1
|
Sen P, Hamers J, Sittig T, Shashikadze B, d'Ambrosio L, Stöckl JB, Bierschenk S, Zhang H, d'Alessio C, Zandbergen LM, Pauly V, Clauss S, Wolf E, Dendorfer A, Fröhlich T, Merkus D. Oxidative stress initiates hemodynamic change in CKD-induced heart disease. Basic Res Cardiol 2024; 119:957-971. [PMID: 39404904 PMCID: PMC11628585 DOI: 10.1007/s00395-024-01085-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 12/10/2024]
Abstract
Chronic kidney disease (CKD) predisposes to cardiac remodeling and coronary microvascular dysfunction. Studies in swine identified changes in microvascular structure and function, as well as changes in mitochondrial structure and oxidative stress. However, CKD was combined with metabolic derangement, thereby obscuring the contribution of CKD alone. Therefore, we studied the impact of CKD on the heart and combined proteome studies with measurement of cardiac function and perfusion to identify processes involved in cardiac remodeling in CKD. CKD was induced in swine at 10-12 weeks of age while sham-operated swine served as controls. 5-6 months later, left ventricular (LV) function and coronary flow reserve were measured. LC-MS-MS-based proteomic analysis of LV tissue was performed. LV myocardium and kidneys were histologically examined for interstitial fibrosis and oxidative stress. Renal embolization resulted in mild chronic kidney injury (increased fibrosis and urinary NGAL). PV loops showed LV dilation and increased wall stress, while preload recruitable stroke work was impaired in CKD. Quantitative proteomic analysis of LV myocardium and STRING pre-ranked functional analysis showed enrichments in pathways related to contractile function, reactive oxygen species, and extracellular matrix (ECM) remodeling, which were confirmed histologically and associated with impaired total anti-oxidant capacity. H2O2 exposure of myocardial slices from CKD, but not normal swine, impaired contractile function. Furthermore, in CKD, mitochondrial proteins were downregulated suggesting mitochondrial dysfunction which was associated with higher basal coronary blood flow. Thus, mild CKD induces alterations in mitochondrial proteins along with contractile proteins, oxidative stress and ECM remodeling, that were associated with changes in cardiac function and perfusion.
Collapse
Affiliation(s)
- Payel Sen
- Institute for Surgical Research, Walter Brendel Center of Experimental Medicine, University Clinic Munich, LMU Munich, Marchioninistrasse 68, 81377, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance (MHA), Partner Site Munich, Munich, Germany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU), LMU Munich, Munich, Germany
| | - Jules Hamers
- Institute for Surgical Research, Walter Brendel Center of Experimental Medicine, University Clinic Munich, LMU Munich, Marchioninistrasse 68, 81377, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance (MHA), Partner Site Munich, Munich, Germany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU), LMU Munich, Munich, Germany
| | - Theresa Sittig
- Institute for Surgical Research, Walter Brendel Center of Experimental Medicine, University Clinic Munich, LMU Munich, Marchioninistrasse 68, 81377, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance (MHA), Partner Site Munich, Munich, Germany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU), LMU Munich, Munich, Germany
| | | | - Laura d'Ambrosio
- Institute for Surgical Research, Walter Brendel Center of Experimental Medicine, University Clinic Munich, LMU Munich, Marchioninistrasse 68, 81377, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance (MHA), Partner Site Munich, Munich, Germany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU), LMU Munich, Munich, Germany
| | | | - Susanne Bierschenk
- Institute for Surgical Research, Walter Brendel Center of Experimental Medicine, University Clinic Munich, LMU Munich, Marchioninistrasse 68, 81377, Munich, Germany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU), LMU Munich, Munich, Germany
| | - Hengliang Zhang
- Institute for Surgical Research, Walter Brendel Center of Experimental Medicine, University Clinic Munich, LMU Munich, Marchioninistrasse 68, 81377, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance (MHA), Partner Site Munich, Munich, Germany
| | - Chiara d'Alessio
- Institute for Surgical Research, Walter Brendel Center of Experimental Medicine, University Clinic Munich, LMU Munich, Marchioninistrasse 68, 81377, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance (MHA), Partner Site Munich, Munich, Germany
| | - Lotte M Zandbergen
- Institute for Surgical Research, Walter Brendel Center of Experimental Medicine, University Clinic Munich, LMU Munich, Marchioninistrasse 68, 81377, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance (MHA), Partner Site Munich, Munich, Germany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU), LMU Munich, Munich, Germany
- Department of Cardiology, Erasmus MC, Rotterdam, The Netherlands
| | - Valerie Pauly
- Institute for Surgical Research, Walter Brendel Center of Experimental Medicine, University Clinic Munich, LMU Munich, Marchioninistrasse 68, 81377, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance (MHA), Partner Site Munich, Munich, Germany
- Department of Medicine I, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU), LMU Munich, Munich, Germany
| | - Sebastian Clauss
- Institute for Surgical Research, Walter Brendel Center of Experimental Medicine, University Clinic Munich, LMU Munich, Marchioninistrasse 68, 81377, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance (MHA), Partner Site Munich, Munich, Germany
- Department of Medicine I, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU), LMU Munich, Munich, Germany
| | | | - Andreas Dendorfer
- Institute for Surgical Research, Walter Brendel Center of Experimental Medicine, University Clinic Munich, LMU Munich, Marchioninistrasse 68, 81377, Munich, Germany
| | | | - Daphne Merkus
- Institute for Surgical Research, Walter Brendel Center of Experimental Medicine, University Clinic Munich, LMU Munich, Marchioninistrasse 68, 81377, Munich, Germany.
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance (MHA), Partner Site Munich, Munich, Germany.
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU), LMU Munich, Munich, Germany.
- Department of Cardiology, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
2
|
Gan Z, van der Stelt I, Li W, Hu L, Song J, Grefte S, van de Westerlo E, Zhang D, van Schothorst EM, Claahsen-van der Grinten HL, Teerds KJ, Adjobo-Hermans MJW, Keijer J, Koopman WJH. Mitochondrial Nicotinamide Nucleotide Transhydrogenase: Role in Energy Metabolism, Redox Homeostasis, and Cancer. Antioxid Redox Signal 2024; 41:927-956. [PMID: 39585234 DOI: 10.1089/ars.2024.0694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Significance: Dimeric nicotinamide nucleotide transhydrogenase (NNT) is embedded in the mitochondrial inner membrane and couples the conversion of NADP+/NADH into NADPH/NAD+ to mitochondrial matrix proton influx. NNT was implied in various cancers, but its physiological role and regulation still remain incompletely understood. Recent Advances: NNT function was analyzed by studying: (1) NNT gene mutations in human (adrenal) glucocorticoid deficiency 4 (GCCD4), (2) Nnt gene mutation in C57BL/6J mice, and (3) the effect of NNT knockdown/overexpression in (cancer) cells. In these three models, altered NNT function induced both common and differential aberrations. Critical Issues: Information on NNT protein expression in GCCD4 patients is still scarce. Moreover, NNT expression levels are tissue-specific in humans and mice and the functional consequences of NNT deficiency strongly depend on experimental conditions. In addition, data from intact cells and isolated mitochondria are often unsuited for direct comparison. This prevents a proper understanding of NNT-linked (patho)physiology in GCCD4 patients, C57BL/6J mice, and cancer (cell) models, which complicates translational comparison. Future Directions: Development of mice with conditional NNT deletion, cell-reprogramming-based adrenal (organoid) models harboring specific NNT mutations, and/or NNT-specific chemical inhibitors/activators would be useful. Moreover, live-cell analysis of NNT substrate levels and mitochondrial/cellular functioning with fluorescent reporter molecules might provide novel insights into the conditions under which NNT is active and how this activity links to other metabolic and signaling pathways. This would also allow a better dissection of local signaling and/or compartment-specific (i.e., mitochondrial matrix, cytosol, nucleus) effects of NNT (dys)function in a cellular context. Antioxid. Redox Signal. 41, 927-956.
Collapse
Affiliation(s)
- Zhuohui Gan
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Inge van der Stelt
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Weiwei Li
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Liangyu Hu
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Jingyi Song
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Sander Grefte
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Els van de Westerlo
- Department of Medical BioSciences, Radboudumc, Nijmegen, The Netherlands
- Radboud Center for Mitochondrial Medicine, Radboudumc, Nijmegen, The Netherlands
| | - Deli Zhang
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | | | | | - Katja J Teerds
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Merel J W Adjobo-Hermans
- Department of Medical BioSciences, Radboudumc, Nijmegen, The Netherlands
- Radboud Center for Mitochondrial Medicine, Radboudumc, Nijmegen, The Netherlands
| | - Jaap Keijer
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Werner J H Koopman
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
- Radboud Center for Mitochondrial Medicine, Radboudumc, Nijmegen, The Netherlands
- Department of Pediatrics, Amalia Children's Hospital, Radboudumc, Nijmegen, The Netherlands
| |
Collapse
|
3
|
Francisco A, Figueira TR, Castilho RF. Mitochondrial NAD(P) + Transhydrogenase: From Molecular Features to Physiology and Disease. Antioxid Redox Signal 2022; 36:864-884. [PMID: 34155914 DOI: 10.1089/ars.2021.0111] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Significance: Proton-translocating NAD(P)+ transhydrogenase, also known as nicotinamide nucleotide transhydrogenase (NNT), catalyzes a reversible reaction coupling the protonmotive force across the inner mitochondrial membrane and hydride (H-, a proton plus two electrons) transfer between the mitochondrial pools of NAD(H) and NADP(H). The forward NNT reaction is a source of NADPH in the mitochondrial matrix, fueling antioxidant and biosynthetic pathways with reductive potential. Despite the greater emphasis given to the net forward reaction, the reverse NNT reaction that oxidizes NADPH also occurs in physiological and pathological conditions. Recent Advances: NNT (dys)function has been linked to various metabolic pathways and disease phenotypes. Most of these findings have been based on spontaneous loss-of-function Nnt mutations found in the C57BL/6J mouse strain (NntC57BL/6J mutation) and disease-causing Nnt mutations in humans. The present review focuses on recent advances based on the mouse NntC57BL/6J mutation. Critical Issues: Most studies associating NNT function with disease phenotypes have been based on comparisons between different strains of inbred mice (with or without the NntC57BL/6J mutation), which creates uncertainties over the actual contribution of NNT in the context of other potential genetic modifiers. Future Directions: Future research might contribute to understanding the role of NNT in pathological conditions and elucidate how NNT regulates physiological signaling through its forward and reverse reactions. The importance of NNT in redox balance and tumor cell proliferation makes it a potential target of new therapeutic strategies for oxidative-stress-mediated diseases and cancer. Antioxid. Redox Signal. 36, 864-884.
Collapse
Affiliation(s)
- Annelise Francisco
- Department of Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Tiago Rezende Figueira
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Roger Frigério Castilho
- Department of Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
4
|
Long-Term Follow-Up of Three Family Members with a Novel NNT Pathogenic Variant Causing Primary Adrenal Insufficiency. Genes (Basel) 2022; 13:genes13050717. [PMID: 35627102 PMCID: PMC9140979 DOI: 10.3390/genes13050717] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/14/2022] [Accepted: 04/18/2022] [Indexed: 11/16/2022] Open
Abstract
Nicotinamide nucleotide transhydrogenase (NNT) deficiency causes primary adrenal insufficiency (PAI) and possibly some extra-adrenal manifestations. A limited number of these patients were previously described. We present the clinical and genetic characteristics of three family members with a biallelic novel pathogenic variant in the NNT gene. The patients were followed until the ages of 21.6, 20.2, and 4.2 years. PAI was diagnosed in the eldest two brothers after an Addisonian crisis and the third was diagnosed at the age of 4.5 months in the asymptomatic stage due to the genetic screening of family members. Whole exome sequencing with a targeted interpretation of variants in genes related to PAI was performed in all the patients. The urinary steroid metabolome was determined by gas chromatography–mass spectrometry in the asymptomatic patient. The three patients, who were homozygous for c.1575dup in the NNT gene, developed isolated glucocorticoid deficiency. The urinary steroid metabolome showed normal excretion of cortisol metabolites. The adolescent patients had slow pubertal progression with low–normal testicular volume, while testicular endocrine function was normal. Bone mineral density was in the range for osteopenia in both grown-up siblings. Echocardiography revealed no structural or functional heart abnormalities. This article is among the first with a comprehensive and chronologically-detailed description of patients with NNT deficiency.
Collapse
|
5
|
Close AF, Chae H, Jonas JC. The lack of functional nicotinamide nucleotide transhydrogenase only moderately contributes to the impairment of glucose tolerance and glucose-stimulated insulin secretion in C57BL/6J vs C57BL/6N mice. Diabetologia 2021; 64:2550-2561. [PMID: 34448880 DOI: 10.1007/s00125-021-05548-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/26/2021] [Indexed: 12/31/2022]
Abstract
AIMS/HYPOTHESIS Nicotinamide nucleotide transhydrogenase (NNT) is involved in mitochondrial NADPH production and its spontaneous inactivating mutation (NntTr [Tr, truncated]) is usually considered to be the main cause of the lower glucose tolerance of C57BL/6J vs C57BL/6N mice. However, the impact of this mutation on glucose tolerance remains disputed. Here, we singled out the impact of NntTr from that of other genetic variants between C57BL/6J and C57BL/6N mice on mitochondrial glutathione redox state (EGSH), glucose-stimulated insulin secretion (GSIS) and glucose tolerance. METHODS Male and female N5BL/6J mice that express wild-type Nnt (NntWT) or NntTr (N5-WT and N5-Tr mice) on the C57BL/6J genetic background were obtained by crossing N5BL/6J NntWT/Tr heterozygous mice. C57BL/6J and C57BL/6N mice were from Janvier Labs. The Nnt genotype was confirmed by PCR and the genetic background by whole genome sequencing of one mouse of each type. Glucose tolerance was assessed by IPGTT, ITT and fasting/refeeding tests. Stimulus-secretion coupling events and GSIS were measured in isolated pancreatic islets. Cytosolic and mitochondrial EGSH were measured using the fluorescent redox probe GRX1-roGFP2 (glutaredoxin 1 fused to redox-sensitive enhanced GFP). RESULTS The Nnt genotype and genetic background of each type of mouse were confirmed. As reported previously in C57BL/6N vs C57BL/6J islets, the glucose regulation of mitochondrial (but not cytosolic) EGSH and of NAD(P)H autofluorescence was markedly improved in N5-WT vs N5-Tr islets, confirming the role of NNT in mitochondrial redox regulation. However, ex vivo GSIS was only 1.2-1.4-times higher in N5-WT vs N5-Tr islets, while it was 2.4-times larger in C57BL/6N vs N5-WT islets, questioning the role of NNT in GSIS. In vivo, the ITT results did not differ between N5-WT and N5-Tr or C57BL/6N mice. However, the glucose excursion during an IPGTT was only 15-20% lower in female N5-WT mice than in N5-Tr and C57BL/6J mice and remained 3.5-times larger than in female C57BL/6N mice. Similar observations were made during a fasting/refeeding test. A slightly larger (~30%) impact of NNT on glucose tolerance was found in males. CONCLUSIONS/INTERPRETATION Although our results confirm the importance of NNT in the regulation of mitochondrial redox state by glucose, they markedly downsize the role of NNT in the alteration of GSIS and glucose tolerance in C57BL/6J vs C57BL/6N mice. Therefore, documenting an NntWT genotype in C57BL/6 mice does not provide proof that their glucose tolerance is as good as in C57BL/6N mice.
Collapse
Affiliation(s)
- Anne-Françoise Close
- Secteur des sciences de la santé, Institut de recherche expérimentale et clinique, Pôle d'endocrinologie, diabète et nutrition, Université catholique de Louvain, Brussels, Belgium
| | - Heeyoung Chae
- Secteur des sciences de la santé, Institut de recherche expérimentale et clinique, Pôle d'endocrinologie, diabète et nutrition, Université catholique de Louvain, Brussels, Belgium
| | - Jean-Christophe Jonas
- Secteur des sciences de la santé, Institut de recherche expérimentale et clinique, Pôle d'endocrinologie, diabète et nutrition, Université catholique de Louvain, Brussels, Belgium.
| |
Collapse
|
6
|
Yan X, Hu Y, Wang B, Wang S, Zhang X. Metabolic Dysregulation Contributes to the Progression of Alzheimer's Disease. Front Neurosci 2020; 14:530219. [PMID: 33250703 PMCID: PMC7674854 DOI: 10.3389/fnins.2020.530219] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 09/25/2020] [Indexed: 12/15/2022] Open
Abstract
Alzheimer's disease (AD) is an incurable neurodegenerative disease. Numerous studies have demonstrated a critical role for dysregulated glucose metabolism in its pathogenesis. In this review, we summarize metabolic alterations in aging brain and AD-related metabolic deficits associated with glucose metabolism dysregulation, glycolysis dysfunction, tricarboxylic acid (TCA) cycle, oxidative phosphorylation (OXPHOS) deficits, and pentose phosphate pathway impairment. Additionally, we discuss recent treatment strategies targeting metabolic defects in AD, including their limitations, in an effort to encourage the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Xu Yan
- The VIP Department, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Yue Hu
- The VIP Department, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Biyao Wang
- The VIP Department, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Sijian Wang
- Center of Implant Dentistry, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Xinwen Zhang
- Center of Implant Dentistry, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| |
Collapse
|
7
|
Eagleson KL, Villaneuva M, Southern RM, Levitt P. Proteomic and mitochondrial adaptations to early-life stress are distinct in juveniles and adults. Neurobiol Stress 2020; 13:100251. [PMID: 33344706 PMCID: PMC7739184 DOI: 10.1016/j.ynstr.2020.100251] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/02/2020] [Accepted: 09/10/2020] [Indexed: 12/26/2022] Open
Abstract
Exposure to early-life stress (ELS) increases risk for poor mental and physical health outcomes that emerge at different stages across the lifespan. Yet, how age interacts with ELS to impact the expression of specific phenotypes remains largely unknown. An established limited-bedding paradigm was used to induce ELS in mouse pups over the early postnatal period. Initial analyses focused on the hippocampus, based on documented sensitivity to ELS in humans and various animal models, and the large body of data reporting anatomical and physiological outcomes in this structure using this ELS paradigm. An unbiased discovery proteomics approach revealed distinct adaptations in the non-nuclear hippocampal proteome in male versus female offspring at two distinct developmental stages: juvenile and adult. Gene ontology and KEGG pathway analyses revealed significant enrichment in proteins associated with mitochondria and the oxidative phosphorylation (OXPHOS) pathway in response to ELS in female hippocampus only. To determine whether the protein adaptations to ELS reflected altered function, mitochondrial respiration (driven through complexes II-IV) and complex I activity were measured in isolated hippocampal mitochondria using a Seahorse X96 Flux analyzer and immunocapture ELISA, respectively. ELS had no effect on basal respiration in either sex at either age. In contrast, ELS increased OXPHOS capacity in juvenile males and females, and reduced OXPHOS capacity in adult females but not adult males. A similar pattern of ELS-induced changes was observed for complex I activity. These data suggest that initial adaptations in juvenile hippocampus due to ELS were not sustained in adults. Mitochondrial adaptations to ELS were also exhibited peripherally by liver. Overall, the temporal distinctions in mitochondrial responses to ELS show that ELS-generated adaptations and outcomes are complex over the lifespan. This may contribute to differences in the timing of appearance of mental and physical disturbances, as well as potential sex differences that influence only select outcomes.
Collapse
Key Words
- AA, antimycin A
- ADP, adenosine diphosphate
- CI, confidence interval
- Complex I activity
- ELS, early-life stress
- Early-life stress
- FCCP, carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone
- GO, gene ontology
- HCD, high energy C-trap dissociation
- Hippocampus
- Liver
- MS/MS, tandem mass spectrometry
- Mitochondrial respiration
- OCR, oxygen consumption rate
- OXPHOS, oxidative phosphorylation
- P, postnatal day
- Proteomics
- SCX, strong cation exchange
- iTRAQ, isobaric tag for relative and absolute quantitation
- oligo, oligomycin
Collapse
Affiliation(s)
- Kathie L. Eagleson
- Department of Pediatrics and Program in Developmental Neuroscience and Neurogenetics, USA
- The Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Miranda Villaneuva
- The Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Rebecca M. Southern
- The Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Pat Levitt
- Department of Pediatrics and Program in Developmental Neuroscience and Neurogenetics, USA
- The Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
8
|
Muresanu C, Somasundaram SG, Neganova ME, Bovina EV, Vissarionov SV, Ofodile ON, Fisenko VP, Bragin V, Minyaeva NN, Chubarev VN, Klochkov SG, Tarasov VV, Mikhaleva LM, Kirkland CE, Aliev G. Updated Understanding of the Degenerative Disc Diseases - Causes Versus Effects - Treatments, Studies and Hypothesis. Curr Genomics 2020; 21:464-477. [PMID: 33093808 PMCID: PMC7536794 DOI: 10.2174/1389202921999200407082315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/20/2019] [Accepted: 03/16/2020] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND In this review we survey medical treatments and research strategies, and we discuss why they have failed to cure degenerative disc diseases or even slow down the degenerative process. OBJECTIVE We seek to stimulate discussion with respect to changing the medical paradigm associated with treatments and research applied to degenerative disc diseases. METHOD PROPOSAL We summarize a Biological Transformation therapy for curing chronic inflammations and degenerative disc diseases, as was previously described in the book Biological Transformations controlled by the Mind Volume 1. PRELIMINARY STUDIES A single-patient case study is presented that documents complete recovery from an advanced lumbar bilateral discopathy and long-term hypertrophic chronic rhinitis by application of the method proposed. CONCLUSION Biological transformations controlled by the mind can be applied by men and women in order to improve their quality of life and cure degenerative disc diseases and chronic inflammations illnesses.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Gjumrakch Aliev
- Address correspondence to this author at the GALLY International Research Institute, 7733 Louis Pasteur Drive, #330, San Antonio, TX, 78229 USA; Tel: +440-263-7461; E-mails: and
| |
Collapse
|
9
|
Lack of mitochondrial NADP(H)-transhydrogenase expression in macrophages exacerbates atherosclerosis in hypercholesterolemic mice. Biochem J 2020; 476:3769-3789. [PMID: 31803904 DOI: 10.1042/bcj20190543] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 12/04/2019] [Accepted: 12/04/2019] [Indexed: 02/02/2023]
Abstract
The atherosclerosis prone LDL receptor knockout mice (Ldlr-/-, C57BL/6J background) carry a deletion of the NADP(H)-transhydrogenase gene (Nnt) encoding the mitochondrial enzyme that catalyzes NADPH synthesis. Here we hypothesize that both increased NADPH consumption (due to increased steroidogenesis) and decreased NADPH generation (due to Nnt deficiency) in Ldlr-/- mice contribute to establish a macrophage oxidative stress and increase atherosclerosis development. Thus, we compared peritoneal macrophages and liver mitochondria from three C57BL/6J mice lines: Ldlr and Nnt double mutant, single Nnt mutant and wild-type. We found increased oxidants production in both mitochondria and macrophages according to a gradient: double mutant > single mutant > wild-type. We also observed a parallel up-regulation of mitochondrial biogenesis (PGC1a, TFAM and respiratory complexes levels) and inflammatory (iNOS, IL6 and IL1b) markers in single and double mutant macrophages. When exposed to modified LDL, the single and double mutant cells exhibited significant increases in lipid accumulation leading to foam cell formation, the hallmark of atherosclerosis. Nnt deficiency cells showed up-regulation of CD36 and down-regulation of ABCA1 transporters what may explain lipid accumulation in macrophages. Finally, Nnt wild-type bone marrow transplantation into LDLr-/- mice resulted in reduced diet-induced atherosclerosis. Therefore, Nnt plays a critical role in the maintenance of macrophage redox, inflammatory and cholesterol homeostasis, which is relevant for delaying the atherogenesis process.
Collapse
|
10
|
SOD2 ameliorates pulmonary hypertension in a murine model of sleep apnea via suppressing expression of NLRP3 in CD11b + cells. Respir Res 2020; 21:9. [PMID: 31915037 PMCID: PMC6951024 DOI: 10.1186/s12931-019-1270-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 12/23/2019] [Indexed: 12/12/2022] Open
Abstract
Background High prevalence of obstructive sleep apnea (OSA) in the pulmonary hypertension (PH) population suggests that chronic intermittent hypoxia (CIH) is an important pathogenic factor of PH. However, the exact mechanism of CIH induced PH is not clear. One of the molecules that plays a key role in regulating pulmonary artery function under hypoxic conditions is superoxide dismutase 2 (SOD2). Methods Our study utilized heterozygous SOD2−/+ mice firstly in CIH model to explore the exact role of SOD2 in CIH causing PH. Expression of SOD2 was analyzed in CIH model. Echocardiography and pulmonary hypertension were measured in wild type (WT) and SOD2−/+ mice under normal air or CIH condition. Hematoxylin–Eosin (H&E) staining and masson staining were carried out to evaluate pulmonary vascular muscularization and remodeling. Micro-PET scanning of in vivo 99mTc-labelled- MAG3-anti-CD11b was applied to assess CD11b in quantification and localization. Level of nod-like receptor pyrin domain containing 3 (NLRP3) was analyzed by real time PCR and immunohistochemistry (IHC). Results Results showed that SOD2 was down-regulated in OSA/CIH model. Deficiency of SOD2 aggravated CIH induced pulmonary hypertension and pulmonary vascular hypertrophy. CD11b+ cells, especially monocytic myeloid cell line-Ly6C+Ly6G− cells, were increased in the lung, bone marrow and the blood under CIH condition, and down-regulated SOD2 activated NLRP3 in CD11b+ cells. SOD2-deficient-CD11b+ myeloid cells promoted the apoptosis resistance and over-proliferation of human pulmonary artery smooth muscle cells (PASMCs) via up-regulating NLRP3. Conclusion CIH induced down-regulating of SOD2 increased pulmonary hypertension and vascular muscularization. It could be one of the mechanism of CIH leading to PH.
Collapse
|
11
|
Brown EE, DeWeerd AJ, Ildefonso CJ, Lewin AS, Ash JD. Mitochondrial oxidative stress in the retinal pigment epithelium (RPE) led to metabolic dysfunction in both the RPE and retinal photoreceptors. Redox Biol 2019; 24:101201. [PMID: 31039480 PMCID: PMC6488819 DOI: 10.1016/j.redox.2019.101201] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/10/2019] [Accepted: 04/11/2019] [Indexed: 12/22/2022] Open
Abstract
Age-related macular degeneration (AMD) is the leading cause of vision loss in the western world. Recent evidence suggests that RPE and photoreceptors have an interconnected metabolism and that mitochondrial damage in RPE is a trigger for degeneration in both RPE and photoreceptors in AMD. To test this hypothesis, this study was designed to induce mitochondrial damage in RPE in mice to determine whether this is sufficient to cause RPE and photoreceptor damage characteristic of AMD. In this study, we conditionally deleted the gene encoding the mitochondrial antioxidant enzyme, manganese superoxide dismutase (MnSOD encoded by Sod2) in the retinal pigment epithelium (RPE) of albino BALB/cJ mice. VMD2-Cre;Sod2flox/flox BALB/cJ mice were housed in either 12-h dark, 12-h 200 lux white lighting (normal light), or 12-h dark, 12-h <10 lux red lighting (dim light). Electroretinography (ERG) and spectral-domain optical coherence tomography (SD-OCT) were performed to assess retinal function and morphology. Immunofluorescence was used to examine protein expression; quantitative RT-PCR was used to measure gene expression. Sod2 knockout (KO) mice had reduced RPE function with age and increased oxidative stress compared to wild type (WT) controls as expected by the cell-specific deletion of Sod2. This was associated with alterations in RPE morphology and the structure and function of RPE mitochondria. In addition, data show a compensatory increase in RPE glycolytic metabolism. The metabolic shift in RPE correlated with severe disruption of photoreceptor mitochondria including a reduction in TOMM20 expression, mitochondrial fragmentation, and reduced COXIII/β-actin levels. These findings demonstrate that mitochondrial oxidative stress can lead to RPE dysfunction and metabolic reprogramming of RPE. Secondary to these changes, photoreceptors also undergo metabolic stress with increased mitochondrial damage. These data are consistent with the hypothesis of a linked metabolism between RPE and photoreceptors and suggest a mechanism of retinal degeneration in dry AMD. Deletion of Sod2 in the RPE led to loss of RPE function. Knockout mice had decreased ATP levels and decreased COXIII/β-actin levels in the RPE. Knockout mice had elevated expression of glycolytic enzymes in the RPE. RPE alterations led to secondary effects on photoreceptors.
Collapse
Affiliation(s)
- Emily E Brown
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, FL, USA; Clinical and Translational Science Institute, University of Florida, Gainesville, FL, USA
| | - Alexander J DeWeerd
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Cristhian J Ildefonso
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Alfred S Lewin
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - John D Ash
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
12
|
McManus MJ, Picard M, Chen HW, De Haas HJ, Potluri P, Leipzig J, Towheed A, Angelin A, Sengupta P, Morrow RM, Kauffman BA, Vermulst M, Narula J, Wallace DC. Mitochondrial DNA Variation Dictates Expressivity and Progression of Nuclear DNA Mutations Causing Cardiomyopathy. Cell Metab 2019; 29:78-90.e5. [PMID: 30174309 PMCID: PMC6717513 DOI: 10.1016/j.cmet.2018.08.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 02/01/2018] [Accepted: 08/01/2018] [Indexed: 02/03/2023]
Abstract
Nuclear-encoded mutations causing metabolic and degenerative diseases have highly variable expressivity. Patients sharing the homozygous mutation (c.523delC) in the adenine nucleotide translocator 1 gene (SLC25A4, ANT1) develop cardiomyopathy that varies from slowly progressive to fulminant. This variability correlates with the mitochondrial DNA (mtDNA) lineage. To confirm that mtDNA variants can modulate the expressivity of nuclear DNA (nDNA)-encoded diseases, we combined in mice the nDNA Slc25a4-/- null mutation with a homoplasmic mtDNA ND6P25L or COIV421A variant. The ND6P25L variant significantly increased the severity of cardiomyopathy while the COIV421A variant was phenotypically neutral. The adverse Slc25a4-/- and ND6P25L combination was associated with impaired mitochondrial complex I activity, increased oxidative damage, decreased l-Opa1, altered mitochondrial morphology, sensitization of the mitochondrial permeability transition pore, augmented somatic mtDNA mutation levels, and shortened lifespan. The strikingly different phenotypic effects of these mild mtDNA variants demonstrate that mtDNA can be an important modulator of autosomal disease.
Collapse
Affiliation(s)
- Meagan J McManus
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia and University of Pennsylvania, Colket Translational Research Building, Room 6060, 3501 Civic Center Boulevard, Philadelphia, PA 19104-4302, USA
| | - Martin Picard
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia and University of Pennsylvania, Colket Translational Research Building, Room 6060, 3501 Civic Center Boulevard, Philadelphia, PA 19104-4302, USA; Departments of Psychiatry and Neurology, Columbia University Medical Center, New York, NY 10032, USA
| | - Hsiao-Wen Chen
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia and University of Pennsylvania, Colket Translational Research Building, Room 6060, 3501 Civic Center Boulevard, Philadelphia, PA 19104-4302, USA
| | - Hans J De Haas
- Department of Medicine, Mount Sinai Hospital, New York, NY 10029, USA
| | - Prasanth Potluri
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia and University of Pennsylvania, Colket Translational Research Building, Room 6060, 3501 Civic Center Boulevard, Philadelphia, PA 19104-4302, USA
| | - Jeremy Leipzig
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia and University of Pennsylvania, Colket Translational Research Building, Room 6060, 3501 Civic Center Boulevard, Philadelphia, PA 19104-4302, USA
| | - Atif Towheed
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia and University of Pennsylvania, Colket Translational Research Building, Room 6060, 3501 Civic Center Boulevard, Philadelphia, PA 19104-4302, USA
| | - Alessia Angelin
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia and University of Pennsylvania, Colket Translational Research Building, Room 6060, 3501 Civic Center Boulevard, Philadelphia, PA 19104-4302, USA
| | - Partho Sengupta
- Department of Medicine, Mount Sinai Hospital, New York, NY 10029, USA
| | - Ryan M Morrow
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia and University of Pennsylvania, Colket Translational Research Building, Room 6060, 3501 Civic Center Boulevard, Philadelphia, PA 19104-4302, USA
| | - Brett A Kauffman
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Marc Vermulst
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia and University of Pennsylvania, Colket Translational Research Building, Room 6060, 3501 Civic Center Boulevard, Philadelphia, PA 19104-4302, USA
| | - Jagat Narula
- Department of Medicine, Mount Sinai Hospital, New York, NY 10029, USA
| | - Douglas C Wallace
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia and University of Pennsylvania, Colket Translational Research Building, Room 6060, 3501 Civic Center Boulevard, Philadelphia, PA 19104-4302, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
13
|
Genetic differences in C57BL/6 mouse substrains affect kidney crystal deposition. Urolithiasis 2018; 46:515-522. [DOI: 10.1007/s00240-018-1040-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 01/10/2018] [Indexed: 11/25/2022]
|
14
|
Navarro CDC, Figueira TR, Francisco A, Dal'Bó GA, Ronchi JA, Rovani JC, Escanhoela CAF, Oliveira HCF, Castilho RF, Vercesi AE. Redox imbalance due to the loss of mitochondrial NAD(P)-transhydrogenase markedly aggravates high fat diet-induced fatty liver disease in mice. Free Radic Biol Med 2017; 113:190-202. [PMID: 28964917 DOI: 10.1016/j.freeradbiomed.2017.09.026] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 08/30/2017] [Accepted: 09/26/2017] [Indexed: 02/07/2023]
Abstract
The mechanisms by which a high fat diet (HFD) promotes non-alcoholic fatty liver disease (NAFLD) appear to involve liver mitochondrial dysfunctions and redox imbalance. We hypothesized that a HFD would increase mitochondrial reliance on NAD(P)-transhydrogenase (NNT) as the source of NADPH for antioxidant systems that counteract NAFLD development. Therefore, we studied HFD-induced liver mitochondrial dysfunctions and NAFLD in C57Unib.B6 congenic mice with (Nnt+/+) or without (Nnt-/-) NNT activity; the spontaneously mutated allele (Nnt-/-) was inherited from the C57BL/6J mouse substrain. After 20 weeks on a HFD, Nnt-/- mice exhibited a higher prevalence of steatohepatitis and content of liver triglycerides compared to Nnt+/+ mice on an identical diet. Under a HFD, the aggravated NAFLD phenotype in the Nnt-/- mice was accompanied by an increased H2O2 release rate from mitochondria, decreased aconitase activity (a redox-sensitive mitochondrial enzyme) and higher susceptibility to Ca2+-induced mitochondrial permeability transition. In addition, HFD led to the phosphorylation (inhibition) of pyruvate dehydrogenase (PDH) and markedly reduced the ability of liver mitochondria to remove peroxide in Nnt-/- mice. Bypass or pharmacological reactivation of PDH by dichloroacetate restored the peroxide removal capability of mitochondria from Nnt-/- mice on a HFD. Noteworthy, compared to mice that were chow-fed, the HFD did not impair peroxide removal nor elicit redox imbalance in mitochondria from Nnt+/+ mice. Therefore, HFD interacted with Nnt mutation to generate PDH inhibition and further suppression of peroxide removal. We conclude that NNT plays a critical role in counteracting mitochondrial redox imbalance, PDH inhibition and advancement of NAFLD in mice fed a HFD. The present study provide seminal experimental evidence that redox imbalance in liver mitochondria potentiates the progression from simple steatosis to steatohepatitis following a HFD.
Collapse
Affiliation(s)
- Claudia D C Navarro
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), 13083-887 Campinas, SP, Brazil
| | - Tiago R Figueira
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), 13083-887 Campinas, SP, Brazil
| | - Annelise Francisco
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), 13083-887 Campinas, SP, Brazil
| | - Genoefa A Dal'Bó
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), 13083-887 Campinas, SP, Brazil
| | - Juliana A Ronchi
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), 13083-887 Campinas, SP, Brazil
| | - Juliana C Rovani
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), 13083-865 Campinas, SP, Brazil
| | - Cecilia A F Escanhoela
- Departamento de Anatomia Patológica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), 13083-887 Campinas, SP, Brazil
| | - Helena C F Oliveira
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), 13083-865 Campinas, SP, Brazil
| | - Roger F Castilho
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), 13083-887 Campinas, SP, Brazil.
| | - Anibal E Vercesi
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), 13083-887 Campinas, SP, Brazil.
| |
Collapse
|
15
|
Santos LR, Muller C, de Souza AH, Takahashi HK, Spégel P, Sweet IR, Chae H, Mulder H, Jonas JC. NNT reverse mode of operation mediates glucose control of mitochondrial NADPH and glutathione redox state in mouse pancreatic β-cells. Mol Metab 2017; 6:535-547. [PMID: 28580284 PMCID: PMC5444111 DOI: 10.1016/j.molmet.2017.04.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/10/2017] [Accepted: 04/18/2017] [Indexed: 11/17/2022] Open
Abstract
Objective The glucose stimulation of insulin secretion (GSIS) by pancreatic β-cells critically depends on increased production of metabolic coupling factors, including NADPH. Nicotinamide nucleotide transhydrogenase (NNT) typically produces NADPH at the expense of NADH and ΔpH in energized mitochondria. Its spontaneous inactivation in C57BL/6J mice was previously shown to alter ATP production, Ca2+ influx, and GSIS, thereby leading to glucose intolerance. Here, we tested the role of NNT in the glucose regulation of mitochondrial NADPH and glutathione redox state and reinvestigated its role in GSIS coupling events in mouse pancreatic islets. Methods Islets were isolated from female C57BL/6J mice (J-islets), which lack functional NNT, and genetically close C57BL/6N mice (N-islets). Wild-type mouse NNT was expressed in J-islets by adenoviral infection. Mitochondrial and cytosolic glutathione oxidation was measured with glutaredoxin 1-fused roGFP2 probes targeted or not to the mitochondrial matrix. NADPH and NADH redox state was measured biochemically. Insulin secretion and upstream coupling events were measured under dynamic or static conditions by standard procedures. Results NNT is largely responsible for the acute glucose-induced rise in islet NADPH/NADP+ ratio and decrease in mitochondrial glutathione oxidation, with a small impact on cytosolic glutathione. However, contrary to current views on NNT in β-cells, these effects resulted from a glucose-dependent reduction in NADPH consumption by NNT reverse mode of operation, rather than from a stimulation of its forward mode of operation. Accordingly, the lack of NNT in J-islets decreased their sensitivity to exogenous H2O2 at non-stimulating glucose. Surprisingly, the lack of NNT did not alter the glucose-stimulation of Ca2+ influx and upstream mitochondrial events, but it markedly reduced both phases of GSIS by altering Ca2+-induced exocytosis and its metabolic amplification. Conclusion These results drastically modify current views on NNT operation and mitochondrial function in pancreatic β-cells.
Collapse
Key Words
- AT2, aldrithiol
- C57BL/6J mice
- C57BL/6N mice
- CMV, cytomegalovirus
- DTT, dithiotreitol
- Dz, diazoxide
- FCCP, carbonyl cyanide-p-trifluoromethoxyphenylhydrazone
- GRX1, glutaredoxin 1
- GRX1-roGFP2
- GSIS, glucose stimulation of insulin secretion
- Glucose metabolism
- IDH, isocitrate dehydrogenase
- Insulin secretion
- KRB, Krebs solution
- ME, malic enzyme
- Mitochondrial shuttles
- NNT, nicotinamide nucleotide transhydrogenase
- OCR, oxygen consumption rate
- Pancreatic islet
- Redox-sensitive GFP
- Stimulus-secretion coupling
- WT, wild-type
- [Ca2+]i, intracellular Ca2+ concentration
Collapse
Affiliation(s)
- Laila R.B. Santos
- Université catholique de Louvain, Institute of Experimental and Clinical Research, Pole of Endocrinology, Diabetes and Nutrition, Brussels, B-1200, Belgium
| | - Carole Muller
- Université catholique de Louvain, Institute of Experimental and Clinical Research, Pole of Endocrinology, Diabetes and Nutrition, Brussels, B-1200, Belgium
| | - Arnaldo H. de Souza
- Université catholique de Louvain, Institute of Experimental and Clinical Research, Pole of Endocrinology, Diabetes and Nutrition, Brussels, B-1200, Belgium
| | - Hilton K. Takahashi
- Université catholique de Louvain, Institute of Experimental and Clinical Research, Pole of Endocrinology, Diabetes and Nutrition, Brussels, B-1200, Belgium
| | - Peter Spégel
- Lund University, Department of Clinical Sciences in Malmö, Unit of Molecular Metabolism, Malmö, 205 02, Sweden
- Lund University, Department of Chemistry, Centre for Analysis and Synthesis, Lund, 221 00, Sweden
| | - Ian R. Sweet
- University of Washington Diabetes Institute, Department of Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Heeyoung Chae
- Université catholique de Louvain, Institute of Experimental and Clinical Research, Pole of Endocrinology, Diabetes and Nutrition, Brussels, B-1200, Belgium
| | - Hindrik Mulder
- Lund University, Department of Clinical Sciences in Malmö, Unit of Molecular Metabolism, Malmö, 205 02, Sweden
| | - Jean-Christophe Jonas
- Université catholique de Louvain, Institute of Experimental and Clinical Research, Pole of Endocrinology, Diabetes and Nutrition, Brussels, B-1200, Belgium
- Corresponding author. Université catholique de Louvain, UCL/SSS/IREC/EDIN, Avenue Hippocrate 55, B1.55.06, B-1200, Brussels, Belgium.Université catholique de LouvainUCL/SSS/IREC/EDINAvenue Hippocrate 55B1.55.06BrusselsB-1200Belgium
| |
Collapse
|
16
|
Kohlhaas M, Nickel AG, Maack C. Mitochondrial energetics and calcium coupling in the heart. J Physiol 2017; 595:3753-3763. [PMID: 28105746 DOI: 10.1113/jp273609] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 12/22/2016] [Indexed: 12/21/2022] Open
Abstract
Contraction and relaxation of the heart consume large amounts of energy that need to be replenished by oxidative phosphorylation in mitochondria, and matching energy supply to demand involves the complimentary control of respiration through ADP and Ca2+ . In heart failure, an imbalance between ADP and Ca2+ leads to oxidation of mitochondrial pyridine nucleotides, where NADH oxidation may limit ATP production and contractile function, while NADPH oxidation can induce oxidative stress with consecutive maladaptive remodelling. Understanding the complex mechanisms that disturb this finely tuned equilibrium may aid the development of drugs that could ameliorate the progression of heart failure beyond the classical neuroendocrine inhibition.
Collapse
Affiliation(s)
- Michael Kohlhaas
- Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, Homburg/Saar, Germany
| | - Alexander G Nickel
- Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, Homburg/Saar, Germany
| | - Christoph Maack
- Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, Homburg/Saar, Germany
| |
Collapse
|
17
|
Roucher-Boulez F, Mallet-Motak D, Samara-Boustani D, Jilani H, Ladjouze A, Souchon PF, Simon D, Nivot S, Heinrichs C, Ronze M, Bertagna X, Groisne L, Leheup B, Naud-Saudreau C, Blondin G, Lefevre C, Lemarchand L, Morel Y. NNT mutations: a cause of primary adrenal insufficiency, oxidative stress and extra-adrenal defects. Eur J Endocrinol 2016; 175:73-84. [PMID: 27129361 DOI: 10.1530/eje-16-0056] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 04/29/2016] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Nicotinamide nucleotide transhydrogenase (NNT), one of the several genes recently discovered in familial glucocorticoid deficiencies (FGD), is involved in reactive oxygen species detoxification, suggesting that extra-adrenal manifestations may occur, due to the sensitivity to oxidative stress of other organs rich in mitochondria. Here, we sought to identify NNT mutations in a large cohort of patients with primary congenital adrenal insufficiency without molecular etiology and evaluate the degree of adrenal insufficiency and onset of extra-adrenal damages. METHODS Sanger or massive parallel sequencing of NNT and patient monitoring. RESULTS Homozygous or compound heterozygous NNT mutations occurred frequently (26%, 13 unrelated families, 18 patients) in our cohort. Seven new mutations were identified: p.Met337Val, p.Ala863Glu, c.3G>A (p.Met1?), p.Arg129*, p.Arg379*, p.Val665Profs*29 and p.Ala704Serfs*19. The most frequent mutation, p.Arg129*, was found recurrently in patients from Algeria. Most patients were diagnosed belatedly (8-18 months) after presenting severe hypoglycemia; others experiencing stress conditions were diagnosed earlier. Five patients also had mineralocorticoid deficiency at onset. One patient had congenital hypothyroidism and two cryptorchidism. In follow-up, we noticed gonadotropic and genitalia impairments (precocious puberty, testicular inclusions, interstitial Leydig cell adenoma, azoospermia), hypothyroidism and hypertrophic cardiomyopathy. Intrafamilial phenotype heterogeneity was also observed. CONCLUSIONS NNT should be sequenced, not only in FGD, but also in all primary adrenal insufficiencies for which the most frequent etiologies have been ruled out. As NNT is involved in oxidative stress, careful follow-up is needed to evaluate mineralocorticoid biosynthesis extent, and gonadal, heart and thyroid function.
Collapse
Affiliation(s)
- Florence Roucher-Boulez
- Molecular Endocrinology and Rare DiseasesLyon University Hospital, Bron, France Claude Bernard Lyon 1 UniversityLyon, France
| | | | - Dinane Samara-Boustani
- Pediatric Endocrinology, Gynecology and DiabetologyNecker University Hospital, Paris, France
| | - Houweyda Jilani
- Molecular Endocrinology and Rare DiseasesLyon University Hospital, Bron, France
| | | | | | | | - Sylvie Nivot
- Department of PediatricsRennes Teaching Hospital, Rennes, France
| | - Claudine Heinrichs
- Pediatric EndocrinologyQueen Fabiola Children's University Hospital, Brussels, Belgium
| | - Maryline Ronze
- Endocrinology DepartmentL.-Hussel Hospital, Vienne, France
| | - Xavier Bertagna
- Endocrinology DepartmentCochin University Hospital, Paris, France
| | - Laure Groisne
- Endocrinology DepartmentLyon University Hospital, Bron-Lyon, France
| | - Bruno Leheup
- Paediatric and Clinical Genetic DepartmentNancy University Hospital, Vandoeuvre les Nancy, France
| | | | - Gilles Blondin
- Pediatric Endocrinology and DiabetologyBretagne Sud Hospital Center, Lorient, France
| | | | - Laetitia Lemarchand
- Pediatric DepartmentLa Rochelle-Ré-Aunis Hospital Group, La Rochelle, France
| | - Yves Morel
- Molecular Endocrinology and Rare DiseasesLyon University Hospital, Bron, France Claude Bernard Lyon 1 UniversityLyon, France
| |
Collapse
|
18
|
Dey S, Sidor A, O'Rourke B. Compartment-specific Control of Reactive Oxygen Species Scavenging by Antioxidant Pathway Enzymes. J Biol Chem 2016; 291:11185-97. [PMID: 27048652 PMCID: PMC4900267 DOI: 10.1074/jbc.m116.726968] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 04/01/2016] [Indexed: 11/06/2022] Open
Abstract
Oxidative stress arises from an imbalance in the production and scavenging rates of reactive oxygen species (ROS) and is a key factor in the pathophysiology of cardiovascular disease and aging. The presence of parallel pathways and multiple intracellular compartments, each having its own ROS sources and antioxidant enzymes, complicates the determination of the most important regulatory nodes of the redox network. Here we quantified ROS dynamics within specific intracellular compartments in the cytosol and mitochondria and determined which scavenging enzymes exert the most control over antioxidant fluxes in H9c2 cardiac myoblasts. We used novel targeted viral gene transfer vectors expressing redox-sensitive GFP fused to sensor domains to measure H2O2 or oxidized glutathione. Using genetic manipulation in heart-derived H9c2 cells, we explored the contribution of specific antioxidant enzymes to ROS scavenging and glutathione redox potential within each intracellular compartment. Our findings reveal that antioxidant flux is strongly dependent on mitochondrial substrate catabolism, with availability of NADPH as a major rate-controlling step. Moreover, ROS scavenging by mitochondria significantly contributes to cytoplasmic ROS handling. The findings provide fundamental information about the control of ROS scavenging by the redox network and suggest novel interventions for circumventing oxidative stress in cardiac cells.
Collapse
Affiliation(s)
- Swati Dey
- From the Division of Cardiology, Department of Medicine, The Johns Hopkins University, Baltimore, Maryland 21205
| | - Agnieszka Sidor
- From the Division of Cardiology, Department of Medicine, The Johns Hopkins University, Baltimore, Maryland 21205
| | - Brian O'Rourke
- From the Division of Cardiology, Department of Medicine, The Johns Hopkins University, Baltimore, Maryland 21205
| |
Collapse
|
19
|
Nickel AG, von Hardenberg A, Hohl M, Löffler JR, Kohlhaas M, Becker J, Reil JC, Kazakov A, Bonnekoh J, Stadelmaier M, Puhl SL, Wagner M, Bogeski I, Cortassa S, Kappl R, Pasieka B, Lafontaine M, Lancaster CRD, Blacker TS, Hall AR, Duchen MR, Kästner L, Lipp P, Zeller T, Müller C, Knopp A, Laufs U, Böhm M, Hoth M, Maack C. Reversal of Mitochondrial Transhydrogenase Causes Oxidative Stress in Heart Failure. Cell Metab 2015; 22:472-84. [PMID: 26256392 DOI: 10.1016/j.cmet.2015.07.008] [Citation(s) in RCA: 281] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 05/10/2015] [Accepted: 07/08/2015] [Indexed: 12/11/2022]
Abstract
Mitochondrial reactive oxygen species (ROS) play a central role in most aging-related diseases. ROS are produced at the respiratory chain that demands NADH for electron transport and are eliminated by enzymes that require NADPH. The nicotinamide nucleotide transhydrogenase (Nnt) is considered a key antioxidative enzyme based on its ability to regenerate NADPH from NADH. Here, we show that pathological metabolic demand reverses the direction of the Nnt, consuming NADPH to support NADH and ATP production, but at the cost of NADPH-linked antioxidative capacity. In heart, reverse-mode Nnt is the dominant source for ROS during pressure overload. Due to a mutation of the Nnt gene, the inbred mouse strain C57BL/6J is protected from oxidative stress, heart failure, and death, making its use in cardiovascular research problematic. Targeting Nnt-mediated ROS with the tetrapeptide SS-31 rescued mortality in pressure overload-induced heart failure and could therefore have therapeutic potential in patients with this syndrome.
Collapse
Affiliation(s)
- Alexander G Nickel
- Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, 66421 Homburg, Germany
| | | | - Mathias Hohl
- Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, 66421 Homburg, Germany
| | - Joachim R Löffler
- Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, 66421 Homburg, Germany
| | - Michael Kohlhaas
- Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, 66421 Homburg, Germany
| | - Janne Becker
- Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, 66421 Homburg, Germany
| | - Jan-Christian Reil
- Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, 66421 Homburg, Germany
| | - Andrey Kazakov
- Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, 66421 Homburg, Germany
| | - Julia Bonnekoh
- Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, 66421 Homburg, Germany
| | - Moritz Stadelmaier
- Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, 66421 Homburg, Germany
| | - Sarah-Lena Puhl
- Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, 66421 Homburg, Germany
| | - Michael Wagner
- Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, 66421 Homburg, Germany
| | - Ivan Bogeski
- Department of Biophysics, CIPMM, School of Medicine, Saarland University, 66421 Homburg, Germany
| | | | - Reinhard Kappl
- Department of Biophysics, CIPMM, School of Medicine, Saarland University, 66421 Homburg, Germany
| | - Bastian Pasieka
- Department of Biophysics, CIPMM, School of Medicine, Saarland University, 66421 Homburg, Germany
| | - Michael Lafontaine
- Department of Structural Biology, Saarland University, 66421 Homburg, Germany
| | - C Roy D Lancaster
- Department of Structural Biology, Saarland University, 66421 Homburg, Germany
| | - Thomas S Blacker
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK; Department of Physics and Astronomy, University College London, London WC1E 6BT, UK
| | - Andrew R Hall
- The Hatter Cardiovascular Institute, University College London, London WC1E 6BT, UK
| | - Michael R Duchen
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Lars Kästner
- Institut für Zellbiologie, Universität des Saarlandes, 66421 Homburg, Germany
| | - Peter Lipp
- Institut für Zellbiologie, Universität des Saarlandes, 66421 Homburg, Germany
| | - Tanja Zeller
- Klinik für Allgemeine und Interventionelle Kardiologie, Universitäres Herzzentrum Hamburg, 20246 Hamburg, Germany; Deutsches Zentrum für Herzkreislaufforschung (DZHK e.V.), Partner Site Hamburg/Lübeck/Kiel, Germany
| | - Christian Müller
- Klinik für Allgemeine und Interventionelle Kardiologie, Universitäres Herzzentrum Hamburg, 20246 Hamburg, Germany; Deutsches Zentrum für Herzkreislaufforschung (DZHK e.V.), Partner Site Hamburg/Lübeck/Kiel, Germany
| | - Andreas Knopp
- Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, 66421 Homburg, Germany
| | - Ulrich Laufs
- Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, 66421 Homburg, Germany
| | - Michael Böhm
- Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, 66421 Homburg, Germany
| | - Markus Hoth
- Department of Biophysics, CIPMM, School of Medicine, Saarland University, 66421 Homburg, Germany
| | - Christoph Maack
- Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, 66421 Homburg, Germany.
| |
Collapse
|
20
|
Napoli E, Tassone F, Wong S, Angkustsiri K, Simon TJ, Song G, Giulivi C. Mitochondrial Citrate Transporter-dependent Metabolic Signature in the 22q11.2 Deletion Syndrome. J Biol Chem 2015. [PMID: 26221035 DOI: 10.1074/jbc.m115.672360] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The congenital disorder 22q11.2 deletion syndrome (22qDS), characterized by a hemizygous deletion of 1.5-3 Mb on chromosome 22 at locus 11.2, is the most common microdeletion disorder (estimated prevalence of 1 in 4000) and the second risk factor for schizophrenia. Nine of ∼30 genes involved in 22qDS have the potential of disrupting mitochondrial metabolism (COMT, UFD1L, DGCR8, MRPL40, PRODH, SLC25A1, TXNRD2, T10, and ZDHHC8). Deficits in bioenergetics during early postnatal brain development could set the basis for a disrupted neuronal metabolism or synaptic signaling, partly explaining the higher incidence in developmental and behavioral deficits in these individuals. Here, we investigated whether mitochondrial outcomes and metabolites from 22qDS children segregated with the altered dosage of one or several of these mitochondrial genes contributing to 22qDS etiology and/or morbidity. Plasma metabolomics, lymphocytic mitochondrial outcomes, and epigenetics (histone H3 Lys-4 trimethylation and 5-methylcytosine) were evaluated in samples from 11 22qDS children and 13 age- and sex-matched neurotypically developing controls. Metabolite differences between 22qDS children and controls reflected a shift from oxidative phosphorylation to glycolysis (higher lactate/pyruvate ratios) accompanied by an increase in reductive carboxylation of α-ketoglutarate (increased concentrations of 2-hydroxyglutaric acid, cholesterol, and fatty acids). Altered metabolism in 22qDS reflected a critical role for the haploinsufficiency of the mitochondrial citrate transporter SLC25A1, further enhanced by HIF-1α, MYC, and metabolite controls. This comprehensive profiling served to clarify the biochemistry of this disease underlying its broad, complex phenotype.
Collapse
Affiliation(s)
- Eleonora Napoli
- From the Department of Molecular Biosciences, School of Veterinary Medicine, UC Davis, Davis, California 95616
| | - Flora Tassone
- the Medical Investigations of Neurodevelopmental Disorders (MIND) Institute, the Department of Biochemistry and Molecular Medicine, School of Medicine, UC Davis, Sacramento, California 95817
| | - Sarah Wong
- From the Department of Molecular Biosciences, School of Veterinary Medicine, UC Davis, Davis, California 95616
| | - Kathleen Angkustsiri
- the Medical Investigations of Neurodevelopmental Disorders (MIND) Institute, the Department of Pediatrics, and
| | - Tony J Simon
- the Medical Investigations of Neurodevelopmental Disorders (MIND) Institute, the Department of Psychiatry, UC Davis Medical Center, Sacramento, California 95817, and
| | - Gyu Song
- From the Department of Molecular Biosciences, School of Veterinary Medicine, UC Davis, Davis, California 95616
| | - Cecilia Giulivi
- From the Department of Molecular Biosciences, School of Veterinary Medicine, UC Davis, Davis, California 95616, the Medical Investigations of Neurodevelopmental Disorders (MIND) Institute,
| |
Collapse
|
21
|
Morrow EH, Reinhardt K, Wolff JN, Dowling DK. Risks inherent to mitochondrial replacement. EMBO Rep 2015; 16:541-4. [PMID: 25807984 DOI: 10.15252/embr.201439110] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 03/02/2015] [Indexed: 11/09/2022] Open
Affiliation(s)
- Edward H Morrow
- Evolution, Behaviour and Environment Group, School of Life Sciences, University of Sussex, Brighton, UK
| | - Klaus Reinhardt
- Applied Zoology, Department of Biology, Technische Universitaet Dresden, Dresden, Germany
| | - Jonci N Wolff
- School of Biological Sciences, Monash University, Clayton, Vic., Australia
| | - Damian K Dowling
- School of Biological Sciences, Monash University, Clayton, Vic., Australia
| |
Collapse
|
22
|
Prasad R, Kowalczyk JC, Meimaridou E, Storr HL, Metherell LA. Oxidative stress and adrenocortical insufficiency. J Endocrinol 2014; 221:R63-73. [PMID: 24623797 PMCID: PMC4045218 DOI: 10.1530/joe-13-0346] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Revised: 02/07/2014] [Accepted: 03/07/2014] [Indexed: 12/16/2022]
Abstract
Maintenance of redox balance is essential for normal cellular functions. Any perturbation in this balance due to increased reactive oxygen species (ROS) leads to oxidative stress and may lead to cell dysfunction/damage/death. Mitochondria are responsible for the majority of cellular ROS production secondary to electron leakage as a consequence of respiration. Furthermore, electron leakage by the cytochrome P450 enzymes may render steroidogenic tissues acutely vulnerable to redox imbalance. The adrenal cortex, in particular, is well supplied with both enzymatic (glutathione peroxidases and peroxiredoxins) and non-enzymatic (vitamins A, C and E) antioxidants to cope with this increased production of ROS due to steroidogenesis. Nonetheless oxidative stress is implicated in several potentially lethal adrenal disorders including X-linked adrenoleukodystrophy, triple A syndrome and most recently familial glucocorticoid deficiency. The finding of mutations in antioxidant defence genes in the latter two conditions highlights how disturbances in redox homeostasis may have an effect on adrenal steroidogenesis.
Collapse
Affiliation(s)
- R Prasad
- Barts and the London School of Medicine and DentistryWilliam Harvey Research Institute, Centre for Endocrinology, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - J C Kowalczyk
- Barts and the London School of Medicine and DentistryWilliam Harvey Research Institute, Centre for Endocrinology, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - E Meimaridou
- Barts and the London School of Medicine and DentistryWilliam Harvey Research Institute, Centre for Endocrinology, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - H L Storr
- Barts and the London School of Medicine and DentistryWilliam Harvey Research Institute, Centre for Endocrinology, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - L A Metherell
- Barts and the London School of Medicine and DentistryWilliam Harvey Research Institute, Centre for Endocrinology, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| |
Collapse
|
23
|
Lopert P, Patel M. Nicotinamide nucleotide transhydrogenase (Nnt) links the substrate requirement in brain mitochondria for hydrogen peroxide removal to the thioredoxin/peroxiredoxin (Trx/Prx) system. J Biol Chem 2014; 289:15611-20. [PMID: 24722990 DOI: 10.1074/jbc.m113.533653] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Mitochondrial reactive oxygen species are implicated in the etiology of multiple neurodegenerative diseases, including Parkinson disease. Mitochondria are known to be net producers of ROS, but recently we have shown that brain mitochondria can consume mitochondrial hydrogen peroxide (H2O2) in a respiration-dependent manner predominantly by the thioredoxin/peroxiredoxin system. Here, we sought to determine the mechanism linking mitochondrial respiration with H2O2 catabolism in brain mitochondria and dopaminergic cells. We hypothesized that nicotinamide nucleotide transhydrogenase (Nnt), which utilizes the proton gradient to generate NADPH from NADH and NADP(+), provides the link between mitochondrial respiration and H2O2 detoxification through the thioredoxin/peroxiredoxin system. Pharmacological inhibition of Nnt in isolated brain mitochondria significantly decreased their ability to consume H2O2 in the presence, but not absence, of respiration substrates. Nnt inhibition in liver mitochondria, which do not require substrates to detoxify H2O2, had no effect. Pharmacological inhibition or lentiviral knockdown of Nnt in N27 dopaminergic cells (a) decreased H2O2 catabolism, (b) decreased NADPH and increased NADP(+) levels, and (c) decreased basal, spare, and maximal mitochondrial oxygen consumption rates. Nnt-deficient cells possessed higher levels of oxidized mitochondrial Prx, which rendered them more susceptible to steady-state increases in H2O2 and cell death following exposure to subtoxic levels of paraquat. These data implicate Nnt as the critical link between the metabolic and H2O2 antioxidant function in brain mitochondria and suggests Nnt as a potential therapeutic target to improve the redox balance in conditions of oxidative stress associated with neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Manisha Patel
- Department of Pharmaceutical Sciences, The University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| |
Collapse
|
24
|
Ronchi JA, Figueira TR, Ravagnani FG, Oliveira HCF, Vercesi AE, Castilho RF. A spontaneous mutation in the nicotinamide nucleotide transhydrogenase gene of C57BL/6J mice results in mitochondrial redox abnormalities. Free Radic Biol Med 2013; 63:446-56. [PMID: 23747984 DOI: 10.1016/j.freeradbiomed.2013.05.049] [Citation(s) in RCA: 205] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 05/15/2013] [Accepted: 05/31/2013] [Indexed: 02/07/2023]
Abstract
NADPH is the reducing agent for mitochondrial H2O2 detoxification systems. Nicotinamide nucleotide transhydrogenase (NNT), an integral protein located in the inner mitochondrial membrane, contributes to an elevated mitochondrial NADPH/NADP(+) ratio. This enzyme catalyzes the reduction of NADP(+) at the expense of NADH oxidation and H(+) reentry to the mitochondrial matrix. A spontaneous Nnt mutation in C57BL/6J (B6J-Nnt(MUT)) mice arose nearly 3 decades ago but was only discovered in 2005. Here, we characterize the consequences of the Nnt mutation on the mitochondrial redox functions of B6J-Nnt(MUT) mice. Liver mitochondria were isolated both from an Nnt wild-type C57BL/6 substrain (B6JUnib-Nnt(W)) and from B6J-Nnt(MUT) mice. The functional evaluation of respiring mitochondria revealed major redox alterations in B6J-Nnt(MUT) mice, including an absence of transhydrogenation between NAD and NADP, higher rates of H2O2 release, the spontaneous oxidation of NADPH, the poor ability to metabolize organic peroxide, and a higher susceptibility to undergo Ca(2+)-induced mitochondrial permeability transition. In addition, the mitochondria of B6J-Nnt(MUT) mice exhibited increased oxidized/reduced glutathione ratios as compared to B6JUnib-Nnt(W) mice. Nonetheless, the maximal activity of NADP-dependent isocitrate dehydrogenase, which is a coexisting source of mitochondrial NADPH, was similar between both groups. Altogether, our data suggest that NNT functions as a high-capacity source of mitochondrial NADPH and that its functional loss due to the Nnt mutation results in mitochondrial redox abnormalities, most notably a poor ability to sustain NADP and glutathione in their reduced states. In light of these alterations, the potential drawbacks of using B6J-Nnt(MUT) mice in biomedical research should not be overlooked.
Collapse
Affiliation(s)
- Juliana A Ronchi
- Department of Clinical Pathology, Faculty of Medical Sciences, State University of Campinas, Campinas, SP 13083-887, Brazil
| | | | | | | | | | | |
Collapse
|
25
|
Holley AK, Dhar SK, St Clair DK. Curbing cancer's sweet tooth: is there a role for MnSOD in regulation of the Warburg effect? Mitochondrion 2013; 13:170-88. [PMID: 22820117 PMCID: PMC4604438 DOI: 10.1016/j.mito.2012.07.104] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 07/04/2012] [Accepted: 07/10/2012] [Indexed: 01/27/2023]
Abstract
Reactive oxygen species (ROS), while vital for normal cellular function, can have harmful effects on cells, leading to the development of diseases such as cancer. The Warburg effect, the shift from oxidative phosphorylation to glycolysis, even in the presence of adequate oxygen, is an important metabolic change that confers many growth and survival advantages to cancer cells. Reactive oxygen species are important regulators of the Warburg effect. The mitochondria-localized antioxidant enzyme manganese superoxide dismutase (MnSOD) is vital to survival in our oxygen-rich atmosphere because it scavenges mitochondrial ROS. MnSOD is important in cancer development and progression. However, the significance of MnSOD in the regulation of the Warburg effect is just now being revealed, and it may significantly impact the treatment of cancer in the future.
Collapse
Affiliation(s)
- Aaron K. Holley
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536
| | - Sanjit Kumar Dhar
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536
| | - Daret K. St Clair
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536
| |
Collapse
|
26
|
The C57BL/6J Mouse Strain Background Modifies the Effect of a Mutation in Bcl2l2. G3-GENES GENOMES GENETICS 2012; 2:99-102. [PMID: 22384386 PMCID: PMC3276190 DOI: 10.1534/g3.111.000778] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 11/09/2011] [Indexed: 11/18/2022]
Abstract
Bcl2l2 encodes BCL-W, an antiapoptotic member of the BCL-2 family of proteins. Intercross of Bcl2l2 +/- mice on a mixed C57BL/6J, 129S5 background produces Bcl2l2 -/- animals with the expected frequency. In contrast, intercross of Bcl2l2 +/- mice on a congenic C57BL/6J background produces relatively few live-born Bcl2l2 -/- animals. Genetic modifiers alter the effect of a mutation. C57BL/6J mice (Mus musculus) have a mutant allele of nicotinamide nucleotide transhydrogenase (Nnt) that can act as a modifier. Loss of NNT decreases the concentration of reduced nicotinamide adenine dinucleotide phosphate within the mitochondrial matrix. Nicotinamide adenine dinucleotide phosphate is a cofactor for glutathione reductase, which regenerates reduced glutathione, an important antioxidant. Thus, loss of NNT activity is associated with increased mitochondrial oxidative damage and cellular stress. To determine whether loss of Bcl2l2 -/- mice on the C57BL/6J background was mediated by the Nnt mutation, we outcrossed Bcl2l2 congenic C57BL/6J (Nnt -/-) mice with the closely related C57BL/6JEiJ (Nnt +/+) strain to produce Bcl2l2 +/- ; Nnt +/+ and Bcl2l2 +/- ; Nnt -/- animals. Intercross of Bcl2l2 +/- ; Nnt +/+ mice produced Bcl2l2 -/- with the expected frequency, whereas intercross of Bcl2l2 +/- ; Nnt -/- animals did not. This finding indicates the C57BL/6J strain background, and possibly the Nnt mutation, modifies the Bcl2l2 mutant phenotype. This and previous reports highlight the importance of knowing the genetic composition of mouse strains used in research studies as well as the accurate reporting of mouse strains in the scientific literature.
Collapse
|
27
|
Tu H, Liu J, Zhu Z, Zhang L, Pipinos II, Li YL. Mitochondria-derived superoxide and voltage-gated sodium channels in baroreceptor neurons from chronic heart-failure rats. J Neurophysiol 2011; 107:591-602. [PMID: 22072507 DOI: 10.1152/jn.00754.2011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Our previous study has shown that chronic heart failure (CHF) reduces expression and activation of voltage-gated sodium (Na(v)) channels in baroreceptor neurons, which are involved in the blunted baroreceptor neuron excitability and contribute to the impairment of baroreflex in the CHF state. The present study examined the role of mitochondria-derived superoxide in the reduced Na(v) channel function in coronary artery ligation-induced CHF rats. CHF decreased the protein expression and activity of mitochondrial complex enzymes and manganese SOD (MnSOD) and elevated the mitochondria-derived superoxide level in the nodose neurons compared with those in sham nodose neurons. Adenoviral MnSOD (Ad.MnSOD) gene transfection (50 multiplicity of infection) into the nodose neurons normalized the MnSOD expression and reduced the elevation of mitochondrial superoxide in the nodose neurons from CHF rats. Ad.MnSOD also partially reversed the reduced protein expression and current density of the Na(v) channels and the suppressed cell excitability (the number of action potential and the current threshold for inducing action potential) in aortic baroreceptor neurons from CHF rats. Data from the present study indicate that mitochondrial dysfunction, including decreased protein expression and activity of mitochondrial complex enzymes and MnSOD and elevated mitochondria-derived superoxide, contributes to the reduced Na(v) channel activation and cell excitability in the aortic baroreceptor neurons in CHF rats.
Collapse
Affiliation(s)
- Huiyin Tu
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198-5850, USA
| | | | | | | | | | | |
Collapse
|
28
|
Albracht SPJ, Meijer AJ, Rydström J. Mammalian NADH:ubiquinone oxidoreductase (Complex I) and nicotinamide nucleotide transhydrogenase (Nnt) together regulate the mitochondrial production of H₂O₂--implications for their role in disease, especially cancer. J Bioenerg Biomembr 2011; 43:541-64. [PMID: 21882037 DOI: 10.1007/s10863-011-9381-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 08/03/2011] [Indexed: 12/20/2022]
Abstract
Mammalian NADH:ubiquinone oxidoreductase (Complex I) in the mitochondrial inner membrane catalyzes the oxidation of NADH in the matrix. Excess NADH reduces nine of the ten prosthetic groups of the enzyme in bovine-heart submitochondrial particles with a rate of at least 3,300 s⁻¹. This results in an overall NADH→O₂ rate of ca. 150 s⁻¹. It has long been known that the bovine enzyme also has a specific reaction site for NADPH. At neutral pH excess NADPH reduces only three to four of the prosthetic groups in Complex I with a rate of 40 s⁻¹ at 22 °C. The reducing equivalents remain essentially locked in the enzyme because the overall NADPH→O₂ rate (1.4 s⁻¹) is negligible. The physiological significance of the reaction with NADPH is still unclear. A number of recent developments has revived our thinking about this enigma. We hypothesize that Complex I and the Δp-driven nicotinamide nucleotide transhydrogenase (Nnt) co-operate in an energy-dependent attenuation of the hydrogen-peroxide generation by Complex I. This co-operation is thought to be mediated by the NADPH/NADP⁺ ratio in the vicinity of the NADPH site of Complex I. It is proposed that the specific H₂O₂ production by Complex I, and the attenuation of it, is of importance for apoptosis, autophagy and the survival mechanism of a number of cancers. Verification of this hypothesis may contribute to a better understanding of the regulation of these processes.
Collapse
Affiliation(s)
- Simon P J Albracht
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, NL-1098 XH, Amsterdam, The Netherlands.
| | | | | |
Collapse
|