flight and filter cut off. Regions of interest (ROI) were established by segmentation of the phantom inserts from the reconstructed images. In total seventy eight 3D radiomic features for each ROI with unique reconstructed parameters were extracted. The Friedman test was used to determine the statistical power of each radiomic feature in differentiating phantom inserts with different hetero/homogeneous configurations. The Coefficient of Variation (COV) of each feature, with respect to the reconstruction setting was used to determine feature stability. Forty three out of seventy eight radiomic features were found to be stable (COV ≤ 5%) against all reconstruction settings. To provide any utility, stable features are required to differentiate between regions with different hetro/homogeneity. Of the forty three stable features, fifteen (35%) features showed a statistically significant difference between the artificially constructed inserts. Such features included GLCM (Difference average, Difference entropy, Dissimilarity and Inverse difference), GLRL (Long run emphasis, Grey level non uniformity and Run percentage) and NGTDM (Complexity and Strength). The finding of this work suggests that radiomic features are capable of distinguishing between radioactive distribution patterns that demonstrate different levels of heterogeneity. Therefore, radiomic features could serve as an adjuvant diagnostic tool along with traditional imaging. However, the choice of the radiomic features needs to account for variability introduced when different reconstruction settings are used. Standardization of PET image reconstruction settings across sites performing radiomic analysis in multi-centre trials should be considered.
Collapse
Affiliation(s)
- Emad Alsyed
- School of Engineering, Cardiff University, Cardiff, United Kingdom
- Department of Nuclear Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rhodri Smith
- Wales Research and Diagnostic Positron Emission Tomography Imaging Centre (PETIC), Cardiff University, Cardiff, United Kingdom
| | - Lee Bartley
- Wales Research and Diagnostic Positron Emission Tomography Imaging Centre (PETIC), Cardiff University, Cardiff, United Kingdom
| | - Christopher Marshall
- Wales Research and Diagnostic Positron Emission Tomography Imaging Centre (PETIC), Cardiff University, Cardiff, United Kingdom
| | - Emiliano Spezi
- School of Engineering, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
5
|
Comte V, Schmutz H, Chardin D, Orlhac F, Darcourt J, Humbert O. Development and validation of a radiomic model for the diagnosis of dopaminergic denervation on [18F]FDOPA PET/CT. Eur J Nucl Med Mol Imaging 2022; 49:3787-3796. [PMID: 35567626 PMCID: PMC9399031 DOI: 10.1007/s00259-022-05816-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/23/2022] [Indexed: 11/30/2022]
Abstract
Purpose FDOPA PET shows good performance for the diagnosis of striatal dopaminergic denervation, making it a valuable tool for the differential diagnosis of Parkinsonism. Textural features are image biomarkers that could potentially improve the early diagnosis and monitoring of neurodegenerative parkinsonian syndromes. We explored the performances of textural features for binary classification of FDOPA scans. Methods We used two FDOPA PET datasets: 443 scans for feature selection, and 100 scans from a different PET/CT system for model testing. Scans were labelled according to expert interpretation (dopaminergic denervation versus no dopaminergic denervation). We built LASSO logistic regression models using 43 biomarkers including 32 textural features. Clinical data were also collected using a shortened UPDRS scale. Results The model built from the clinical data alone had a mean area under the receiver operating characteristics (AUROC) of 63.91. Conventional imaging features reached a maximum score of 93.47 but the addition of textural features significantly improved the AUROC to 95.73 (p < 0.001), and 96.10 (p < 0.001) when limiting the model to the top three features: GLCM_Correlation, Skewness and Compacity. Testing the model on the external dataset yielded an AUROC of 96.00, with 95% sensitivity and 97% specificity. GLCM_Correlation was one of the most independent features on correlation analysis, and systematically had the heaviest weight in the classification model. Conclusion A simple model with three radiomic features can identify pathologic FDOPA PET scans with excellent sensitivity and specificity. Textural features show promise for the diagnosis of parkinsonian syndromes. Supplementary Information The online version contains supplementary material available at 10.1007/s00259-022-05816-7.
Collapse
Affiliation(s)
- Victor Comte
- Department of Nuclear Medicine, Centre Antoine Lacassagne, Université Côte d'Azur, Nice, France.
| | - Hugo Schmutz
- Laboratoire TIRO UMR E4320, Université Côte d'Azur, Nice, France
| | - David Chardin
- Department of Nuclear Medicine, Centre Antoine Lacassagne, Université Côte d'Azur, Nice, France.,Laboratoire TIRO UMR E4320, Université Côte d'Azur, Nice, France
| | - Fanny Orlhac
- Laboratoire d'Imagerie Translationnelle en Oncologie (LITO) U1288, Institut Curie, Inserm, Université Paris-Saclay, Orsay, France
| | - Jacques Darcourt
- Department of Nuclear Medicine, Centre Antoine Lacassagne, Université Côte d'Azur, Nice, France.,Laboratoire TIRO UMR E4320, Université Côte d'Azur, Nice, France
| | - Olivier Humbert
- Department of Nuclear Medicine, Centre Antoine Lacassagne, Université Côte d'Azur, Nice, France.,Laboratoire TIRO UMR E4320, Université Côte d'Azur, Nice, France
| |
Collapse
|
6
|
Taha B, Boley D, Sun J, Chen C. Potential and limitations of radiomics in neuro-oncology. J Clin Neurosci 2021; 90:206-211. [PMID: 34275550 DOI: 10.1016/j.jocn.2021.05.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/22/2021] [Accepted: 05/02/2021] [Indexed: 11/28/2022]
Abstract
Radiomics seeks to apply classical methods of image processing to obtain quantitative parameters from imaging. Derived features are subsequently fed into algorithmic models to aid clinical decision making. The application of radiomics and machine learning techniques to clinical medicine remains in its infancy. The great potential of radiomics lies in its objective, granular approach to investigating clinical imaging. In neuro-oncology, advanced machine learning techniques, particularly deep learning, are at the forefront of new discoveries in the field. However, despite the great promise of machine learning aided radiomic approaches, the current use remains confined to scholarly research, without real-world deployment in neuro-oncology. The paucity of data, inconsistencies in preprocessing, radiomic feature instability, and the rarity of the events of interest are critical barriers to clinical translation. In this article, we will outline the major steps in the process of radiomics, as well as review advances and challenges in the field as they pertain to neuro-oncology.
Collapse
Affiliation(s)
- Birra Taha
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN USA
| | - Daniel Boley
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ju Sun
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Clark Chen
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN USA.
| |
Collapse
|
7
|
Assessment of Renal Cell Carcinoma by Texture Analysis in Clinical Practice: A Six-Site, Six-Platform Analysis of Reliability. AJR Am J Roentgenol 2021; 217:1132-1140. [PMID: 33852355 DOI: 10.2214/ajr.21.25456] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background: Multiple commercial and open-source software applications are available for texture analysis. Nonstandard techniques can cause undesirable variability that impedes result reproducibility and limits clinical utility. Objective: The purpose of this study is to measure agreement of texture metrics extracted by 6 software packages. Methods: This retrospective study included 40 renal cell carcinomas with contrast-enhanced CT from The Cancer Genome Atlas and Imaging Archive. Images were analyzed by 7 readers at 6 sites. Each reader used 1 of 6 software packages to extract commonly studied texture features. Inter and intra-reader agreement for segmentation was assessed with intra-class correlation coefficients. First-order (available in 6 packages) and second-order (available in 3 packages) texture features were compared between software pairs using Pearson correlation. Results: Inter- and intra-reader agreement was excellent (ICC 0.93-1). First-order feature correlations were strong (r>0.8, p<0.001) between 75% (21/28) of software pairs for mean and standard deviation, 48% (10/21) for entropy, 29% (8/28) for skewness, and 25% (7/28) for kurtosis. Of 15 second-order features, only co-occurrence matrix correlation, grey-level non-uniformity, and run-length non-uniformity showed strong correlation between software packages (0.90-1, p<0.001). Conclusion: Variability in first and second order texture features was common across software configurations and produced inconsistent results. Standardized algorithms and reporting methods are needed before texture data can be reliably used for clinical applications. Clinical Impact: It is important to be aware of variability related to texture software processing and configuration when reporting and comparing outputs.
Collapse
|
8
|
A Systematic Review of PET Textural Analysis and Radiomics in Cancer. Diagnostics (Basel) 2021; 11:diagnostics11020380. [PMID: 33672285 PMCID: PMC7926413 DOI: 10.3390/diagnostics11020380] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/10/2021] [Accepted: 02/19/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Although many works have supported the utility of PET radiomics, several authors have raised concerns over the robustness and replicability of the results. This study aimed to perform a systematic review on the topic of PET radiomics and the used methodologies. Methods: PubMed was searched up to 15 October 2020. Original research articles based on human data specifying at least one tumor type and PET image were included, excluding those that apply only first-order statistics and those including fewer than 20 patients. Each publication, cancer type, objective and several methodological parameters (number of patients and features, validation approach, among other things) were extracted. Results: A total of 290 studies were included. Lung (28%) and head and neck (24%) were the most studied cancers. The most common objective was prognosis/treatment response (46%), followed by diagnosis/staging (21%), tumor characterization (18%) and technical evaluations (15%). The average number of patients included was 114 (median = 71; range 20–1419), and the average number of high-order features calculated per study was 31 (median = 26, range 1–286). Conclusions: PET radiomics is a promising field, but the number of patients in most publications is insufficient, and very few papers perform in-depth validations. The role of standardization initiatives will be crucial in the upcoming years.
Collapse
|
9
|
Gutsche R, Scheins J, Kocher M, Bousabarah K, Fink GR, Shah NJ, Langen KJ, Galldiks N, Lohmann P. Evaluation of FET PET Radiomics Feature Repeatability in Glioma Patients. Cancers (Basel) 2021; 13:cancers13040647. [PMID: 33562803 PMCID: PMC7915742 DOI: 10.3390/cancers13040647] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Initial studies suggested the additional diagnostic value of amino acid positron emission tomography (PET) radiomics using the tracer O-(2-[18F]fluoroethyl)-L-tyrosine (FET) in brain tumor patient management. However, to ensure the reliable performance of the generated FET PET radiomics models for clinical diagnostics, repeatability of radiomics features is essential. Hence, we assessed the impact of brain tumor volumes and key molecular alterations such as an isocitrate dehydrogenase (IDH) mutation on the repeatability of FET PET radiomics features in 50 newly diagnosed glioma patients. In a test–retest approach based on routinely acquired FET PET scans, we identified 297 repeatable features. The IDH genotype did not affect feature repeatability. Moreover, these robust features were able to differentiate patients with IDH-wildtype glioma from those with an IDH mutation. Our results suggest that robust radiomics features can be obtained from routinely acquired FET PET scans, which are valuable for further standardization of radiomics analyses in neurooncology. Abstract Amino acid PET using the tracer O-(2-[18F]fluoroethyl)-L-tyrosine (FET) has attracted considerable interest in neurooncology. Furthermore, initial studies suggested the additional diagnostic value of FET PET radiomics in brain tumor patient management. However, the conclusiveness of radiomics models strongly depends on feature generalizability. We here evaluated the repeatability of feature-based FET PET radiomics. A test–retest analysis based on equivalent but statistically independent subsamples of FET PET images was performed in 50 newly diagnosed and histomolecularly characterized glioma patients. A total of 1,302 radiomics features were calculated from semi-automatically segmented tumor volumes-of-interest (VOIs). Furthermore, to investigate the influence of the spatial resolution of PET on repeatability, spherical VOIs of different sizes were positioned in the tumor and healthy brain tissue. Feature repeatability was assessed by calculating the intraclass correlation coefficient (ICC). To further investigate the influence of the isocitrate dehydrogenase (IDH) genotype on feature repeatability, a hierarchical cluster analysis was performed. For tumor VOIs, 73% of first-order features and 71% of features extracted from the gray level co-occurrence matrix showed high repeatability (ICC 95% confidence interval, 0.91–1.00). In the largest spherical tumor VOIs, 67% of features showed high repeatability, significantly decreasing towards smaller VOIs. The IDH genotype did not affect feature repeatability. Based on 297 repeatable features, two clusters were identified separating patients with IDH-wildtype glioma from those with an IDH mutation. Our results suggest that robust features can be obtained from routinely acquired FET PET scans, which are valuable for further standardization of radiomics analyses in neurooncology.
Collapse
Affiliation(s)
- Robin Gutsche
- Research Center Juelich, Institute of Neuroscience and Medicine (INM-3, -4, -11), 52425 Juelich, Germany; (R.G.); (J.S.); (M.K.); (G.R.F.); (N.J.S.); (K.-J.L.); (N.G.)
- RWTH Aachen University, 52062 Aachen, Germany
| | - Jürgen Scheins
- Research Center Juelich, Institute of Neuroscience and Medicine (INM-3, -4, -11), 52425 Juelich, Germany; (R.G.); (J.S.); (M.K.); (G.R.F.); (N.J.S.); (K.-J.L.); (N.G.)
| | - Martin Kocher
- Research Center Juelich, Institute of Neuroscience and Medicine (INM-3, -4, -11), 52425 Juelich, Germany; (R.G.); (J.S.); (M.K.); (G.R.F.); (N.J.S.); (K.-J.L.); (N.G.)
- Department of Stereotaxy and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany;
- Center for Integrated Oncology (CIO), Universities Aachen, Bonn, Duesseldorf and Cologne, 50937 Cologne, Germany
| | - Khaled Bousabarah
- Department of Stereotaxy and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany;
| | - Gereon R. Fink
- Research Center Juelich, Institute of Neuroscience and Medicine (INM-3, -4, -11), 52425 Juelich, Germany; (R.G.); (J.S.); (M.K.); (G.R.F.); (N.J.S.); (K.-J.L.); (N.G.)
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Nadim J. Shah
- Research Center Juelich, Institute of Neuroscience and Medicine (INM-3, -4, -11), 52425 Juelich, Germany; (R.G.); (J.S.); (M.K.); (G.R.F.); (N.J.S.); (K.-J.L.); (N.G.)
- Department of Neurology, University Hospital RWTH Aachen, 52074 Aachen, Germany
- JARA-BRAIN-Translational Medicine, 52074 Aachen, Germany
| | - Karl-Josef Langen
- Research Center Juelich, Institute of Neuroscience and Medicine (INM-3, -4, -11), 52425 Juelich, Germany; (R.G.); (J.S.); (M.K.); (G.R.F.); (N.J.S.); (K.-J.L.); (N.G.)
- Department of Nuclear Medicine, University Hospital RWTH Aachen, 52074 Aachen, Germany
- Center for Integrated Oncology (CIO), Universities Aachen, Bonn, Duesseldorf and Cologne, 52074 Aachen, Germany
| | - Norbert Galldiks
- Research Center Juelich, Institute of Neuroscience and Medicine (INM-3, -4, -11), 52425 Juelich, Germany; (R.G.); (J.S.); (M.K.); (G.R.F.); (N.J.S.); (K.-J.L.); (N.G.)
- Center for Integrated Oncology (CIO), Universities Aachen, Bonn, Duesseldorf and Cologne, 50937 Cologne, Germany
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Philipp Lohmann
- Research Center Juelich, Institute of Neuroscience and Medicine (INM-3, -4, -11), 52425 Juelich, Germany; (R.G.); (J.S.); (M.K.); (G.R.F.); (N.J.S.); (K.-J.L.); (N.G.)
- Department of Stereotaxy and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany;
- Correspondence:
| |
Collapse
|
10
|
A Phantom Study to Investigate Robustness and Reproducibility of Grey Level Co-Occurrence Matrix (GLCM)-Based Radiomics Features for PET. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11020535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Quantification and classification of heterogeneous radiotracer uptake in Positron Emission Tomography (PET) using textural features (termed as radiomics) and artificial intelligence (AI) has the potential to be used as a biomarker of diagnosis and prognosis. However, textural features have been predicted to be strongly correlated with volume, segmentation and quantization, while the impact of image contrast and noise has not been assessed systematically. Further continuous investigations are required to update the existing standardization initiatives. This study aimed to investigate the relationships between textural features and these factors with 18F filled torso NEMA phantom to yield different contrasts and reconstructed with different durations to represent varying levels of noise. The phantom was also scanned with heterogeneous spherical inserts fabricated with 3D printing technology. All spheres were delineated using: (1) the exact boundaries based on their known diameters; (2) 40% fixed; and (3) adaptive threshold. Six textural features were derived from the gray level co-occurrence matrix (GLCM) using different quantization levels. The results indicate that homogeneity and dissimilarity are the most suitable for measuring PET tumor heterogeneity with quantization 64 provided that the segmentation method is robust to noise and contrast variations. To use these textural features as prognostic biomarkers, changes in textural features between baseline and treatment scans should always be reported along with the changes in volumes.
Collapse
|
11
|
Zeng Y, Chapman WC, Lin Y, Li S, Mutch M, Zhu Q. Diagnosing colorectal abnormalities using scattering coefficient maps acquired from optical coherence tomography. JOURNAL OF BIOPHOTONICS 2021; 14:e202000276. [PMID: 33064368 PMCID: PMC8196414 DOI: 10.1002/jbio.202000276] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/08/2020] [Accepted: 10/11/2020] [Indexed: 05/30/2023]
Abstract
Optical coherence tomography (OCT) has shown potential in differentiating normal colonic mucosa from neoplasia. In this study of 33 fresh human colon specimens, we report the first use of texture features and computer vision-based imaging features acquired from en face scattering coefficient maps to characterize colorectal tissue. En face scattering coefficient maps were generated automatically using a new fast integral imaging algorithm. From these maps, a gray-level cooccurrence matrix algorithm was used to extract texture features, and a scale-invariant feature transform algorithm was used to derive novel computer vision-based features. In total, 25 features were obtained, and the importance of each feature in diagnosis was evaluated using a random forest model. Two classifiers were assessed on two different classification tasks. A support vector machine model was found to be optimal for distinguishing normal from abnormal tissue, with 94.7% sensitivity and 94.0% specificity, while a random forest model performed optimally in further differentiating abnormal tissues (i.e., cancerous tissue and adenomatous polyp) with 86.9% sensitivity and 85.0% specificity. These results demonstrated the potential of using OCT to aid the diagnosis of human colorectal disease.
Collapse
Affiliation(s)
- Yifeng Zeng
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, USA
| | - William C Chapman
- Department of Surgery, Section of Colon and Rectal Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Yixiao Lin
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, USA
| | - Shuying Li
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, USA
| | - Matthew Mutch
- Department of Surgery, Section of Colon and Rectal Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Quing Zhu
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, USA
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
12
|
Du F, Tang N, Cui Y, Wang W, Zhang Y, Li Z, Li J. A Novel Nomogram Model Based on Cone-Beam CT Radiomics Analysis Technology for Predicting Radiation Pneumonitis in Esophageal Cancer Patients Undergoing Radiotherapy. Front Oncol 2020; 10:596013. [PMID: 33392091 PMCID: PMC7774595 DOI: 10.3389/fonc.2020.596013] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/04/2020] [Indexed: 12/19/2022] Open
Abstract
Purpose We quantitatively analyzed the characteristics of cone-beam computed tomography (CBCT) radiomics in different periods during radiotherapy (RT) and then built a novel nomogram model integrating clinical features and dosimetric parameters for predicting radiation pneumonitis (RP) in patients with esophageal squamous cell carcinoma (ESCC). Methods At our institute, a retrospective study was conducted on 96 ESCC patients for whom we had complete clinical feature and dosimetric parameter data. CBCT images of each patient in three different periods of RT were obtained, the images were segmented using both lungs as the region of interest (ROI), and 851 image features were extracted. The least absolute shrinkage selection operator (LASSO) was applied to identify candidate radiomics features, and logistic regression analyses were applied to construct the rad-score. The optimal period for the rad-score, clinical features, and dosimetric parameters were selected to construct the nomogram model and then the receiver operating characteristic (ROC) curve was used to evaluate the prediction capacity of the model. Calibration curves and decision curves were used to demonstrate the discriminatory and clinical benefit ratios, respectively. Results The relative volume of total lung treated with ≥5 Gy (V5), mean lung dose (MLD), and tumor stage were independent predictors of RP and were finally incorporated into the nomogram. When the three time periods were modeled, the first period was better than the others. In the primary cohort, the area under the ROC curve (AUC) was 0.700 (95% confidence interval (CI) 0.568–0.832), and in the independent validation cohort, the AUC was 0.765 (95% CI 0.588–0.941). In the nomogram model that integrates clinical features and dosimetric parameters, the AUC in the primary cohort was 0.836 (95% CI 0.700–0.918), and the AUC in the validation cohort was 0.905 (95% CI 0.799–1.000). The nomogram model exhibits excellent performance. Calibration curves indicate a favorable consistency between the nomogram prediction and the actual outcomes. The decision curve exhibits satisfactory clinical utility. Conclusion The radiomics model based on early lung CBCT is a potentially valuable tool for predicting RP. V5, MLD, and tumor stage have certain predictive effects for RP. The developed nomogram model has a better prediction ability than any of the other predictors and can be used as a quantitative model to predict RP.
Collapse
Affiliation(s)
- Feng Du
- Department of Radiation Oncology, School of Clinical Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Radiation Oncology, Zibo Municipal Hospital, Zibo, China
| | - Ning Tang
- Department of Radiation Oncology, School of Clinical Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yuzhong Cui
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Wei Wang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yingjie Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Zhenxiang Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jianbin Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
13
|
Wei L, Cui C, Xu J, Kaza R, El Naqa I, Dewaraja YK. Tumor response prediction in 90Y radioembolization with PET-based radiomics features and absorbed dose metrics. EJNMMI Phys 2020; 7:74. [PMID: 33296050 PMCID: PMC7726084 DOI: 10.1186/s40658-020-00340-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022] Open
Abstract
Purpose To evaluate whether lesion radiomics features and absorbed dose metrics extracted from post-therapy 90Y PET can be integrated to better predict outcomes in microsphere radioembolization of liver malignancies Methods Given the noisy nature of 90Y PET, first, a liver phantom study with repeated acquisitions and varying reconstruction parameters was used to identify a subset of robust radiomics features for the patient analysis. In 36 radioembolization procedures, 90Y PET/CT was performed within a couple of hours to extract 46 radiomics features and estimate absorbed dose in 105 primary and metastatic liver lesions. Robust radiomics modeling was based on bootstrapped multivariate logistic regression with shrinkage regularization (LASSO) and Cox regression with LASSO. Nested cross-validation and bootstrap resampling were used for optimal parameter/feature selection and for guarding against overfitting risks. Spearman rank correlation was used to analyze feature associations. Area under the receiver-operating characteristics curve (AUC) was used for lesion response (at first follow-up) analysis while Kaplan-Meier plots and c-index were used to assess progression model performance. Models with absorbed dose only, radiomics only, and combined models were developed to predict lesion outcome. Results The phantom study identified 15/46 reproducible and robust radiomics features that were subsequently used in the patient models. A lesion response model with zone percentage (ZP) and mean absorbed dose achieved an AUC of 0.729 (95% CI 0.702–0.758), and a progression model with zone size nonuniformity (ZSN) and absorbed dose achieved a c-index of 0.803 (95% CI 0.790–0.815) on nested cross-validation (CV). Although the combined models outperformed the radiomics only and absorbed dose only models, statistical significance was not achieved with the current limited data set to establish expected superiority. Conclusion We have developed new lesion-level response and progression models using textural radiomics features, derived from 90Y PET combined with mean absorbed dose for predicting outcome in radioembolization. These encouraging, but limited results, will need further validation in independent and larger datasets prior to any clinical adoption. Supplementary Information Supplementary information accompanies this paper at 10.1186/s40658-020-00340-9.
Collapse
Affiliation(s)
- Lise Wei
- Applied Physics Program, University of Michigan, Ann Arbor, MI, USA
| | - Can Cui
- Department of Electrical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Jiarui Xu
- Department of Electrical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Ravi Kaza
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Issam El Naqa
- Applied Physics Program, University of Michigan, Ann Arbor, MI, USA.,Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA.,Machine Learning Department, Moffitt Cancer Center, Tampa, FL, USA
| | - Yuni K Dewaraja
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
14
|
van Timmeren JE, Cester D, Tanadini-Lang S, Alkadhi H, Baessler B. Radiomics in medical imaging-"how-to" guide and critical reflection. Insights Imaging 2020; 11:91. [PMID: 32785796 PMCID: PMC7423816 DOI: 10.1186/s13244-020-00887-2] [Citation(s) in RCA: 723] [Impact Index Per Article: 144.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/22/2020] [Indexed: 02/06/2023] Open
Abstract
Radiomics is a quantitative approach to medical imaging, which aims at enhancing the existing data available to clinicians by means of advanced mathematical analysis. Through mathematical extraction of the spatial distribution of signal intensities and pixel interrelationships, radiomics quantifies textural information by using analysis methods from the field of artificial intelligence. Various studies from different fields in imaging have been published so far, highlighting the potential of radiomics to enhance clinical decision-making. However, the field faces several important challenges, which are mainly caused by the various technical factors influencing the extracted radiomic features.The aim of the present review is twofold: first, we present the typical workflow of a radiomics analysis and deliver a practical "how-to" guide for a typical radiomics analysis. Second, we discuss the current limitations of radiomics, suggest potential improvements, and summarize relevant literature on the subject.
Collapse
Affiliation(s)
- Janita E van Timmeren
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Davide Cester
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Stephanie Tanadini-Lang
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Hatem Alkadhi
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Bettina Baessler
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Raemistrasse 100, 8091, Zurich, Switzerland.
| |
Collapse
|
15
|
Haider SP, Zeevi T, Baumeister P, Reichel C, Sharaf K, Forghani R, Kann BH, Judson BL, Prasad ML, Burtness B, Mahajan A, Payabvash S. Potential Added Value of PET/CT Radiomics for Survival Prognostication beyond AJCC 8th Edition Staging in Oropharyngeal Squamous Cell Carcinoma. Cancers (Basel) 2020; 12:cancers12071778. [PMID: 32635216 PMCID: PMC7407414 DOI: 10.3390/cancers12071778] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 12/18/2022] Open
Abstract
Accurate risk-stratification can facilitate precision therapy in oropharyngeal squamous cell carcinoma (OPSCC). We explored the potential added value of baseline positron emission tomography (PET)/computed tomography (CT) radiomic features for prognostication and risk stratification of OPSCC beyond the American Joint Committee on Cancer (AJCC) 8th edition staging scheme. Using institutional and publicly available datasets, we included OPSCC patients with known human papillomavirus (HPV) status, without baseline distant metastasis and treated with curative intent. We extracted 1037 PET and 1037 CT radiomic features quantifying lesion shape, imaging intensity, and texture patterns from primary tumors and metastatic cervical lymph nodes. Utilizing random forest algorithms, we devised novel machine-learning models for OPSCC progression-free survival (PFS) and overall survival (OS) using “radiomics” features, “AJCC” variables, and the “combined” set as input. We designed both single- (PET or CT) and combined-modality (PET/CT) models. Harrell’s C-index quantified survival model performance; risk stratification was evaluated in Kaplan–Meier analysis. A total of 311 patients were included. In HPV-associated OPSCC, the best “radiomics” model achieved an average C-index ± standard deviation of 0.62 ± 0.05 (p = 0.02) for PFS prediction, compared to 0.54 ± 0.06 (p = 0.32) utilizing “AJCC” variables. Radiomics-based risk-stratification of HPV-associated OPSCC was significant for PFS and OS. Similar trends were observed in HPV-negative OPSCC. In conclusion, radiomics imaging features extracted from pre-treatment PET/CT may provide complimentary information to the current AJCC staging scheme for survival prognostication and risk-stratification of HPV-associated OPSCC.
Collapse
Affiliation(s)
- Stefan P. Haider
- Section of Neuroradiology, Department of Radiology and Biomedical Imaging, Yale School of Medicine, 789 Howard Ave, New Haven, CT 06519, USA; (S.P.H.); (A.M.)
- Department of Otorhinolaryngology, University Hospital of Ludwig Maximilians Universität München, Marchioninistrasse 15, 81377 Munich, Germany; (P.B.); (C.R.); (K.S.)
| | - Tal Zeevi
- Center for Translational Imaging Analysis and Machine Learning, Department of Radiology and Biomedical Imaging, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA;
| | - Philipp Baumeister
- Department of Otorhinolaryngology, University Hospital of Ludwig Maximilians Universität München, Marchioninistrasse 15, 81377 Munich, Germany; (P.B.); (C.R.); (K.S.)
| | - Christoph Reichel
- Department of Otorhinolaryngology, University Hospital of Ludwig Maximilians Universität München, Marchioninistrasse 15, 81377 Munich, Germany; (P.B.); (C.R.); (K.S.)
| | - Kariem Sharaf
- Department of Otorhinolaryngology, University Hospital of Ludwig Maximilians Universität München, Marchioninistrasse 15, 81377 Munich, Germany; (P.B.); (C.R.); (K.S.)
| | - Reza Forghani
- Department of Diagnostic Radiology and Augmented Intelligence & Precision Health Laboratory, McGill University Health Centre & Research Institute, 1650 Cedar Avenue, Montreal, QC H3G 1A4, Canada;
| | - Benjamin H. Kann
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, USA;
| | - Benjamin L. Judson
- Division of Otolaryngology, Department of Surgery, Yale School of Medicine, 330 Cedar Street, New Haven, CT 06520, USA;
| | - Manju L. Prasad
- Department of Pathology, Yale School of Medicine, 310 Cedar Street, New Haven, CT 06520, USA;
| | - Barbara Burtness
- Section of Medical Oncology, Department of Internal Medicine, Yale School of Medicine, 25 York Street, New Haven, CT 06520, USA;
| | - Amit Mahajan
- Section of Neuroradiology, Department of Radiology and Biomedical Imaging, Yale School of Medicine, 789 Howard Ave, New Haven, CT 06519, USA; (S.P.H.); (A.M.)
| | - Seyedmehdi Payabvash
- Section of Neuroradiology, Department of Radiology and Biomedical Imaging, Yale School of Medicine, 789 Howard Ave, New Haven, CT 06519, USA; (S.P.H.); (A.M.)
- Correspondence: ; Tel.: +1-(203)-214-4650
| |
Collapse
|
16
|
2-[ 18F]FDG PET/CT radiomics in lung cancer: An overview of the technical aspect and its emerging role in management of the disease. Methods 2020; 188:84-97. [PMID: 32497604 DOI: 10.1016/j.ymeth.2020.05.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/22/2020] [Accepted: 05/27/2020] [Indexed: 12/15/2022] Open
Abstract
Lung cancer is the most common cancer, worldwide, and a major health issue with a remarkable mortality rate. 2-[18F]fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography (2-[18F]FDG PET/CT) plays an indispensable role in the management of lung cancer patients. Long-established quantitative parameters such as size, density, and metabolic activity have been and are being employed in the current practice to enhance interpretation and improve diagnostic and prognostic value. The introduction of radiomics analysis revolutionized the quantitative evaluation of medical imaging, revealing data within images beyond visual interpretation. The "big data" are extracted from high-quality images and are converted into information that correlates to relevant genetic, pathologic, clinical, or prognostic features. Technically advanced, diverse methods have been implemented in different studies. The standardization of image acquisition, segmentation and features analysis is still a debated issue. Importantly, a body of features has been extracted and employed for diagnosis, staging, risk stratification, prognostication, and therapeutic response. 2-[18F]FDG PET/CT-derived features show promising value in non-invasively diagnosing the malignant nature of pulmonary nodules, differentiating lung cancer subtypes, and predicting response to different therapies as well as survival. In this review article, we aimed to provide an overview of the technical aspects used in radiomics analysis in non-small cell lung cancer (NSCLC) and elucidate the role of 2-[18F]FDG PET/CT-derived radiomics in the diagnosis, prognostication, and therapeutic response.
Collapse
|
17
|
Krarup MMK, Nygård L, Vogelius IR, Andersen FL, Cook G, Goh V, Fischer BM. Heterogeneity in tumours: Validating the use of radiomic features on 18F-FDG PET/CT scans of lung cancer patients as a prognostic tool. Radiother Oncol 2020; 144:72-78. [PMID: 31733491 DOI: 10.1016/j.radonc.2019.10.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 10/01/2019] [Accepted: 10/17/2019] [Indexed: 02/06/2023]
Abstract
AIM The aim was to validate promising radiomic features (RFs)1 on 18F-flourodeoxyglucose positron emission tomography/computed tomography-scans (18F-FDG PET/CT) of non-small cell lung cancer (NSCLC) patients undergoing definitive chemo-radiotherapy. METHODS 18F-FDG PET/CT scans performed for radiotherapy (RT) planning were retrieved. Auto-segmentation with visual adaption was used to define the primary tumour on PET images. Six pre-selected prognostic and reproducible PET texture -and shape-features were calculated using texture respectively shape analysis. The correlation between these RFs and metabolic active tumour volume (MTV)3, gross tumour volume (GTV)4 and maximum and mean of standardized uptake value (SUV)5 was tested with a Spearman's Rank test. The prognostic value of RFs was tested in a univariate cox regression analysis and a multivariate cox regression analysis with GTV, clinical stage and histology. P-value ≤ 0.05 were considered significant. RESULTS Image analysis was performed for 233 patients: 145 males and 88 females, mean age of 65.7 and clinical stage II-IV. Mean GTV was 129.87 cm3 (SD 130.30 cm3). Texture and shape-features correlated more strongly to MTV and GTV compared to SUV-measurements. Four RFs predicted PFS in the univariate analysis. No RFs predicted PFS in the multivariate analysis, whereas GTV and clinical stage predicted PFS (p = 0.001 and p = 0.008 respectively). CONCLUSION The pre-selected RFs were insignificant in predicting PFS in combination with GTV, clinical stage and histology. These results might be due to variations in technical parameters. However, it is relevant to question whether RFs are stable enough to provide clinically useful information.
Collapse
Affiliation(s)
- Marie Manon Krebs Krarup
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen University Hospital, Denmark.
| | - Lotte Nygård
- Department of Oncology, Rigshospitalet, Copenhagen University Hospital, Denmark.
| | - Ivan Richter Vogelius
- Department of Oncology, Rigshospitalet, Copenhagen University Hospital, Denmark; Faculty of Health and Medical Sciences, Copenhagen University, Denmark.
| | - Flemming Littrup Andersen
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen University Hospital, Denmark.
| | - Gary Cook
- PET Centre, School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, United Kingdom.
| | - Vicky Goh
- PET Centre, School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, United Kingdom.
| | - Barbara Malene Fischer
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen University Hospital, Denmark; PET Centre, School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, United Kingdom.
| |
Collapse
|
18
|
Wu WJ, Li ZY, Dong S, Liu SM, Zheng L, Huang MW, Zhang JG. Texture analysis of pretreatment [ 18F]FDG PET/CT for the prognostic prediction of locally advanced salivary gland carcinoma treated with interstitial brachytherapy. EJNMMI Res 2019; 9:89. [PMID: 31511990 PMCID: PMC6738371 DOI: 10.1186/s13550-019-0555-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 08/22/2019] [Indexed: 12/24/2022] Open
Abstract
Background The aim of this study was to evaluate the prognostic value of positron emission tomography (PET) parameters and the PET texture features of fluorine 18-fluorodeoxyglucose ([18F]FDG) uptake on pretreatment PET/computed tomography (CT) in patients with locally advanced salivary gland carcinoma treated with interstitial brachytherapy. Methods Forty-three patients with locally advanced salivary gland carcinoma of the head and neck were treated with 125I interstitial brachytherapy as the sole modality and underwent [18F]FDG PET/CT scanning before treatment. Tumor segmentation and texture analysis were performed using the 3D slicer software. In total, 54 features were extracted and categorized as first-order statistics, morphology and shape, gray-level co-occurrence matrix, and gray-level run length matrix. Up to November 2018, the follow-up time ranged from 6 to 120 months (median 18 months). Cumulative survival was calculated by the Kaplan-Meier method. Factors between groups were compared by the log-rank test. Multivariate Cox regression analysis with a backward conditional method was used to predict progression-free survival (PFS). Results The 3- and 5-year locoregional control (LC) rates were 55.4% and 37.0%, respectively. The 3- and 5-year PFS rates were 51.2% and 34.1%, respectively. The 3- and 5-year overall survival (OS) rates were 77.0% and 77.0%, respectively. Univariate analysis revealed that minimum intensity, mean intensity, median intensity, root mean square, and long run emphasis (LRE) were significant predictors of PFS, whereas clinicopathological factors, conventional PET parameters, and PET texture features failed to show significance. Multivariate Cox regression analysis showed that minimum intensity and LRE were significant predictors of PFS. Conclusions The texture analysis of pretreatment [18F]FDG PET/CT provided more information than conventional PET parameters for predicting patient prognosis of locally advanced salivary gland carcinoma treated with interstitial brachytherapy. The minimum intensity was a risk factor for PFS, and LRE was a favorable factor in prognostic prediction according to the primary results.
Collapse
Affiliation(s)
- Wen-Jie Wu
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, 22# Zhongguancun South Avenue, Beijing, 100081, China
| | - Zhen-Yu Li
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, 22# Zhongguancun South Avenue, Beijing, 100081, China
| | - Shuang Dong
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, 22# Zhongguancun South Avenue, Beijing, 100081, China
| | - Shu-Ming Liu
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, 22# Zhongguancun South Avenue, Beijing, 100081, China
| | - Lei Zheng
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, 22# Zhongguancun South Avenue, Beijing, 100081, China
| | - Ming-Wei Huang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, 22# Zhongguancun South Avenue, Beijing, 100081, China.
| | - Jian-Guo Zhang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, 22# Zhongguancun South Avenue, Beijing, 100081, China
| |
Collapse
|
19
|
Ger RB, Meier JG, Pahlka RB, Gay S, Mumme R, Fuller CD, Li H, Howell RM, Layman RR, Stafford RJ, Zhou S, Mawlawi O, Court LE. Effects of alterations in positron emission tomography imaging parameters on radiomics features. PLoS One 2019; 14:e0221877. [PMID: 31487307 PMCID: PMC6728031 DOI: 10.1371/journal.pone.0221877] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 08/16/2019] [Indexed: 01/11/2023] Open
Abstract
Radiomics studies require large patient cohorts, which often include patients imaged using different imaging protocols. We aimed to determine the impact of variability in imaging protocol parameters and interscanner variability using a phantom that produced feature values similar to those of patients. Positron emission tomography (PET) scans of a Hoffman brain phantom were acquired on GE Discovery 710, Siemens mCT, and Philips Vereos scanners. A standard-protocol scan was acquired on each machine, and then each parameter that could be changed was altered individually. The phantom was contoured with 10 regions of interest (ROIs). Values for 45 features with 2 different preprocessing techniques were extracted for each image. To determine the impact of each parameter on the reliability of each radiomics feature, the intraclass correlation coefficient (ICC) was calculated with the ROIs as the subjects and the parameter values as the raters. For interscanner comparisons, we compared the standard deviation of each radiomics feature value from the standard-protocol images to the standard deviation of the same radiomics feature from PET scans of 224 patients with non-small cell lung cancer. When the pixel size was resampled prior to feature extraction, all features had good reliability (ICC > 0.75) for the field of view and matrix size. The time per bed position had excellent reliability (ICC > 0.9) on all features. When the filter cutoff was restricted to values below 6 mm, all features had good reliability. Similarly, when subsets and iterations were restricted to reasonable values used in clinics, almost all features had good reliability. The average ratio of the standard deviation of features on the phantom scans to that of the NSCLC patient scans was 0.73 using fixed-bin-width preprocessing and 0.92 using 64-level preprocessing. Most radiomics feature values had at least good reliability when imaging protocol parameters were within clinically used ranges. However, interscanner variability was about equal to interpatient variability; therefore, caution must be used when combining patients scanned on equipment from different vendors in radiomics data sets.
Collapse
Affiliation(s)
- Rachel B. Ger
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas, United States of America
- * E-mail:
| | - Joseph G. Meier
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas, United States of America
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Raymond B. Pahlka
- Department of Radiology, Texas Children’s Hospital, Houston, Texas, United States of America
| | - Skylar Gay
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Raymond Mumme
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Clifton D. Fuller
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas, United States of America
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Heng Li
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas, United States of America
| | - Rebecca M. Howell
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas, United States of America
| | - Rick R. Layman
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas, United States of America
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - R. Jason Stafford
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas, United States of America
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Shouhao Zhou
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas, United States of America
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Osama Mawlawi
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas, United States of America
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Laurence E. Court
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas, United States of America
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| |
Collapse
|
20
|
Prognostic Value of Functional Parameters of 18F-FDG-PET Images in Patients with Primary Renal/Adrenal Lymphoma. CONTRAST MEDIA & MOLECULAR IMAGING 2019; 2019:2641627. [PMID: 31427906 PMCID: PMC6683818 DOI: 10.1155/2019/2641627] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 05/05/2019] [Accepted: 07/09/2019] [Indexed: 02/07/2023]
Abstract
Objectives The aim of this study is to explore the textural features that may identify the morphological changes in the lymphoma region and predict the prognosis of patients with primary renal lymphoma (PRL) and primary adrenal lymphoma (PAL). Methods This retrospective study comprised nineteen non-Hodgkin's lymphoma (NHL) patients undergoing 18F-FDG-PET/CT at West China Hospital from December 2013 to May 2017. 18F-FDG-PET images were reviewed independently by two board certificated radiologists of nuclear medicine, and the texture features were extracted from LifeX packages. The prognostic value of PET FDG-uptake parameters, patients' baseline characteristics, and textural parameters were analyzed using Kaplan–Meier analysis. Cox regression analysis was used to identify the independent prognostic factors among the imaging and clinical features. Results The overall survival of included patients was 18.84 ± 13.40 (mean ± SD) months. Univariate Cox analyses found that the tumor stage, GLCM (gray-level co-occurrence matrix) entropy, GLZLM_GLNU (gray-level nonuniformity), and GLZLM_ZLNU (zone length nonuniformity), values were significant predictors for OS. Among them, GLRLM_RLNU ≥216.6 demonstrated association with worse OS at multivariate analysis (HR 9.016, 95% CI 1.041–78.112, p=0.046). Conclusions The texture analysis of 18F-FDG-PET images could potentially serve as a noninvasive strategy to predict the overall survival of patients with PRL and PAL.
Collapse
|
21
|
Machine Learning Methods for Optimal Radiomics-Based Differentiation Between Recurrence and Inflammation: Application to Nasopharyngeal Carcinoma Post-therapy PET/CT Images. Mol Imaging Biol 2019; 22:730-738. [DOI: 10.1007/s11307-019-01411-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
22
|
Whybra P, Parkinson C, Foley K, Staffurth J, Spezi E. Assessing radiomic feature robustness to interpolation in 18F-FDG PET imaging. Sci Rep 2019; 9:9649. [PMID: 31273242 PMCID: PMC6609613 DOI: 10.1038/s41598-019-46030-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 06/17/2019] [Indexed: 12/22/2022] Open
Abstract
Radiomic studies link quantitative imaging features to patient outcomes in an effort to personalise treatment in oncology. To be clinically useful, a radiomic feature must be robust to image processing steps, which has made robustness testing a necessity for many technical aspects of feature extraction. We assessed the stability of radiomic features to interpolation processing and categorised features based on stable, systematic, or unstable responses. Here, 18F-fluorodeoxyglucose (18F-FDG) PET images for 441 oesophageal cancer patients (split: testing = 353, validation = 88) were resampled to 6 isotropic voxel sizes (1.5 mm, 1.8 mm, 2.0 mm, 2.2 mm, 2.5 mm, 2.7 mm) and 141 features were extracted from each volume of interest (VOI). Features were categorised into four groups with two statistical tests. Feature reliability was analysed using an intraclass correlation coefficient (ICC) and patient ranking consistency was assessed using a Spearman’s rank correlation coefficient (ρ). We categorised 93 features robust and 6 limited robustness (stable responses), 34 potentially correctable (systematic responses), and 8 not robust (unstable responses). We developed a correction technique for features with potential systematic variation that used surface fits to link voxel size and percentage change in feature value. Twenty-nine potentially correctable features were re-categorised to robust for the validation dataset, after applying corrections defined by surface fits generated on the testing dataset. Furthermore, we found the choice of interpolation algorithm alone (spline vs trilinear) resulted in large variation in values for a number of features but the response categorisations remained constant. This study attempted to quantify the diverse response of radiomics features commonly found in 18F-FDG PET clinical modelling to isotropic voxel size interpolation.
Collapse
Affiliation(s)
- Philip Whybra
- School of Engineering, Cardiff University, Cardiff, United Kingdom.
| | - Craig Parkinson
- School of Engineering, Cardiff University, Cardiff, United Kingdom
| | | | | | - Emiliano Spezi
- School of Engineering, Cardiff University, Cardiff, United Kingdom.,Velindre Cancer Centre, Cardiff, United Kingdom
| |
Collapse
|
23
|
Park JE, Park SY, Kim HJ, Kim HS. Reproducibility and Generalizability in Radiomics Modeling: Possible Strategies in Radiologic and Statistical Perspectives. Korean J Radiol 2019; 20:1124-1137. [PMID: 31270976 PMCID: PMC6609433 DOI: 10.3348/kjr.2018.0070] [Citation(s) in RCA: 234] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 04/07/2019] [Indexed: 02/06/2023] Open
Abstract
Radiomics, which involves the use of high-dimensional quantitative imaging features for predictive purposes, is a powerful tool for developing and testing medical hypotheses. Radiologic and statistical challenges in radiomics include those related to the reproducibility of imaging data, control of overfitting due to high dimensionality, and the generalizability of modeling. The aims of this review article are to clarify the distinctions between radiomics features and other omics and imaging data, to describe the challenges and potential strategies in reproducibility and feature selection, and to reveal the epidemiological background of modeling, thereby facilitating and promoting more reproducible and generalizable radiomics research.
Collapse
Affiliation(s)
- Ji Eun Park
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Seo Young Park
- Department of Clinical Epidemiology and Biostatistics, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Hwa Jung Kim
- Department of Clinical Epidemiology and Biostatistics, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea.
| | - Ho Sung Kim
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| |
Collapse
|
24
|
Korn RL, Rahmanuddin S, Borazanci E. Use of Precision Imaging in the Evaluation of Pancreas Cancer. Cancer Treat Res 2019; 178:209-236. [PMID: 31209847 DOI: 10.1007/978-3-030-16391-4_8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Pancreas cancer is an aggressive and fatal disease that will become one of the leading causes of cancer mortality by 2030. An all-out effort is underway to better understand the basic biologic mechanisms of this disease ranging from early development to metastatic disease. In order to change the course of this disease, diagnostic radiology imaging may play a vital role in providing a precise, noninvasive method for early diagnosis and assessment of treatment response. Recent progress in combining medical imaging, advanced image analysis and artificial intelligence, termed radiomics, can offer an innovate approach in detecting the earliest changes of tumor development as well as a rapid method for the detection of response. In this chapter, we introduce the principles of radiomics and demonstrate how it can provide additional information into tumor biology, early detection, and response assessments advancing the goals of precision imaging to deliver the right treatment to the right person at the right time.
Collapse
Affiliation(s)
- Ronald L Korn
- Virginia G Piper Cancer Center at HonorHealth, Scottsdale, AZ, USA. .,Translational Genomics Research Institute, An Affiliate of City of Hope, Phoenix, AZ, USA. .,Imaging Endpoints Core Lab, Scottsdale, AZ, USA.
| | | | - Erkut Borazanci
- Virginia G Piper Cancer Center at HonorHealth, Scottsdale, AZ, USA.,Translational Genomics Research Institute, An Affiliate of City of Hope, Phoenix, AZ, USA
| |
Collapse
|
25
|
Zwanenburg A. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur J Nucl Med Mol Imaging 2019; 46:2638-2655. [PMID: 31240330 DOI: 10.1007/s00259-019-04391-8] [Citation(s) in RCA: 192] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 06/04/2019] [Indexed: 12/16/2022]
Abstract
Radiomics in nuclear medicine is rapidly expanding. Reproducibility of radiomics studies in multicentre settings is an important criterion for clinical translation. We therefore performed a meta-analysis to investigate reproducibility of radiomics biomarkers in PET imaging and to obtain quantitative information regarding their sensitivity to variations in various imaging and radiomics-related factors as well as their inherent sensitivity. Additionally, we identify and describe data analysis pitfalls that affect the reproducibility and generalizability of radiomics studies. After a systematic literature search, 42 studies were included in the qualitative synthesis, and data from 21 were used for the quantitative meta-analysis. Data concerning measurement agreement and reliability were collected for 21 of 38 different factors associated with image acquisition, reconstruction, segmentation and radiomics-specific processing steps. Variations in voxel size, segmentation and several reconstruction parameters strongly affected reproducibility, but the level of evidence remained weak. Based on the meta-analysis, we also assessed inherent sensitivity to variations of 110 PET image biomarkers. SUVmean and SUVmax were found to be reliable, whereas image biomarkers based on the neighbourhood grey tone difference matrix and most biomarkers based on the size zone matrix were found to be highly sensitive to variations, and should be used with care in multicentre settings. Lastly, we identify 11 data analysis pitfalls. These pitfalls concern model validation and information leakage during model development, but also relate to reporting and the software used for data analysis. Avoiding such pitfalls is essential for minimizing bias in the results and to enable reproduction and validation of radiomics studies.
Collapse
Affiliation(s)
- Alex Zwanenburg
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Helmholtz-Zentrum Dresden - Rossendorf, Technische Universität Dresden, Dresden, Germany.
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany.
- German Cancer Research Center (DKFZ), Heidelberg, Germany.
- German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, Germany.
| |
Collapse
|
26
|
Branchini M, Zorz A, Zucchetta P, Bettinelli A, De Monte F, Cecchin D, Paiusco M. Impact of acquisition count statistics reduction and SUV discretization on PET radiomic features in pediatric 18F-FDG-PET/MRI examinations. Phys Med 2019; 59:117-126. [PMID: 30928060 DOI: 10.1016/j.ejmp.2019.03.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 03/02/2019] [Accepted: 03/07/2019] [Indexed: 01/09/2023] Open
Abstract
PURPOSE The evaluation of features robustness with respect to acquisition and post-processing parameter changes is fundamental for the reliability of radiomics studies. The aim of this study was to investigate the sensitivity of PET radiomic features to acquisition statistics reduction and standardized-uptake-volume (SUV) discretization in PET/MRI pediatric examinations. METHODS Twenty-seven lesions were detected from the analysis of twenty-one 18F-FDG-PET/MRI pediatric examinations. By decreasing the count-statistics of the original list-mode data (3 MBq/kg), injected activity reduction was simulated. Two SUV discretization approaches were applied: 1) resampling lesion SUV range into fixed bins numbers (FBN); 2) rounding lesion SUV into fixed bin size (FBS). One hundred and six radiomic features were extracted. Intraclass Correlation Coefficient (ICC), Spearman correlation coefficient and coefficient-of-variation (COV) were calculated to assess feature reproducibility between low tracer activities and full tracer activity feature values. RESULTS More than 70% of Shape and first order features, and around 70% and 40% of textural features, when using FBS and FBN methods respectively, resulted robust till 1.2 MBk/kg. Differences in median features reproducibility (ICC) between FBS and FBN datasets were statistically significant for every activity level independently from bin number/size, with higher values for FBS. Differences in median Spearman coefficient (i.e. patient ranking according to feature values) were not statistically significant, varying the intensity resolution (i.e. bin number/size) for either FBS and FBN methods. CONCLUSIONS For each simulated count-statistic level, robust PET radiomic features were determined for pediatric PET/MRI examinations. A larger number of robust features were detected when using FBS methods.
Collapse
Affiliation(s)
- Marco Branchini
- Medical Physics Department, Veneto Institute of Oncology IOV - IRCCS, Padova, Italy.
| | - Alessandra Zorz
- Medical Physics Department, Veneto Institute of Oncology IOV - IRCCS, Padova, Italy
| | - Pietro Zucchetta
- Nuclear Medicine Unit, Department of Medicine DIMED, University Hospital of Padua, Padova, Italy
| | - Andrea Bettinelli
- Medical Physics Department, Veneto Institute of Oncology IOV - IRCCS, Padova, Italy
| | - Francesca De Monte
- Medical Physics Department, Veneto Institute of Oncology IOV - IRCCS, Padova, Italy
| | - Diego Cecchin
- Nuclear Medicine Unit, Department of Medicine DIMED, University Hospital of Padua, Padova, Italy
| | - Marta Paiusco
- Medical Physics Department, Veneto Institute of Oncology IOV - IRCCS, Padova, Italy
| |
Collapse
|
27
|
Zhang YH, Fischer MA, Lehmann H, Johnsson Å, Rouvelas I, Herlin G, Lundell L, Brismar TB. Computed tomography volumetry of esophageal cancer - the role of semiautomatic assessment. BMC Med Imaging 2019; 19:17. [PMID: 30767773 PMCID: PMC6377716 DOI: 10.1186/s12880-019-0317-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 01/28/2019] [Indexed: 01/16/2023] Open
Abstract
Background The clinical and research value of Computed Tomography (CT) volumetry of esophageal cancer tumor size remains controversial. Development in CT technique and image analysis has made CT volumetry less cumbersome and it has gained renewed attention. The aim of this study was to assess esophageal tumor volume by semi-automatic measurements as compared to manual. Methods A total of 23 esophageal cancer patients (median age 65, range 51–71), undergoing CT in the portal-venous phase for tumor staging, were retrospectively included between 2007 and 2012. One radiology resident and one consultant radiologist measured the tumor volume by semiautomatic segmentation and manual segmentation. Reproducibility of the respective measurements was assessed by intraclass correlation coefficients (ICC) and by average deviation from mean. Results Mean tumor volume was 46 ml (range 5-137 ml) using manual segmentation and 42 ml (range 3-111 ml) using semiautomatic segmentation. Semiautomatic measurement provided better inter-observer agreement than traditional manual segmentation. The ICC was significantly higher for semiautomatic segmentation in comparison to manual segmentation (0.86, 0.56, p < 0.01). The average absolute percentage difference from mean was reduced from 24 to 14% (p < 0.001) when using semiautomatic segmentation. Conclusions Semiautomatic analysis outperforms manual analysis for assessment of esophageal tumor volume, improving reproducibility.
Collapse
Affiliation(s)
- Yi-Hua Zhang
- Department of Diagnostic Radiology and Karolinska Institutet, Karolinska University Hospital, CLINTEC, Stockholm, Sweden. .,Division of Medical Imaging and Technology, Department of Clinical Science, Intervention and Technology, Karolinska University Hospital, Huddinge, 141 86, Stockholm, Sweden.
| | - Michael A Fischer
- Department of Diagnostic Radiology and Karolinska Institutet, Karolinska University Hospital, CLINTEC, Stockholm, Sweden
| | - Henrik Lehmann
- Department of Diagnostic Radiology and Karolinska Institutet, Karolinska University Hospital, CLINTEC, Stockholm, Sweden
| | - Åse Johnsson
- Department of Radiology, Institute of Clinical Sciences, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.,Department of Radiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Ioannis Rouvelas
- Department of Surgery, Centre for Digestive Diseases and Karolinska Institutet, Karolinska University Hospital, CLINTEC, Stockholm, Sweden
| | - Gunnar Herlin
- Department of Diagnostic Radiology and Karolinska Institutet, Karolinska University Hospital, CLINTEC, Stockholm, Sweden
| | - Lars Lundell
- Department of Surgery, Centre for Digestive Diseases and Karolinska Institutet, Karolinska University Hospital, CLINTEC, Stockholm, Sweden
| | - Torkel B Brismar
- Department of Diagnostic Radiology and Karolinska Institutet, Karolinska University Hospital, CLINTEC, Stockholm, Sweden
| |
Collapse
|
28
|
Milgrom SA, Elhalawani H, Lee J, Wang Q, Mohamed ASR, Dabaja BS, Pinnix CC, Gunther JR, Court L, Rao A, Fuller CD, Akhtari M, Aristophanous M, Mawlawi O, Chuang HH, Sulman EP, Lee HJ, Hagemeister FB, Oki Y, Fanale M, Smith GL. A PET Radiomics Model to Predict Refractory Mediastinal Hodgkin Lymphoma. Sci Rep 2019; 9:1322. [PMID: 30718585 PMCID: PMC6361903 DOI: 10.1038/s41598-018-37197-z] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 12/03/2018] [Indexed: 12/14/2022] Open
Abstract
First-order radiomic features, such as metabolic tumor volume (MTV) and total lesion glycolysis (TLG), are associated with disease progression in early-stage classical Hodgkin lymphoma (HL). We hypothesized that a model incorporating first- and second-order radiomic features would more accurately predict outcome than MTV or TLG alone. We assessed whether radiomic features extracted from baseline PET scans predicted relapsed or refractory disease status in a cohort of 251 patients with stage I-II HL who were managed at a tertiary cancer center. Models were developed and tested using a machine-learning algorithm. Features extracted from mediastinal sites were highly predictive of primary refractory disease. A model incorporating 5 of the most predictive features had an area under the curve (AUC) of 95.2% and total error rate of 1.8%. By comparison, the AUC was 78% for both MTV and TLG and was 65% for maximum standardize uptake value (SUVmax). Furthermore, among the patients with refractory mediastinal disease, our model distinguished those who were successfully salvaged from those who ultimately died of HL. We conclude that our PET radiomic model may improve upfront stratification of early-stage HL patients with mediastinal disease and thus contribute to risk-adapted, individualized management.
Collapse
Affiliation(s)
- Sarah A Milgrom
- Department of Radiation Oncology, Division of Radiation Oncology, MD Anderson Cancer Center, Houston, TX, USA.
| | - Hesham Elhalawani
- Department of Radiation Oncology, Division of Radiation Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Joonsang Lee
- Department of Radiation Physics, Division of Radiation Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Qianghu Wang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Abdallah S R Mohamed
- Department of Radiation Oncology, Division of Radiation Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Bouthaina S Dabaja
- Department of Radiation Oncology, Division of Radiation Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Chelsea C Pinnix
- Department of Radiation Oncology, Division of Radiation Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Jillian R Gunther
- Department of Radiation Oncology, Division of Radiation Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Laurence Court
- Department of Radiation Physics, Division of Radiation Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Arvind Rao
- Department of Radiation Oncology, Division of Radiation Oncology, MD Anderson Cancer Center, Houston, TX, USA.,Department of Bioinformatics and Computational Biology, Division of Quantitative Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Clifton D Fuller
- Department of Radiation Oncology, Division of Radiation Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Mani Akhtari
- Department of Radiation Oncology, Division of Radiation Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Michalis Aristophanous
- Department of Radiation Oncology, Division of Radiation Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Osama Mawlawi
- Department of Imaging Physics, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hubert H Chuang
- Department of Nuclear Medicine, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Erik P Sulman
- Department of Radiation Oncology, Division of Radiation Oncology, MD Anderson Cancer Center, Houston, TX, USA.,Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Translational Molecular Pathology, Division of Pathology/Lab Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hun J Lee
- Department of Lymphoma/Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Frederick B Hagemeister
- Department of Lymphoma/Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yasuhiro Oki
- Department of Lymphoma/Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michelle Fanale
- Department of Lymphoma/Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Grace L Smith
- Department of Radiation Oncology, Division of Radiation Oncology, MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
29
|
Mori M, Benedetti G, Partelli S, Sini C, Andreasi V, Broggi S, Barbera M, Cattaneo GM, Muffatti F, Panzeri M, Falconi M, Fiorino C, De Cobelli F. Ct radiomic features of pancreatic neuroendocrine neoplasms (panNEN) are robust against delineation uncertainty. Phys Med 2018; 57:41-46. [PMID: 30738530 DOI: 10.1016/j.ejmp.2018.12.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/23/2018] [Accepted: 12/08/2018] [Indexed: 10/27/2022] Open
Abstract
PURPOSE The aim of this study was to quantify the impact of CT delineation uncertainty of pancreatic neuroendocrine neoplasms (panNEN) on Radiomic features (RF). METHODS Thirty-one previously operated patients were considered. Three expert radiologists contoured panNEN lesions on pre-surgical high-resolution contrast-enhanced CT images and contours were transferred onto pre-contrast CT. Volume agreement was quantified by the DICE index. After images resampling and re-binning, 69 RF were extracted and the impact of inter-observer variability was assessed by Intra-Class Correlation (ICC): ICC > 0.80 was considered as a threshold for "very high" inter-observer agreement. RESULTS The median volume was 1.3 cc (range: 0.2-110 cc); a satisfactory inter-observer volume agreement was found (mean DICE = 0.78). Only 4 RF showed ICC < 0.80 (0.48-0.73), including asphericity and three RFs (of five) of the neighborhood intensity difference matrix (NID). CONCLUSIONS The impact of inter-observer variability in delineating panNEN on RF was minimum, with the exception of the NID family and asphericity, showing a moderate agreement. These results support the feasibility of studies aiming to assess CT radiomic biomarkers for panNEN.
Collapse
Affiliation(s)
- Martina Mori
- Medical Physics, San Raffaele Scientific Institute, Milano, Italy
| | | | - Stefano Partelli
- Pancreatic Surgery Unit, Pancreas Translational & Clinical Research Center, San Raffaele Scientific Institute, Milano, Italy; Vita-Salute University, Milano, Italy
| | - Carla Sini
- Medical Physics, San Raffaele Scientific Institute, Milano, Italy
| | - Valentina Andreasi
- Pancreatic Surgery Unit, Pancreas Translational & Clinical Research Center, San Raffaele Scientific Institute, Milano, Italy
| | - Sara Broggi
- Medical Physics, San Raffaele Scientific Institute, Milano, Italy
| | | | | | - Francesca Muffatti
- Radiology, San Raffaele Scientific Institute, Milano, Italy; Vita-Salute University, Milano, Italy
| | - Marta Panzeri
- Radiology, San Raffaele Scientific Institute, Milano, Italy
| | - Massimo Falconi
- Pancreatic Surgery Unit, Pancreas Translational & Clinical Research Center, San Raffaele Scientific Institute, Milano, Italy; Vita-Salute University, Milano, Italy
| | - Claudio Fiorino
- Medical Physics, San Raffaele Scientific Institute, Milano, Italy.
| | - Francesco De Cobelli
- Radiology, San Raffaele Scientific Institute, Milano, Italy; Vita-Salute University, Milano, Italy
| |
Collapse
|
30
|
Cook GJR, Azad G, Owczarczyk K, Siddique M, Goh V. Challenges and Promises of PET Radiomics. Int J Radiat Oncol Biol Phys 2018; 102:1083-1089. [PMID: 29395627 PMCID: PMC6278749 DOI: 10.1016/j.ijrobp.2017.12.268] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 12/14/2017] [Indexed: 01/09/2023]
Abstract
PURPOSE Radiomics describes the extraction of multiple, otherwise invisible, features from medical images that, with bioinformatic approaches, can be used to provide additional information that can predict underlying tumor biology and behavior. METHODS AND MATERIALS Radiomic signatures can be used alone or with other patient-specific data to improve tumor phenotyping, treatment response prediction, and prognosis, noninvasively. The data describing 18F-fluorodeoxyglucose positron emission tomography radiomics, often using texture or heterogeneity parameters, are increasing rapidly. RESULTS In relation to radiation therapy practice, early data have reported the use of radiomic approaches to better define tumor volumes and predict radiation toxicity and treatment response. CONCLUSIONS Although at an early stage of development, with many technical challenges remaining and a need for standardization, promise nevertheless exists that PET radiomics will contribute to personalized medicine, especially with the availability of increased computing power and the development of machine-learning approaches for imaging.
Collapse
Affiliation(s)
- Gary J R Cook
- Department of Cancer Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom.
| | - Gurdip Azad
- Department of Cancer Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Kasia Owczarczyk
- Department of Cancer Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Musib Siddique
- Department of Cancer Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Vicky Goh
- Department of Cancer Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| |
Collapse
|
31
|
Papp L, Rausch I, Grahovac M, Hacker M, Beyer T. Optimized Feature Extraction for Radiomics Analysis of 18F-FDG PET Imaging. J Nucl Med 2018; 60:864-872. [DOI: 10.2967/jnumed.118.217612] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 10/26/2018] [Indexed: 12/22/2022] Open
|
32
|
Radiomic Profiling of Head and Neck Cancer: 18F-FDG PET Texture Analysis as Predictor of Patient Survival. CONTRAST MEDIA & MOLECULAR IMAGING 2018; 2018:3574310. [PMID: 30363632 PMCID: PMC6180924 DOI: 10.1155/2018/3574310] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 08/26/2018] [Indexed: 02/07/2023]
Abstract
Background and Purpose The accurate prediction of prognosis and pattern of failure is crucial for optimizing treatment strategies for patients with cancer, and early evidence suggests that image texture analysis has great potential in predicting outcome both in terms of local control and treatment toxicity. The aim of this study was to assess the value of pretreatment 18F-FDG PET texture analysis for the prediction of treatment failure in primary head and neck squamous cell carcinoma (HNSCC) treated with concurrent chemoradiation therapy. Methods We performed a retrospective analysis of 90 patients diagnosed with primary HNSCC treated between January 2010 and June 2017 with concurrent chemo-radiotherapy. All patients underwent 18F-FDG PET/CT before treatment. 18F-FDG PET/CT texture features of the whole primary tumor were measured using an open-source texture analysis package. Least absolute shrinkage and selection operator (LASSO) was employed to select the features that are associated the most with clinical outcome, as progression-free survival and overall survival. We performed a univariate and multivariate analysis between all the relevant texture parameters and local failure, adjusting for age, sex, smoking, primary tumor site, and primary tumor stage. Harrell c-index was employed to score the predictive power of the multivariate cox regression models. Results Twenty patients (22.2%) developed local failure, whereas the remaining 70 (77.8%) achieved durable local control. Multivariate analysis revealed that one feature, defined as low-intensity long-run emphasis (LILRE), was a significant predictor of outcome regardless of clinical variables (hazard ratio < 0.001, P=0.001).The multivariate model based on imaging biomarkers resulted superior in predicting local failure with a c-index of 0.76 against 0.65 of the model based on clinical variables alone. Conclusion LILRE, evaluated on pretreatment 18F-FDG PET/CT, is associated with higher local failure in patients with HNSCC treated with chemoradiotherapy. Using texture analysis in addition to clinical variables may be useful in predicting local control.
Collapse
|
33
|
Lovinfosse P, Visvikis D, Hustinx R, Hatt M. FDG PET radiomics: a review of the methodological aspects. Clin Transl Imaging 2018. [DOI: 10.1007/s40336-018-0292-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
34
|
Traverso A, Wee L, Dekker A, Gillies R. Repeatability and Reproducibility of Radiomic Features: A Systematic Review. Int J Radiat Oncol Biol Phys 2018; 102:1143-1158. [PMID: 30170872 PMCID: PMC6690209 DOI: 10.1016/j.ijrobp.2018.05.053] [Citation(s) in RCA: 534] [Impact Index Per Article: 76.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 05/15/2018] [Accepted: 05/20/2018] [Indexed: 12/15/2022]
Abstract
Purpose: An ever-growing number of predictive models used to inform clinical decision making have included quantitative, computer-extracted imaging biomarkers, or “radiomic features.” Broadly generalizable validity of radiomics-assisted models may be impeded by concerns about reproducibility. We offer a qualitative synthesis of 41 studies that specifically investigated the repeatability and reproducibility of radiomic features, derived from a systematic review of published peer-reviewed literature. Methods and Materials: The PubMed electronic database was searched using combinations of the broad Haynes and Ingui filters along with a set of text words specific to cancer, radiomics (including texture analyses), reproducibility, and repeatability. This review has been reported in compliance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. From each full-text article, information was extracted regarding cancer type, class of radiomic feature examined, reporting quality of key processing steps, and statistical metric used to segregate stable features. Results: Among 624 unique records, 41 full-text articles were subjected to review. The studies primarily addressed non-small cell lung cancer and oropharyngeal cancer. Only 7 studies addressed in detail every methodologic aspect related to image acquisition, preprocessing, and feature extraction. The repeatability and reproducibility of radiomic features are sensitive at various degrees to processing details such as image acquisition settings, image reconstruction algorithm, digital image preprocessing, and software used to extract radiomic features. First-order features were overall more reproducible than shape metrics and textural features. Entropy was consistently reported as one of the most stable first-order features. There was no emergent consensus regarding either shape metrics or textural features; however, coarseness and contrast appeared among the least reproducible. Conclusions: Investigations of feature repeatability and reproducibility are currently limited to a small number of cancer types. Reporting quality could be improved regarding details of feature extraction software, digital image manipulation (preprocessing), and the cutoff value used to distinguish stable features. We offer a qualitative synthesis of 41 studies that specifically investigated the repeatability and reproducibility of radiomic features. The repeatability and reproducibility of radiomic features are sensitive at various degrees to image quality and to software used to extract radiomic features. Investigations of feature repeatability and reproducibility are currently limited to a small number of cancer types. No consensus was found regarding the most repeatable and reproducible features with respect to different settings.
Collapse
Affiliation(s)
- Alberto Traverso
- Department of Radiation Oncology, MAASTRO Clinic, Maastricht, The Netherlands; School for Oncology and Developmental Biology (GROW), Maastricht University, Maastricht, The Netherlands.
| | - Leonard Wee
- Department of Radiation Oncology, MAASTRO Clinic, Maastricht, The Netherlands; School for Oncology and Developmental Biology (GROW), Maastricht University, Maastricht, The Netherlands
| | - Andre Dekker
- Department of Radiation Oncology, MAASTRO Clinic, Maastricht, The Netherlands; School for Oncology and Developmental Biology (GROW), Maastricht University, Maastricht, The Netherlands
| | | |
Collapse
|
35
|
Belli ML, Mori M, Broggi S, Cattaneo GM, Bettinardi V, Dell'Oca I, Fallanca F, Passoni P, Vanoli EG, Calandrino R, Di Muzio N, Picchio M, Fiorino C. Quantifying the robustness of [ 18 F]FDG-PET/CT radiomic features with respect to tumor delineation in head and neck and pancreatic cancer patients. Phys Med 2018; 49:105-111. [PMID: 29866335 DOI: 10.1016/j.ejmp.2018.05.013] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/08/2018] [Accepted: 05/10/2018] [Indexed: 11/18/2022] Open
Abstract
PURPOSE To investigate the robustness of PET radiomic features (RF) against tumour delineation uncertainty in two clinically relevant situations. METHODS Twenty-five head-and-neck (HN) and 25 pancreatic cancer patients previously treated with 18F-Fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT)-based planning optimization were considered. Seven FDG-based contours were delineated for tumour (T) and positive lymph nodes (N, for HN patients only) following manual (2 observers), semi-automatic (based on SUV maximum gradient: PET_Edge) and automatic (40%, 50%, 60%, 70% SUV_max thresholds) methods. Seventy-three RF (14 of first order and 59 of higher order) were extracted using the CGITA software (v.1.4). The impact of delineation on volume agreement and RF was assessed by DICE and Intra-class Correlation Coefficients (ICC). RESULTS A large disagreement between manual and SUV_max method was found for thresholds ≥50%. Inter-observer variability showed median DICE values between 0.81 (HN-T) and 0.73 (pancreas). Volumes defined by PET_Edge were better consistent with the manual ones compared to SUV40%. Regarding RF, 19%/19%/47% of the features showed ICC < 0.80 between observers for HN-N/HN-T/pancreas, mostly in the Voxel-alignment matrix and in the intensity-size zone matrix families. RFs with ICC < 0.80 against manual delineation (taking the worst value) increased to 44%/36%/61% for PET_Edge and to 69%/53%/75% for SUV40%. CONCLUSIONS About 80%/50% of 72 RF were consistent between observers for HN/pancreas patients. PET_edge was sufficiently robust against manual delineation while SUV40% showed a worse performance. This result suggests the possibility to replace manual with semi-automatic delineation of HN and pancreas tumours in studies including PET radiomic analyses.
Collapse
Affiliation(s)
| | - Martina Mori
- Medical Physics, San Raffaele Scientific Institute, Milano, Italy
| | - Sara Broggi
- Medical Physics, San Raffaele Scientific Institute, Milano, Italy
| | | | | | - Italo Dell'Oca
- Radiotherapy, San Raffaele Scientific Institute, Milano, Italy
| | | | - Paolo Passoni
- Radiotherapy, San Raffaele Scientific Institute, Milano, Italy
| | | | | | - Nadia Di Muzio
- Radiotherapy, San Raffaele Scientific Institute, Milano, Italy
| | - Maria Picchio
- Nuclear Medicine, San Raffaele Scientific Institute, Milano, Italy
| | - Claudio Fiorino
- Medical Physics, San Raffaele Scientific Institute, Milano, Italy.
| |
Collapse
|
36
|
Parkinson C, Foley K, Whybra P, Hills R, Roberts A, Marshall C, Staffurth J, Spezi E. Evaluation of prognostic models developed using standardised image features from different PET automated segmentation methods. EJNMMI Res 2018; 8:29. [PMID: 29644499 PMCID: PMC5895559 DOI: 10.1186/s13550-018-0379-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 03/23/2018] [Indexed: 12/25/2022] Open
Abstract
Background Prognosis in oesophageal cancer (OC) is poor. The 5-year overall survival (OS) rate is approximately 15%. Personalised medicine is hoped to increase the 5- and 10-year OS rates. Quantitative analysis of PET is gaining substantial interest in prognostic research but requires the accurate definition of the metabolic tumour volume. This study compares prognostic models developed in the same patient cohort using individual PET segmentation algorithms and assesses the impact on patient risk stratification. Consecutive patients (n = 427) with biopsy-proven OC were included in final analysis. All patients were staged with PET/CT between September 2010 and July 2016. Nine automatic PET segmentation methods were studied. All tumour contours were subjectively analysed for accuracy, and segmentation methods with < 90% accuracy were excluded. Standardised image features were calculated, and a series of prognostic models were developed using identical clinical data. The proportion of patients changing risk classification group were calculated. Results Out of nine PET segmentation methods studied, clustering means (KM2), general clustering means (GCM3), adaptive thresholding (AT) and watershed thresholding (WT) methods were included for analysis. Known clinical prognostic factors (age, treatment and staging) were significant in all of the developed prognostic models. AT and KM2 segmentation methods developed identical prognostic models. Patient risk stratification was dependent on the segmentation method used to develop the prognostic model with up to 73 patients (17.1%) changing risk stratification group. Conclusion Prognostic models incorporating quantitative image features are dependent on the method used to delineate the primary tumour. This has a subsequent effect on risk stratification, with patients changing groups depending on the image segmentation method used. Electronic supplementary material The online version of this article (10.1186/s13550-018-0379-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Craig Parkinson
- School of Engineering, Cardiff University, Queen's Buildings, 14-17 The Parade, Cardiff, CF24 3AA, UK
| | - Kieran Foley
- Division of Cancer and Genetics, School of Medicine, UHW Main Building, Heath Park, Cardiff, CF14 4XN, UK.
| | - Philip Whybra
- School of Engineering, Cardiff University, Queen's Buildings, 14-17 The Parade, Cardiff, CF24 3AA, UK
| | - Robert Hills
- Clinical Trials Unit, Cardiff University, Cardiff, CF10 3AT, UK
| | - Ashley Roberts
- Clinical Radiology, University Hospital of Wales, Heath Park, Cardiff, CF14 4XW, UK
| | - Chris Marshall
- Wales Research and Diagnostic PET Imaging Centre, Cardiff University, School of Medicine, Ground Floor, C Block, UHW Main Building, Heath Park, Cardiff, CF14 4XN, UK
| | - John Staffurth
- Division of Cancer and Genetics, School of Medicine, UHW Main Building, Heath Park, Cardiff, CF14 4XN, UK.,Velindre Cancer Centre, Velindre Rd, Cardiff, CF14 2TL, UK
| | - Emiliano Spezi
- School of Engineering, Cardiff University, Queen's Buildings, 14-17 The Parade, Cardiff, CF24 3AA, UK.,Velindre Cancer Centre, Velindre Rd, Cardiff, CF14 2TL, UK
| |
Collapse
|
37
|
Lv W, Yuan Q, Wang Q, Ma J, Jiang J, Yang W, Feng Q, Chen W, Rahmim A, Lu L. Robustness versus disease differentiation when varying parameter settings in radiomics features: application to nasopharyngeal PET/CT. Eur Radiol 2018. [PMID: 29520429 DOI: 10.1007/s00330-018-5343-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
OBJECTIVES To investigate the impact of parameter settings as used for the generation of radiomics features on their robustness and disease differentiation (nasopharyngeal carcinoma (NPC) versus chronic nasopharyngitis (CN) in FDG PET/CT imaging). METHODS We studied 106 patients (69/37 NPC/CN, pathology confirmed), and extracted 57 radiomics features under different parameter settings. Robustness was assessed by the intra-class correlation coefficient (ICC). Logistic regression with leave-one-out cross validation was used to generate classification probabilities, and diagnostic performance was assessed by the area under the receiver operating characteristic curve (AUC). RESULTS Varying averaging strategies and symmetry, 4/26 GLCM features showed poor range of pairwise ICCs of 0.02-0.98, while depicting good AUCs of 0.82-0.91. Varying distances, 5/26 GLCM features showed ICCs of 0.82-0.99 while corresponding AUCs were 0.52-0.91. 6/13 GLRLM features showed both high AUC (0.81-0.89) and high ICC (0.85-0.99) regarding to averaging strategies. 7/13 GLSZM features showed AUCs of 0.81-0.90 while having ICCs of 0.01-0.99 under different neighbourhoods. 2/5 NGTDM features showed AUCs of 0.81-0.85 while having ICCs of 0.19-0.89 for different window sizes. Differentiating a subset of NPC (stages I-II) form CN, both SumEntropy and SZLGE achieved significantly higher AUCs than metabolically active tumour volume (AUC: 0.91 vs. 0.72, p<0.01). CONCLUSIONS Radiomics features depicting poor absolute-scale robustness regarding to parameter settings can still lead to good diagnostic performance. As such, robustness of radiomics features should not be overemphasized for removal of features towards assessment of clinical tasks. For differentiating NPC from CN, some radiomics features (e.g. SumEntropy, SZLGE, LGZE) outperformed conventional metrics. KEY POINTS • Poor robustness did not necessarily translate into poor differentiation performance. • Absolute-scale robustness of radiomics features should not be overemphasized. • Radiomics features SumEntropy, SZLGE and LGZE outperformed conventional metrics.
Collapse
Affiliation(s)
- Wenbing Lv
- School of Biomedical Engineering and Guangdong Provincal Key Laboratory of Medical Image Processing, Southern Medical University, 1023 Shatai Road, Baiyun District, Guangzhou, Guangdong, 510515, China
| | - Qingyu Yuan
- Nanfang PET Center, Nanfang Hospital, Southern Medical University, 1023 Shatai Road, Baiyun District, Guangzhou, Guangdong, 510515, China
| | - Quanshi Wang
- Nanfang PET Center, Nanfang Hospital, Southern Medical University, 1023 Shatai Road, Baiyun District, Guangzhou, Guangdong, 510515, China
| | - Jianhua Ma
- School of Biomedical Engineering and Guangdong Provincal Key Laboratory of Medical Image Processing, Southern Medical University, 1023 Shatai Road, Baiyun District, Guangzhou, Guangdong, 510515, China.
| | - Jun Jiang
- School of Biomedical Engineering and Guangdong Provincal Key Laboratory of Medical Image Processing, Southern Medical University, 1023 Shatai Road, Baiyun District, Guangzhou, Guangdong, 510515, China
| | - Wei Yang
- School of Biomedical Engineering and Guangdong Provincal Key Laboratory of Medical Image Processing, Southern Medical University, 1023 Shatai Road, Baiyun District, Guangzhou, Guangdong, 510515, China
| | - Qianjin Feng
- School of Biomedical Engineering and Guangdong Provincal Key Laboratory of Medical Image Processing, Southern Medical University, 1023 Shatai Road, Baiyun District, Guangzhou, Guangdong, 510515, China
| | - Wufan Chen
- School of Biomedical Engineering and Guangdong Provincal Key Laboratory of Medical Image Processing, Southern Medical University, 1023 Shatai Road, Baiyun District, Guangzhou, Guangdong, 510515, China
| | - Arman Rahmim
- Department of Radiology, Johns Hopkins University, 601 N. Caroline St, Baltimore, MD, 21287, USA
- Department of Electrical and Computer Engineering, Johns Hopkins University, 3101 Wyman Park Drive, Baltimore, MD, 21218, USA
| | - Lijun Lu
- School of Biomedical Engineering and Guangdong Provincal Key Laboratory of Medical Image Processing, Southern Medical University, 1023 Shatai Road, Baiyun District, Guangzhou, Guangdong, 510515, China.
| |
Collapse
|
38
|
Orlhac F, Boughdad S, Philippe C, Stalla-Bourdillon H, Nioche C, Champion L, Soussan M, Frouin F, Frouin V, Buvat I. A Postreconstruction Harmonization Method for Multicenter Radiomic Studies in PET. J Nucl Med 2018; 59:1321-1328. [PMID: 29301932 DOI: 10.2967/jnumed.117.199935] [Citation(s) in RCA: 243] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 12/03/2017] [Indexed: 12/14/2022] Open
Abstract
Several reports have shown that radiomic features are affected by acquisition and reconstruction parameters, thus hampering multicenter studies. We propose a method that, by removing the center effect while preserving patient-specific effects, standardizes features measured from PET images obtained using different imaging protocols. Methods: Pretreatment 18F-FDG PET images of patients with breast cancer were included. In one nuclear medicine department (department A), 63 patients were scanned on a time-of-flight PET/CT scanner, and 16 lesions were triple-negative (TN). In another nuclear medicine department (department B), 74 patients underwent PET/CT on a different brand of scanner and a different reconstruction protocol, and 15 lesions were TN. The images from department A were smoothed using a gaussian filter to mimic data from a third department (department A-S). The primary lesion was segmented to obtain a lesion volume of interest (VOI), and a spheric VOI was set in healthy liver tissue. Three SUVs and 6 textural features were computed in all VOIs. A harmonization method initially described for genomic data was used to estimate the department effect based on the observed feature values. Feature distributions in each department were compared before and after harmonization. Results: In healthy liver tissue, the distributions significantly differed for 4 of 9 features between departments A and B and for 6 of 9 between departments A and A-S (P < 0.05, Wilcoxon test). After harmonization, none of the 9 feature distributions significantly differed between 2 departments (P > 0.1). The same trend was observed in lesions, with a realignment of feature distributions between the departments after harmonization. Identification of TN lesions was largely enhanced after harmonization when the cutoffs were determined on data from one department and applied to data from the other department. Conclusion: The proposed harmonization method is efficient at removing the multicenter effect for textural features and SUVs. The method is easy to use, retains biologic variations not related to a center effect, and does not require any feature recalculation. Such harmonization allows for multicenter studies and for external validation of radiomic models or cutoffs and should facilitate the use of radiomic models in clinical practice.
Collapse
Affiliation(s)
- Fanny Orlhac
- Imagerie Moléculaire In Vivo, CEA-SHFJ, INSERM, CNRS, Université Paris-Sud, Université Paris-Saclay, Orsay, France
| | - Sarah Boughdad
- Imagerie Moléculaire In Vivo, CEA-SHFJ, INSERM, CNRS, Université Paris-Sud, Université Paris-Saclay, Orsay, France.,Department of Nuclear Medicine, Institut Curie-René Huguenin, Saint-Cloud, France
| | - Cathy Philippe
- NeuroSpin/UNATI, CEA, Université Paris-Saclay, Gif-sur-Yvette, France; and
| | | | - Christophe Nioche
- Imagerie Moléculaire In Vivo, CEA-SHFJ, INSERM, CNRS, Université Paris-Sud, Université Paris-Saclay, Orsay, France
| | - Laurence Champion
- Department of Nuclear Medicine, Institut Curie-René Huguenin, Saint-Cloud, France
| | - Michaël Soussan
- Imagerie Moléculaire In Vivo, CEA-SHFJ, INSERM, CNRS, Université Paris-Sud, Université Paris-Saclay, Orsay, France.,Department of Nuclear Medicine, AP-HP, Hôpital Avicenne, Bobigny, France
| | - Frédérique Frouin
- Imagerie Moléculaire In Vivo, CEA-SHFJ, INSERM, CNRS, Université Paris-Sud, Université Paris-Saclay, Orsay, France
| | - Vincent Frouin
- NeuroSpin/UNATI, CEA, Université Paris-Saclay, Gif-sur-Yvette, France; and
| | - Irène Buvat
- Imagerie Moléculaire In Vivo, CEA-SHFJ, INSERM, CNRS, Université Paris-Sud, Université Paris-Saclay, Orsay, France
| |
Collapse
|
39
|
Foley KG, Hills RK, Berthon B, Marshall C, Parkinson C, Lewis WG, Crosby TDL, Spezi E, Roberts SA. Development and validation of a prognostic model incorporating texture analysis derived from standardised segmentation of PET in patients with oesophageal cancer. Eur Radiol 2018; 28:428-436. [PMID: 28770406 PMCID: PMC5717119 DOI: 10.1007/s00330-017-4973-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 06/26/2017] [Accepted: 06/28/2017] [Indexed: 10/26/2022]
Abstract
OBJECTIVES This retrospective cohort study developed a prognostic model incorporating PET texture analysis in patients with oesophageal cancer (OC). Internal validation of the model was performed. METHODS Consecutive OC patients (n = 403) were chronologically separated into development (n = 302, September 2010-September 2014, median age = 67.0, males = 227, adenocarcinomas = 237) and validation cohorts (n = 101, September 2014-July 2015, median age = 69.0, males = 78, adenocarcinomas = 79). Texture metrics were obtained using a machine-learning algorithm for automatic PET segmentation. A Cox regression model including age, radiological stage, treatment and 16 texture metrics was developed. Patients were stratified into quartiles according to a prognostic score derived from the model. A p-value < 0.05 was considered statistically significant. Primary outcome was overall survival (OS). RESULTS Six variables were significantly and independently associated with OS: age [HR =1.02 (95% CI 1.01-1.04), p < 0.001], radiological stage [1.49 (1.20-1.84), p < 0.001], treatment [0.34 (0.24-0.47), p < 0.001], log(TLG) [5.74 (1.44-22.83), p = 0.013], log(Histogram Energy) [0.27 (0.10-0.74), p = 0.011] and Histogram Kurtosis [1.22 (1.04-1.44), p = 0.017]. The prognostic score demonstrated significant differences in OS between quartiles in both the development (X2 143.14, df 3, p < 0.001) and validation cohorts (X2 20.621, df 3, p < 0.001). CONCLUSIONS This prognostic model can risk stratify patients and demonstrates the additional benefit of PET texture analysis in OC staging. KEY POINTS • PET texture analysis adds prognostic value to oesophageal cancer staging. • Texture metrics are independently and significantly associated with overall survival. • A prognostic model including texture analysis can help risk stratify patients.
Collapse
Affiliation(s)
- Kieran G Foley
- Division of Cancer & Genetics, Cardiff University, Cardiff, UK.
| | - Robert K Hills
- Haematology Clinical Trials Unit, Cardiff University, Cardiff, UK
| | | | | | | | - Wyn G Lewis
- Department of Upper GI Surgery, University Hospital of Wales, Cardiff, UK
| | - Tom D L Crosby
- Department of Oncology, Velindre Cancer Centre, Cardiff, UK
| | | | | |
Collapse
|
40
|
Shi L, He Y, Yuan Z, Benedict S, Valicenti R, Qiu J, Rong Y. Radiomics for Response and Outcome Assessment for Non-Small Cell Lung Cancer. Technol Cancer Res Treat 2018; 17:1533033818782788. [PMID: 29940810 PMCID: PMC6048673 DOI: 10.1177/1533033818782788] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 03/09/2018] [Accepted: 05/16/2018] [Indexed: 12/24/2022] Open
Abstract
Routine follow-up visits and radiographic imaging are required for outcome evaluation and tumor recurrence monitoring. Yet more personalized surveillance is required in order to sufficiently address the nature of heterogeneity in nonsmall cell lung cancer and possible recurrences upon completion of treatment. Radiomics, an emerging noninvasive technology using medical imaging analysis and data mining methodology, has been adopted to the area of cancer diagnostics in recent years. Its potential application in response assessment for cancer treatment has also drawn considerable attention. Radiomics seeks to extract a large amount of valuable information from patients' medical images (both pretreatment and follow-up images) and quantitatively correlate image features with diagnostic and therapeutic outcomes. Radiomics relies on computers to identify and analyze vast amounts of quantitative image features that were previously overlooked, unmanageable, or failed to be identified (and recorded) by human eyes. The research area has been focusing on the predictive accuracy of pretreatment features for outcome and response and the early discovery of signs of tumor response, recurrence, distant metastasis, radiation-induced lung injury, death, and other outcomes, respectively. This review summarized the application of radiomics in response assessments in radiotherapy and chemotherapy for non-small cell lung cancer, including image acquisition/reconstruction, region of interest definition/segmentation, feature extraction, and feature selection and classification. The literature search for references of this article includes PubMed peer-reviewed publications over the last 10 years on the topics of radiomics, textural features, radiotherapy, chemotherapy, lung cancer, and response assessment. Summary tables of radiomics in response assessment and treatment outcome prediction in radiation oncology have been developed based on the comprehensive review of the literature.
Collapse
Affiliation(s)
- Liting Shi
- Department of Radiology, Taishan Medical University, Tai’an, China
| | - Yaoyao He
- Department of Radiology, Taishan Medical University, Tai’an, China
| | - Zilong Yuan
- Department of Radiology, Hubei Cancer Hospital, Wuhan, China
| | - Stanley Benedict
- Department of Radiation Oncology, University of California Davis
Comprehensive Cancer Center, Sacramento, CA, USA
| | - Richard Valicenti
- Department of Radiation Oncology, University of California Davis
Comprehensive Cancer Center, Sacramento, CA, USA
| | - Jianfeng Qiu
- Department of Radiology, Taishan Medical University, Tai’an, China
| | - Yi Rong
- Department of Radiation Oncology, University of California Davis
Comprehensive Cancer Center, Sacramento, CA, USA
| |
Collapse
|
41
|
Jung JH, Son SH, Kim DH, Lee J, Jeong SY, Lee SW, Park HY, Lee J, Ahn BC. CONSORT-Independent prognostic value of asphericity of pretherapeutic F-18 FDG uptake by primary tumors in patients with breast cancer. Medicine (Baltimore) 2017; 96:e8438. [PMID: 29145250 PMCID: PMC5704795 DOI: 10.1097/md.0000000000008438] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The aim of this study was to evaluate the prognostic implication of asphericity (ASP); spatial irregularity; of pretherapeutic F 2-deoxy-2-fluoro-D-glucose (F FDG) tumor uptake in patients with invasive ductal carcinoma (IDC) of the breast. METHODS One hundred thirty-one female IDC patients (mean age = 48.1 ± 10.4 years), with pathological tumor size greater than 2 cm were retrospectively evaluated using F FDG positron emission tomography/computed tomography (PET/CT). ASP of F FDG distribution was calculated on the basis of the deviation of the tumor shape from spherical symmetry. Progression-free survival (PFS) was predicted on the basis of the univariate and multivariate analyses of the measured clinicopathologic factors and metabolic PET parameters [maximum standardized uptake value (SUVmax), metabolic tumor volume (MTV), and total lesion glycolysis (TLG)]. RESULTS The PFS rate among the 131 patients was 90.1%. The mean follow-up time was 50 months for the entire study cohort and 26 months for the patients with recurrent disease. It is evident from the univariate analysis that N stage, hormonal receptor (Estrogen, ER/Progesterone, PR) status, MTV (≤4.2 mL), and ASP (≤15.1%) affected the PFS. Hazard ratios (HRs) estimated from the multivariate Cox regression analysis show that N stage (HR = 17.6), ASP (HR = 11.9), and hormonal receptor status (HR = 6.9) were independent prognostic factors in predicting PFS. In the subgroup of patients with lymph node metastasis, ASP (HR = 10.9) and hormonal receptor status (HR = 9.1) were independent prognostic factors for PFS. CONCLUSION ASP of F FDG uptake is an independent predictor of outcome in IDC patients, and can be used for prognostic stratification.
Collapse
Affiliation(s)
| | | | | | - Jeeyeon Lee
- Department of Surgery, Kyungpook National University School of Medicine and Hospital, Daegu, Republic of Korea
| | | | | | - Ho Yong Park
- Department of Surgery, Kyungpook National University School of Medicine and Hospital, Daegu, Republic of Korea
| | | | | |
Collapse
|
42
|
Lovinfosse P, Polus M, Van Daele D, Martinive P, Daenen F, Hatt M, Visvikis D, Koopmansch B, Lambert F, Coimbra C, Seidel L, Albert A, Delvenne P, Hustinx R. FDG PET/CT radiomics for predicting the outcome of locally advanced rectal cancer. Eur J Nucl Med Mol Imaging 2017; 45:365-375. [PMID: 29046927 DOI: 10.1007/s00259-017-3855-5] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 10/09/2017] [Indexed: 12/13/2022]
Abstract
PURPOSE The aim of this study was to investigate the prognostic value of baseline 18F-FDG PET/CT textural analysis in locally-advanced rectal cancer (LARC). METHODS Eighty-six patients with LARC underwent 18F-FDG PET/CT before treatment. Maximum and mean standard uptake values (SUVmax and SUVmean), metabolic tumoral volume (MTV), total lesion glycolysis (TLG), histogram-intensity features, as well as 11 local and regional textural features, were evaluated. The relationships of clinical, pathological and PET-derived metabolic parameters with disease-specific survival (DSS), disease-free survival (DFS) and overall survival (OS) were assessed by Cox regression analysis. Logistic regression was used to predict the pathological response by the Dworak tumor regression grade (TRG) in the 66 patients treated with neoadjuvant chemoradiotherapy (nCRT). RESULTS The median follow-up of patients was 41 months. Seventeen patients (19.7%) had recurrent disease and 18 (20.9 %) died, either due to cancer progression (n = 10) or from another cause while in complete remission (n = 8). DSS was 95% at 1 year, 93% at 2 years and 87% at 4 years. Weight loss, surgery and the texture parameter coarseness were significantly associated with DSS in multivariate analyses. DFS was 94 % at 1 year, 86 % at 2 years and 79 % at 4 years. From a multivariate standpoint, tumoral differentiation and the texture parameters homogeneity and coarseness were significantly associated with DFS. OS was 93% at 1 year, 87% at 2 years and 79% after 4 years. cT, surgery, SUVmean, dissimilarity and contrast from the neighborhood intensity-difference matrix (contrastNGTDM) were significantly and independently associated with OS. Finally, RAS-mutational status (KRAS and NRAS mutations) and TLG were significant predictors of pathological response to nCRT (TRG 3-4). CONCLUSION Textural analysis of baseline 18F-FDG PET/CT provides strong independent predictors of survival in patients with LARC, with better predictive power than intensity- and volume-based parameters. The utility of such features, especially coarseness, should be confirmed by larger clinical studies before considering their potential integration into decisional algorithms aimed at personalized medicine.
Collapse
Affiliation(s)
- Pierre Lovinfosse
- Division of Nuclear Medicine and Oncological Imaging, Department of Medical Physics CHU, University of Liège, B35 Domaine Universitaire du Sart-Tilman, 4000, Liege, Belgium.
| | - Marc Polus
- Department of Gastro-enterology, Centre Hospitalier Universitaire de Liège, Liège, Belgium
| | - Daniel Van Daele
- Department of Gastro-enterology, Centre Hospitalier Universitaire de Liège, Liège, Belgium
| | - Philippe Martinive
- Division of Radiation Oncology, Department of Medical Physics, CHU and University of Liège, Liège, Belgium
| | - Frédéric Daenen
- Department of Nuclear Medicine, Centre Hospitalier Régional de la Citadelle, Liège, Belgium
| | | | | | - Benjamin Koopmansch
- Center for Human Genetic, Molecular Haemato-Oncology Unit, UniLab Liège, Centre Hospitalier Universitaire de Liège, Liège, Belgium
| | - Frédéric Lambert
- Center for Human Genetic, Molecular Haemato-Oncology Unit, UniLab Liège, Centre Hospitalier Universitaire de Liège, Liège, Belgium
| | - Carla Coimbra
- Department of Abdominal Surgery and Transplantation, Centre Hospitalier Universitaire de Liège, Liège, Belgium
| | - Laurence Seidel
- Department of Biostatistics and Medico-economic Information, Centre Hospitalier Universitaire de Liège, Liège, Belgium
| | - Adelin Albert
- Department of Biostatistics and Medico-economic Information, Centre Hospitalier Universitaire de Liège, Liège, Belgium
| | - Philippe Delvenne
- Department of Pathology, Centre Hospitalier Universitaire de Liège, Liège, Belgium
| | - Roland Hustinx
- Division of Nuclear Medicine and Oncological Imaging, Department of Medical Physics CHU, University of Liège, B35 Domaine Universitaire du Sart-Tilman, 4000, Liege, Belgium
| |
Collapse
|
43
|
Rahmim A, Huang P, Shenkov N, Fotouhi S, Davoodi-Bojd E, Lu L, Mari Z, Soltanian-Zadeh H, Sossi V. Improved prediction of outcome in Parkinson's disease using radiomics analysis of longitudinal DAT SPECT images. Neuroimage Clin 2017; 16:539-544. [PMID: 29868437 PMCID: PMC5984570 DOI: 10.1016/j.nicl.2017.08.021] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 08/14/2017] [Accepted: 08/24/2017] [Indexed: 02/01/2023]
Abstract
No disease modifying therapies for Parkinson's disease (PD) have been found effective to date. To properly power clinical trials for discovery of such therapies, the ability to predict outcome in PD is critical, and there is a significant need for discovery of prognostic biomarkers of PD. Dopamine transporter (DAT) SPECT imaging is widely used for diagnostic purposes in PD. In the present work, we aimed to evaluate whether longitudinal DAT SPECT imaging can significantly improve prediction of outcome in PD patients. In particular, we investigated whether radiomics analysis of DAT SPECT images, in addition to use of conventional non-imaging and imaging measures, could be used to predict motor severity at year 4 in PD subjects. We selected 64 PD subjects (38 male, 26 female; age at baseline (year 0): 61.9 ± 7.3, range [46,78]) from the Parkinson's Progressive Marker Initiative (PPMI) database. Inclusion criteria included (i) having had at least 2 SPECT scans at years 0 and 1 acquired on a similar scanner, (ii) having undergone a high-resolution 3 T MRI scan, and (iii) having motor assessment (MDS-UPDRS-III) available in year 4 used as outcome measure. Image analysis included automatic region-of-interest (ROI) extraction on MRI images, registration of SPECT images onto the corresponding MRI images, and extraction of radiomic features. Non-imaging predictors included demographics, disease duration as well as motor and non-motor clinical measures in years 0 and 1. The image predictors included 92 radiomic features extracted from the caudate, putamen, and ventral striatum of DAT SPECT images at years 0 and 1 to quantify heterogeneity and texture in uptake. Random forest (RF) analysis with 5000 trees was used to combine both non-imaging and imaging variables to predict motor outcome (UPDRS-III: 27.3 ± 14.7, range [3,77]). The RF prediction was evaluated using leave-one-out cross-validation. Our results demonstrated that addition of radiomic features to conventional measures significantly improved (p < 0.001) prediction of outcome, reducing the absolute error of predicting MDS-UPDRS-III from 9.00 ± 0.88 to 4.12 ± 0.43. This shows that radiomics analysis of DAT SPECT images has a significant potential towards development of effective prognostic biomarkers in PD.
Collapse
Affiliation(s)
- Arman Rahmim
- Department of Radiology, Johns Hopkins University, Baltimore, United States
- Department of Electrical & Computer Engineering, Johns Hopkins University, Baltimore, United States
| | - Peng Huang
- Departments of Oncology and Biostatistics, Johns Hopkins University, Baltimore, United States
| | - Nikolay Shenkov
- Department of Physics & Astronomy, University of British Columbia, Vancouver, Canada
| | - Sima Fotouhi
- Department of Radiology, Johns Hopkins University, Baltimore, United States
| | - Esmaeil Davoodi-Bojd
- Departments of Radiology and Research Administration, Henry Ford Health System, Detroit, MI, United States
| | - Lijun Lu
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Zoltan Mari
- Department of Neurology and Neurosurgery, Johns Hopkins University, Baltimore, MD, United States
| | - Hamid Soltanian-Zadeh
- Departments of Radiology and Research Administration, Henry Ford Health System, Detroit, MI, United States
- CIPCE, School of Electrical & Computer Engineering, University of Tehran, Tehran, Iran
| | - Vesna Sossi
- Department of Physics & Astronomy, University of British Columbia, Vancouver, Canada
| |
Collapse
|
44
|
Shiri I, Rahmim A, Ghaffarian P, Geramifar P, Abdollahi H, Bitarafan-Rajabi A. The impact of image reconstruction settings on 18F-FDG PET radiomic features: multi-scanner phantom and patient studies. Eur Radiol 2017; 27:4498-4509. [PMID: 28567548 DOI: 10.1007/s00330-017-4859-z] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/02/2017] [Accepted: 04/19/2017] [Indexed: 12/11/2022]
Abstract
OBJECTIVES The purpose of this study was to investigate the robustness of different PET/CT image radiomic features over a wide range of different reconstruction settings. METHODS Phantom and patient studies were conducted, including two PET/CT scanners. Different reconstruction algorithms and parameters including number of sub-iterations, number of subsets, full width at half maximum (FWHM) of Gaussian filter, scan time per bed position and matrix size were studied. Lesions were delineated and one hundred radiomic features were extracted. All radiomics features were categorized based on coefficient of variation (COV). RESULTS Forty seven percent features showed COV ≤ 5% and 10% of which showed COV > 20%. All geometry based, 44% and 41% of intensity based and texture based features were found as robust respectively. In regard to matrix size, 56% and 6% of all features were found non-robust (COV > 20%) and robust (COV ≤ 5%) respectively. CONCLUSIONS Variability and robustness of PET/CT image radiomics in advanced reconstruction settings is feature-dependent, and different settings have different effects on different features. Radiomic features with low COV can be considered as good candidates for reproducible tumour quantification in multi-center studies. KEY POINTS • PET/CT image radiomics is a quantitative approach assessing different aspects of tumour uptake. • Radiomic features robustness is an important issue over different image reconstruction settings. • Variability and robustness of PET/CT image radiomics in advanced reconstruction settings is feature-dependent. • Robust radiomic features can be considered as good candidates for tumour quantification.
Collapse
Affiliation(s)
- Isaac Shiri
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Junction of Shahid Hemmat and Shahid Chamran Expressways, Tehran, Iran
| | - Arman Rahmim
- Department of Radiology, Johns Hopkins University, Baltimore, MD, 21287, USA.,Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Pardis Ghaffarian
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran.,PET/CT and Cyclotron Center, Masih Daneshvari Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parham Geramifar
- Research Center for Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Abdollahi
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Junction of Shahid Hemmat and Shahid Chamran Expressways, Tehran, Iran.
| | - Ahmad Bitarafan-Rajabi
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Junction of Shahid Hemmat and Shahid Chamran Expressways, Tehran, Iran. .,Department of Nuclear Medicine, Rajaei Cardiovascular, Medical and Research Center, Iran University of Medical Sciences, Vali-Asr Avenue, Niyayesh Blvd, Tehran, Iran.
| |
Collapse
|
45
|
Giardino A, Gupta S, Olson E, Sepulveda K, Lenchik L, Ivanidze J, Rakow-Penner R, Patel MJ, Subramaniam RM, Ganeshan D. Role of Imaging in the Era of Precision Medicine. Acad Radiol 2017; 24:639-649. [PMID: 28131497 DOI: 10.1016/j.acra.2016.11.021] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 11/07/2016] [Accepted: 11/29/2016] [Indexed: 12/17/2022]
Abstract
Precision medicine is an emerging approach for treating medical disorders, which takes into account individual variability in genetic and environmental factors. Preventive or therapeutic interventions can then be directed to those who will benefit most from targeted interventions, thereby maximizing benefits and minimizing costs and complications. Precision medicine is gaining increasing recognition by clinicians, healthcare systems, pharmaceutical companies, patients, and the government. Imaging plays a critical role in precision medicine including screening, early diagnosis, guiding treatment, evaluating response to therapy, and assessing likelihood of disease recurrence. The Association of University Radiologists Radiology Research Alliance Precision Imaging Task Force convened to explore the current and future role of imaging in the era of precision medicine and summarized its finding in this article. We review the increasingly important role of imaging in various oncological and non-oncological disorders. We also highlight the challenges for radiology in the era of precision medicine.
Collapse
Affiliation(s)
- Angela Giardino
- Department of Imaging, Dana-Farber Cancer Institute, Boston, Massachusetts; Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Supriya Gupta
- Department of Radiology and Imaging, Medical College of Georgia, 1120 15th St, Augusta, GA 30912.
| | - Emmi Olson
- Radiology Resident, University of California San Diego, San Diego, California
| | | | - Leon Lenchik
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Jana Ivanidze
- Department of Diagnostic Radiology, Weill Cornell Medicine, New York, New York
| | - Rebecca Rakow-Penner
- Department of Radiology, University of California San Diego, San Diego, California
| | - Midhir J Patel
- Department of Radiology, University of South Florida, Tampa, Florida
| | - Rathan M Subramaniam
- Cyclotron and Molecular Imaging Program, Department of Radiology, UT Southwestern Medical Center, Dallas, Texas
| | | |
Collapse
|
46
|
Scalco E, Rizzo G. Texture analysis of medical images for radiotherapy applications. Br J Radiol 2017; 90:20160642. [PMID: 27885836 PMCID: PMC5685100 DOI: 10.1259/bjr.20160642] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/27/2016] [Accepted: 11/16/2016] [Indexed: 12/29/2022] Open
Abstract
The high-throughput extraction of quantitative information from medical images, known as radiomics, has grown in interest due to the current necessity to quantitatively characterize tumour heterogeneity. In this context, texture analysis, consisting of a variety of mathematical techniques that can describe the grey-level patterns of an image, plays an important role in assessing the spatial organization of different tissues and organs. For these reasons, the potentiality of texture analysis in the context of radiotherapy has been widely investigated in several studies, especially for the prediction of the treatment response of tumour and normal tissues. Nonetheless, many different factors can affect the robustness, reproducibility and reliability of textural features, thus limiting the impact of this technique. In this review, an overview of the most recent works that have applied texture analysis in the context of radiotherapy is presented, with particular focus on the assessment of tumour and tissue response to radiations. Preliminary, the main factors that have an influence on features estimation are discussed, highlighting the need of more standardized image acquisition and reconstruction protocols and more accurate methods for region of interest identification. Despite all these limitations, texture analysis is increasingly demonstrating its ability to improve the characterization of intratumour heterogeneity and the prediction of clinical outcome, although prospective studies and clinical trials are required to draw a more complete picture of the full potential of this technique.
Collapse
Affiliation(s)
- Elisa Scalco
- Institute of Molecular Bioimaging and Physiology (IBFM), Italian
National Research Council (CNR), Milan, Italy
| | - Giovanna Rizzo
- Institute of Molecular Bioimaging and Physiology (IBFM), Italian
National Research Council (CNR), Milan, Italy
| |
Collapse
|
47
|
Hatt M, Tixier F, Pierce L, Kinahan PE, Le Rest CC, Visvikis D. Characterization of PET/CT images using texture analysis: the past, the present… any future? Eur J Nucl Med Mol Imaging 2017; 44:151-165. [PMID: 27271051 PMCID: PMC5283691 DOI: 10.1007/s00259-016-3427-0] [Citation(s) in RCA: 338] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/18/2016] [Indexed: 02/07/2023]
Abstract
After seminal papers over the period 2009 - 2011, the use of texture analysis of PET/CT images for quantification of intratumour uptake heterogeneity has received increasing attention in the last 4 years. Results are difficult to compare due to the heterogeneity of studies and lack of standardization. There are also numerous challenges to address. In this review we provide critical insights into the recent development of texture analysis for quantifying the heterogeneity in PET/CT images, identify issues and challenges, and offer recommendations for the use of texture analysis in clinical research. Numerous potentially confounding issues have been identified, related to the complex workflow for the calculation of textural features, and the dependency of features on various factors such as acquisition, image reconstruction, preprocessing, functional volume segmentation, and methods of establishing and quantifying correspondences with genomic and clinical metrics of interest. A lack of understanding of what the features may represent in terms of the underlying pathophysiological processes and the variability of technical implementation practices makes comparing results in the literature challenging, if not impossible. Since progress as a field requires pooling results, there is an urgent need for standardization and recommendations/guidelines to enable the field to move forward. We provide a list of correct formulae for usual features and recommendations regarding implementation. Studies on larger cohorts with robust statistical analysis and machine learning approaches are promising directions to evaluate the potential of this approach.
Collapse
Affiliation(s)
- Mathieu Hatt
- INSERM, UMR 1101, LaTIM, University of Brest IBSAM, Brest, France.
| | - Florent Tixier
- Nuclear Medicine, University Hospital, Poitiers, France
- Medical school, EE DACTIM, University of Poitiers, Poitiers, France
| | - Larry Pierce
- Imaging Research Laboratory, University of Washington, Seattle, WA, USA
| | - Paul E Kinahan
- Imaging Research Laboratory, University of Washington, Seattle, WA, USA
| | - Catherine Cheze Le Rest
- Nuclear Medicine, University Hospital, Poitiers, France
- Medical school, EE DACTIM, University of Poitiers, Poitiers, France
| | | |
Collapse
|
48
|
Carles M, Torres-Espallardo I, Alberich-Bayarri A, Olivas C, Bello P, Nestle U, Martí-Bonmatí L. Evaluation of PET texture features with heterogeneous phantoms: complementarity and effect of motion and segmentation method. Phys Med Biol 2016; 62:652-668. [DOI: 10.1088/1361-6560/62/2/652] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
49
|
Larue RTHM, Defraene G, De Ruysscher D, Lambin P, van Elmpt W. Quantitative radiomics studies for tissue characterization: a review of technology and methodological procedures. Br J Radiol 2016; 90:20160665. [PMID: 27936886 PMCID: PMC5685111 DOI: 10.1259/bjr.20160665] [Citation(s) in RCA: 245] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Quantitative analysis of tumour characteristics based on medical imaging is an emerging field of research. In recent years, quantitative imaging features derived from CT, positron emission tomography and MR scans were shown to be of added value in the prediction of outcome parameters in oncology, in what is called the radiomics field. However, results might be difficult to compare owing to a lack of standardized methodologies to conduct quantitative image analyses. In this review, we aim to present an overview of the current challenges, technical routines and protocols that are involved in quantitative imaging studies. The first issue that should be overcome is the dependency of several features on the scan acquisition and image reconstruction parameters. Adopting consistent methods in the subsequent target segmentation step is evenly crucial. To further establish robust quantitative image analyses, standardization or at least calibration of imaging features based on different feature extraction settings is required, especially for texture- and filter-based features. Several open-source and commercial software packages to perform feature extraction are currently available, all with slightly different functionalities, which makes benchmarking quite challenging. The number of imaging features calculated is typically larger than the number of patients studied, which emphasizes the importance of proper feature selection and prediction model-building routines to prevent overfitting. Even though many of these challenges still need to be addressed before quantitative imaging can be brought into daily clinical practice, radiomics is expected to be a critical component for the integration of image-derived information to personalize treatment in the future.
Collapse
Affiliation(s)
- Ruben T H M Larue
- 1 Department of Radiation Oncology (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Gilles Defraene
- 2 Department of Oncology, Experimental Radiation Oncology, University of Leuven, Leuven, Belgium
| | - Dirk De Ruysscher
- 1 Department of Radiation Oncology (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Philippe Lambin
- 1 Department of Radiation Oncology (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Wouter van Elmpt
- 1 Department of Radiation Oncology (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, Netherlands
| |
Collapse
|
50
|
Desseroit MC, Tixier F, Weber WA, Siegel BA, Cheze Le Rest C, Visvikis D, Hatt M. Reliability of PET/CT Shape and Heterogeneity Features in Functional and Morphologic Components of Non-Small Cell Lung Cancer Tumors: A Repeatability Analysis in a Prospective Multicenter Cohort. J Nucl Med 2016; 58:406-411. [PMID: 27765856 DOI: 10.2967/jnumed.116.180919] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 08/29/2016] [Indexed: 12/16/2022] Open
Abstract
The main purpose of this study was to assess the reliability of shape and heterogeneity features in both the PET and the low-dose CT components of PET/CT. A secondary objective was to investigate the impact of image quantization. Methods: A Health Insurance Portability and Accountability Act-compliant secondary analysis of deidentified prospectively acquired PET/CT test-retest datasets of 74 patients from multicenter Merck and American College of Radiology Imaging Network trials was performed. Metabolically active volumes were automatically delineated on PET with a fuzzy locally adaptive bayesian algorithm. Software was used to semiautomatically delineate the anatomic volumes on the low-dose CT component. Two quantization methods were considered: a quantization into a set number of bins (quantization B) and an alternative quantization with bins of fixed width (quantization W). Four shape descriptors, 10 first-order metrics, and 26 textural features were evaluated. Bland-Altman analysis was used to quantify repeatability. Features were subsequently categorized as very reliable, reliable, moderately reliable, or poorly reliable with respect to the corresponding volume variability. Results: Repeatability was highly variable among features. Numerous metrics were identified as poorly or moderately reliable. Others were reliable or very reliable in both modalities and in all categories (shape and first-, second-, and third-order metrics). Image quantization played a major role in feature repeatability. Features were more reliable in PET with quantization B, whereas quantization W showed better results in CT. Conclusion: The test-retest repeatability of shape and heterogeneity features in PET and low-dose CT varied greatly among metrics. The level of repeatability also depended strongly on the quantization step, with different optimal choices for each modality. The repeatability of PET and low-dose CT features should be carefully considered when selecting metrics to build multiparametric models.
Collapse
Affiliation(s)
- Marie-Charlotte Desseroit
- Laboratory of Medical Information Processing, INSERM UMR 1101, IBSAM, University of Brest, Brest, France .,Medical School, University of Poitiers, Poitiers, France
| | - Florent Tixier
- Medical School, University of Poitiers, Poitiers, France.,Nuclear Medicine, CHU Milétrie, Poitiers, France
| | | | - Barry A Siegel
- Mallinckrodt Institute of Radiology and the Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri
| | - Catherine Cheze Le Rest
- Medical School, University of Poitiers, Poitiers, France.,Nuclear Medicine, CHU Milétrie, Poitiers, France
| | - Dimitris Visvikis
- Laboratory of Medical Information Processing, INSERM UMR 1101, IBSAM, University of Brest, Brest, France
| | - Mathieu Hatt
- Laboratory of Medical Information Processing, INSERM UMR 1101, IBSAM, University of Brest, Brest, France
| |
Collapse
|