1
|
Chai JL, Baranov E, Licaros AR, Frates MC. Sonographic Characteristics of ≥7 mm Gallbladder Polyps: A Retrospective Analysis. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2025; 44:57-66. [PMID: 39282690 DOI: 10.1002/jum.16578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/21/2024] [Accepted: 09/02/2024] [Indexed: 12/12/2024]
Abstract
OBJECTIVES To describe the sonographic characteristics of gallbladder polyps measuring ≥7 mm focusing on echogenicity, correlate with surgical pathology when available, and assess stability in size over time. METHODS This retrospective study used a natural language processing application to screen ultrasound (US) reports between January 1, 2012, and December 31, 2020, that contained the words "gallbladder polyp" or "polyps." Reports were reviewed to identify polyps ≥7 mm. The most hyperechoic components of the polyps were compared to the adjacent inner wall of the gallbladder and categorized as more echogenic, isoechoic, and less echogenic. Other sonographic characteristics such as heterogeneity, sessile configuration, vascularity, multiplicity, presence of gallstones, and wall thickening were recorded. Surgical pathology reports were reviewed when available. Polyps in nonsurgical patients with ≥48-month US follow-up and ≤1 mm/year growth rate were characterized as benign. Clinical outcomes were followed until December 31, 2023. RESULTS Review of 4897 reports yielded 550 reports in 450 patients with polyps ≥7 mm. Surgical pathology reports were available in 22.0% (99/450) of patients; 96 (97%) had non-neoplastic etiologies and 3 (3.0%) neoplastic. There were no malignancies. All of the neoplastic polyps and 56.1% (87/155) of non-neoplastic polyps had components more echogenic than the adjacent inner wall. There were no deaths related to the polyps. CONCLUSIONS The vast majority of gallbladder polyps are benign. In our large series of gallbladder polyps, we found that increased echogenicity is a nonspecific feature, found in slightly more than half of benign but also in all neoplastic polyps. Our findings support current Society of Radiologists in Ultrasound consensus guidelines.
Collapse
Affiliation(s)
- Jessie L Chai
- Division of Abdominal Imaging and Intervention, Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Esther Baranov
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Andro Reginald Licaros
- Division of Thoracic Imaging, Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Mary C Frates
- Division of Abdominal Imaging and Intervention, Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Kara YB, Ozel Y. Laparoscopic Cholecystectomy for Gallbladder Polyps: Is It Overtreatment? Cureus 2024; 16:e68843. [PMID: 39376838 PMCID: PMC11456772 DOI: 10.7759/cureus.68843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND The gallbladder polyp (GP) is an accepted risk factor of gallbladder cancer and an indication for laparoscopic cholecystectomy (LC). Generally, the pathologic result of GPs is benign, but it is difficult to distinguish a potential malignancy or a stone without pathological evaluation. This study compared the indication and pathologic result of cholecystectomy performed due to GP in our clinic. MATERIALS AND METHODS This study employed retrospective data analysis. Patients who underwent LC from August 2021 through August 2024 were included in the study. Demographic features, operation status, indications for surgery, hospital stay, concomitant surgery, pathologic outcomes, and complications were recorded from patients' data. Polyp sizes and number of polyps were taken from ultrasonography (USG) data. RESULTS A total of 533 patients were included in the study. The mean age was 44.31 ± 12.14, and 64.35% (n = 343) were of female gender. Twenty patients (3.75%) underwent surgery for GP. The mean polyp size was 7.47 mm (2-15); 65% of the patients (n = 13) had multiple polyps, and 35% (n = 7) had a single polyp. The mean hospital stay was 1.59 ± 0.88 days. The pathologic result of GP was pseudopolyp in 55% (n = 11) of cases and non-polyp in 45% (n = 9). One patient (0.18%) who underwent an operation for gallstone had a malignancy. The sensitivity of USG in detecting polyps was found to be 64.7%. The complication rate was 1.5% (n = 8). CONCLUSION The pathological result of many patients who undergo cholecystectomy due to GPs is pseudopolyp or adenoma. In our study, no carcinoma was observed in any patient who underwent surgery for polyps. Further studies are needed to determine the indication for surgery due to GP.
Collapse
Affiliation(s)
- Yalçın Burak Kara
- Department of General Surgery, Bahcesehir University School of Medicine, Istanbul, TUR
- Department of General Surgery, VM Medical Park Pendik Hospital, Istanbul, TUR
| | - Yahya Ozel
- General Surgery, Dogus University School of Medicine, Istanbul, TUR
| |
Collapse
|
3
|
Xiang F, Meng QT, Deng JJ, Wang J, Liang XY, Liu XY, Yan S. A deep learning model based on contrast-enhanced computed tomography for differential diagnosis of gallbladder carcinoma. Hepatobiliary Pancreat Dis Int 2024; 23:376-384. [PMID: 37080813 DOI: 10.1016/j.hbpd.2023.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 04/07/2023] [Indexed: 04/22/2023]
Abstract
BACKGROUND Gallbladder carcinoma (GBC) is highly malignant, and its early diagnosis remains difficult. This study aimed to develop a deep learning model based on contrast-enhanced computed tomography (CT) images to assist radiologists in identifying GBC. METHODS We retrospectively enrolled 278 patients with gallbladder lesions (> 10 mm) who underwent contrast-enhanced CT and cholecystectomy and divided them into the training (n = 194) and validation (n = 84) datasets. The deep learning model was developed based on ResNet50 network. Radiomics and clinical models were built based on support vector machine (SVM) method. We comprehensively compared the performance of deep learning, radiomics, clinical models, and three radiologists. RESULTS Three radiomics features including LoG_3.0 gray-level size zone matrix zone variance, HHL first-order kurtosis, and LHL gray-level co-occurrence matrix dependence variance were significantly different between benign gallbladder lesions and GBC, and were selected for developing radiomics model. Multivariate regression analysis revealed that age ≥ 65 years [odds ratios (OR) = 4.4, 95% confidence interval (CI): 2.1-9.1, P < 0.001], lesion size (OR = 2.6, 95% CI: 1.6-4.1, P < 0.001), and CA-19-9 > 37 U/mL (OR = 4.0, 95% CI: 1.6-10.0, P = 0.003) were significant clinical risk factors of GBC. The deep learning model achieved the area under the receiver operating characteristic curve (AUC) values of 0.864 (95% CI: 0.814-0.915) and 0.857 (95% CI: 0.773-0.942) in the training and validation datasets, which were comparable with radiomics, clinical models and three radiologists. The sensitivity of deep learning model was the highest both in the training [90% (95% CI: 82%-96%)] and validation [85% (95% CI: 68%-95%)] datasets. CONCLUSIONS The deep learning model may be a useful tool for radiologists to distinguish between GBC and benign gallbladder lesions.
Collapse
Affiliation(s)
- Fei Xiang
- Department of Hepatobiliary Pancreatic Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Qing-Tao Meng
- Department of Radiology, Affiliated Chuzhou First People's Hospital, Anhui Medical University, Chuzhou 239000, China
| | - Jing-Jing Deng
- Department of Radiology, Affiliated Chuzhou First People's Hospital, Anhui Medical University, Chuzhou 239000, China
| | - Jie Wang
- Department of Radiology, Affiliated Chuzhou First People's Hospital, Anhui Medical University, Chuzhou 239000, China
| | - Xiao-Yuan Liang
- Department of Hepatobiliary Pancreatic Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xing-Yu Liu
- Department of Hepatobiliary Pancreatic Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Sheng Yan
- Department of Hepatobiliary Pancreatic Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| |
Collapse
|
4
|
Lee KC, Kim JK, Kim DK. Comparison of the Size Measurement of Gallbladder Polyps by Three Different Radiologists in Abdominal Ultrasonography. Tomography 2024; 10:1031-1041. [PMID: 39058049 PMCID: PMC11281002 DOI: 10.3390/tomography10070077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND There is little information regarding the size measurement differences in gallbladder (GB) polyps performed by different radiologists on abdominal ultrasonography (US). AIM To reveal the differences in GB polyp size measurements performed by different radiologists on abdominal US. METHODS From June to September 2022, the maximum diameter of 228 GB polyps was measured twice on abdominal US by one of three radiologists (a third-year radiology resident [reader A], a radiologist with 7 years of experience in abdominal US [reader B], and an abdominal radiologist with 8 years of experience in abdominal US [reader C]). Intra-reader agreements for polyp size measurements were assessed by intraclass correlation coefficient (ICC). A Bland-Altman plot was used to visualize the differences between the first and second size measurements in each reader. RESULTS Reader A, reader B, and reader C evaluated 65, 77, and 86 polyps, respectively. The mean size of measured 228 GB polyps was 5.0 ± 1.9 mm. Except for the case where reader A showed moderate intra-reader agreement (0.726) for polyps with size ≤ 5 mm, all readers showed an overall high intra-reader reliability (reader A, ICC = 0.859; reader B, ICC = 0.947, reader C, ICC = 0.948), indicative of good and excellent intra-reader agreements. The 95% limit of agreement of reader A, B, and C was 1.9 mm of the mean in all three readers. CONCLUSIONS GB polyp size measurement on abdominal US showed good or excellent intra-reader agreements. However, size changes of approximately less than 1.9 mm should be interpreted carefully because these may be within the measurement error.
Collapse
Affiliation(s)
- Kyu-Chong Lee
- Department of Radiology, Armed Forces Capital Hospital, Seongnam 13574, Republic of Korea; (K.-C.L.); (J.-K.K.)
- Department of Radiology, Korea University Anam Hospital, 73 Geryeodae-ro, Seongbuk-Gu, Seoul 02841, Republic of Korea
| | - Jin-Kyem Kim
- Department of Radiology, Armed Forces Capital Hospital, Seongnam 13574, Republic of Korea; (K.-C.L.); (J.-K.K.)
| | - Dong-Kyu Kim
- Department of Radiology, Armed Forces Capital Hospital, Seongnam 13574, Republic of Korea; (K.-C.L.); (J.-K.K.)
- Department of Radiology, Severance Hospital, Research Institute of Radiological Science, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul 03722, Republic of Korea
| |
Collapse
|
5
|
Tang C, Geng Z, Wen J, Wang L, You Q, Jin Y, Wang W, Xu H, Yu Q, Yuan H. Risk stratification model for incidentally detected gallbladder polyps: A multicentre study. Eur J Radiol 2024; 170:111244. [PMID: 38043381 DOI: 10.1016/j.ejrad.2023.111244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/23/2023] [Accepted: 11/26/2023] [Indexed: 12/05/2023]
Abstract
PURPOSE We aimed to develop a 4-level risk stratification model using a scoring system based on conventional ultrasound to improve the diagnosis of gallbladder polyp. METHOD Patients with histopathologically confirmed gallbladder polyps were consecutively recruited from three medical centres. Conventional ultrasound findings and clinical characteristics were acquired prior to cholecystectomy. Risk factors for neoplastic and malignant polyps were used to build a risk stratification system via interobserver agreement and multivariate logistic regression analysis. The model was retrospectively trained using 264 pre-surgical samples and prospectively validated using 106 pre-surgical samples. Model performance was evaluated using the area under the receiver operating characteristic curve (AUC) and malignant polyp rate. RESULTS In total, 370 patients (mean age, 51.68 ± 14.41 years, 156 men) were enrolled in this study. Size (≥12 mm), shape (oblate or round), single, vascularity, gallbladder stone or sludge were considered risk factors for neoplastic polyps. Size (≥14 mm), shape (oblate), single, disrupted gallbladder wall, and gallbladder stone or sludge were risk factors for malignant polyps (all p < 0.05). In the scoring system, the sensitivity, specificity, and AUC of score ≥ 9 in diagnosing neoplastic polyps were 0.766, 0.788, and 0.876 respectively; and the sensitivity, specificity, and AUC of score ≥ 15 in diagnosing malignant polyps were 0.844, 0.926, and 0.949 respectively. In our model, the malignancy rates at the four levels were 0 % (0/24), 1.28 % (2/156), 9.26 % (5/54), and 70.37 % (38/54), respectively. CONCLUSIONS The 4-level risk stratification model based on conventional ultrasound imaging showed excellent performance in classifying gallbladder polyps.
Collapse
Affiliation(s)
- Congyu Tang
- Department of Ultrasound, Zhongshan Hospital(Xiamen), Fudan University, China; Department of Ultrasound, Zhongshan Hospital of Fudan University, China
| | - Zhidan Geng
- Department of Ultrasound, Zhongshan Hospital of Fudan University, China
| | - Jiexian Wen
- Department of Ultrasound, Zhongshan Hospital of Fudan University, China
| | - Lifan Wang
- Department of Ultrasound, Zhongshan Hospital of Fudan University, China; Department of Ultrasound, Shanghai Tenth People's Hospital, China
| | - Qiqin You
- Department of Ultrasound, Zhongshan Hospital of Fudan University (Qingpu Branch), China
| | - Yunjie Jin
- Department of Ultrasound, Zhongshan Hospital of Fudan University, China
| | - Wenping Wang
- Department of Ultrasound, Zhongshan Hospital of Fudan University, China
| | - Huixiong Xu
- Department of Ultrasound, Zhongshan Hospital(Xiamen), Fudan University, China; Department of Ultrasound, Zhongshan Hospital of Fudan University, China; Department of Ultrasound, Zhongshan Hospital(Minhang Meilong), Fudan University (Shanghai Geriatric Medical Center), China
| | - Qing Yu
- Department of Ultrasound, Zhongshan Hospital of Fudan University, China.
| | - Haixia Yuan
- Department of Ultrasound, Zhongshan Hospital of Fudan University, China; Department of Ultrasound, Zhongshan Hospital of Fudan University (Qingpu Branch), China; Department of Ultrasound, Zhongshan Hospital(Minhang Meilong), Fudan University (Shanghai Geriatric Medical Center), China.
| |
Collapse
|
6
|
Buerlein RCD, Shami VM. Endoscopic Diagnosis of Extra-Luminal Cancers. Gastrointest Endosc Clin N Am 2024; 34:19-36. [PMID: 37973229 DOI: 10.1016/j.giec.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
The last 2 decades have seen an emergence of endoscopic technologies and techniques allowing for minimally invasive modalities for assessing and sampling lesions outside of the gastrointestinal lumen, including the chest, abdomen, and pelvis. Incorporating these new endoscopic approaches has revolutionized the diagnosis and staging of extra-luminal malignancies and has enabled more accessible and safer tissue acquisition.
Collapse
Affiliation(s)
- Ross C D Buerlein
- Division of Gastroenterology and Hepatology, University of Virginia Health System, Box 800708, Charlottesville, VA 22908, USA.
| | - Vanessa M Shami
- Division of Gastroenterology and Hepatology, University of Virginia Health System, Box 800708, Charlottesville, VA 22908, USA
| |
Collapse
|
7
|
Zhou S, Han S, Chen W, Bai X, Pan W, Han X, He X. Radiomics-based machine learning and deep learning to predict serosal involvement in gallbladder cancer. Abdom Radiol (NY) 2024; 49:3-10. [PMID: 37787963 DOI: 10.1007/s00261-023-04029-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 10/04/2023]
Abstract
OBJECTIVE Our study aimed to determine whether radiomics models based on contrast-enhanced computed tomography (CECT) have considerable ability to predict serosal involvement in gallbladder cancer (GBC) patients. MATERIALS AND METHODS A total of 152 patients diagnosed with GBC were retrospectively enrolled and divided into the serosal involvement group and no serosal involvement group according to paraffin pathology results. The regions of interest (ROIs) in the lesion on all CT images were drawn by two radiologists using ITK-SNAP software (version 3.8.0). A total of 412 features were extracted from the CT images of each patient. The Mann‒Whitney U test was applied to identify features with significant differences between groups. Seven machine learning algorithms and a deep learning model based on fully connected neural networks (f-CNNs) were used for radiomics model construction. The prediction efficacy of the models was evaluated using receiver operating characteristic (ROC) curve analysis. RESULTS Through the Mann‒Whitney U test, 75 of the 412 features extracted from the CT images of patients were significantly different between groups (P < 0.05). Among all the algorithms, logistic regression achieved the highest performance with an area under the curve (AUC) of 0.944 (sensitivity 0.889, specificity 0.8); the f-CNN deep learning model had an AUC of 0.916, and the model showed high predictive power for serosal involvement, with a sensitivity of 0.733 and a specificity of 0.801. CONCLUSION Radiomics models based on features derived from CECT showed convincing performances in predicting serosal involvement in GBC.
Collapse
Affiliation(s)
- Shengnan Zhou
- Department of Gastrointestinal Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Shaoqi Han
- General Surgery Department, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Weijie Chen
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, China Academy of Medical Science & Peking Union Medical College, No. 1, Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Xuesong Bai
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, China Academy of Medical Science & Peking Union Medical College, No. 1, Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Weidong Pan
- Radiology Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, China Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Xianlin Han
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, China Academy of Medical Science & Peking Union Medical College, No. 1, Shuaifuyuan, Dongcheng District, Beijing, 100730, China.
| | - Xiaodong He
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, China Academy of Medical Science & Peking Union Medical College, No. 1, Shuaifuyuan, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
8
|
Wang LF, Wang Q, Mao F, Xu SH, Sun LP, Wu TF, Zhou BY, Yin HH, Shi H, Zhang YQ, Li XL, Sun YK, Lu D, Tang CY, Yuan HX, Zhao CK, Xu HX. Risk stratification of gallbladder masses by machine learning-based ultrasound radiomics models: a prospective and multi-institutional study. Eur Radiol 2023; 33:8899-8911. [PMID: 37470825 DOI: 10.1007/s00330-023-09891-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 03/23/2023] [Accepted: 04/26/2023] [Indexed: 07/21/2023]
Abstract
OBJECTIVE This study aimed to evaluate the diagnostic performance of machine learning (ML)-based ultrasound (US) radiomics models for risk stratification of gallbladder (GB) masses. METHODS We prospectively examined 640 pathologically confirmed GB masses obtained from 640 patients between August 2019 and October 2022 at four institutions. Radiomics features were extracted from grayscale US images and germane features were selected. Subsequently, 11 ML algorithms were separately used with the selected features to construct optimum US radiomics models for risk stratification of the GB masses. Furthermore, we compared the diagnostic performance of these models with the conventional US and contrast-enhanced US (CEUS) models. RESULTS The optimal XGBoost-based US radiomics model for discriminating neoplastic from non-neoplastic GB lesions showed higher diagnostic performance in terms of areas under the curves (AUCs) than the conventional US model (0.822-0.853 vs. 0.642-0.706, p < 0.05) and potentially decreased unnecessary cholecystectomy rate in a speculative comparison with performing cholecystectomy for lesions sized over 10 mm (2.7-13.8% vs. 53.6-64.9%, p < 0.05) in the validation and test sets. The AUCs of the XGBoost-based US radiomics model for discriminating carcinomas from benign GB lesions were higher than the conventional US model (0.904-0.979 vs. 0.706-0.766, p < 0.05). The XGBoost-US radiomics model performed better than the CEUS model in discriminating GB carcinomas (AUC: 0.995 vs. 0.902, p = 0.011). CONCLUSIONS The proposed ML-based US radiomics models possess the potential capacity for risk stratification of GB masses and may reduce the unnecessary cholecystectomy rate and use of CEUS. CLINICAL RELEVANCE STATEMENT The machine learning-based ultrasound radiomics models have potential for risk stratification of gallbladder masses and may potentially reduce unnecessary cholecystectomies. KEY POINTS • The XGBoost-based US radiomics models are useful for the risk stratification of GB masses. • The XGBoost-based US radiomics model is superior to the conventional US model for discriminating neoplastic from non-neoplastic GB lesions and may potentially decrease unnecessary cholecystectomy rate for lesions sized over 10 mm in comparison with the current consensus guideline. • The XGBoost-based US radiomics model could overmatch CEUS model in discriminating GB carcinomas from benign GB lesions.
Collapse
Affiliation(s)
- Li-Fan Wang
- Department of Ultrasound, Institute of Ultrasound in Medicine and Engineering, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qiao Wang
- Department of Medical Ultrasound, Center of Minimally Invasive Treatment for Tumor, Shanghai Tenth People's Hospital, Ultrasound Education and Research Institute, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, Shanghai, China
| | - Feng Mao
- Department of Medical Ultrasound, First Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Shi-Hao Xu
- Department of Ultrasonography, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Li-Ping Sun
- Department of Medical Ultrasound, Center of Minimally Invasive Treatment for Tumor, Shanghai Tenth People's Hospital, Ultrasound Education and Research Institute, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, Shanghai, China
| | - Ting-Fan Wu
- Bayer Healthcare, Radiology, Shanghai, China
| | - Bo-Yang Zhou
- Department of Ultrasound, Institute of Ultrasound in Medicine and Engineering, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hao-Hao Yin
- Department of Ultrasound, Institute of Ultrasound in Medicine and Engineering, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hui Shi
- Department of Medical Ultrasound, Center of Minimally Invasive Treatment for Tumor, Shanghai Tenth People's Hospital, Ultrasound Education and Research Institute, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, Shanghai, China
| | - Ya-Qin Zhang
- Department of Medical Ultrasound, Center of Minimally Invasive Treatment for Tumor, Shanghai Tenth People's Hospital, Ultrasound Education and Research Institute, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, Shanghai, China
| | - Xiao-Long Li
- Department of Ultrasound, Institute of Ultrasound in Medicine and Engineering, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yi-Kang Sun
- Department of Ultrasound, Institute of Ultrasound in Medicine and Engineering, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Dan Lu
- Department of Ultrasound, Institute of Ultrasound in Medicine and Engineering, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Cong-Yu Tang
- Department of Ultrasound, Institute of Ultrasound in Medicine and Engineering, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hai-Xia Yuan
- Department of Ultrasound, Institute of Ultrasound in Medicine and Engineering, Zhongshan Hospital, Fudan University, Shanghai, China.
- Department of Ultrasound, Zhongshan Hospital of Fudan University (Qingpu Branch), Shanghai, China.
| | - Chong-Ke Zhao
- Department of Ultrasound, Institute of Ultrasound in Medicine and Engineering, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Hui-Xiong Xu
- Department of Ultrasound, Institute of Ultrasound in Medicine and Engineering, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
9
|
Zhu L, Han P, Jiang B, Zhu Y, Li N, Fei X. Value of Micro Flow Imaging in the Prediction of Adenomatous Polyps. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:1586-1594. [PMID: 37012096 DOI: 10.1016/j.ultrasmedbio.2023.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/20/2023] [Accepted: 03/03/2023] [Indexed: 05/17/2023]
Abstract
OBJECTIVE The aim of this study was to assess the value of micro flow imaging (MFI) in distinguishing adenomatous polyps from cholesterol polyps. METHODS A total of 143 patients who underwent cholecystectomy for gallbladder polyps were retrospectively analyzed. B-mode ultrasound (BUS), color Doppler flow imaging (CDFI), MFI and contrast-enhanced ultrasound (CEUS) were performed before cholecystectomy. The weighted kappa consistency test was used to evaluate the agreement of vascular morphology among CDFI, MFI and CEUS. Ultrasound image characteristics, including BUS, CDFI and MFI images, were compared between adenomatous polyps and cholesterol polyps. The independent risk factors for adenomatous polyps were selected. The diagnostic performance of MFI combined with BUS in determining adenomatous polyps was compared with CDFI combined with BUS. RESULTS Of the 143 patients, 113 cases were cholesterol polyps, and 30 cases were adenomatous polyps. The vascular morphology of gallbladder polyps was more clearly depicted by MFI than CDFI, and it had better agreement with CEUS. Differences in maximum size, height/width ratio, hyperechoic spot and vascular intensity on CDFI and MFI images were significant between adenomatous polyps and cholesterol polyps (p < 0.05). The maximum size, height/width ratio, and vascular intensity on MFI images were independent risk factors for adenomatous polyps. For MFI combined with BUS, sensitivity, specificity and accuracy were 90.00%, 94.69% and 93.70%, respectively. Area under the receiver operating characteristic curve (AUC) of MFI combined with BUS was significantly higher than that of CDFI combined with BUS (AUC = 0.923 vs. 0.784). CONCLUSION Compared with CDFI combined with BUS, MFI combined with BUS had higher diagnostic performance in determining adenomatous polyps.
Collapse
Affiliation(s)
- Lianhua Zhu
- Department of Ultrasound, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Peng Han
- Department of Ultrasound, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Bo Jiang
- Department of Ultrasound, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yaqiong Zhu
- Department of Ultrasound, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Nan Li
- Department of Ultrasound, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xiang Fei
- Department of Ultrasound, First Medical Center, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
10
|
Wang H, Zha H, Du Y, Li C, Zhang J, Ye X. An integrated radiomics nomogram based on conventional ultrasound improves discriminability between fibroadenoma and pure mucinous carcinoma in breast. Front Oncol 2023; 13:1170729. [PMID: 37427125 PMCID: PMC10324567 DOI: 10.3389/fonc.2023.1170729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/14/2023] [Indexed: 07/11/2023] Open
Abstract
Objective To evaluate the ability of integrated radiomics nomogram based on ultrasound images to distinguish between breast fibroadenoma (FA) and pure mucinous carcinoma (P-MC). Methods One hundred seventy patients with FA or P-MC (120 in the training set and 50 in the test set) with definite pathological confirmation were retrospectively enrolled. Four hundred sixty-four radiomics features were extracted from conventional ultrasound (CUS) images, and radiomics score (Radscore) was constructed using the Least Absolute Shrinkage and Selection Operator (LASSO) algorithm. Different models were developed by a support vector machine (SVM), and the diagnostic performance of the different models was assessed and validated. A comparison of the receiver operating characteristic (ROC) curve, calibration curve, and decision curve analysis (DCA) was performed to evaluate the incremental value of the different models. Results Finally, 11 radiomics features were selected, and then Radscore was developed based on them, which was higher in P-MC in both cohorts. In the test group, the clinic + CUS + radiomics (Clin + CUS + Radscore) model achieved a significantly higher area under the curve (AUC) value (AUC = 0.86, 95% CI, 0.733-0.942) when compared with the clinic + radiomics (Clin + Radscore) (AUC = 0.76, 95% CI, 0.618-0.869, P > 0.05), clinic + CUS (Clin + CUS) (AUC = 0.76, 95% CI, 0.618-0.869, P< 0.05), Clin (AUC = 0.74, 95% CI, 0.600-0.854, P< 0.05), and Radscore (AUC = 0.64, 95% CI, 0.492-0.771, P< 0.05) models, respectively. The calibration curve and DCA also suggested excellent clinical value of the combined nomogram. Conclusion The combined Clin + CUS + Radscore model may help improve the differentiation of FA from P-MC.
Collapse
Affiliation(s)
- Hui Wang
- Department of Ultrasound, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hailing Zha
- Department of Ultrasound, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yu Du
- Department of Ultrasound, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Cuiying Li
- Department of Ultrasound, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiulou Zhang
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xinhua Ye
- Department of Ultrasound, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
11
|
Riddell ZC, Corallo C, Albazaz R, Foley KG. Gallbladder polyps and adenomyomatosis. Br J Radiol 2023; 96:20220115. [PMID: 35731858 PMCID: PMC9975534 DOI: 10.1259/bjr.20220115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Incidental findings are commonly detected during examination of the gallbladder. Differentiating benign from malignant lesions is critical because of the poor prognosis associated with gallbladder malignancy. Therefore, it is important that radiologists and sonographers are aware of common incidental gallbladder findings, which undoubtedly will continue to increase with growing medical imaging use. Ultrasound is the primary imaging modality used to examine the gallbladder and biliary tree, but contrast-enhanced ultrasound and MRI are increasingly used. This review article focuses on two common incidental findings in the gallbladder; adenomyomatosis and gallbladder polyps. The imaging features of these conditions will be reviewed and compared between radiological modalities, and the pathology, epidemiology, natural history, and management will be discussed.
Collapse
Affiliation(s)
- Zena C Riddell
- National Imaging Academy of Wales (NIAW), Bridgend, United Kingdom
| | - Carmelo Corallo
- Department of Radiology, Leeds Teaching Hospitals NHS Trust, St James’s University Hospital, Leeds, England
| | - Raneem Albazaz
- Department of Radiology, Leeds Teaching Hospitals NHS Trust, St James’s University Hospital, Leeds, England
| | - Kieran G Foley
- Division of Cancer & Genetics, School of Medicine, Cardiff University, Wales, United Kingdom
| |
Collapse
|
12
|
Kim JH, Kim JH, Kang HJ, Bae JS. Contrast-Enhanced CT and Ultrasonography Features of Intracholecystic Papillary Neoplasm with or without associated Invasive Carcinoma. Korean J Radiol 2023; 24:39-50. [PMID: 36606619 PMCID: PMC9830145 DOI: 10.3348/kjr.2022.0577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVE To assess the contrast-enhanced CT and ultrasonography (US) findings of intracholecystic papillary neoplasm (ICPN) and determine the imaging features predicting ICPN associated with invasive carcinoma (ICPN-IC). MATERIALS AND METHODS In this retrospective study, we enrolled 119 consecutive patients, including 60 male and 59 female, with a mean age ± standard deviation of 63.3 ± 12.1 years, who had pathologically confirmed ICPN (low-grade dysplasia [DP] = 34, high-grade DP = 35, IC = 50) and underwent preoperative CT or US. Two radiologists independently assessed the CT and US findings, focusing on wall and polypoid lesion characteristics. The likelihood of ICPN-IC was graded on a 5-point scale. Univariable and multivariable logistic regression analyses were performed to identify significant predictors of ICPN-IC separately for wall and polypoid lesion findings. The performances of CT and US in distinguishing ICPN-IC from ICPN with DP (ICPN-DP) was evaluated using the area under the receiver operating characteristic curve (AUC). RESULTS For wall characteristics, the maximum wall thickness (adjusted odds ratio [aOR] = 1.4; 95% confidence interval [CI]: 1.1-1.9) and mucosal discontinuity (aOR = 5.6; 95% CI: 1.3-23.4) on CT were independently associated with ICPN-IC. Among 119 ICPNs, 110 (92.4%) showed polypoid lesions. Regarding polypoid lesion findings, multiplicity (aOR = 4.0; 95% CI: 1.6-10.4), lesion base wall thickening (aOR = 6.0; 95% CI: 2.3-15.8) on CT, and polyp size (aOR = 1.1; 95% CI: 1.0-1.2) on US were independently associated with ICPN-IC. CT showed a higher diagnostic performance than US in predicting ICPN-IC (AUC = 0.793 vs. 0.676; p = 0.002). CONCLUSION ICPN showed polypoid lesions and/or wall thickening on CT or US. A thick wall, multiplicity, presence of wall thickening in the polypoid lesion base, and large polyp size are imaging findings independently associated with invasive cancer and may be useful for differentiating ICPN-IC from ICPN-DP.
Collapse
Affiliation(s)
- Jae Hyun Kim
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
- Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
| | - Jung Hoon Kim
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
- Department of Radiology, Seoul National University College of Medicine, Seoul, Korea.
| | - Hyo-Jin Kang
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
- Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
| | - Jae Seok Bae
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
- Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
13
|
Li Q, Zhang J, Cai Z, Jia P, Wang X, Geng X, Zhang Y, Lei D, Li J, Yang W, Yang R, Zhang X, Yang C, Yao C, Hao Q, Liu Y, Guo Z, Si S, Geng Z, Zhang D. A Bayesian network prediction model for gallbladder polyps with malignant potential based on preoperative ultrasound. Surg Endosc 2023; 37:518-527. [PMID: 36002683 DOI: 10.1007/s00464-022-09532-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/31/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND It is important to identify gallbladder polyps (GPs) with malignant potential and avoid unnecessary cholecystectomy by constructing prediction model. The aim of the study is to develop a Bayesian network (BN) prediction model for GPs with malignant potential in a long diameter of 8-15 mm based on preoperative ultrasound. METHODS The independent risk factors for GPs with malignant potential were screened by χ2 test and Logistic regression model. Prediction model was established and validated using data from 1296 patients with GPs who underwent cholecystectomy from January 2015 to December 2019 at 11 tertiary hospitals in China. A BN model was established based on the independent risk variables. RESULTS Independent risk factors for GPs with malignant potential included age, number of polyps, polyp size (long diameter), polyp size (short diameter), and fundus. The BN prediction model identified relationships between polyp size (long diameter) and three other variables [polyp size (short diameter), fundus and number of polyps]. Each variable was assigned scores under different status and the probabilities of GPs with malignant potential were classified as [0-0.2), [0.2-0.5), [0.5-0.8) and [0.8-1] according to the total points of [- 337, - 234], [- 197, - 145], [- 123, - 108], and [- 62,500], respectively. The AUC was 77.38% and 75.13%, and the model accuracy was 75.58% and 80.47% for the BN model in the training set and testing set, respectively. CONCLUSION A BN prediction model was accurate and practical for predicting GPs with malignant potential patients in a long diameter of 8-15 mm undergoing cholecystectomy based on preoperative ultrasound.
Collapse
Affiliation(s)
- Qi Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Jingwei Zhang
- Department of Industrial Engineering, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Zhiqiang Cai
- Department of Industrial Engineering, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Pengbo Jia
- Department of Hepatobiliary Surgery, The First People's Hospital of Xianyang City, Xianyang, 712000, Shaanxi, China
| | - Xintuan Wang
- Department of Hepatobiliary Surgery, The First People's Hospital of Xianyang City, Xianyang, 712000, Shaanxi, China
| | - Xilin Geng
- Department of Hepatobiliary Surgery, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China
| | - Yu Zhang
- Department of Hepatobiliary Surgery, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China
| | - Da Lei
- Department of Hepatobiliary Surgery, Central Hospital of Baoji City, Baoji, 721000, Shaanxi, China
| | - Junhui Li
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Wenbin Yang
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Rui Yang
- Department of Hepatobiliary Surgery, Central Hospital of Hanzhong City, Hanzhong, 723000, Shaanxi, China
| | - Xiaodi Zhang
- Department of General Surgery, No. 215 Hospital of Shaanxi Nuclear Industry, Xianyang, 712000, Shaanxi, China
| | - Chenglin Yang
- Department of General Surgery, Central Hospital of Ankang City, Ankang, 725000, Shaanxi, China
| | - Chunhe Yao
- Department of General Surgery, Xianyang Hospital of Yan'an University, Xianyang, 712000, Shaanxi, China
| | - Qiwei Hao
- Department of Hepatobiliary Surgery, The Second Hospital of Yulin City, Yulin, 719000, Shaanxi, China
| | - Yimin Liu
- Department of Hepatobiliary Surgery, People's Hospital of Baoji City, Baoji, 721000, Shaanxi, China
| | - Zhihua Guo
- Department of Hepatobiliary Surgery, People's Hospital of Baoji City, Baoji, 721000, Shaanxi, China
| | - Shubin Si
- Department of Industrial Engineering, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Zhimin Geng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| | - Dong Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
14
|
Jenssen C, Lorentzen T, Dietrich CF, Lee JY, Chaubal N, Choi BI, Rosenberg J, Gutt C, Nolsøe CP. Incidental Findings of Gallbladder and Bile Ducts-Management Strategies: General Aspects, Gallbladder Polyps and Gallbladder Wall Thickening-A World Federation of Ultrasound in Medicine and Biology (WFUMB) Position Paper. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:2355-2378. [PMID: 36058799 DOI: 10.1016/j.ultrasmedbio.2022.06.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 06/02/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
The World Federation of Ultrasound in Medicine and Biology (WFUMB) is addressing the issue of incidental findings with a series of position papers to give advice on characterization and management. The biliary system (gallbladder and biliary tree) is the third most frequent site for incidental findings. This first part of the position paper on incidental findings of the biliary system is related to general aspects, gallbladder polyps and other incidental findings of the gallbladder wall. Available evidence on prevalence, diagnostic work-up, malignancy risk, follow-up and treatment is summarized with a special focus on ultrasound techniques. Multiparametric ultrasound features of gallbladder polyps and other incidentally detected gallbladder wall pathologies are described, and their inclusion in assessment of malignancy risk and decision- making on further management is suggested.
Collapse
Affiliation(s)
- Christian Jenssen
- Department of Internal Medicine, Krankenhaus Märkisch Oderland GmbH, Strausberg/Wriezen, Germany; Brandenburg Institute for Clinical Ultrasound (BICUS) at Medical University Brandenburg "Theodor Fontane", Neuruppin, Germany
| | - Torben Lorentzen
- Ultrasound Section, Division of Surgery, Department of Gastroenterology, Herlev Hospital, University of Copenhagen, Herlev, Denmark
| | - Christoph F Dietrich
- Department Allgemeine Innere Medizin (DAIM), Kliniken Hirslanden Beau Site, Salem und Permancence, Bern, Switzerland.
| | - Jae Young Lee
- Department of Radiology, Medical Research Center, Seoul National University, College of Medicine, Seoul, Korea
| | - Nitin Chaubal
- Thane Ultrasound Centre, Jaslok Hospital and Research Centre, Mumbai, India
| | - Buyng Ihn Choi
- Department of Radiology, Medical Research Center, Seoul National University, College of Medicine, Seoul, Korea
| | - Jacob Rosenberg
- Department of Surgery, Herlev Hospital, University of Copenhagen, Herlev, Denmark
| | - Carsten Gutt
- Department of Surgery, Klinikum Memmingen, Memmingen, Germany
| | - Christian P Nolsøe
- Center for Surgical Ultrasound, Department of Surgery, Zealand University Hospital, Køge, Denmark; Copenhagen Academy for Medical Education and Simulation (CAMES), University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
15
|
Zhu L, Han P, Jiang B, Li N, Jiao Z, Zhu Y, Tang W, Fei X. Value of Conventional Ultrasound-based Scoring System in Distinguishing Adenomatous Polyps From Cholesterol Polyps. J Clin Gastroenterol 2022; 56:895-901. [PMID: 34907919 DOI: 10.1097/mcg.0000000000001639] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 10/18/2021] [Indexed: 12/10/2022]
Abstract
BACKGROUND AND AIM Ultrasound has increased the detection of gallbladder polyps, but it has limitations in evaluating the nature of gallbladder polyps, especially the maximum size of 1.0 to 1.5 cm. We assessed the value of ultrasound scoring system based on independent predictive parameters in distinguishing adenomatous polyps from cholesterol polyps with the maximum size of 1.0 to 1.5 cm. MATERIALS AND METHODS We enrolled 163 patients with gallbladder polyps (1.0 to 1.5 cm) who underwent ultrasonography and cholecystectomy. Ultrasound image characteristics were compared between cholesterol polyps and adenomatous polyps in the training cohort from April 2018 to January 2020. An ultrasound scoring system was constructed in the training cohort, and its diagnostic performance was evaluated in the validation cohort from February 2020 to February 2021. RESULTS Maximum size, height/width ratio, stone or sludge, vascularity, and hyperechoic spot were significantly different between cholesterol polyps and adenomatous polyps in the training cohort ( P <0.05). The independent predictive parameters for adenomatous polyps were lower height/width ratio, presence of vascularity and absence of hyperechoic spot. The total score was as follows: (height/width ratio, <0.9=4, ≥0.9=0) + (vascularity, present=3, absent=0) + (hyperechoic spot, absent=2, present=0). The sensitivity, specificity and accuracy of ultrasound scoring system ≥5 for diagnosis of adenomatous polyps in the validation cohort were 73.33%, 80.49%, and 78.57%, respectively. CONCLUSIONS The ultrasound scoring system aids in distinguishing adenomatous polyps from cholesterol polyps, and effectively decreasing unnecessary cholecystectomy.
Collapse
Affiliation(s)
| | | | | | - Nan Li
- Departments of Ultrasound
| | | | | | - Wenbo Tang
- Hepatobiliary Surgery, the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | | |
Collapse
|
16
|
Kamaya A, Fung C, Szpakowski JL, Fetzer DT, Walsh AJ, Alimi Y, Bingham DB, Corwin MT, Dahiya N, Gabriel H, Park WG, Porembka MR, Rodgers SK, Tublin ME, Yuan X, Zhang Y, Middleton WD. Management of Incidentally Detected Gallbladder Polyps: Society of Radiologists in Ultrasound Consensus Conference Recommendations. Radiology 2022; 305:277-289. [PMID: 35787200 DOI: 10.1148/radiol.213079] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Gallbladder polyps (also known as polypoid lesions of the gallbladder) are a common incidental finding. The vast majority of gallbladder polyps smaller than 10 mm are not true neoplastic polyps but are benign cholesterol polyps with no inherent risk of malignancy. In addition, recent studies have shown that the overall risk of gallbladder cancer is not increased in patients with small gallbladder polyps, calling into question the rationale for frequent and prolonged follow-up of these common lesions. In 2021, a Society of Radiologists in Ultrasound, or SRU, consensus conference was convened to provide recommendations for the management of incidentally detected gallbladder polyps at US. See also the editorial by Sidhu and Rafailidis in this issue.
Collapse
Affiliation(s)
- Aya Kamaya
- From the Departments of Radiology (A.K.), Pathology (D.B.B.), Medicine (W.G.P.), and Ultrasound (X.Y.), Stanford University School of Medicine, Stanford Hospital and Clinics, 300 Pasteur Dr, H1307, Stanford, CA 94305; Department of Radiology, University of Alberta Hospital, Edmonton, Alberta, Canada (C.F., A.J.W.); Department of Gastroenterology, Kaiser Permanente Northern California, Oakland, Calif (J.L.S.); Departments of Radiology (D.T.F.) and Surgical Oncology (M.R.P.), University of Texas Southwestern Medical Center, Dallas, Tex; Department of Surgery, MedStar Georgetown University Hospital, Washington, DC (Y.A.); Department of Radiology, University of California Davis Medical Center, Sacramento, Calif (M.T.C.); Department of Radiology, Mayo Clinic Scottsdale, Phoenix, Ariz (N.D.); Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Ill (H.G.); Department of Radiology, Sidney Kimmel Medical College, Thomas Jefferson University, Cherry Hill, NJ (S.K.R.); Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pa (M.E.T.); Joint Pathology Center, Silver Spring, Md (Y.Z.); and Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (W.D.M.)
| | - Christopher Fung
- From the Departments of Radiology (A.K.), Pathology (D.B.B.), Medicine (W.G.P.), and Ultrasound (X.Y.), Stanford University School of Medicine, Stanford Hospital and Clinics, 300 Pasteur Dr, H1307, Stanford, CA 94305; Department of Radiology, University of Alberta Hospital, Edmonton, Alberta, Canada (C.F., A.J.W.); Department of Gastroenterology, Kaiser Permanente Northern California, Oakland, Calif (J.L.S.); Departments of Radiology (D.T.F.) and Surgical Oncology (M.R.P.), University of Texas Southwestern Medical Center, Dallas, Tex; Department of Surgery, MedStar Georgetown University Hospital, Washington, DC (Y.A.); Department of Radiology, University of California Davis Medical Center, Sacramento, Calif (M.T.C.); Department of Radiology, Mayo Clinic Scottsdale, Phoenix, Ariz (N.D.); Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Ill (H.G.); Department of Radiology, Sidney Kimmel Medical College, Thomas Jefferson University, Cherry Hill, NJ (S.K.R.); Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pa (M.E.T.); Joint Pathology Center, Silver Spring, Md (Y.Z.); and Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (W.D.M.)
| | - Jean-Luc Szpakowski
- From the Departments of Radiology (A.K.), Pathology (D.B.B.), Medicine (W.G.P.), and Ultrasound (X.Y.), Stanford University School of Medicine, Stanford Hospital and Clinics, 300 Pasteur Dr, H1307, Stanford, CA 94305; Department of Radiology, University of Alberta Hospital, Edmonton, Alberta, Canada (C.F., A.J.W.); Department of Gastroenterology, Kaiser Permanente Northern California, Oakland, Calif (J.L.S.); Departments of Radiology (D.T.F.) and Surgical Oncology (M.R.P.), University of Texas Southwestern Medical Center, Dallas, Tex; Department of Surgery, MedStar Georgetown University Hospital, Washington, DC (Y.A.); Department of Radiology, University of California Davis Medical Center, Sacramento, Calif (M.T.C.); Department of Radiology, Mayo Clinic Scottsdale, Phoenix, Ariz (N.D.); Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Ill (H.G.); Department of Radiology, Sidney Kimmel Medical College, Thomas Jefferson University, Cherry Hill, NJ (S.K.R.); Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pa (M.E.T.); Joint Pathology Center, Silver Spring, Md (Y.Z.); and Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (W.D.M.)
| | - David T Fetzer
- From the Departments of Radiology (A.K.), Pathology (D.B.B.), Medicine (W.G.P.), and Ultrasound (X.Y.), Stanford University School of Medicine, Stanford Hospital and Clinics, 300 Pasteur Dr, H1307, Stanford, CA 94305; Department of Radiology, University of Alberta Hospital, Edmonton, Alberta, Canada (C.F., A.J.W.); Department of Gastroenterology, Kaiser Permanente Northern California, Oakland, Calif (J.L.S.); Departments of Radiology (D.T.F.) and Surgical Oncology (M.R.P.), University of Texas Southwestern Medical Center, Dallas, Tex; Department of Surgery, MedStar Georgetown University Hospital, Washington, DC (Y.A.); Department of Radiology, University of California Davis Medical Center, Sacramento, Calif (M.T.C.); Department of Radiology, Mayo Clinic Scottsdale, Phoenix, Ariz (N.D.); Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Ill (H.G.); Department of Radiology, Sidney Kimmel Medical College, Thomas Jefferson University, Cherry Hill, NJ (S.K.R.); Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pa (M.E.T.); Joint Pathology Center, Silver Spring, Md (Y.Z.); and Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (W.D.M.)
| | - Andrew J Walsh
- From the Departments of Radiology (A.K.), Pathology (D.B.B.), Medicine (W.G.P.), and Ultrasound (X.Y.), Stanford University School of Medicine, Stanford Hospital and Clinics, 300 Pasteur Dr, H1307, Stanford, CA 94305; Department of Radiology, University of Alberta Hospital, Edmonton, Alberta, Canada (C.F., A.J.W.); Department of Gastroenterology, Kaiser Permanente Northern California, Oakland, Calif (J.L.S.); Departments of Radiology (D.T.F.) and Surgical Oncology (M.R.P.), University of Texas Southwestern Medical Center, Dallas, Tex; Department of Surgery, MedStar Georgetown University Hospital, Washington, DC (Y.A.); Department of Radiology, University of California Davis Medical Center, Sacramento, Calif (M.T.C.); Department of Radiology, Mayo Clinic Scottsdale, Phoenix, Ariz (N.D.); Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Ill (H.G.); Department of Radiology, Sidney Kimmel Medical College, Thomas Jefferson University, Cherry Hill, NJ (S.K.R.); Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pa (M.E.T.); Joint Pathology Center, Silver Spring, Md (Y.Z.); and Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (W.D.M.)
| | - Yewande Alimi
- From the Departments of Radiology (A.K.), Pathology (D.B.B.), Medicine (W.G.P.), and Ultrasound (X.Y.), Stanford University School of Medicine, Stanford Hospital and Clinics, 300 Pasteur Dr, H1307, Stanford, CA 94305; Department of Radiology, University of Alberta Hospital, Edmonton, Alberta, Canada (C.F., A.J.W.); Department of Gastroenterology, Kaiser Permanente Northern California, Oakland, Calif (J.L.S.); Departments of Radiology (D.T.F.) and Surgical Oncology (M.R.P.), University of Texas Southwestern Medical Center, Dallas, Tex; Department of Surgery, MedStar Georgetown University Hospital, Washington, DC (Y.A.); Department of Radiology, University of California Davis Medical Center, Sacramento, Calif (M.T.C.); Department of Radiology, Mayo Clinic Scottsdale, Phoenix, Ariz (N.D.); Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Ill (H.G.); Department of Radiology, Sidney Kimmel Medical College, Thomas Jefferson University, Cherry Hill, NJ (S.K.R.); Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pa (M.E.T.); Joint Pathology Center, Silver Spring, Md (Y.Z.); and Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (W.D.M.)
| | - David B Bingham
- From the Departments of Radiology (A.K.), Pathology (D.B.B.), Medicine (W.G.P.), and Ultrasound (X.Y.), Stanford University School of Medicine, Stanford Hospital and Clinics, 300 Pasteur Dr, H1307, Stanford, CA 94305; Department of Radiology, University of Alberta Hospital, Edmonton, Alberta, Canada (C.F., A.J.W.); Department of Gastroenterology, Kaiser Permanente Northern California, Oakland, Calif (J.L.S.); Departments of Radiology (D.T.F.) and Surgical Oncology (M.R.P.), University of Texas Southwestern Medical Center, Dallas, Tex; Department of Surgery, MedStar Georgetown University Hospital, Washington, DC (Y.A.); Department of Radiology, University of California Davis Medical Center, Sacramento, Calif (M.T.C.); Department of Radiology, Mayo Clinic Scottsdale, Phoenix, Ariz (N.D.); Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Ill (H.G.); Department of Radiology, Sidney Kimmel Medical College, Thomas Jefferson University, Cherry Hill, NJ (S.K.R.); Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pa (M.E.T.); Joint Pathology Center, Silver Spring, Md (Y.Z.); and Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (W.D.M.)
| | - Michael T Corwin
- From the Departments of Radiology (A.K.), Pathology (D.B.B.), Medicine (W.G.P.), and Ultrasound (X.Y.), Stanford University School of Medicine, Stanford Hospital and Clinics, 300 Pasteur Dr, H1307, Stanford, CA 94305; Department of Radiology, University of Alberta Hospital, Edmonton, Alberta, Canada (C.F., A.J.W.); Department of Gastroenterology, Kaiser Permanente Northern California, Oakland, Calif (J.L.S.); Departments of Radiology (D.T.F.) and Surgical Oncology (M.R.P.), University of Texas Southwestern Medical Center, Dallas, Tex; Department of Surgery, MedStar Georgetown University Hospital, Washington, DC (Y.A.); Department of Radiology, University of California Davis Medical Center, Sacramento, Calif (M.T.C.); Department of Radiology, Mayo Clinic Scottsdale, Phoenix, Ariz (N.D.); Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Ill (H.G.); Department of Radiology, Sidney Kimmel Medical College, Thomas Jefferson University, Cherry Hill, NJ (S.K.R.); Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pa (M.E.T.); Joint Pathology Center, Silver Spring, Md (Y.Z.); and Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (W.D.M.)
| | - Nirvikar Dahiya
- From the Departments of Radiology (A.K.), Pathology (D.B.B.), Medicine (W.G.P.), and Ultrasound (X.Y.), Stanford University School of Medicine, Stanford Hospital and Clinics, 300 Pasteur Dr, H1307, Stanford, CA 94305; Department of Radiology, University of Alberta Hospital, Edmonton, Alberta, Canada (C.F., A.J.W.); Department of Gastroenterology, Kaiser Permanente Northern California, Oakland, Calif (J.L.S.); Departments of Radiology (D.T.F.) and Surgical Oncology (M.R.P.), University of Texas Southwestern Medical Center, Dallas, Tex; Department of Surgery, MedStar Georgetown University Hospital, Washington, DC (Y.A.); Department of Radiology, University of California Davis Medical Center, Sacramento, Calif (M.T.C.); Department of Radiology, Mayo Clinic Scottsdale, Phoenix, Ariz (N.D.); Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Ill (H.G.); Department of Radiology, Sidney Kimmel Medical College, Thomas Jefferson University, Cherry Hill, NJ (S.K.R.); Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pa (M.E.T.); Joint Pathology Center, Silver Spring, Md (Y.Z.); and Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (W.D.M.)
| | - Helena Gabriel
- From the Departments of Radiology (A.K.), Pathology (D.B.B.), Medicine (W.G.P.), and Ultrasound (X.Y.), Stanford University School of Medicine, Stanford Hospital and Clinics, 300 Pasteur Dr, H1307, Stanford, CA 94305; Department of Radiology, University of Alberta Hospital, Edmonton, Alberta, Canada (C.F., A.J.W.); Department of Gastroenterology, Kaiser Permanente Northern California, Oakland, Calif (J.L.S.); Departments of Radiology (D.T.F.) and Surgical Oncology (M.R.P.), University of Texas Southwestern Medical Center, Dallas, Tex; Department of Surgery, MedStar Georgetown University Hospital, Washington, DC (Y.A.); Department of Radiology, University of California Davis Medical Center, Sacramento, Calif (M.T.C.); Department of Radiology, Mayo Clinic Scottsdale, Phoenix, Ariz (N.D.); Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Ill (H.G.); Department of Radiology, Sidney Kimmel Medical College, Thomas Jefferson University, Cherry Hill, NJ (S.K.R.); Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pa (M.E.T.); Joint Pathology Center, Silver Spring, Md (Y.Z.); and Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (W.D.M.)
| | - Walter G Park
- From the Departments of Radiology (A.K.), Pathology (D.B.B.), Medicine (W.G.P.), and Ultrasound (X.Y.), Stanford University School of Medicine, Stanford Hospital and Clinics, 300 Pasteur Dr, H1307, Stanford, CA 94305; Department of Radiology, University of Alberta Hospital, Edmonton, Alberta, Canada (C.F., A.J.W.); Department of Gastroenterology, Kaiser Permanente Northern California, Oakland, Calif (J.L.S.); Departments of Radiology (D.T.F.) and Surgical Oncology (M.R.P.), University of Texas Southwestern Medical Center, Dallas, Tex; Department of Surgery, MedStar Georgetown University Hospital, Washington, DC (Y.A.); Department of Radiology, University of California Davis Medical Center, Sacramento, Calif (M.T.C.); Department of Radiology, Mayo Clinic Scottsdale, Phoenix, Ariz (N.D.); Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Ill (H.G.); Department of Radiology, Sidney Kimmel Medical College, Thomas Jefferson University, Cherry Hill, NJ (S.K.R.); Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pa (M.E.T.); Joint Pathology Center, Silver Spring, Md (Y.Z.); and Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (W.D.M.)
| | - Matthew R Porembka
- From the Departments of Radiology (A.K.), Pathology (D.B.B.), Medicine (W.G.P.), and Ultrasound (X.Y.), Stanford University School of Medicine, Stanford Hospital and Clinics, 300 Pasteur Dr, H1307, Stanford, CA 94305; Department of Radiology, University of Alberta Hospital, Edmonton, Alberta, Canada (C.F., A.J.W.); Department of Gastroenterology, Kaiser Permanente Northern California, Oakland, Calif (J.L.S.); Departments of Radiology (D.T.F.) and Surgical Oncology (M.R.P.), University of Texas Southwestern Medical Center, Dallas, Tex; Department of Surgery, MedStar Georgetown University Hospital, Washington, DC (Y.A.); Department of Radiology, University of California Davis Medical Center, Sacramento, Calif (M.T.C.); Department of Radiology, Mayo Clinic Scottsdale, Phoenix, Ariz (N.D.); Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Ill (H.G.); Department of Radiology, Sidney Kimmel Medical College, Thomas Jefferson University, Cherry Hill, NJ (S.K.R.); Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pa (M.E.T.); Joint Pathology Center, Silver Spring, Md (Y.Z.); and Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (W.D.M.)
| | - Shuchi K Rodgers
- From the Departments of Radiology (A.K.), Pathology (D.B.B.), Medicine (W.G.P.), and Ultrasound (X.Y.), Stanford University School of Medicine, Stanford Hospital and Clinics, 300 Pasteur Dr, H1307, Stanford, CA 94305; Department of Radiology, University of Alberta Hospital, Edmonton, Alberta, Canada (C.F., A.J.W.); Department of Gastroenterology, Kaiser Permanente Northern California, Oakland, Calif (J.L.S.); Departments of Radiology (D.T.F.) and Surgical Oncology (M.R.P.), University of Texas Southwestern Medical Center, Dallas, Tex; Department of Surgery, MedStar Georgetown University Hospital, Washington, DC (Y.A.); Department of Radiology, University of California Davis Medical Center, Sacramento, Calif (M.T.C.); Department of Radiology, Mayo Clinic Scottsdale, Phoenix, Ariz (N.D.); Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Ill (H.G.); Department of Radiology, Sidney Kimmel Medical College, Thomas Jefferson University, Cherry Hill, NJ (S.K.R.); Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pa (M.E.T.); Joint Pathology Center, Silver Spring, Md (Y.Z.); and Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (W.D.M.)
| | - Mitchell E Tublin
- From the Departments of Radiology (A.K.), Pathology (D.B.B.), Medicine (W.G.P.), and Ultrasound (X.Y.), Stanford University School of Medicine, Stanford Hospital and Clinics, 300 Pasteur Dr, H1307, Stanford, CA 94305; Department of Radiology, University of Alberta Hospital, Edmonton, Alberta, Canada (C.F., A.J.W.); Department of Gastroenterology, Kaiser Permanente Northern California, Oakland, Calif (J.L.S.); Departments of Radiology (D.T.F.) and Surgical Oncology (M.R.P.), University of Texas Southwestern Medical Center, Dallas, Tex; Department of Surgery, MedStar Georgetown University Hospital, Washington, DC (Y.A.); Department of Radiology, University of California Davis Medical Center, Sacramento, Calif (M.T.C.); Department of Radiology, Mayo Clinic Scottsdale, Phoenix, Ariz (N.D.); Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Ill (H.G.); Department of Radiology, Sidney Kimmel Medical College, Thomas Jefferson University, Cherry Hill, NJ (S.K.R.); Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pa (M.E.T.); Joint Pathology Center, Silver Spring, Md (Y.Z.); and Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (W.D.M.)
| | - Xin Yuan
- From the Departments of Radiology (A.K.), Pathology (D.B.B.), Medicine (W.G.P.), and Ultrasound (X.Y.), Stanford University School of Medicine, Stanford Hospital and Clinics, 300 Pasteur Dr, H1307, Stanford, CA 94305; Department of Radiology, University of Alberta Hospital, Edmonton, Alberta, Canada (C.F., A.J.W.); Department of Gastroenterology, Kaiser Permanente Northern California, Oakland, Calif (J.L.S.); Departments of Radiology (D.T.F.) and Surgical Oncology (M.R.P.), University of Texas Southwestern Medical Center, Dallas, Tex; Department of Surgery, MedStar Georgetown University Hospital, Washington, DC (Y.A.); Department of Radiology, University of California Davis Medical Center, Sacramento, Calif (M.T.C.); Department of Radiology, Mayo Clinic Scottsdale, Phoenix, Ariz (N.D.); Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Ill (H.G.); Department of Radiology, Sidney Kimmel Medical College, Thomas Jefferson University, Cherry Hill, NJ (S.K.R.); Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pa (M.E.T.); Joint Pathology Center, Silver Spring, Md (Y.Z.); and Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (W.D.M.)
| | - Yang Zhang
- From the Departments of Radiology (A.K.), Pathology (D.B.B.), Medicine (W.G.P.), and Ultrasound (X.Y.), Stanford University School of Medicine, Stanford Hospital and Clinics, 300 Pasteur Dr, H1307, Stanford, CA 94305; Department of Radiology, University of Alberta Hospital, Edmonton, Alberta, Canada (C.F., A.J.W.); Department of Gastroenterology, Kaiser Permanente Northern California, Oakland, Calif (J.L.S.); Departments of Radiology (D.T.F.) and Surgical Oncology (M.R.P.), University of Texas Southwestern Medical Center, Dallas, Tex; Department of Surgery, MedStar Georgetown University Hospital, Washington, DC (Y.A.); Department of Radiology, University of California Davis Medical Center, Sacramento, Calif (M.T.C.); Department of Radiology, Mayo Clinic Scottsdale, Phoenix, Ariz (N.D.); Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Ill (H.G.); Department of Radiology, Sidney Kimmel Medical College, Thomas Jefferson University, Cherry Hill, NJ (S.K.R.); Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pa (M.E.T.); Joint Pathology Center, Silver Spring, Md (Y.Z.); and Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (W.D.M.)
| | - William D Middleton
- From the Departments of Radiology (A.K.), Pathology (D.B.B.), Medicine (W.G.P.), and Ultrasound (X.Y.), Stanford University School of Medicine, Stanford Hospital and Clinics, 300 Pasteur Dr, H1307, Stanford, CA 94305; Department of Radiology, University of Alberta Hospital, Edmonton, Alberta, Canada (C.F., A.J.W.); Department of Gastroenterology, Kaiser Permanente Northern California, Oakland, Calif (J.L.S.); Departments of Radiology (D.T.F.) and Surgical Oncology (M.R.P.), University of Texas Southwestern Medical Center, Dallas, Tex; Department of Surgery, MedStar Georgetown University Hospital, Washington, DC (Y.A.); Department of Radiology, University of California Davis Medical Center, Sacramento, Calif (M.T.C.); Department of Radiology, Mayo Clinic Scottsdale, Phoenix, Ariz (N.D.); Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Ill (H.G.); Department of Radiology, Sidney Kimmel Medical College, Thomas Jefferson University, Cherry Hill, NJ (S.K.R.); Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pa (M.E.T.); Joint Pathology Center, Silver Spring, Md (Y.Z.); and Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (W.D.M.)
| |
Collapse
|
17
|
Cao W, Pomeroy MJ, Liang Z, Abbasi AF, Pickhardt PJ, Lu H. Vector textures derived from higher order derivative domains for classification of colorectal polyps. Vis Comput Ind Biomed Art 2022; 5:16. [PMID: 35699865 PMCID: PMC9198194 DOI: 10.1186/s42492-022-00108-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 03/22/2022] [Indexed: 11/10/2022] Open
Abstract
Textures have become widely adopted as an essential tool for lesion detection and classification through analysis of the lesion heterogeneities. In this study, higher order derivative images are being employed to combat the challenge of the poor contrast across similar tissue types among certain imaging modalities. To make good use of the derivative information, a novel concept of vector texture is firstly introduced to construct and extract several types of polyp descriptors. Two widely used differential operators, i.e., the gradient operator and Hessian operator, are utilized to generate the first and second order derivative images. These derivative volumetric images are used to produce two angle-based and two vector-based (including both angle and magnitude) textures. Next, a vector-based co-occurrence matrix is proposed to extract texture features which are fed to a random forest classifier to perform polyp classifications. To evaluate the performance of our method, experiments are implemented over a private colorectal polyp dataset obtained from computed tomographic colonography. We compare our method with four existing state-of-the-art methods and find that our method can outperform those competing methods over 4%-13% evaluated by the area under the receiver operating characteristics curves.
Collapse
Affiliation(s)
- Weiguo Cao
- Department of Radiology, State University of New York at Stony Brook, Stony Brook, NY 11794, USA
| | - Marc J Pomeroy
- Department of Radiology, State University of New York at Stony Brook, Stony Brook, NY 11794, USA.,Department of Biomedical Engineering, State University of New York at Stony Brook, Stony Brook, NY 11794, USA
| | - Zhengrong Liang
- Department of Radiology, State University of New York at Stony Brook, Stony Brook, NY 11794, USA. .,Department of Biomedical Engineering, State University of New York at Stony Brook, Stony Brook, NY 11794, USA.
| | - Almas F Abbasi
- Department of Radiology, State University of New York at Stony Brook, Stony Brook, NY 11794, USA
| | - Perry J Pickhardt
- Department of Radiology, University of Wisconsin Medical School, Madison, WI 53705, USA
| | - Hongbing Lu
- Department of Biomedical Engineering, the Fourth Medical University, Xi'an, 710032, Shaanxi, China
| |
Collapse
|
18
|
Contrast-enhanced CT radiomics for prediction of recurrence-free survival in gallbladder carcinoma after surgical resection. Eur Radiol 2022; 32:7087-7097. [PMID: 35612664 DOI: 10.1007/s00330-022-08858-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/11/2022] [Accepted: 04/30/2022] [Indexed: 11/04/2022]
Abstract
OBJECTIVES Gallbladder carcinoma (GBC) is the most common and aggressive biliary tract malignancy with high postoperative recurrence rates. This single-center study aimed to develop and validate a radiomics signature to estimate GBC recurrence-free survival (RFS). METHODS This study retrospectively included 204 consecutive patients with pathologically diagnosed GBC and were randomly divided into development (n = 142) and validation (n = 62) cohorts (7:3). The radiomics features of tumor were extracted from preoperative contrast-enhanced CT imaging for each patient. In the development cohort, the least absolute shrinkage and selection operator (LASSO) Cox regression was employed to develop a radiomics signature for RFS prediction. The patients were stratified into high-score or low-score groups according to their median value of radiomics score. A nomogram was established using multivariable Cox regression by incorporating significant pathological predictors and radiomics signatures. RESULTS The radiomics signature based on 12 features could discriminate high-risk patients with poor RFS. Multivariate Cox analysis revealed that pT3/4 stage (hazard ratio, [HR] = 2.691), pN2 stage (HR = 3.60), poor differentiation grade (HR = 2.651), and high radiomics score (HR = 1.482) were independent risk variables associated with worse RFS and were incorporated to construct a nomogram. The nomogram displayed good prediction performance in estimating RFS with AUC values of 0.895, 0.935, and 0.907 at 1, 3, and 5 years, respectively. CONCLUSIONS The radiomics signature and combined nomogram may assist in predicting RFS in GBC patients. KEY POINTS • A radiomics signature extracted from preoperative contrast-enhanced CT can be a useful tool to preoperatively predict RFS of GBC. • T3/T4 stage, N2, poor tumor differentiation, and high radiomics score were positively associated with postoperative recurrence.
Collapse
|
19
|
Fiz F, Jayakody Arachchige VS, Gionso M, Pecorella I, Selvam A, Wheeler DR, Sollini M, Viganò L. Radiomics of Biliary Tumors: A Systematic Review of Current Evidence. Diagnostics (Basel) 2022; 12:diagnostics12040826. [PMID: 35453878 PMCID: PMC9024804 DOI: 10.3390/diagnostics12040826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/19/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023] Open
Abstract
Biliary tumors are rare diseases with major clinical unmet needs. Standard imaging modalities provide neither a conclusive diagnosis nor robust biomarkers to drive treatment planning. In several neoplasms, texture analyses non-invasively unveiled tumor characteristics and aggressiveness. The present manuscript aims to summarize the available evidence about the role of radiomics in the management of biliary tumors. A systematic review was carried out through the most relevant databases. Original, English-language articles published before May 2021 were considered. Three main outcome measures were evaluated: prediction of pathology data; prediction of survival; and differential diagnosis. Twenty-seven studies, including a total of 3605 subjects, were identified. Mass-forming intrahepatic cholangiocarcinoma (ICC) was the subject of most studies (n = 21). Radiomics reliably predicted lymph node metastases (range, AUC = 0.729−0.900, accuracy = 0.69−0.83), tumor grading (AUC = 0.680−0.890, accuracy = 0.70−0.82), and survival (C-index = 0.673−0.889). Textural features allowed for the accurate differentiation of ICC from HCC, mixed HCC-ICC, and inflammatory masses (AUC > 0.800). For all endpoints (pathology/survival/diagnosis), the predictive/prognostic models combining radiomic and clinical data outperformed the standard clinical models. Some limitations must be acknowledged: all studies are retrospective; the analyzed imaging modalities and phases are heterogeneous; the adoption of signatures/scores limits the interpretability and applicability of results. In conclusion, radiomics may play a relevant role in the management of biliary tumors, from diagnosis to treatment planning. It provides new non-invasive biomarkers, which are complementary to the standard clinical biomarkers; however, further studies are needed for their implementation in clinical practice.
Collapse
Affiliation(s)
- Francesco Fiz
- Department of Nuclear Medicine, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (F.F.); (M.S.)
| | - Visala S Jayakody Arachchige
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy; (V.S.J.A.); (M.G.); (I.P.); (A.S.); (D.R.W.)
| | - Matteo Gionso
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy; (V.S.J.A.); (M.G.); (I.P.); (A.S.); (D.R.W.)
| | - Ilaria Pecorella
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy; (V.S.J.A.); (M.G.); (I.P.); (A.S.); (D.R.W.)
| | - Apoorva Selvam
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy; (V.S.J.A.); (M.G.); (I.P.); (A.S.); (D.R.W.)
| | - Dakota Russell Wheeler
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy; (V.S.J.A.); (M.G.); (I.P.); (A.S.); (D.R.W.)
| | - Martina Sollini
- Department of Nuclear Medicine, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (F.F.); (M.S.)
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy; (V.S.J.A.); (M.G.); (I.P.); (A.S.); (D.R.W.)
| | - Luca Viganò
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy; (V.S.J.A.); (M.G.); (I.P.); (A.S.); (D.R.W.)
- Division of Hepatobiliary and General Surgery, Department of Surgery, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
- Correspondence: ; Tel.: +39-02-8224-7361
| |
Collapse
|
20
|
Longitudinal Ultrasound Assessment of Changes in Size and Number of Incidentally Detected Gallbladder Polyps. AJR Am J Roentgenol 2022; 218:472-483. [PMID: 34549608 DOI: 10.2214/ajr.21.26614] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND. Previous European multisociety guidelines recommend routine follow-up imaging of gallbladder polyps (including polyps < 6 mm in patients without risk factors) and cholecystectomy for polyp size changes of 2 mm or more. OBJECTIVE. The purpose of this study was to assess longitudinal changes in the number and size of gallbladder polyps on serial ultrasound examinations. METHODS. This retrospective study included patients who underwent at least one ultrasound examination between January 1, 2010, and December 31, 2020 (as part of a hepatocellular carcinoma screening and surveillance program) that showed a gallbladder polyp. Number of polyps and size of largest polyp were recorded based primarily on review of examination reports. Longitudinal changes on serial examinations were summarized. Pathologic findings from cholecystectomy were reviewed. RESULTS. Among 9683 patients, 759 (8%) had at least one ultrasound examination showing a polyp. Of these, 434 patients (248 men, 186 women; mean age, 50.6 years) had multiple examinations (range, 2-19 examinations; mean, 4.8 examinations per patient; mean interval between first and last examinations, 3.6 ± 3.1 [SD] years; maximum interval, 11.0 years). Among these 434 patients, 257 had one polyp, 40 had two polyps, and 137 had more than two polyps. Polyp size was 6 mm or less in 368 patients, 7-9 mm in 52 patients, and 10 mm or more in 14 patients. Number of polyps increased in 9% of patients, decreased in 14%, both increased and decreased on serial examinations in 22%, and showed no change in 55%. Polyp size increased in 10% of patients, decreased in 16%, both increased and decreased on serial examinations in 18%, and showed no change in 56%. In 9% of patients, gallbladder polyps were not detected on follow-up imaging; in 6% of patients, gallbladder polyps were not detected on a follow-up examination but were then detected on later studies. No gallbladder carcinoma was identified in 19 patients who underwent cholecystectomy. CONCLUSION. Gallbladder polyps fluctuate in size, number, and visibility over serial examinations. Using a 2-mm threshold for growth, 10% increased in size. No carcinoma was identified. CLINICAL IMPACT. European multisociety guidelines that propose surveillance of essentially all polyps and a 2-mm size change as the basis for cholecystectomy are likely too conservative for clinical application.
Collapse
|
21
|
Foley KG, Lahaye MJ, Thoeni RF, Soltes M, Dewhurst C, Barbu ST, Vashist YK, Rafaelsen SR, Arvanitakis M, Perinel J, Wiles R, Roberts SA. Management and follow-up of gallbladder polyps: updated joint guidelines between the ESGAR, EAES, EFISDS and ESGE. Eur Radiol 2021; 32:3358-3368. [PMID: 34918177 PMCID: PMC9038818 DOI: 10.1007/s00330-021-08384-w] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 12/16/2022]
Abstract
Abstract Main recommendations Primary investigation of polypoid lesions of the gallbladder should be with abdominal ultrasound. Routine use of other imaging modalities is not recommended presently, but further research is needed. In centres with appropriate expertise and resources, alternative imaging modalities (such as contrast-enhanced and endoscopic ultrasound) may be useful to aid decision-making in difficult cases. Strong recommendation, low–moderate quality evidence. Cholecystectomy is recommended in patients with polypoid lesions of the gallbladder measuring 10 mm or more, providing the patient is fit for, and accepts, surgery. Multidisciplinary discussion may be employed to assess perceived individual risk of malignancy. Strong recommendation, low-quality evidence. Cholecystectomy is suggested for patients with a polypoid lesion and symptoms potentially attributable to the gallbladder if no alternative cause for the patient’s symptoms is demonstrated and the patient is fit for, and accepts, surgery. The patient should be counselled regarding the benefit of cholecystectomy versus the risk of persistent symptoms. Strong recommendation, low-quality evidence. If the patient has a 6–9 mm polypoid lesion of the gallbladder and one or more risk factors for malignancy, cholecystectomy is recommended if the patient is fit for, and accepts, surgery. These risk factors are as follows: age more than 60 years, history of primary sclerosing cholangitis (PSC), Asian ethnicity, sessile polypoid lesion (including focal gallbladder wall thickening > 4 mm). Strong recommendation, low–moderate quality evidence. If the patient has either no risk factors for malignancy and a gallbladder polypoid lesion of 6–9 mm, or risk factors for malignancy and a gallbladder polypoid lesion 5 mm or less, follow-up ultrasound of the gallbladder is recommended at 6 months, 1 year and 2 years. Follow-up should be discontinued after 2 years in the absence of growth. Moderate strength recommendation, moderate-quality evidence. If the patient has no risk factors for malignancy, and a gallbladder polypoid lesion of 5 mm or less, follow-up is not required. Strong recommendation, moderate-quality evidence. If during follow-up the gallbladder polypoid lesion grows to 10 mm, then cholecystectomy is advised. If the polypoid lesion grows by 2 mm or more within the 2-year follow-up period, then the current size of the polypoid lesion should be considered along with patient risk factors. Multidisciplinary discussion may be employed to decide whether continuation of monitoring, or cholecystectomy, is necessary. Moderate strength recommendation, moderate-quality evidence. If during follow-up the gallbladder polypoid lesion disappears, then monitoring can be discontinued. Strong recommendation, moderate-quality evidence.
Source and scope These guidelines are an update of the 2017 recommendations developed between the European Society of Gastrointestinal and Abdominal Radiology (ESGAR), European Association for Endoscopic Surgery and other Interventional Techniques (EAES), International Society of Digestive Surgery–European Federation (EFISDS) and European Society of Gastrointestinal Endoscopy (ESGE). A targeted literature search was performed to discover recent evidence concerning the management and follow-up of gallbladder polyps. The changes within these updated guidelines were formulated after consideration of the latest evidence by a group of international experts. The Grading of Recommendations Assessment, Development and Evaluation (GRADE) system was adopted to define the strength of recommendations and the quality of evidence. Key Point • These recommendations update the 2017 European guidelines regarding the management and follow-up of gallbladder polyps.
Collapse
Affiliation(s)
- Kieran G Foley
- Department of Clinical Radiology, Royal Glamorgan Hospital, Llantrisant, UK.
| | - Max J Lahaye
- Department of Radiology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ruedi F Thoeni
- Department of Radiology and Biomedical Imaging, University of California, San Francisco Medical School, San Francisco, CA, USA
| | - Marek Soltes
- 1st Department of Surgery LF UPJS a UNLP, Kosice, Slovakia
| | - Catherine Dewhurst
- Department of Radiology, Mercy University Hospital, Grenville Place, Cork, Ireland
| | - Sorin Traian Barbu
- 4th Surgery Department, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania
| | - Yogesh K Vashist
- Clinics of Surgery, Department General, Visceral and Thoracic Surgery, Asklepios Goslar, Germany
| | - Søren Rafael Rafaelsen
- Department of Radiology, Clinical Cancer Centre, Vejle Hospital, University of Southern Denmark, Odense M, Denmark
| | - Marianna Arvanitakis
- Department of Gastroenterology, Erasme University Hospital ULB, Brussels, Belgium
| | - Julie Perinel
- Department of Hepatobiliary and Pancreatic Surgery, Edouard Herriot Hospital, Lyon, France
| | - Rebecca Wiles
- Department of Radiology, Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | | |
Collapse
|
22
|
Hijioka S, Nagashio Y, Ohba A, Maruki Y, Okusaka T. The Role of EUS and EUS-FNA in Differentiating Benign and Malignant Gallbladder Lesions. Diagnostics (Basel) 2021; 11:1586. [PMID: 34573929 PMCID: PMC8467412 DOI: 10.3390/diagnostics11091586] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 12/17/2022] Open
Abstract
Endoscopic ultrasonography (EUS) has greater spatial resolution than other diagnostic imaging modalities. In addition, if gallbladder lesions are found and gallbladder cancer is suspected, EUS is an indispensable modality, enabling detailed tests for invasion depth evaluation using the Doppler mode and ultrasound agents. Furthermore, for gallbladder lesions, EUS fine-needle aspiration (EUS-FNA) can be used to differentiate benign and malignant forms of conditions, such as xanthogranulomatous cholecystitis, and collect evidence before chemotherapy. EUS-FNA is also useful for highly precise and specific diagnoses. However, the prevention of bile leakage, an accidental symptom, is highly important. Advancements in next-generation sequencing (NGS) technologies facilitate the application of multiple parallel sequencing to EUS-FNA samples. Several biomarkers are expected to stratify treatment for gallbladder cancer; however, NGS can unveil potential predictive genomic biomarkers for the treatment response. It is believed that NGS may be feasible with samples obtained using EUS-FNA, further increasing the demand for EUS-FNA.
Collapse
Affiliation(s)
- Susumu Hijioka
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan; (Y.N.); (A.O.); (Y.M.); (T.O.)
| | | | | | | | | |
Collapse
|
23
|
Ganeshan D, Kambadakone A, Nikolaidis P, Subbiah V, Subbiah IM, Devine C. Current update on gallbladder carcinoma. Abdom Radiol (NY) 2021; 46:2474-2489. [PMID: 33386907 DOI: 10.1007/s00261-020-02871-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/12/2020] [Accepted: 11/18/2020] [Indexed: 12/13/2022]
Abstract
Gallbladder (GB) carcinoma is a relatively rare malignancy and is associated with poor prognosis. Numerous risk factors have been associated with the development of GB carcinoma. GB carcinomas may present as mass lesions replacing the GB, focal or diffuse thickening of the GB wall, and intraluminal mass in the GB. Various benign conditions can mimic GB carcinoma. This article reviews the epidemiology, pathology, clinical findings, imaging features, and management of GB carcinomas.
Collapse
Affiliation(s)
- Dhakshinamoorthy Ganeshan
- Department of Abdominal Radiology, Unit 1473, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030-4009, USA.
| | - Avinash Kambadakone
- Abdominal Imaging Division, Harvard Medical School, Martha's Vineyard Hospital Imaging, White 270, 55 Fruit Street, Boston, MA, 02114, USA
| | - Paul Nikolaidis
- Feinberg School of Medicine, Northwestern University, 676 N. St. Clair St., Chicago, IL, 60611, USA
| | - Vivek Subbiah
- Invest. Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030-4009, USA
| | - Ishwaria M Subbiah
- Palliative Care Med, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030-4009, USA
| | - Catherine Devine
- Department of Abdominal Radiology, Unit 1473, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030-4009, USA
| |
Collapse
|
24
|
How Can We Manage Gallbladder Lesions by Transabdominal Ultrasound? Diagnostics (Basel) 2021; 11:diagnostics11050784. [PMID: 33926095 PMCID: PMC8145033 DOI: 10.3390/diagnostics11050784] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/23/2021] [Accepted: 04/24/2021] [Indexed: 12/17/2022] Open
Abstract
The most important role of ultrasound (US) in the management of gallbladder (GB) lesions is to detect lesions earlier and differentiate them from GB carcinoma (GBC). To avoid overlooking lesions, postural changes and high-frequency transducers with magnified images should be employed. GB lesions are divided into polypoid lesions (GPLs) and wall thickening (GWT). For GPLs, classification into pedunculated and sessile types should be done first. This classification is useful not only for the differential diagnosis but also for the depth diagnosis, as pedunculated carcinomas are confined to the mucosa. Both rapid GB wall blood flow (GWBF) and the irregularity of color signal patterns on Doppler imaging, and heterogeneous enhancement in the venous phase on contrast-enhanced ultrasound (CEUS) suggest GBC. Since GWT occurs in various conditions, subdividing into diffuse and focal forms is important. Unlike diffuse GWT, focal GWT is specific for GB and has a higher incidence of GBC. The discontinuity and irregularity of the innermost hyperechoic layer and irregular or disrupted GB wall layer structure suggest GBC. Rapid GWBF is also useful for the diagnosis of wall-thickened type GBC and pancreaticobiliary maljunction. Detailed B-mode evaluation using high-frequency transducers, combined with Doppler imaging and CEUS, enables a more accurate diagnosis.
Collapse
|
25
|
Jo SJ, Kim SH, Park SJ, Lee Y, Son JH. Association between Texture Analysis Parameters and Molecular Biologic KRAS Mutation in Non-Mucinous Rectal Cancer. TAEHAN YONGSANG UIHAKHOE CHI 2021; 82:406-416. [PMID: 36238732 PMCID: PMC9431938 DOI: 10.3348/jksr.2020.0065] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/03/2020] [Accepted: 06/23/2020] [Indexed: 11/15/2022]
Abstract
Purpose To evaluate the association between magnetic resonance imaging (MRI)-based texture parameters and Kirsten rat sarcoma viral oncogene homolog (KRAS) mutation in patients with non-mucinous rectal cancer. Materials and Methods Seventy-nine patients who had pathologically confirmed rectal non-mucinous adenocarcinoma with or without KRAS-mutation and had undergone rectal MRI were divided into a training (n = 46) and validation dataset (n = 33). A texture analysis was performed on the axial T2-weighted images. The association was statistically analyzed using the Mann-Whitney U test. To extract an optimal cut-off value for the prediction of KRAS mutation, a receiver operating characteristic curve analysis was performed. The cut-off value was verified using the validation dataset. Results In the training dataset, skewness in the mutant group (n = 22) was significantly higher than in the wild-type group (n = 24) (0.221 ± 0.283; -0.006 ± 0.178, respectively, p = 0.003). The area under the curve of the skewness was 0.757 (95% confidence interval, 0.606 to 0.872) with a maximum accuracy of 71%, a sensitivity of 64%, and a specificity of 78%. None of the other texture parameters were associated with KRAS mutation (p > 0.05). When a cut-off value of 0.078 was applied to the validation dataset, this had an accuracy of 76%, a sensitivity of 86%, and a specificity of 68%. Conclusion Skewness was associated with KRAS mutation in patients with non-mucinous rectal cancer.
Collapse
|
26
|
Park EJ, Kim SH, Park SJ, Baek TW. Texture Analysis of Gray-Scale Ultrasound Images for Staging of Hepatic Fibrosis. JOURNAL OF THE KOREAN SOCIETY OF RADIOLOGY 2021; 82:116-127. [PMID: 36237456 PMCID: PMC9432409 DOI: 10.3348/jksr.2019.0185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/06/2020] [Accepted: 04/09/2020] [Indexed: 11/15/2022]
Abstract
Purpose Materials and Methods Results Conclusion
Collapse
Affiliation(s)
- Eun Joo Park
- Department of Radiology, Inje University College of Medicine, Haeundae Paik Hospital, Busan, Korea
| | - Seung Ho Kim
- Department of Radiology, Inje University College of Medicine, Haeundae Paik Hospital, Busan, Korea
| | - Sang Joon Park
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
| | - Tae Wook Baek
- Department of Radiology, Inje University College of Medicine, Haeundae Paik Hospital, Busan, Korea
| |
Collapse
|
27
|
Zha HL, Zong M, Liu XP, Pan JZ, Wang H, Gong HY, Xia TS, Liu XA, Li CY. Preoperative ultrasound-based radiomics score can improve the accuracy of the Memorial Sloan Kettering Cancer Center nomogram for predicting sentinel lymph node metastasis in breast cancer. Eur J Radiol 2020; 135:109512. [PMID: 33429302 DOI: 10.1016/j.ejrad.2020.109512] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/25/2020] [Accepted: 12/28/2020] [Indexed: 12/18/2022]
Abstract
PURPOSE To develop a combined nomogram by incorporating the Memorial Sloan Kettering Cancer Center (MSKCC) nomogram and ultrasound (US)-based radiomics score (Radscore) for predicting sentinel lymph node (SLN) metastasis in invasive breast cancer. MATERIALS AND METHODS This retrospective study was approved by the ethics committee of our institution, and written informed consent was waived. A total of 452 patients with invasive breast cancer who received SLN Biopsy in a single center were included between January 2016 and December 2019. The patients were divided into a training set (n = 318) and a validation set (n = 134). A total of 1216 features were extracted from the regions of interest (ROIs) of the tumors on conventional ultrasound. The maximum relevance minimum redundancy (mRMR) and the least absolute shrinkage and selection operator (LASSO) algorithm were used to build the Radscore. Afterward, the diagnostic performance was assessed and validated. Comparison of receiver operating characteristic (ROC) curves and decision curve analysis (DCA) were performed to evaluate the incremental value of the combined model. RESULTS Obtained from 18 features, the Radscore indicated a favorable discriminatory capability in the training set with an area under the curve (AUC) of 0.834, whereas a value of 0.770 was observed in the validation set. The AUC of the combined model was 0.901 (95 % confidence interval (95 % CI): 0.865-0.938) in the training set and 0.833 (95 % CI: 0.788-0.878) in the validation set. Both of them were superior to MSKCC or imaging Radscore alone (P < 0.05). DCA demonstrated that the combined model was superior to the others in terms of clinical practicability. CONCLUSION Preoperative US-based Radscore can improve the accuracy of clinical MSKCC nomogram for SLN metastasis prediction in breast cancer.
Collapse
Affiliation(s)
- Hai-Ling Zha
- Department of Ultrasound, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, China
| | - Min Zong
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, China
| | - Xin-Pei Liu
- Department of Ultrasound, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, China
| | - Jia-Zhen Pan
- Department of Ultrasound, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, China
| | - Hui Wang
- Department of Ultrasound, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, China
| | - Hai-Yan Gong
- Department of Ultrasound, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, China
| | - Tian-Song Xia
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, China
| | - Xiao-An Liu
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, China
| | - Cui-Ying Li
- Department of Ultrasound, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, China.
| |
Collapse
|
28
|
Baek TW, Kim SH, Park SJ, Park EJ. Texture analysis on bi-parametric MRI for evaluation of aggressiveness in patients with prostate cancer. Abdom Radiol (NY) 2020; 45:4214-4222. [PMID: 32740864 DOI: 10.1007/s00261-020-02683-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 06/12/2020] [Accepted: 07/22/2020] [Indexed: 12/31/2022]
Abstract
PURPOSE To evaluate the association between texture parameters based on bi-parametric MRI and Gleason score (GS) in patients with prostate cancer (PCa) and to evaluate diagnostic performance of any significant parameter for discriminating clinically significant cancer (CSC, GS ≥ 7) from non-CSC. METHODS A total of 116 patients who had been confirmed as prostate adenocarcinoma by radical prostatectomy or biopsy were divided into a training (n = 65) and a validation dataset (n = 51). All of the patients underwent preoperative 3T-MRI. Texture analysis was performed on axial T2WI and ADC maps (generated from b values, 0 and 1000 s/mm2) using dedicated software to cover the whole tumor volume. The correlation coefficient was calculated to evaluate the association between texture parameters and GS, and subsequent multiple regression analyses were applied for the significant parameters. To extract an optimal cut-off value for prediction of CSC, ROC curve analysis was performed. RESULTS In the training dataset, gray-level co-occurrence matrix (GLCM) entropy on ADC map was the only significant indicator for GS (coefficient of determination R2, 0.4227, P = 0.0034). The AUC of GLCM entropy on ADC map was 0.825 (95% CI 0.711-0.907) with a maximum accuracy of 82%, a sensitivity of 86%, a specificity of 71%. When a cut-off value of 2.92 was applied to the validation dataset, it showed an accuracy of 92%, a sensitivity of 98%, and a specificity of 70%. CONCLUSION GLCM entropy on ADC map was associated with GS in patients with PCa and its estimated accuracy for discriminating CSC from non-CSC was 82%.
Collapse
Affiliation(s)
- Tae Wook Baek
- Department of Radiology, Haeundae Paik Hospital, Inje University College of Medicine, Haeundae-ro 875, Haeundae-gu, Busan, 48108, Korea
| | - Seung Ho Kim
- Department of Radiology, Haeundae Paik Hospital, Inje University College of Medicine, Haeundae-ro 875, Haeundae-gu, Busan, 48108, Korea.
| | - Sang Joon Park
- Department of Radiology, Seoul National University Hospital, Daehak-ro 101, Jongno-gu, Seoul, 03080, Korea
| | - Eun Joo Park
- Department of Radiology, Haeundae Paik Hospital, Inje University College of Medicine, Haeundae-ro 875, Haeundae-gu, Busan, 48108, Korea
| |
Collapse
|
29
|
Ramachandran A, Srivastava DN, Madhusudhan KS. Gallbladder cancer revisited: the evolving role of a radiologist. Br J Radiol 2020; 94:20200726. [PMID: 33090880 DOI: 10.1259/bjr.20200726] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Gallbladder cancer is the most common malignancy of the biliary tract. It is also the most aggressive biliary tumor with the shortest median survival duration. Complete surgical resection, the only potentially curative treatment, can be accomplished only in those patients who are diagnosed at an early stage of the disease. Majority (90%) of the patients present at an advanced stage and the management involves a multidisciplinary approach. The role of imaging in gallbladder cancer cannot be overemphasized. Imaging is crucial not only in detecting, staging, and planning management but also in guiding radiological interventions. This article discusses the role of a radiologist in the diagnosis and management of gallbladder cancer.
Collapse
Affiliation(s)
- Anupama Ramachandran
- Department of Radiodiagnosis, All India Institute of Medical Sciences, New Delhi, India
| | | | | |
Collapse
|
30
|
Taskin OC, Basturk O, Reid MD, Dursun N, Bagci P, Saka B, Balci S, Memis B, Bellolio E, Araya JC, Roa JC, Tapia O, Losada H, Sarmiento J, Jang KT, Jang JY, Pehlivanoglu B, Erkan M, Adsay V. Gallbladder polyps: Correlation of size and clinicopathologic characteristics based on updated definitions. PLoS One 2020; 15:e0237979. [PMID: 32915805 PMCID: PMC7485812 DOI: 10.1371/journal.pone.0237979] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 08/06/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Different perspectives exist regarding the clinicopathologic characteristics, biology and management of gallbladder polyps. Size is often used as the surrogate evidence of polyp behavior and size of ≥1cm is widely used as cholecystectomy indication. Most studies on this issue are based on the pathologic correlation of polyps clinically selected for resection, whereas, the data regarding the nature of polypoid lesions from pathology perspective -regardless of the cholecystectomy indication- is highly limited. METHODS In this study, 4231 gallbladders -606 of which had gallbladder carcinoma- were reviewed carefully pathologically by the authors for polyps (defined as ≥2 mm). Separately, the cases that were diagnosed as "gallbladder polyps" in the surgical pathology databases were retrieved. RESULTS 643 polyps identified accordingly were re-evaluated histopathologically. Mean age of all patients was 55 years (range: 20-94); mean polyp size was 9 mm. Among these 643 polyps, 223 (34.6%) were neoplastic: I. Non-neoplastic polyps (n = 420; 65.4%) were smaller (mean: 4.1 mm), occurred in younger patients (mean: 52 years). This group consisted of fibromyoglandular polyps (n = 196) per the updated classification, cholesterol polyps (n = 166), polypoid pyloric gland metaplasia (n = 41) and inflammatory polyps (n = 17). II. Neoplastic polyps were larger (mean: 21 mm), detected in older patients (mean: 61 years) and consisted of intra-cholecystic neoplasms (WHO's "adenomas" and "intracholecystic papillary neoplasms", ≥1 cm; n = 120), their "incipient" version (<1 cm) (n = 44), polypoid invasive carcinomas (n = 26) and non-neoplastic polyps with incidental dysplastic changes (n = 33). In terms of size cut-off correlations, overall, only 27% of polyps were ≥1 cm, 90% of which were neoplastic. All (except for one) ≥2 cm were neoplastic. However, 14% of polyps <1 cm were also neoplastic. Positive predictive value of ≥1 cm cut-off -which is widely used for cholecystectomy indication-, was 94.3% and negative predictive value was 85%. CONCLUSIONS Approximately a third of polypoid lesions in the cholecystectomies (regardless of the indication) prove to be neoplastic. The vast majority of (90%) of polyps ≥1 cm and virtually all of those ≥2 cm are neoplastic confirming the current impression that polyps ≥1 cm ought to be removed. However, this study also illustrates that 30% of the neoplastic polyps are <1 cm and therefore small polyps should also be closely watched, especially in older patients.
Collapse
Affiliation(s)
- Orhun C. Taskin
- Department of Pathology and Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey
| | - Olca Basturk
- Memorial Sloan Kettering Cancer Center, Department of Pathology, New York, NY, United States of America
| | - Michelle D. Reid
- Department of Pathology, Emory University, Atlanta, GA, United States of America
| | - Nevra Dursun
- Department of Pathology, Istanbul Research and Training Hospital, Istanbul, Turkey
| | - Pelin Bagci
- Department of Pathology, Marmara University Pendik Research and Training Hospital, Istanbul, Turkey
| | - Burcu Saka
- Department of Pathology, Medipol University, Istanbul, Turkey
| | - Serdar Balci
- Department of Pathology, Emory University, Atlanta, GA, United States of America
| | - Bahar Memis
- Department of Pathology, Şişli Hamidiye Etfal Training and Research Hospital, Istanbul, Turkey
| | - Enrique Bellolio
- Anatomic Pathology Department, Universidad de La Frontera, Temuco, Chile
| | - Juan Carlos Araya
- Department of Pathology, Hospital Dr. Hernan Henriquez Aravena, Temuco, Chile
| | - Juan Carlos Roa
- Department of Pathology, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Oscar Tapia
- Department of Pathology, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Hector Losada
- Department of Surgery and Traumatology, Universidad de La Frontera, Temuco, Chile
| | - Juan Sarmiento
- Department of Surgery, Emory University, Atlanta, GA, United States of America
| | - Kee-Taek Jang
- Department of Pathology, Emory University, Atlanta, GA, United States of America
| | - Jin-Young Jang
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Burcin Pehlivanoglu
- Department of Pathology, Adiyaman Training and Research Hospital, Adiyaman, Turkey
| | - Mert Erkan
- Department of Surgery and Research Center for Translational Medicine (KUTTAM), Koç University Hospital, Istanbul, Turkey
| | - Volkan Adsay
- Department of Pathology and Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey
| |
Collapse
|
31
|
Analysis of risk factors for gallbladder polyp formation - A retrospective study based on serial ultrasounds. Eur J Gastroenterol Hepatol 2020; 32:1154-1159. [PMID: 32541237 DOI: 10.1097/meg.0000000000001814] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
AIM To evaluate gallbladder polyp (GBP) formation related risk factors based on serial ultrasounds (US). METHODS Risk factors related GBP formation were retrospectively investigated among participants, who had US reexamination and interval >180 days in 5 years. After groups were divided based on US, we compared final data and initial data in GBP new incidence group. Then compared the data in GBP new incidence group and GBP(-) group. RESULTS Overall 20 447 participants were recruited, including 18 243 in GBP (-) group and 2204 in GBP group. The mean diameters of polyps were 0.455 ± 0.198 mm in initial and 0.420 ± 0.180 mm in final examination. GBP new incidence group included 797 participants. Percentage of GBP new incidence participants was higher than GBP resolved (36.16% vs. 11.71%). Participants in middle age were more likely have GBP size increase or new incidence, and participants in old age (≥60 years old) were with GBP size decrease or resolved. In GBP new incidence group, participants in final US showed higher FBG, higher LDL, lower HDL, higher ALT and higher AST than initial US. Compared with GBP (-) group and, same risk factors, in addition with age, were shown in GBP new incidence group, Logistic regression analysis show that higher LDL, lower HDL and higher AST were risk factors for GBP formation. CONCLUSION Participants in middle age were more likely to have GBP new incidence. Higher LDL, lower HDL and higher AST were independently risk factors for GBP formation.
Collapse
|
32
|
Yu MH, Kim YJ, Park HS, Jung SI. Benign gallbladder diseases: Imaging techniques and tips for differentiating with malignant gallbladder diseases. World J Gastroenterol 2020; 26:2967-2986. [PMID: 32587442 PMCID: PMC7304100 DOI: 10.3748/wjg.v26.i22.2967] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/27/2020] [Accepted: 05/26/2020] [Indexed: 02/06/2023] Open
Abstract
Benign gallbladder diseases usually present with intraluminal lesions and localized or diffuse wall thickening. Intraluminal lesions of the gallbladder include gallstones, cholesterol polyps, adenomas, or sludge and polypoid type of gallbladder cancer must subsequently be excluded. Polyp size, stalk width, and enhancement intensity on contrast-enhanced ultrasound and degree of diffusion restriction may help differentiate cholesterol polyps and adenomas from gallbladder cancer. Localized gallbladder wall thickening is largely due to segmental or focal gallbladder adenomyomatosis, although infiltrative cancer may present similarly. Identification of Rokitansky-Aschoff sinuses is pivotal in diagnosing adenomyomatosis. The layered pattern, degree of enhancement, and integrity of the wall are imaging clues that help discriminate innocuous thickening from gallbladder cancer. High-resolution ultrasound is especially useful for analyzing the layering of gallbladder wall. A diffusely thickened wall is frequently seen in inflammatory processes of the gallbladder. Nevertheless, it is important to check for coexistent cancer in instances of acute cholecystitis. Ultrasound used alone is limited in evaluating complicated cholecystitis and often requires complementary computed tomography. In chronic cholecystitis, preservation of a two-layered wall and weak wall enhancement are diagnostic clues for excluding malignancy. Magnetic resonance imaging in conjunction with diffusion-weighted imaging helps to differentiate xathogranulomatous cholecystitis from gallbladder cancer by identifying the presence of fat and degree of diffusion restriction. Such distinctions require a familiarity with typical imaging features of various gallbladder diseases and an understanding of the roles that assorted imaging modalities play in gallbladder evaluations.
Collapse
Affiliation(s)
- Mi Hye Yu
- Department of Radiology, Konkuk University Medical Center, Konkuk University School of Medicine, 120-1 Neungdong-ro, Gwangjin-gu, Seoul 05030, South Korea
| | - Young Jun Kim
- Department of Radiology, Konkuk University Medical Center, Konkuk University School of Medicine, 120-1 Neungdong-ro, Gwangjin-gu, Seoul 05030, South Korea
| | - Hee Sun Park
- Department of Radiology, Konkuk University Medical Center, Konkuk University School of Medicine, 120-1 Neungdong-ro, Gwangjin-gu, Seoul 05030, South Korea
| | - Sung Il Jung
- Department of Radiology, Konkuk University Medical Center, Konkuk University School of Medicine, 120-1 Neungdong-ro, Gwangjin-gu, Seoul 05030, South Korea
| |
Collapse
|
33
|
Jeong Y, Kim JH, Chae HD, Park SJ, Bae JS, Joo I, Han JK. Deep learning-based decision support system for the diagnosis of neoplastic gallbladder polyps on ultrasonography: Preliminary results. Sci Rep 2020; 10:7700. [PMID: 32382062 PMCID: PMC7205977 DOI: 10.1038/s41598-020-64205-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 04/06/2020] [Indexed: 11/09/2022] Open
Abstract
Ultrasonography (US) has been considered image of choice for gallbladder (GB) polyp, however, it had limitations in differentiating between nonneoplastic polyps and neoplastic polyps. We developed and investigated the usefulness of a deep learning-based decision support system (DL-DSS) for the differential diagnosis of GB polyps on US. We retrospectively collected 535 patients, and they were divided into the development dataset (n = 437) and test dataset (n = 98). The binary classification convolutional neural network model was developed by transfer learning. Using the test dataset, three radiologists with different experience levels retrospectively graded the possibility of a neoplastic polyp using a 5-point confidence scale. The reviewers were requested to re-evaluate their grades using the DL-DSS assistant. The areas under the curve (AUCs) of three reviewers were 0.94, 0.78, and 0.87. The DL-DSS alone showed an AUC of 0.92. With the DL-DSS assistant, the AUCs of the reviewer’s improved to 0.95, 0.91, and 0.91. Also, the specificity of the reviewers was improved (65.1–85.7 to 71.4–93.7). The intraclass correlation coefficient (ICC) improved from 0.87 to 0.93. In conclusion, DL-DSS could be used as an assistant tool to decrease the gap between reviewers and to reduce the false positive rate.
Collapse
Affiliation(s)
- Younbeom Jeong
- Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Jung Hoon Kim
- Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea. .,Department of Radiology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Korea. .,Institute of Radiation Medicine, Seoul National University Medical Research Center, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
| | - Hee-Dong Chae
- Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea. .,Department of Radiology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Korea.
| | - Sae-Jin Park
- Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea.,Department of Radiology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Jae Seok Bae
- Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea.,Department of Radiology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Ijin Joo
- Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea.,Department of Radiology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Joon Koo Han
- Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea.,Department of Radiology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Korea.,Institute of Radiation Medicine, Seoul National University Medical Research Center, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| |
Collapse
|
34
|
Lee SB, Lee Y, Kim SJ, Yoon JH, Kim SH, Kim SJ, Jung HK, Hahn S, Baek HJ. Intraobserver and interobserver reliability in sonographic size measurements of gallbladder polyps. Eur Radiol 2020; 30:206-212. [PMID: 31399751 DOI: 10.1007/s00330-019-06385-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/16/2019] [Accepted: 07/19/2019] [Indexed: 11/30/2022]
Abstract
OBJECTIVES To evaluate the intraobserver and interobserver reliability of gallbladder polyp measurements using transabdominal US and the factors that affect reliability. METHODS From November 2017 to February 2018, two radiologists measured the maximum diameter of 91 gallbladder polyps using transabdominal US. Intraobserver and interobserver agreement were determined using 95% Bland-Altman limits of agreement and intraclass correlation coefficients (ICCs). The effects of image settings, polyp location, and polyp size were evaluated by comparing ICCs using z tests. RESULTS The intraobserver agreement rates were 0.960 (95% confidence interval [CI], 0.939-0.973) for observer 1 and 0.962 (95% CI, 0.943-0.975) for observer 2. The ICCs between the two observers were 0.963 (95% CI, 0.926-0.979) for the first measurement and 0.973 (95% CI, 0.950-0.984) for the second measurement. The 95% limits of agreement on repeated measurements were 22.3-25.2% of the mean, and those between the two observers were 25.5-34.2% of the mean. ICCs for large polyps (≥ 5 mm) were significantly higher than those for small polyps (< 5 mm). There were no significant differences in the ICCs between image settings and polyp location. CONCLUSIONS Polyp size measurements using transabdominal US are highly repeatable and reproducible. Polyp size significantly affects the reliability of measurement. Diameter changes of approximately less than 25% may fall within the measurement error; this should be considered while interpreting the change in size during follow-up US, especially for small polyps. KEY POINTS • Gallbladder polyp size measurement using transabdominal US is highly repeatable and reproducible. • Diameter changes of approximately less than 25% should be interpreted carefully, especially in small polyps.
Collapse
Affiliation(s)
- Seul Bi Lee
- Department of Radiology, Inje University College of Medicine, Haeundae Paik Hospital, Haeundae-ro 875, Haeundae-gu, Busan, Republic of Korea.,Department of Radiology, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, Republic of Korea
| | - Yedaun Lee
- Department of Radiology, Inje University College of Medicine, Haeundae Paik Hospital, Haeundae-ro 875, Haeundae-gu, Busan, Republic of Korea.
| | - Seung Jin Kim
- Department of Radiology, Inje University College of Medicine, Haeundae Paik Hospital, Haeundae-ro 875, Haeundae-gu, Busan, Republic of Korea
| | - Jung Hee Yoon
- Department of Radiology, Inje University College of Medicine, Haeundae Paik Hospital, Haeundae-ro 875, Haeundae-gu, Busan, Republic of Korea
| | - Seung Ho Kim
- Department of Radiology, Inje University College of Medicine, Haeundae Paik Hospital, Haeundae-ro 875, Haeundae-gu, Busan, Republic of Korea
| | - Suk Jung Kim
- Department of Radiology, Inje University College of Medicine, Haeundae Paik Hospital, Haeundae-ro 875, Haeundae-gu, Busan, Republic of Korea
| | - Hyun Kyung Jung
- Department of Radiology, Inje University College of Medicine, Haeundae Paik Hospital, Haeundae-ro 875, Haeundae-gu, Busan, Republic of Korea
| | - Seok Hahn
- Department of Radiology, Inje University College of Medicine, Haeundae Paik Hospital, Haeundae-ro 875, Haeundae-gu, Busan, Republic of Korea
| | - Hye Jin Baek
- Department of Radiology, Gyeongsang National University School of Medicine and Gyeongsang National University Changwon Hospital, Changwon, Republic of Korea
| |
Collapse
|
35
|
Cross-sectional Imaging of Gallbladder Carcinoma: An Update. J Clin Exp Hepatol 2019; 9:334-344. [PMID: 31360026 PMCID: PMC6637089 DOI: 10.1016/j.jceh.2018.04.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 04/20/2018] [Indexed: 02/06/2023] Open
Abstract
Gallbladder Carcinoma (GBCA) is the most common biliary tract malignancy. As the disease is often diagnosed clinically in an advanced stage, the survival rates are dismal. Imaging studies allow for an early diagnosis of malignancy, though the findings may be indistinguishable from non-malignant disease processes affecting the gallbladder. Attempts have been made to make a specific diagnosis of GBCA at an early stage on imaging studies. Ultrasonography (US) is the most commonly employed technique for gallbladder evaluation. Gallbladder wall thickening is the most common finding of early GBCA and in this context, US is non-specific. Recently, contrast enhanced ultrasound has been shown to be effective in differentiating benign from malignant disease. Multidetector computed tomography represents the most robust imaging technique in evaluation of GBCA. It provides relatively sensitive evaluation of mural thickening, though it is not entirely specific and issues in differentiating GBCA from xanthogranulomatous cholecystitis do arise. Due to its superior soft tissue resolution, Magnetic Resonance Imaging (MRI) provides excellent delineation of gallbladder and biliary tree involvement. When coupled with functional MRI techniques, such as diffusion-weighted and perfusion imaging, it provides a useful problem solving tool for interrogating the malignant potential of nonspecific gallbladder lesions and detection of metastases. Positron emission tomography has a role in detection of distant metastases and following patients following treatment for malignancy. We review the current role of various imaging modalities in evaluating patients with GBCA.
Collapse
|