1
|
Park D, Cenik C. Long-read RNA sequencing reveals allele-specific N 6-methyladenosine modifications. Genome Res 2025; 35:999-1011. [PMID: 39472020 PMCID: PMC12047277 DOI: 10.1101/gr.279270.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 10/23/2024] [Indexed: 11/06/2024]
Abstract
Long-read sequencing technology enables highly accurate detection of allele-specific RNA expression, providing insights into the effects of genetic variation on splicing and RNA abundance. Furthermore, the ability to directly sequence RNA enables the detection of RNA modifications in tandem with ascertaining the allelic origin of each molecule. Here, we leverage these advantages to determine allele-biased patterns of N 6-methyladenosine (m6A) modifications in native mRNA. We used human and mouse cells with known genetic variants to assign the allelic origin of each mRNA molecule combined with a supervised machine learning model to detect read-level m6A modification ratios. Our analyses reveal the importance of sequences adjacent to the DRACH motif in determining m6A deposition, in addition to allelic differences that directly alter the motif. Moreover, we discover allele-specific m6A modification events with no genetic variants in close proximity to the differentially modified nucleotide, demonstrating the unique advantage of using long-reads and surpassing the capabilities of antibody-based short-read approaches. This technological advance will further our understanding of the role of genetics in determining mRNA modifications.
Collapse
Affiliation(s)
- Dayea Park
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, USA
| | - Can Cenik
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
2
|
Meade RK, Adefisayo OO, Gontijo MTP, Harris SJ, Pyle CJ, Wilburn KM, Ecker AMV, Hughes EJ, Garcia PD, Ivie J, McHenry ML, Benchek PH, Mayanja-Kizza H, Neff JL, Ko DC, Stout JE, Stein CM, Hawn TR, Tobin DM, Smith CM. Cathepsin Z is a conserved susceptibility factor underlying tuberculosis severity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.01.644622. [PMID: 40236047 PMCID: PMC11996505 DOI: 10.1101/2025.04.01.644622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Tuberculosis (TB) outcomes vary widely, from asymptomatic infection to mortality, yet most animal models do not recapitulate human phenotypic and genotypic variation. The genetically diverse Collaborative Cross mouse panel models distinct facets of TB disease that occur in humans and allows identification of genomic loci underlying clinical outcomes. We previously mapped a TB susceptibility locus on mouse chromosome 2. Here, we identify cathepsin Z ( Ctsz ) as a lead candidate underlying this TB susceptibility and show that Ctsz ablation leads to increased bacterial burden, CXCL1 overproduction, and decreased survival in mice. Ctsz disturbance within murine macrophages enhances production of CXCL1, a known biomarker of TB severity. From a Ugandan household contact study, we identify significant associations between CTSZ variants and TB disease severity. Finally, we examine patient-derived TB granulomas and report CTSZ localization within granuloma-associated macrophages, placing human CTSZ at the host-pathogen interface. These findings implicate a conserved CTSZ-CXCL1 axis in humans and genetically diverse mice that mediates TB disease severity.
Collapse
|
3
|
Welfer GA, Brady RA, Natchiar SK, Watson ZL, Rundlet EJ, Alejo JL, Singh AP, Mishra NK, Altman RB, Blanchard SC. Impacts of ribosomal RNA sequence variation on gene expression and phenotype. Philos Trans R Soc Lond B Biol Sci 2025; 380:20230379. [PMID: 40045785 PMCID: PMC11883441 DOI: 10.1098/rstb.2023.0379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 11/19/2024] [Accepted: 01/06/2025] [Indexed: 03/09/2025] Open
Abstract
Since the framing of the Central Dogma, it has been speculated that physically distinct ribosomes within cells may influence gene expression and cellular physiology. While heterogeneity in ribosome composition has been reported in bacteria, protozoans, fungi, zebrafish, mice and humans, its functional implications remain actively debated. Here, we review recent evidence demonstrating that expression of conserved variant ribosomal DNA (rDNA) alleles in bacteria, mice and humans renders their actively translating ribosome pool intrinsically heterogeneous at the level of ribosomal RNA (rRNA). In this context, we discuss reports that nutrient limitation-induced stress in Escherichia coli leads to changes in variant rRNA allele expression, programmatically altering transcription and cellular phenotype. We highlight that cells expressing ribosomes from distinct operons exhibit distinct drug sensitivities, which can be recapitulated in vitro and potentially rationalized by subtle perturbations in ribosome structure or in their dynamic properties. Finally, we discuss evidence that differential expression of variant rDNA alleles results in different populations of ribosome subtypes within mammalian tissues. These findings motivate further research into the impacts of rRNA heterogeneities on ribosomal function and predict that strategies targeting distinct ribosome subtypes may hold therapeutic potential.This article is part of the discussion meeting issue 'Ribosome diversity and its impact on protein synthesis, development and disease'.
Collapse
Affiliation(s)
- Griffin A. Welfer
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN38105, USA
| | - Ryan A. Brady
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN38105, USA
| | - S. Kundhavai Natchiar
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN38105, USA
| | - Zoe L. Watson
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN38105, USA
| | - Emily J. Rundlet
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX78712, USA
| | - Jose L. Alejo
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN38105, USA
| | - Anand P. Singh
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN38105, USA
| | - Nitish K. Mishra
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN38105, USA
| | - Roger B. Altman
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN38105, USA
- Department of Chemical Biology & Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN38105, USA
| | - Scott C. Blanchard
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN38105, USA
- Department of Chemical Biology & Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN38105, USA
| |
Collapse
|
4
|
Chen Y, Lin ZB, Wang SK, Wu B, Niu L, Zhong JY, Sun YM, Zheng Z, Bai X, Liu LR, Xie W, Chi W, Ye T, Luo R, Hou C, Luo F, Xiao CL. Reconstruction of diploid higher-order human 3D genome interactions from noisy Pore-C data using Dip3D. Nat Struct Mol Biol 2025:10.1038/s41594-025-01512-w. [PMID: 40038455 DOI: 10.1038/s41594-025-01512-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/05/2025] [Indexed: 03/06/2025]
Abstract
Differential high-order chromatin interactions between homologous chromosomes affect many biological processes. Traditional chromatin conformation capture genome analysis methods mainly identify two-way interactions and cannot provide comprehensive haplotype information, especially for low-heterozygosity organisms such as human. Here, we present a pipeline of methods to delineate diploid high-order chromatin interactions from noisy Pore-C outputs. We trained a previously published single-nucleotide variant (SNV)-calling deep learning model, Clair3, on Pore-C data to achieve superior SNV calling, applied a filtering strategy to tag reads for haplotypes and established a haplotype imputation strategy for high-order concatemers. Learning the haplotype characteristics of high-order concatemers from high-heterozygosity mouse allowed us to devise a progressive haplotype imputation strategy, which improved the haplotype-informative Pore-C contact rate 14.1-fold to 76% in the HG001 cell line. Overall, the diploid three-dimensional (3D) genome interactions we derived using Dip3D surpassed conventional methods in noise reduction and contact distribution uniformity, with better haplotype-informative contact density and genomic coverage rates. Dip3D identified previously unresolved haplotype high-order interactions, in addition to an understanding of their relationship with allele-specific expression, such as in X-chromosome inactivation. These results lead us to conclude that Dip3D is a robust pipeline for the high-quality reconstruction of diploid high-order 3D genome interactions.
Collapse
Affiliation(s)
- Ying Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Shenzhen Eye Hospital, Shenzhen Eye Medical Center, Southern Medical University, Shenzhen, China
| | - Zhuo-Bin Lin
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shao-Kai Wang
- David R. Cheriton School of Computer Science, University of Waterloo, Waterloo, Ontario, Canada
| | - Bo Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Longjian Niu
- Shenzhen Eye Hospital, Shenzhen Eye Medical Center, Southern Medical University, Shenzhen, China
| | - Jia-Yong Zhong
- Shenzhen Eye Hospital, Shenzhen Eye Medical Center, Southern Medical University, Shenzhen, China
| | - Yi-Meng Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Zhenxian Zheng
- Department of Computer Science, The University of Hong Kong, Hong Kong, China
| | - Xin Bai
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Luo-Ran Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Wei Xie
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Wei Chi
- Shenzhen Eye Hospital, Shenzhen Eye Medical Center, Southern Medical University, Shenzhen, China
| | | | - Ruibang Luo
- Department of Computer Science, The University of Hong Kong, Hong Kong, China.
| | - Chunhui Hou
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.
| | - Feng Luo
- School of Computing, Clemson University, Clemson, SC, USA.
| | - Chuan-Le Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China.
| |
Collapse
|
5
|
Isshiki Y, Chen X, Teater M, Karagiannidis I, Nam H, Cai W, Meydan C, Xia M, Shen H, Gutierrez J, Easwar Kumar V, Carrasco SE, Ouseph MM, Yamshon S, Martin P, Griess O, Shema E, Porazzi P, Ruella M, Brentjens RJ, Inghirami G, Zappasodi R, Chadburn A, Melnick AM, Béguelin W. EZH2 inhibition enhances T cell immunotherapies by inducing lymphoma immunogenicity and improving T cell function. Cancer Cell 2025; 43:49-68.e9. [PMID: 39642889 PMCID: PMC11732734 DOI: 10.1016/j.ccell.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 10/02/2024] [Accepted: 11/13/2024] [Indexed: 12/09/2024]
Abstract
T cell-based immunotherapies have demonstrated effectiveness in treating diffuse large B cell lymphoma (DLBCL) and follicular lymphoma (FL) but predicting response and understanding resistance remains a challenge. To address this, we developed syngeneic models reflecting the genetics, epigenetics, and immunology of human FL and DLBCL. We show that EZH2 inhibitors reprogram these models to re-express T cell engagement genes and render them highly immunogenic. EZH2 inhibitors do not harm tumor-controlling T cells or CAR-T cells. Instead, they reduce regulatory T cells, promote memory chimeric antigen receptor (CAR) CD8 phenotypes, and reduce exhaustion, resulting in a decreased tumor burden. Intravital 2-photon imaging shows increased CAR-T recruitment and interaction within the tumor microenvironment, improving lymphoma cell killing. Therefore, EZH2 inhibition enhances CAR-T cell efficacy through direct effects on CAR-T cells, in addition to rendering lymphoma B cells immunogenic. This approach is currently being evaluated in two clinical trials, NCT05934838 and NCT05994235, to improve immunotherapy outcomes in B cell lymphoma patients.
Collapse
MESH Headings
- Enhancer of Zeste Homolog 2 Protein/antagonists & inhibitors
- Humans
- Animals
- Mice
- Lymphoma, Large B-Cell, Diffuse/immunology
- Lymphoma, Large B-Cell, Diffuse/therapy
- Lymphoma, Large B-Cell, Diffuse/pathology
- Tumor Microenvironment/immunology
- Tumor Microenvironment/drug effects
- Lymphoma, Follicular/immunology
- Lymphoma, Follicular/therapy
- Lymphoma, Follicular/pathology
- T-Lymphocytes/immunology
- T-Lymphocytes/drug effects
- Immunotherapy, Adoptive/methods
- Immunotherapy/methods
- Cell Line, Tumor
- Receptors, Chimeric Antigen/immunology
Collapse
Affiliation(s)
- Yusuke Isshiki
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Xi Chen
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Matt Teater
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA; Institute for Computational Biomedicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Ioannis Karagiannidis
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Henna Nam
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Winson Cai
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Cem Meydan
- Institute for Computational Biomedicine, Weill Cornell Medicine, Cornell University, New York, NY, USA; Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Min Xia
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Hao Shen
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Johana Gutierrez
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Vigneshwari Easwar Kumar
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Sebastián E Carrasco
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York City, NY, USA; Laboratory of Comparative Pathology, Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, and Rockefeller University, New York City, NY, USA
| | - Madhu M Ouseph
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York City, NY, USA
| | - Samuel Yamshon
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Peter Martin
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Ofir Griess
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Efrat Shema
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Patrizia Porazzi
- Division of Hematology and Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marco Ruella
- Division of Hematology and Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Renier J Brentjens
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Giorgio Inghirami
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York City, NY, USA
| | - Roberta Zappasodi
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Amy Chadburn
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York City, NY, USA
| | - Ari M Melnick
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Wendy Béguelin
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| |
Collapse
|
6
|
Kim JH, Nagaraja R, Ogurtsov AY, Noskov VN, Liskovykh M, Lee HS, Hori Y, Kobayashi T, Hunter K, Schlessinger D, Kouprina N, Shabalina SA, Larionov V. Comparative analysis and classification of highly divergent mouse rDNA units based on their intergenic spacer (IGS) variability. NAR Genom Bioinform 2024; 6:lqae070. [PMID: 38881577 PMCID: PMC11177557 DOI: 10.1093/nargab/lqae070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/20/2024] [Accepted: 06/05/2024] [Indexed: 06/18/2024] Open
Abstract
Ribosomal DNA (rDNA) repeat units are organized into tandem clusters in eukaryotic cells. In mice, these clusters are located on at least eight chromosomes and show extensive variation in the number of repeats between mouse genomes. To analyze intra- and inter-genomic variation of mouse rDNA repeats, we selectively isolated 25 individual rDNA units using Transformation-Associated Recombination (TAR) cloning. Long-read sequencing and subsequent comparative sequence analysis revealed that each full-length unit comprises an intergenic spacer (IGS) and a ∼13.4 kb long transcribed region encoding the three rRNAs, but with substantial variability in rDNA unit size, ranging from ∼35 to ∼46 kb. Within the transcribed regions of rDNA units, we found 209 variants, 70 of which are in external transcribed spacers (ETSs); but the rDNA size differences are driven primarily by IGS size heterogeneity, due to indels containing repetitive elements and some functional signals such as enhancers. Further evolutionary analysis categorized rDNA units into distinct clusters with characteristic IGS lengths; numbers of enhancers; and presence/absence of two common SNPs in promoter regions, one of which is located within promoter (p)RNA and may influence pRNA folding stability. These characteristic features of IGSs also correlated significantly with 5'ETS variant patterns described previously and associated with differential expression of rDNA units. Our results suggest that variant rDNA units are differentially regulated and open a route to investigate the role of rDNA variation on nucleolar formation and possible associations with pathology.
Collapse
Affiliation(s)
- Jung-Hyun Kim
- National Cancer Institute, Developmental Therapeutics Branch, Bethesda, MD, USA
| | - Ramaiah Nagaraja
- National Institute of Aging, Laboratory of Genetics and Genomics, Baltimore, MD, USA
| | - Alexey Y Ogurtsov
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, USA
| | - Vladimir N Noskov
- National Cancer Institute, Developmental Therapeutics Branch, Bethesda, MD, USA
| | - Mikhail Liskovykh
- National Cancer Institute, Developmental Therapeutics Branch, Bethesda, MD, USA
| | - Hee-Sheung Lee
- National Cancer Institute, Developmental Therapeutics Branch, Bethesda, MD, USA
| | - Yutaro Hori
- The University of Tokyo, Laboratory of Genome Regeneration, Tokyo 113-0032, Japan
| | - Takehiko Kobayashi
- The University of Tokyo, Laboratory of Genome Regeneration, Tokyo 113-0032, Japan
| | - Kent Hunter
- National Cancer Institute, Laboratory of Cancer Biology and Genetics, Bethesda, MD, USA
| | - David Schlessinger
- National Institute of Aging, Laboratory of Genetics and Genomics, Baltimore, MD, USA
| | - Natalay Kouprina
- National Cancer Institute, Developmental Therapeutics Branch, Bethesda, MD, USA
| | - Svetlana A Shabalina
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, USA
| | - Vladimir Larionov
- National Cancer Institute, Developmental Therapeutics Branch, Bethesda, MD, USA
| |
Collapse
|
7
|
Luo X, Chen Y, Liu L, Ding L, Li Y, Li S, Zhang Y, Zhu Z. GSC: efficient lossless compression of VCF files with fast query. Gigascience 2024; 13:giae046. [PMID: 39028587 PMCID: PMC11258903 DOI: 10.1093/gigascience/giae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/16/2024] [Accepted: 06/22/2024] [Indexed: 07/21/2024] Open
Abstract
BACKGROUND With the rise of large-scale genome sequencing projects, genotyping of thousands of samples has produced immense variant call format (VCF) files. It is becoming increasingly challenging to store, transfer, and analyze these voluminous files. Compression methods have been used to tackle these issues, aiming for both high compression ratio and fast random access. However, existing methods have not yet achieved a satisfactory compromise between these 2 objectives. FINDINGS To address the aforementioned issue, we introduce GSC (Genotype Sparse Compression), a specialized and refined lossless compression tool for VCF files. In benchmark tests conducted across various open-source datasets, GSC showcased exceptional performance in genotype data compression. Compared with the industry's most advanced tools (namely, GBC and GTC), GSC achieved compression ratios that were higher by 26.9% to 82.4% over GBC and GTC on the datasets, respectively. In lossless compression scenarios, GSC also demonstrated robust performance, with compression ratios 1.5× to 6.5× greater than general-purpose tools like gzip, zstd, and BCFtools-a mode not supported by either GBC or GTC. Achieving such high compression ratios did require some reasonable trade-offs, including longer decompression times, with GSC being 1.2× to 2× slower than GBC, yet 1.1× to 1.4× faster than GTC. Moreover, GSC maintained decompression query speeds that were equivalent to its competitors. In terms of RAM usage, GSC outperformed both counterparts. Overall, GSC's comprehensive performance surpasses that of the most advanced technologies. CONCLUSION GSC balances high compression ratios with rapid data access, enhancing genomic data management. It supports seamless PLINK binary format conversion, simplifying downstream analysis.
Collapse
Affiliation(s)
- Xiaolong Luo
- College of Computer Science and Software Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yuxin Chen
- BGI Research, Wuhan 430074, China
- BGI Research, Shenzhen 518083, China
- Guangdong Bigdata Engineering Technology Research Center for Life Sciences, BGI Research, Shenzhen 518083, China
| | - Ling Liu
- Guangzhou Institute of Technology, Xidian University, Guangzhou 510555, China
| | - Lulu Ding
- National Engineering Laboratory for Big Data System Computing Technology, Shenzhen University, Shenzhen 518060, China
| | - Yuxiang Li
- BGI Research, Wuhan 430074, China
- BGI Research, Shenzhen 518083, China
- Guangdong Bigdata Engineering Technology Research Center for Life Sciences, BGI Research, Shenzhen 518083, China
| | - Shengkang Li
- BGI Research, Wuhan 430074, China
- BGI Research, Shenzhen 518083, China
- Guangdong Bigdata Engineering Technology Research Center for Life Sciences, BGI Research, Shenzhen 518083, China
| | - Yong Zhang
- BGI Research, Wuhan 430074, China
- BGI Research, Shenzhen 518083, China
- Guangdong Bigdata Engineering Technology Research Center for Life Sciences, BGI Research, Shenzhen 518083, China
| | - Zexuan Zhu
- National Engineering Laboratory for Big Data System Computing Technology, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
8
|
Sanchez-Aguilera A, Masmudi-Martín M, Navas-Olive A, Baena P, Hernández-Oliver C, Priego N, Cordón-Barris L, Alvaro-Espinosa L, García S, Martínez S, Lafarga M, Lin MZ, Al-Shahrour F, Menendez de la Prida L, Valiente M. Machine learning identifies experimental brain metastasis subtypes based on their influence on neural circuits. Cancer Cell 2023; 41:1637-1649.e11. [PMID: 37652007 PMCID: PMC10507426 DOI: 10.1016/j.ccell.2023.07.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 05/26/2023] [Accepted: 07/26/2023] [Indexed: 09/02/2023]
Abstract
A high percentage of patients with brain metastases frequently develop neurocognitive symptoms; however, understanding how brain metastasis co-opts the function of neuronal circuits beyond a tumor mass effect remains unknown. We report a comprehensive multidimensional modeling of brain functional analyses in the context of brain metastasis. By testing different preclinical models of brain metastasis from various primary sources and oncogenic profiles, we dissociated the heterogeneous impact on local field potential oscillatory activity from cortical and hippocampal areas that we detected from the homogeneous inter-model tumor size or glial response. In contrast, we report a potential underlying molecular program responsible for impairing neuronal crosstalk by scoring the transcriptomic and mutational profiles in a model-specific manner. Additionally, measurement of various brain activity readouts matched with machine learning strategies confirmed model-specific alterations that could help predict the presence and subtype of metastasis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Sonia Martínez
- Experimental Therapeutics Programme, CNIO, 28029 Madrid, Spain
| | - Miguel Lafarga
- Department of Anatomy and Cell Biology and CIBERNED, University of Cantabria- IDIVAL, 39011 Santander, Spain
| | - Michael Z Lin
- Departments of Neurobiology and Bioengineering, Stanford University, Stanford, CA 94305-5090, USA
| | | | | | | |
Collapse
|
9
|
Meade RK, Long JE, Jinich A, Rhee KY, Ashbrook DG, Williams RW, Sassetti CM, Smith CM. Genome-wide screen identifies host loci that modulate Mycobacterium tuberculosis fitness in immunodivergent mice. G3 (BETHESDA, MD.) 2023; 13:jkad147. [PMID: 37405387 PMCID: PMC10468300 DOI: 10.1093/g3journal/jkad147] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/05/2023] [Accepted: 06/27/2023] [Indexed: 07/06/2023]
Abstract
Genetic differences among mammalian hosts and among strains of Mycobacterium tuberculosis (Mtb) are well-established determinants of tuberculosis (TB) patient outcomes. The advent of recombinant inbred mouse panels and next-generation transposon mutagenesis and sequencing approaches has enabled dissection of complex host-pathogen interactions. To identify host and pathogen genetic determinants of Mtb pathogenesis, we infected members of the highly diverse BXD family of strains with a comprehensive library of Mtb transposon mutants (TnSeq). Members of the BXD family segregate for Mtb-resistant C57BL/6J (B6 or B) and Mtb-susceptible DBA/2J (D2 or D) haplotypes. The survival of each bacterial mutant was quantified within each BXD host, and we identified those bacterial genes that were differentially required for Mtb fitness across BXD genotypes. Mutants that varied in survival among the host family of strains were leveraged as reporters of "endophenotypes," each bacterial fitness profile directly probing specific components of the infection microenvironment. We conducted quantitative trait loci (QTL) mapping of these bacterial fitness endophenotypes and identified 140 host-pathogen QTL (hpQTL). We located a QTL hotspot on chromosome 6 (75.97-88.58 Mb) associated with the genetic requirement of multiple Mtb genes: Rv0127 (mak), Rv0359 (rip2), Rv0955 (perM), and Rv3849 (espR). Together, this screen reinforces the utility of bacterial mutant libraries as precise reporters of the host immunological microenvironment during infection and highlights specific host-pathogen genetic interactions for further investigation. To enable downstream follow-up for both bacterial and mammalian genetic research communities, all bacterial fitness profiles have been deposited into GeneNetwork.org and added into the comprehensive collection of TnSeq libraries in MtbTnDB.
Collapse
Affiliation(s)
- Rachel K Meade
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA
- University Program in Genetics and Genomics, Duke University, Durham, NC 27710, USA
| | - Jarukit E Long
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA 01655, USA
- Research Animal Diagnostic Services, Charles River Laboratories, Wilmington, MA 01887, USA
| | - Adrian Jinich
- Division of Infectious Diseases, Weill Cornell Medical College, New York, NY 10021, USA
| | - Kyu Y Rhee
- Division of Infectious Diseases, Weill Cornell Medical College, New York, NY 10021, USA
| | - David G Ashbrook
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Robert W Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Christopher M Sassetti
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA 01655, USA
| | - Clare M Smith
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA
- University Program in Genetics and Genomics, Duke University, Durham, NC 27710, USA
| |
Collapse
|
10
|
Nadjsombati MS, Niepoth N, Webeck LM, Kennedy EA, Jones DL, Billipp TE, Baldridge MT, Bendesky A, von Moltke J. Genetic mapping reveals Pou2af2/OCA-T1-dependent tuning of tuft cell differentiation and intestinal type 2 immunity. Sci Immunol 2023; 8:eade5019. [PMID: 37172102 PMCID: PMC10308849 DOI: 10.1126/sciimmunol.ade5019] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 04/18/2023] [Indexed: 05/14/2023]
Abstract
Chemosensory epithelial tuft cells contribute to innate immunity at barrier surfaces, but their differentiation from epithelial progenitors is not well understood. Here, we exploited differences between inbred mouse strains to identify an epithelium-intrinsic mechanism that regulates tuft cell differentiation and tunes innate type 2 immunity in the small intestine. Balb/cJ (Balb) mice had fewer intestinal tuft cells than C57BL/6J (B6) mice and failed to respond to the tuft cell ligand succinate. Most of this differential succinate response was determined by the 50- to 67-Mb interval of chromosome 9 (Chr9), such that congenic Balb mice carrying the B6 Chr9 interval had elevated baseline numbers of tuft cells and responded to succinate. The Chr9 locus includes Pou2af2, which encodes the protein OCA-T1, a transcriptional cofactor essential for tuft cell development. Epithelial crypts expressed a previously unannotated short isoform of Pou2af2 predicted to use a distinct transcriptional start site and encode a nonfunctional protein. Low tuft cell numbers and the resulting lack of succinate response in Balb mice were explained by a preferential expression of the short isoform and could be rescued by expression of full-length Pou2af2. Physiologically, Pou2af2 isoform usage tuned innate type 2 immunity in the small intestine. Balb mice maintained responsiveness to helminth pathogens while ignoring commensal Tritrichomonas protists and reducing norovirus burdens.
Collapse
Affiliation(s)
- Marija S Nadjsombati
- Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA
| | - Natalie Niepoth
- Zuckerman Mind Brain Behavior Institute, Columbia University, NY, USA
- Department of Ecology, Evolution and Environmental Biology, Columbia University, NY, USA
| | - Lily M Webeck
- Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA
| | - Elizabeth A Kennedy
- Department of Medicine, Division of Infectious Diseases, Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Danielle L Jones
- Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA
| | - Tyler E Billipp
- Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA
| | - Megan T Baldridge
- Department of Medicine, Division of Infectious Diseases, Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Andres Bendesky
- Zuckerman Mind Brain Behavior Institute, Columbia University, NY, USA
- Department of Ecology, Evolution and Environmental Biology, Columbia University, NY, USA
| | - Jakob von Moltke
- Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
11
|
Raza A, Diehl SA, Krementsov DN, Case LK, Li D, Kost J, Ball RL, Chesler EJ, Philip VM, Huang R, Chen Y, Ma R, Tyler AL, Mahoney JM, Blankenhorn EP, Teuscher C. A genetic locus complements resistance to Bordetella pertussis-induced histamine sensitization. Commun Biol 2023; 6:244. [PMID: 36879097 PMCID: PMC9988836 DOI: 10.1038/s42003-023-04603-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 02/16/2023] [Indexed: 03/08/2023] Open
Abstract
Histamine plays pivotal role in normal physiology and dysregulated production of histamine or signaling through histamine receptors (HRH) can promote pathology. Previously, we showed that Bordetella pertussis or pertussis toxin can induce histamine sensitization in laboratory inbred mice and is genetically controlled by Hrh1/HRH1. HRH1 allotypes differ at three amino acid residues with P263-V313-L331 and L263-M313-S331, imparting sensitization and resistance respectively. Unexpectedly, we found several wild-derived inbred strains that carry the resistant HRH1 allotype (L263-M313-S331) but exhibit histamine sensitization. This suggests the existence of a locus modifying pertussis-dependent histamine sensitization. Congenic mapping identified the location of this modifier locus on mouse chromosome 6 within a functional linkage disequilibrium domain encoding multiple loci controlling sensitization to histamine. We utilized interval-specific single-nucleotide polymorphism (SNP) based association testing across laboratory and wild-derived inbred mouse strains and functional prioritization analyses to identify candidate genes for this modifier locus. Atg7, Plxnd1, Tmcc1, Mkrn2, Il17re, Pparg, Lhfpl4, Vgll4, Rho and Syn2 are candidate genes within this modifier locus, which we named Bphse, enhancer of Bordetella pertussis induced histamine sensitization. Taken together, these results identify, using the evolutionarily significant diversity of wild-derived inbred mice, additional genetic mechanisms controlling histamine sensitization.
Collapse
Affiliation(s)
- Abbas Raza
- Department of Medicine, University of Vermont, Burlington, VT, 05405, USA
| | - Sean A Diehl
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT, 05405, USA
| | - Dimitry N Krementsov
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, 05405, USA
| | - Laure K Case
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA
| | - Dawei Li
- Department of Biomedical Science, Florida Atlantic University, Boca Raton, FL, 33431, USA
| | - Jason Kost
- Catalytic Data Science, Charleston, SC, 29403, USA
| | - Robyn L Ball
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA
| | | | | | - Rui Huang
- School of Life Sciences, University of the Chinese Academy of Sciences, 100049, Beijing, China
| | - Yan Chen
- School of Life Sciences, University of the Chinese Academy of Sciences, 100049, Beijing, China
| | - Runlin Ma
- School of Life Sciences, University of the Chinese Academy of Sciences, 100049, Beijing, China
| | - Anna L Tyler
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, 05405, USA
| | - J Matthew Mahoney
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Elizabeth P Blankenhorn
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, 19129, USA
| | - Cory Teuscher
- Department of Medicine, University of Vermont, Burlington, VT, 05405, USA.
- Pathology and Laboratory Medicine, University of Vermont, Burlington, VT, 05405, USA.
| |
Collapse
|
12
|
Meade RK, Long JE, Jinich A, Rhee KY, Ashbrook DG, Williams RW, Sassetti CM, Smith CM. Genome-wide screen identifies host loci that modulate M. tuberculosis fitness in immunodivergent mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.05.528534. [PMID: 36945430 PMCID: PMC10028809 DOI: 10.1101/2023.03.05.528534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Genetic differences among mammalian hosts and Mycobacterium tuberculosis ( Mtb ) strains determine diverse tuberculosis (TB) patient outcomes. The advent of recombinant inbred mouse panels and next-generation transposon mutagenesis and sequencing approaches has enabled dissection of complex host- pathogen interactions. To identify host and pathogen genetic determinants of Mtb pathogenesis, we infected members of the BXD family of mouse strains with a comprehensive library of Mtb transposon mutants (TnSeq). Members of the BXD family segregate for Mtb -resistant C57BL/6J (B6 or B ) and Mtb -susceptible DBA/2J (D2 or D ) haplotypes. The survival of each bacterial mutant was quantified within each BXD host, and we identified those bacterial genes that were differentially required for Mtb fitness across BXD genotypes. Mutants that varied in survival among the host family of strains were leveraged as reporters for "endophenotypes", each bacterial fitness profile directly probing specific components of the infection microenvironment. We conducted QTL mapping of these bacterial fitness endophenotypes and identified 140 h ost- p athogen quantitative trait loci ( hp QTL). We identified a QTL hotspot on chromosome 6 (75.97-88.58 Mb) associated with the genetic requirement of multiple Mtb genes; Rv0127 ( mak ), Rv0359 ( rip2 ), Rv0955 ( perM ), and Rv3849 ( espR ). Together, this screen reinforces the utility of bacterial mutant libraries as precise reporters of the host immunological microenvironment during infection and highlights specific host-pathogen genetic interactions for further investigation. To enable downstream follow-up for both bacterial and mammalian genetic research communities, all bacterial fitness profiles have been deposited into GeneNetwork.org and added into the comprehensive collection of TnSeq libraries in MtbTnDB.
Collapse
Affiliation(s)
- Rachel K. Meade
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
- University Program in Genetics and Genomics, Duke University, Durham, NC, USA
| | - Jarukit E. Long
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA, USA
- Charles River Laboratories, Research Animal Diagnostic Services, Wilmington, MA, USA
| | - Adrian Jinich
- Division of Infectious Diseases, Weill Cornell Medical College, NY, USA
| | - Kyu Y. Rhee
- Division of Infectious Diseases, Weill Cornell Medical College, NY, USA
| | - David G. Ashbrook
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Robert W. Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Christopher M. Sassetti
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA, USA
| | - Clare M. Smith
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
- University Program in Genetics and Genomics, Duke University, Durham, NC, USA
| |
Collapse
|
13
|
Timmermans S, Vandewalle J, Libert C. Mousepost 2.0, a major expansion of the resource. Nucleic Acids Res 2023; 51:1652-1661. [PMID: 36762471 PMCID: PMC9976886 DOI: 10.1093/nar/gkad064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 02/11/2023] Open
Abstract
The Mousepost 1.0 online search tool, launched in 2017, allowed to search for variations in all protein-coding gene sequences of 36 sequenced mouse inbred strains, compared to the reference strain C57BL/6J, which could be linked to strain-specific phenotypes and modifier effects. Because recently these genome sequences have been significantly updated and sequences of 16 extra strains added by the Mouse Genomes Project, a profound update, correction and expansion of the Mousepost 1.0 database has been performed and is reported here. Moreover, we have added a new class of protein disturbing sequence polymorphisms (besides stop codon losses, stop codon gains, small insertions and deletions, and missense mutations), namely start codon mutations. The current version, Mousepost 2.0 (https://mousepost.be), therefore is a significantly updated and invaluable tool available to the community and is described here and foreseen by multiple examples.
Collapse
Affiliation(s)
- Steven Timmermans
- VIB Center for Inflammation Research, 9052 Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jolien Vandewalle
- VIB Center for Inflammation Research, 9052 Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Claude Libert
- VIB Center for Inflammation Research, 9052 Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
14
|
Arora UP, Dumont BL. Meiotic drive in house mice: mechanisms, consequences, and insights for human biology. Chromosome Res 2022; 30:165-186. [PMID: 35829972 PMCID: PMC9509409 DOI: 10.1007/s10577-022-09697-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/20/2022] [Accepted: 04/27/2022] [Indexed: 11/27/2022]
Abstract
Meiotic drive occurs when one allele at a heterozygous site cheats its way into a disproportionate share of functional gametes, violating Mendel's law of equal segregation. This genetic conflict typically imposes a fitness cost to individuals, often by disrupting the process of gametogenesis. The evolutionary impact of meiotic drive is substantial, and the phenomenon has been associated with infertility and reproductive isolation in a wide range of organisms. However, cases of meiotic drive in humans remain elusive, a finding that likely reflects the inherent challenges of detecting drive in our species rather than unique features of human genome biology. Here, we make the case that house mice (Mus musculus) present a powerful model system to investigate the mechanisms and consequences of meiotic drive and facilitate translational inferences about the scope and potential mechanisms of drive in humans. We first detail how different house mouse resources have been harnessed to identify cases of meiotic drive and the underlying mechanisms utilized to override Mendel's rules of inheritance. We then summarize the current state of knowledge of meiotic drive in the mouse genome. We profile known mechanisms leading to transmission bias at several established drive elements. We discuss how a detailed understanding of meiotic drive in mice can steer the search for drive elements in our own species. Lastly, we conclude with a prospective look into how new technologies and molecular tools can help resolve lingering mysteries about the prevalence and mechanisms of selfish DNA transmission in mammals.
Collapse
Affiliation(s)
- Uma P Arora
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
- Graduate School of Biomedical Sciences, Tufts University, 136 Harrison Ave, Boston, MA, 02111, USA
| | - Beth L Dumont
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA.
- Graduate School of Biomedical Sciences, Tufts University, 136 Harrison Ave, Boston, MA, 02111, USA.
| |
Collapse
|
15
|
Snyder JP, Gullickson SK, del Rio-Guerra R, Sweezy A, Vagher B, Hogan TC, Lahue KG, Reisz JA, D’Alessandro A, Krementsov DN, Amiel E. Divergent Genetic Regulation of Nitric Oxide Production between C57BL/6J and Wild-Derived PWD/PhJ Mice Controls Postactivation Mitochondrial Metabolism, Cell Survival, and Bacterial Resistance in Dendritic Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:97-109. [PMID: 34872978 PMCID: PMC8702458 DOI: 10.4049/jimmunol.2100375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 10/04/2021] [Indexed: 01/03/2023]
Abstract
Dendritic cell (DC) activation is characterized by sustained commitment to glycolysis that is a requirement for survival in DC subsets that express inducible NO synthase (Nos2) due to NO-mediated inhibition of mitochondrial respiration. This phenomenon primarily has been studied in DCs from the classic laboratory inbred mouse strain C57BL/6J (B6) mice, where DCs experience a loss of mitochondrial function due to NO accumulation. To assess the conservation of NO-driven metabolic regulation in DCs, we compared B6 mice to the wild-derived genetically divergent PWD/PhJ (PWD) strain. We show preserved mitochondrial respiration and enhanced postactivation survival due to attenuated NO production in LPS-stimulated PWD DCs phenocopying human monocyte-derived DCs. To genetically map this phenotype, we used a congenic mouse strain (B6.PWD-Chr11.2) that carries a PWD-derived portion of chromosome 11, including Nos2, on a B6 background. B6.PWD-Chr11.2 DCs show preserved mitochondrial function and produce lower NO levels than B6 DCs. We demonstrate that activated B6.PWD-Chr11.2 DCs maintain mitochondrial respiration and TCA cycle carbon flux, compared with B6 DCs. However, reduced NO production by the PWD Nos2 allele results in impaired cellular control of Listeria monocytogenes replication. These studies establish a natural genetic model for restrained endogenous NO production to investigate the contribution of NO in regulating the interplay between DC metabolism and immune function. These findings suggest that reported differences between human and murine DCs may be an artifact of the limited genetic diversity of the mouse models used, underscoring the need for mouse genetic diversity in immunology research.
Collapse
Affiliation(s)
- Julia P. Snyder
- Cell, Molecular, and Biomedical Sciences Program, University of Vermont, Burlington, VT 05405, USA,Department of Biomedical and Health Sciences, College of Nursing and Health Sciences, University of Vermont, Burlington, VT, 05405, USA
| | - Soyeon K. Gullickson
- Cell, Molecular, and Biomedical Sciences Program, University of Vermont, Burlington, VT 05405, USA
| | - Roxana del Rio-Guerra
- Flow Cytometry and Cell Sorting Facility, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Andrea Sweezy
- Undergraduate Student Researcher, University of Vermont
| | - Bay Vagher
- Cell, Molecular, and Biomedical Sciences Program, University of Vermont, Burlington, VT 05405, USA,Department of Biomedical and Health Sciences, College of Nursing and Health Sciences, University of Vermont, Burlington, VT, 05405, USA
| | - Tyler C. Hogan
- Department of Biomedical and Health Sciences, College of Nursing and Health Sciences, University of Vermont, Burlington, VT, 05405, USA
| | - Karolyn G. Lahue
- Department of Biomedical and Health Sciences, College of Nursing and Health Sciences, University of Vermont, Burlington, VT, 05405, USA
| | - Julie A. Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado – Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado – Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Dimitry N. Krementsov
- Cell, Molecular, and Biomedical Sciences Program, University of Vermont, Burlington, VT 05405, USA,Department of Biomedical and Health Sciences, College of Nursing and Health Sciences, University of Vermont, Burlington, VT, 05405, USA
| | - Eyal Amiel
- Cell, Molecular, and Biomedical Sciences Program, University of Vermont, Burlington, VT 05405, USA,Department of Biomedical and Health Sciences, College of Nursing and Health Sciences, University of Vermont, Burlington, VT, 05405, USA,Corresponding author: please direct all correspondence to
| |
Collapse
|
16
|
Moser S, Sugano Y, Wengi A, Fisi V, Lindtoft Rosenbaek L, Mariniello M, Loffing‐Cueni D, McCormick JA, Fenton RA, Loffing J. A five amino acids deletion in NKCC2 of C57BL/6 mice affects analysis of NKCC2 phosphorylation but does not impact kidney function. Acta Physiol (Oxf) 2021; 233:e13705. [PMID: 34114742 PMCID: PMC8384713 DOI: 10.1111/apha.13705] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 05/04/2021] [Accepted: 06/07/2021] [Indexed: 12/24/2022]
Abstract
Aim The phosphorylation level of the furosemide‐sensitive Na+‐K+‐2Cl− cotransporter (NKCC2) in the thick ascending limb (TAL) is used as a surrogate marker for NKCC2 activation and TAL function. However, in mice, analyses of NKCC2 phosphorylation with antibodies against phosphorylated threonines 96 and 101 (anti‐pT96/pT101) give inconsistent results. We aimed (a) to elucidate these inconsistencies and (b) to develop a phosphoform‐specific antibody that ensures reliable detection of NKCC2 phosphorylation in mice. Methods Genetic information, molecular biology, biochemical techniques and mouse phenotyping was used to study NKCC2 and kidney function in two commonly used mouse strains (ie 129Sv and in C57BL/6 mice). Moreover, a new phosphoform‐specific mouse NKCC2 antibody was developed and characterized. Results Amino acids sequence alignment revealed that C57BL/6 mice have a strain‐specific five amino acids deletion (ΔF97‐T101) in NKCC2 that diminishes the detection of NKCC2 phosphorylation with previously developed pT96/pT101 NKCC2 antibodies. Instead, the antibodies cross‐react with the phosphorylated thiazide‐sensitive NaCl cotransporter (NCC), which can obscure interpretation of results. Interestingly, the deletion in NKCC2 does not impact on kidney function and/or expression of renal ion transport proteins as indicated by the analysis of the F2 generation of crossbred 129Sv and C57BL/6 mice. A newly developed pT96 NKCC2 antibody detects pNKCC2 in both mouse strains and shows no cross‐reactivity with phosphorylated NCC. Conclusion Our work reveals a hitherto unappreciated, but essential, strain difference in the amino acids sequence of mouse NKCC2 that needs to be considered when analysing NKCC2 phosphorylation in mice. The new pNKCC2 antibody circumvents this technical caveat.
Collapse
Affiliation(s)
- Sandra Moser
- Institute of Anatomy University of Zurich Zurich Switzerland
| | - Yuya Sugano
- Institute of Anatomy University of Zurich Zurich Switzerland
| | - Agnieszka Wengi
- Institute of Anatomy University of Zurich Zurich Switzerland
| | - Viktoria Fisi
- Institute of Anatomy University of Zurich Zurich Switzerland
| | | | | | | | - James A. McCormick
- Division of Nephrology and Hypertension Oregon Health & Science University Portland OR USA
| | | | - Johannes Loffing
- Institute of Anatomy University of Zurich Zurich Switzerland
- Swiss National Centre for Competence in Research “Kidney control of homeostasis” Zurich Switzerland
| |
Collapse
|
17
|
Durán A, Rebolledo-Jaramillo B, Olguin V, Rojas-Herrera M, Las Heras M, Calderón JF, Zanlungo S, Priestman DA, Platt FM, Klein AD. Identification of genetic modifiers of murine hepatic β-glucocerebrosidase activity. Biochem Biophys Rep 2021; 28:101105. [PMID: 34458595 PMCID: PMC8379285 DOI: 10.1016/j.bbrep.2021.101105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 12/18/2022] Open
Abstract
The acid β-glucocerebrosidase (GCase) enzyme cleaves glucosylceramide into glucose and ceramide. Loss of function variants in the gene encoding for GCase can lead to Gaucher disease and Parkinson's disease. Therapeutic strategies aimed at increasing GCase activity by targeting a modulating factor are attractive and poorly explored. To identify genetic modifiers, we measured hepatic GCase activity in 27 inbred mouse strains. A genome-wide association study (GWAS) using GCase activity as a trait identified several candidate modifier genes, including Dmrtc2 and Arhgef1 (p=2.1x10−7), and Grik5 (p=2.1x10−7). Bayesian integration of the gene mapping with transcriptomics was used to build integrative networks. The analysis uncovered additional candidate GCase regulators, highlighting modules of the acute phase response (p=1.01x10−8), acute inflammatory response (p=1.01x10−8), fatty acid beta-oxidation (p=7.43x10−5), among others. Our study revealed previously unknown candidate modulators of GCase activity, which may facilitate the design of therapies for diseases with GCase dysfunction. Hepatic GCase activity significantly differs among mouse strains. Genome-wide association study revealed putative modifier genes of GCase activity. Bayesian integration of multi-omics identified a regulatory network of GCase activity. This study may facilitate the design of therapies for diseases with GCase dysfunction.
Collapse
Affiliation(s)
- Anyelo Durán
- Centro de Genética y Genómica, Facultad de Medicina, Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Boris Rebolledo-Jaramillo
- Centro de Genética y Genómica, Facultad de Medicina, Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Valeria Olguin
- Centro de Genética y Genómica, Facultad de Medicina, Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Marcelo Rojas-Herrera
- Centro de Genética y Genómica, Facultad de Medicina, Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Macarena Las Heras
- Centro de Genética y Genómica, Facultad de Medicina, Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Juan F Calderón
- Centro de Genética y Genómica, Facultad de Medicina, Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Silvana Zanlungo
- Department of Gastroenterology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - David A Priestman
- Department of Pharmacology, University of Oxford, Oxford, OX1 3QT, UK
| | - Frances M Platt
- Department of Pharmacology, University of Oxford, Oxford, OX1 3QT, UK
| | - Andrés D Klein
- Centro de Genética y Genómica, Facultad de Medicina, Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| |
Collapse
|
18
|
Extensive variation in the intelectin gene family in laboratory and wild mouse strains. Sci Rep 2021; 11:15548. [PMID: 34330944 PMCID: PMC8324875 DOI: 10.1038/s41598-021-94679-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/13/2021] [Indexed: 12/30/2022] Open
Abstract
Intelectins are a family of multimeric secreted proteins that bind microbe-specific glycans. Both genetic and functional studies have suggested that intelectins have an important role in innate immunity and are involved in the etiology of various human diseases, including inflammatory bowel disease. Experiments investigating the role of intelectins in human disease using mouse models are limited by the fact that there is not a clear one-to-one relationship between intelectin genes in humans and mice, and that the number of intelectin genes varies between different mouse strains. In this study we show by gene sequence and gene expression analysis that human intelectin-1 (ITLN1) has multiple orthologues in mice, including a functional homologue Itln1; however, human intelectin-2 has no such orthologue or homologue. We confirm that all sub-strains of the C57 mouse strain have a large deletion resulting in retention of only one intelectin gene, Itln1. The majority of laboratory strains have a full complement of six intelectin genes, except CAST, SPRET, SKIVE, MOLF and PANCEVO strains, which are derived from different mouse species/subspecies and encode different complements of intelectin genes. In wild mice, intelectin deletions are polymorphic in Mus musculus castaneus and Mus musculus domesticus. Further sequence analysis shows that Itln3 and Itln5 are polymorphic pseudogenes due to premature truncating mutations, and that mouse Itln1 has undergone recent adaptive evolution. Taken together, our study shows extensive diversity in intelectin genes in both laboratory and wild-mice, suggesting a pattern of birth-and-death evolution. In addition, our data provide a foundation for further experimental investigation of the role of intelectins in disease.
Collapse
|
19
|
Li W, Cao L, Li M, Yang X, Zhang W, Song Z, Wang X, Zhang L, Morahan G, Qin C, Gao R. Novel spontaneous myelodysplastic syndrome mouse model. Animal Model Exp Med 2021; 4:169-180. [PMID: 34179724 PMCID: PMC8212821 DOI: 10.1002/ame2.12168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 04/18/2021] [Indexed: 12/14/2022] Open
Abstract
Background Myelodysplastic syndrome (MDS) is a group of disorders involving hemopoietic dysfunction leading to leukemia. Although recently progress has been made in identifying underlying genetic mutations, many questions still remain. Animal models of MDS have been produced by introduction of specific mutations. However, there is no spontaneous mouse model of MDS, and an animal model to simulate natural MDS pathogenesis is urgently needed. Methods In characterizing the genetically diverse mouse strains of the Collaborative Cross (CC) we observed that one, designated JUN, had abnormal hematological traits. This strain was thus further analyzed for phenotypic and pathological identification, comparing the changes in each cell population in peripheral blood and in bone marrow. Results In a specific-pathogen free environment, mice of the JUN strain are relatively thin, with healthy appearance. However, in a conventional environment, they become lethargic, develop wrinkled yellow hair, have loose and light stools, and are prone to infections. We found that the mice were cytopenic, which was due to abnormal differentiation of multipotent bone marrow progenitor cells. These are common characteristics of MDS. Conclusions A mouse strain, JUN, was found displaying spontaneous myelodysplastic syndrome. This strain has the advantage over existing models in that it develops MDS spontaneously and is more similar to human MDS than genetically modified mouse models. JUN mice will be an important tool for pathogenesis research of MDS and for evaluation of new drugs and treatments.
Collapse
Affiliation(s)
- Weisha Li
- NHC Key Laboratory of Human Disease Comparative MedicineBeijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesInstitute of Laboratory Animal SciencesChinese Academy of Medical Sciences (CAMS) and Comparative Medicine CenterPeking Union Medical College (PUMC)BeijingChina
| | - Lin Cao
- NHC Key Laboratory of Human Disease Comparative MedicineBeijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesInstitute of Laboratory Animal SciencesChinese Academy of Medical Sciences (CAMS) and Comparative Medicine CenterPeking Union Medical College (PUMC)BeijingChina
| | - Mengyuan Li
- NHC Key Laboratory of Human Disease Comparative MedicineBeijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesInstitute of Laboratory Animal SciencesChinese Academy of Medical Sciences (CAMS) and Comparative Medicine CenterPeking Union Medical College (PUMC)BeijingChina
| | - Xingjiu Yang
- NHC Key Laboratory of Human Disease Comparative MedicineBeijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesInstitute of Laboratory Animal SciencesChinese Academy of Medical Sciences (CAMS) and Comparative Medicine CenterPeking Union Medical College (PUMC)BeijingChina
| | - Wenlong Zhang
- NHC Key Laboratory of Human Disease Comparative MedicineBeijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesInstitute of Laboratory Animal SciencesChinese Academy of Medical Sciences (CAMS) and Comparative Medicine CenterPeking Union Medical College (PUMC)BeijingChina
| | - Zhiqi Song
- NHC Key Laboratory of Human Disease Comparative MedicineBeijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesInstitute of Laboratory Animal SciencesChinese Academy of Medical Sciences (CAMS) and Comparative Medicine CenterPeking Union Medical College (PUMC)BeijingChina
| | - Xinpei Wang
- NHC Key Laboratory of Human Disease Comparative MedicineBeijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesInstitute of Laboratory Animal SciencesChinese Academy of Medical Sciences (CAMS) and Comparative Medicine CenterPeking Union Medical College (PUMC)BeijingChina
| | - Lingyan Zhang
- NHC Key Laboratory of Human Disease Comparative MedicineBeijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesInstitute of Laboratory Animal SciencesChinese Academy of Medical Sciences (CAMS) and Comparative Medicine CenterPeking Union Medical College (PUMC)BeijingChina
| | - Grant Morahan
- NHC Key Laboratory of Human Disease Comparative MedicineBeijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesInstitute of Laboratory Animal SciencesChinese Academy of Medical Sciences (CAMS) and Comparative Medicine CenterPeking Union Medical College (PUMC)BeijingChina
| | - Chuan Qin
- NHC Key Laboratory of Human Disease Comparative MedicineBeijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesInstitute of Laboratory Animal SciencesChinese Academy of Medical Sciences (CAMS) and Comparative Medicine CenterPeking Union Medical College (PUMC)BeijingChina
| | - Ran Gao
- NHC Key Laboratory of Human Disease Comparative MedicineBeijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesInstitute of Laboratory Animal SciencesChinese Academy of Medical Sciences (CAMS) and Comparative Medicine CenterPeking Union Medical College (PUMC)BeijingChina
| |
Collapse
|
20
|
Arora UP, Charlebois C, Lawal RA, Dumont BL. Population and subspecies diversity at mouse centromere satellites. BMC Genomics 2021; 22:279. [PMID: 33865332 PMCID: PMC8052823 DOI: 10.1186/s12864-021-07591-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/08/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Mammalian centromeres are satellite-rich chromatin domains that execute conserved roles in kinetochore assembly and chromosome segregation. Centromere satellites evolve rapidly between species, but little is known about population-level diversity across these loci. RESULTS We developed a k-mer based method to quantify centromere copy number and sequence variation from whole genome sequencing data. We applied this method to diverse inbred and wild house mouse (Mus musculus) genomes to profile diversity across the core centromere (minor) satellite and the pericentromeric (major) satellite repeat. We show that minor satellite copy number varies more than 10-fold among inbred mouse strains, whereas major satellite copy numbers span a 3-fold range. In contrast to widely held assumptions about the homogeneity of mouse centromere repeats, we uncover marked satellite sequence heterogeneity within single genomes, with diversity levels across the minor satellite exceeding those at the major satellite. Analyses in wild-caught mice implicate subspecies and population origin as significant determinants of variation in satellite copy number and satellite heterogeneity. Intriguingly, we also find that wild-caught mice harbor dramatically reduced minor satellite copy number and elevated satellite sequence heterogeneity compared to inbred strains, suggesting that inbreeding may reshape centromere architecture in pronounced ways. CONCLUSION Taken together, our results highlight the power of k-mer based approaches for probing variation across repetitive regions, provide an initial portrait of centromere variation across Mus musculus, and lay the groundwork for future functional studies on the consequences of natural genetic variation at these essential chromatin domains.
Collapse
Affiliation(s)
- Uma P Arora
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA.
- Tufts University, Graduate School of Biomedical Sciences, 136 Harrison Ave, Boston, MA, 02111, USA.
| | | | | | - Beth L Dumont
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA.
- Tufts University, Graduate School of Biomedical Sciences, 136 Harrison Ave, Boston, MA, 02111, USA.
| |
Collapse
|
21
|
Lewis MA, Di Domenico F, Ingham NJ, Prosser HM, Steel KP. Hearing impairment due to Mir183/96/182 mutations suggests both loss and gain of function effects. Dis Model Mech 2020; 14:dmm.047225. [PMID: 33318051 PMCID: PMC7903918 DOI: 10.1242/dmm.047225] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 12/03/2020] [Indexed: 01/13/2023] Open
Abstract
The microRNA miR-96 is important for hearing, as point mutations in humans and mice result in dominant progressive hearing loss. Mir96 is expressed in sensory cells along with Mir182 and Mir183, but the roles of these closely-linked microRNAs are as yet unknown. Here we analyse mice carrying null alleles of Mir182, and of Mir183 and Mir96 together to investigate their roles in hearing. We found that Mir183/96 heterozygous mice had normal hearing and homozygotes were completely deaf with abnormal hair cell stereocilia bundles and reduced numbers of inner hair cell synapses at four weeks old. Mir182 knockout mice developed normal hearing then exhibited progressive hearing loss. Our transcriptional analyses revealed significant changes in a range of other genes, but surprisingly there were fewer genes with altered expression in the organ of Corti of Mir183/96 null mice compared with our previous findings in Mir96 Dmdo mutants, which have a point mutation in the miR-96 seed region. This suggests the more severe phenotype of Mir96 Dmdo mutants compared with Mir183/96 mutants, including progressive hearing loss in Mir96 Dmdo heterozygotes, is likely to be mediated by the gain of novel target genes in addition to the loss of its normal targets. We propose three mechanisms of action of mutant miRNAs; loss of targets that are normally completely repressed, loss of targets whose transcription is normally buffered by the miRNA, and gain of novel targets. Any of these mechanisms could lead to a partial loss of a robust cellular identity and consequent dysfunction.
Collapse
Affiliation(s)
- Morag A Lewis
- Wolfson Centre for Age-Related Diseases, King's College London, London, SE1 1UL, UK
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | | | - Neil J Ingham
- Wolfson Centre for Age-Related Diseases, King's College London, London, SE1 1UL, UK
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Haydn M Prosser
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Karen P Steel
- Wolfson Centre for Age-Related Diseases, King's College London, London, SE1 1UL, UK
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| |
Collapse
|
22
|
Sigmon JS, Blanchard MW, Baric RS, Bell TA, Brennan J, Brockmann GA, Burks AW, Calabrese JM, Caron KM, Cheney RE, Ciavatta D, Conlon F, Darr DB, Faber J, Franklin C, Gershon TR, Gralinski L, Gu B, Gaines CH, Hagan RS, Heimsath EG, Heise MT, Hock P, Ideraabdullah F, Jennette JC, Kafri T, Kashfeen A, Kulis M, Kumar V, Linnertz C, Livraghi-Butrico A, Lloyd KCK, Lutz C, Lynch RM, Magnuson T, Matsushima GK, McMullan R, Miller DR, Mohlke KL, Moy SS, Murphy CEY, Najarian M, O'Brien L, Palmer AA, Philpot BD, Randell SH, Reinholdt L, Ren Y, Rockwood S, Rogala AR, Saraswatula A, Sassetti CM, Schisler JC, Schoenrock SA, Shaw GD, Shorter JR, Smith CM, St Pierre CL, Tarantino LM, Threadgill DW, Valdar W, Vilen BJ, Wardwell K, Whitmire JK, Williams L, Zylka MJ, Ferris MT, McMillan L, Manuel de Villena FP. Content and Performance of the MiniMUGA Genotyping Array: A New Tool To Improve Rigor and Reproducibility in Mouse Research. Genetics 2020; 216:905-930. [PMID: 33067325 PMCID: PMC7768238 DOI: 10.1534/genetics.120.303596] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/06/2020] [Indexed: 12/14/2022] Open
Abstract
The laboratory mouse is the most widely used animal model for biomedical research, due in part to its well-annotated genome, wealth of genetic resources, and the ability to precisely manipulate its genome. Despite the importance of genetics for mouse research, genetic quality control (QC) is not standardized, in part due to the lack of cost-effective, informative, and robust platforms. Genotyping arrays are standard tools for mouse research and remain an attractive alternative even in the era of high-throughput whole-genome sequencing. Here, we describe the content and performance of a new iteration of the Mouse Universal Genotyping Array (MUGA), MiniMUGA, an array-based genetic QC platform with over 11,000 probes. In addition to robust discrimination between most classical and wild-derived laboratory strains, MiniMUGA was designed to contain features not available in other platforms: (1) chromosomal sex determination, (2) discrimination between substrains from multiple commercial vendors, (3) diagnostic SNPs for popular laboratory strains, (4) detection of constructs used in genetically engineered mice, and (5) an easy-to-interpret report summarizing these results. In-depth annotation of all probes should facilitate custom analyses by individual researchers. To determine the performance of MiniMUGA, we genotyped 6899 samples from a wide variety of genetic backgrounds. The performance of MiniMUGA compares favorably with three previous iterations of the MUGA family of arrays, both in discrimination capabilities and robustness. We have generated publicly available consensus genotypes for 241 inbred strains including classical, wild-derived, and recombinant inbred lines. Here, we also report the detection of a substantial number of XO and XXY individuals across a variety of sample types, new markers that expand the utility of reduced complexity crosses to genetic backgrounds other than C57BL/6, and the robust detection of 17 genetic constructs. We provide preliminary evidence that the array can be used to identify both partial sex chromosome duplication and mosaicism, and that diagnostic SNPs can be used to determine how long inbred mice have been bred independently from the relevant main stock. We conclude that MiniMUGA is a valuable platform for genetic QC, and an important new tool to increase the rigor and reproducibility of mouse research.
Collapse
Affiliation(s)
- John Sebastian Sigmon
- Department of Computer Science, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Matthew W Blanchard
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599
- Mutant Mouse Resource and Research Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Ralph S Baric
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Timothy A Bell
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Jennifer Brennan
- Mutant Mouse Resource and Research Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | | | - A Wesley Burks
- Department of Pediatrics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - J Mauro Calabrese
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Kathleen M Caron
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Richard E Cheney
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Dominic Ciavatta
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Frank Conlon
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599
| | - David B Darr
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | - James Faber
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Craig Franklin
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri 65211
| | - Timothy R Gershon
- Department of Neurology, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Lisa Gralinski
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Bin Gu
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Christiann H Gaines
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Robert S Hagan
- Division of Pulmonary Diseases and Critical Care Medicine, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Ernest G Heimsath
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Mark T Heise
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Pablo Hock
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Folami Ideraabdullah
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599
- Department of Nutrition, Gillings School of Public Health, University of North Carolina, Chapel Hill, North Carolina 27599
| | - J Charles Jennette
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Tal Kafri
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina 27599
- Gene Therapy Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Anwica Kashfeen
- Department of Computer Science, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Mike Kulis
- Department of Pediatrics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Vivek Kumar
- The Jackson Laboratory, Bar Harbor, Maine 04609
| | - Colton Linnertz
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Alessandra Livraghi-Butrico
- Marsico Lung Institute/UNC Cystic Fibrosis Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | - K C Kent Lloyd
- Department of Surgery, University of California Davis, Davis, California 95616
- School of Medicine, University of California Davis, California 95616
- Mouse Biology Program, University of California Davis, California 95616
| | | | - Rachel M Lynch
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Terry Magnuson
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599
- Mutant Mouse Resource and Research Center, University of North Carolina, Chapel Hill, North Carolina 27599
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Glenn K Matsushima
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina 27599
- UNC Neuroscience Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Rachel McMullan
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Darla R Miller
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Karen L Mohlke
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Sheryl S Moy
- Department of Psychiatry, University of North Carolina, Chapel Hill, North Carolina 27599
- Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Caroline E Y Murphy
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Maya Najarian
- Department of Computer Science, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Lori O'Brien
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina 27599
| | | | - Benjamin D Philpot
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina 27599
- Marsico Lung Institute/UNC Cystic Fibrosis Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Scott H Randell
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina 27599
| | | | - Yuyu Ren
- University of California San Diego, La Jolla, California 92093
| | | | - Allison R Rogala
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina 27599
- Division of Comparative Medicine, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Avani Saraswatula
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Christopher M Sassetti
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts 01655
| | - Jonathan C Schisler
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Sarah A Schoenrock
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Ginger D Shaw
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - John R Shorter
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Clare M Smith
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts 01655
| | | | - Lisa M Tarantino
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599
| | - David W Threadgill
- University of California San Diego, La Jolla, California 92093
- Department of Biochemistry and Biophysics, Texas A&M University, Texas 77843
| | - William Valdar
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Barbara J Vilen
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina 27599
| | | | - Jason K Whitmire
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Lucy Williams
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Mark J Zylka
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Martin T Ferris
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Leonard McMillan
- Department of Computer Science, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Fernando Pardo Manuel de Villena
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599
- Mutant Mouse Resource and Research Center, University of North Carolina, Chapel Hill, North Carolina 27599
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599
| |
Collapse
|
23
|
Li HD, Lu C, Zhang H, Hu Q, Zhang J, Cuevas IC, Sahoo SS, Aguilar M, Maurais EG, Zhang S, Wang X, Akbay EA, Li GM, Li B, Koduru P, Ly P, Fu YX, Castrillon DH. A PoleP286R mouse model of endometrial cancer recapitulates high mutational burden and immunotherapy response. JCI Insight 2020; 5:138829. [PMID: 32699191 DOI: 10.1172/jci.insight.138829] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/10/2020] [Indexed: 12/18/2022] Open
Abstract
Cancer is instigated by mutator phenotypes, including deficient mismatch repair and p53-associated chromosomal instability. More recently, a distinct class of cancers was identified with unusually high mutational loads due to heterozygous amino acid substitutions (most commonly P286R) in the proofreading domain of DNA polymerase ε, the leading strand replicase encoded by POLE. Immunotherapy has revolutionized cancer treatment, but new model systems are needed to recapitulate high mutational burdens characterizing human cancers and permit study of mechanisms underlying clinical responses. Here, we show that activation of a conditional LSL-PoleP286R allele in endometrium is sufficient to elicit in all animals endometrial cancers closely resembling their human counterparts, including very high mutational burden. Diverse investigations uncovered potentially novel aspects of Pole-driven tumorigenesis, including secondary p53 mutations associated with tetraploidy, and cooperation with defective mismatch repair through inactivation of Msh2. Most significantly, there were robust antitumor immune responses with increased T cell infiltrates, accelerated tumor growth following T cell depletion, and unfailing clinical regression following immune checkpoint therapy. This model predicts that human POLE-driven cancers will prove consistently responsive to immune checkpoint blockade. Furthermore, this is a robust and efficient approach to recapitulate in mice the high mutational burdens and immune responses characterizing human cancers.
Collapse
Affiliation(s)
| | | | - He Zhang
- Quantitative Biomedical Research Center, Department of Population and Data Sciences
| | | | | | | | | | | | | | | | | | - Esra A Akbay
- Department of Pathology.,Simmons Comprehensive Cancer Center
| | - Guo-Min Li
- Department of Radiation Oncology.,Advanced Imaging Research Center
| | - Bo Li
- Simmons Comprehensive Cancer Center.,Lyda Hill Department of Bioinformatics.,Department of Immunology
| | | | - Peter Ly
- Department of Pathology.,Simmons Comprehensive Cancer Center.,Department of Cell Biology, and
| | - Yang-Xin Fu
- Department of Pathology.,Simmons Comprehensive Cancer Center.,Department of Immunology
| | - Diego H Castrillon
- Department of Pathology.,Simmons Comprehensive Cancer Center.,Department of Obstetrics & Gynecology, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
24
|
Barnes IHA, Ibarra-Soria X, Fitzgerald S, Gonzalez JM, Davidson C, Hardy MP, Manthravadi D, Van Gerven L, Jorissen M, Zeng Z, Khan M, Mombaerts P, Harrow J, Logan DW, Frankish A. Expert curation of the human and mouse olfactory receptor gene repertoires identifies conserved coding regions split across two exons. BMC Genomics 2020; 21:196. [PMID: 32126975 PMCID: PMC7055050 DOI: 10.1186/s12864-020-6583-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/17/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Olfactory receptor (OR) genes are the largest multi-gene family in the mammalian genome, with 874 in human and 1483 loci in mouse (including pseudogenes). The expansion of the OR gene repertoire has occurred through numerous duplication events followed by diversification, resulting in a large number of highly similar paralogous genes. These characteristics have made the annotation of the complete OR gene repertoire a complex task. Most OR genes have been predicted in silico and are typically annotated as intronless coding sequences. RESULTS Here we have developed an expert curation pipeline to analyse and annotate every OR gene in the human and mouse reference genomes. By combining evidence from structural features, evolutionary conservation and experimental data, we have unified the annotation of these gene families, and have systematically determined the protein-coding potential of each locus. We have defined the non-coding regions of many OR genes, enabling us to generate full-length transcript models. We found that 13 human and 41 mouse OR loci have coding sequences that are split across two exons. These split OR genes are conserved across mammals, and are expressed at the same level as protein-coding OR genes with an intronless coding region. Our findings challenge the long-standing and widespread notion that the coding region of a vertebrate OR gene is contained within a single exon. CONCLUSIONS This work provides the most comprehensive curation effort of the human and mouse OR gene repertoires to date. The complete annotation has been integrated into the GENCODE reference gene set, for immediate availability to the research community.
Collapse
Affiliation(s)
- If H A Barnes
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK.
| | - Ximena Ibarra-Soria
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK.
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.
| | - Stephen Fitzgerald
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Jose M Gonzalez
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Claire Davidson
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Matthew P Hardy
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | | | - Laura Van Gerven
- Department of ENT-HNS, UZ Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Mark Jorissen
- Department of ENT-HNS, UZ Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Zhen Zeng
- Max Planck Research Unit for Neurogenetics, Max von-Laue-Strasse 4, 60438, Frankfurt, Germany
| | - Mona Khan
- Max Planck Research Unit for Neurogenetics, Max von-Laue-Strasse 4, 60438, Frankfurt, Germany
| | - Peter Mombaerts
- Max Planck Research Unit for Neurogenetics, Max von-Laue-Strasse 4, 60438, Frankfurt, Germany
| | - Jennifer Harrow
- ELIXIR, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Darren W Logan
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- Monell Chemical Senses Center, Philadelphia, PA, 19104, USA
- Waltham Petcare Science Institute, Leicestershire, LE14 4RT, UK
| | - Adam Frankish
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK.
| |
Collapse
|
25
|
García-García MJ. A History of Mouse Genetics: From Fancy Mice to Mutations in Every Gene. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1236:1-38. [PMID: 32304067 DOI: 10.1007/978-981-15-2389-2_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The laboratory mouse has become the model organism of choice in numerous areas of biological and biomedical research, including the study of congenital birth defects. The appeal of mice for these experimental studies stems from the similarities between the physiology, anatomy, and reproduction of these small mammals with our own, but it is also based on a number of practical reasons: mice are easy to maintain in a laboratory environment, are incredibly prolific, and have a relatively short reproductive cycle. Another compelling reason for choosing mice as research subjects is the number of tools and resources that have been developed after more than a century of working with these small rodents in laboratory environments. As will become obvious from the reading of the different chapters in this book, research in mice has already helped uncover many of the genes and processes responsible for congenital birth malformations and human diseases. In this chapter, we will provide an overview of the methods, scientific advances, and serendipitous circumstances that have made these discoveries possible, with a special emphasis on how the use of genetics has propelled scientific progress in mouse research and paved the way for future discoveries.
Collapse
|
26
|
Adão-Novaes J, Valverde R, Landemberger M, Silveira M, Simões-Pires E, Lowe J, Linden R. Substrain-related dependence of Cu(I)-ATPase activity among prion protein-null mice. Brain Res 2020; 1727:146550. [DOI: 10.1016/j.brainres.2019.146550] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/08/2019] [Accepted: 11/09/2019] [Indexed: 01/20/2023]
|
27
|
Radaelli E, Santagostino SF, Sellers RS, Brayton CF. Immune Relevant and Immune Deficient Mice: Options and Opportunities in Translational Research. ILAR J 2019; 59:211-246. [PMID: 31197363 PMCID: PMC7114723 DOI: 10.1093/ilar/ily026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/03/2018] [Indexed: 12/29/2022] Open
Abstract
In 1989 ILAR published a list and description of immunodeficient rodents used in research. Since then, advances in understanding of molecular mechanisms; recognition of genetic, epigenetic microbial, and other influences on immunity; and capabilities in manipulating genomes and microbiomes have increased options and opportunities for selecting mice and designing studies to answer important mechanistic and therapeutic questions. Despite numerous scientific breakthroughs that have benefitted from research in mice, there is debate about the relevance and predictive or translational value of research in mice. Reproducibility of results obtained from mice and other research models also is a well-publicized concern. This review summarizes resources to inform the selection and use of immune relevant mouse strains and stocks, aiming to improve the utility, validity, and reproducibility of research in mice. Immune sufficient genetic variations, immune relevant spontaneous mutations, immunodeficient and autoimmune phenotypes, and selected induced conditions are emphasized.
Collapse
Affiliation(s)
- Enrico Radaelli
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sara F Santagostino
- Department of Safety Assessment, Genentech, Inc., South San Francisco, California
| | | | - Cory F Brayton
- Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
28
|
Meier MJ, Beal MA, Schoenrock A, Yauk CL, Marchetti F. Whole Genome Sequencing of the Mutamouse Model Reveals Strain- and Colony-Level Variation, and Genomic Features of the Transgene Integration Site. Sci Rep 2019; 9:13775. [PMID: 31551502 PMCID: PMC6760142 DOI: 10.1038/s41598-019-50302-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 09/05/2019] [Indexed: 12/30/2022] Open
Abstract
The MutaMouse transgenic rodent model is widely used for assessing in vivo mutagenicity. Here, we report the characterization of MutaMouse's whole genome sequence and its genetic variants compared to the C57BL/6 reference genome. High coverage (>50X) next-generation sequencing (NGS) of whole genomes from multiple MutaMouse animals from the Health Canada (HC) colony showed ~5 million SNVs per genome, ~20% of which are putatively novel. Sequencing of two animals from a geographically separated colony at Covance indicated that, over the course of 23 years, each colony accumulated 47,847 (HC) and 17,677 (Covance) non-parental homozygous single nucleotide variants. We found no novel nonsense or missense mutations that impair the MutaMouse response to genotoxic agents. Pairing sequencing data with array comparative genomic hybridization (aCGH) improved the accuracy and resolution of copy number variants (CNVs) calls and identified 300 genomic regions with CNVs. We also used long-read sequence technology (PacBio) to show that the transgene integration site involved a large deletion event with multiple inversions and rearrangements near a retrotransposon. The MutaMouse genome gives important genetic context to studies using this model, offers insight on the mechanisms of structural variant formation, and contributes a framework to analyze aCGH results alongside NGS data.
Collapse
Affiliation(s)
- Matthew J Meier
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada.,Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, Ottawa, ON, Canada
| | - Marc A Beal
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada.,Existing Substances Risk Assessment Bureau, Health Canada, Ottawa, ON, Canada
| | - Andrew Schoenrock
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Carole L Yauk
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Francesco Marchetti
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada.
| |
Collapse
|
29
|
Williams JA, Powell G, Mallon AM, Simon MM. Genomic Mutation Identification in Mice Using Illumina Sequencing and Linux-Based Computational Methods. ACTA ACUST UNITED AC 2019; 9:e64. [PMID: 31532925 DOI: 10.1002/cpmo.64] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Genetically modified mice are an essential tool for modeling disease-causing mechanisms and discovering gene function. SNP genotyping was traditionally used to associate candidate regions with traits in the mouse, but failed to reveal novel variants without further targeted sequencing. Using a robust set of computational protocols, we present a platform to enable scientists to detect variants arising from whole-genome and exome sequencing experiments. This article guides researchers on aligning reads to the mouse genome, quality-assurance strategies, mutation discovery, comparing mutations to previously discovered mouse SNPs, and the annotation of novel variants, in order to predict mutation consequences on the protein level. Challenges unique to the mouse are discussed, and two protocols use self-contained containers to maintain version control and allow users to adapt our approach to new techniques by upgrading container versions. Our protocols are suited for servers or office workstations and are usable by non-bioinformatics specialists. © 2019 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- John A Williams
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire, United Kingdom.,Institute of Translational Medicine, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom.,Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - George Powell
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire, United Kingdom.,Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Ann-Marie Mallon
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire, United Kingdom
| | - Michelle M Simon
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire, United Kingdom
| |
Collapse
|
30
|
Tanave A, Imai Y, Koide T. Nested retrotransposition in the East Asian mouse genome causes the classical nonagouti mutation. Commun Biol 2019; 2:283. [PMID: 31396563 PMCID: PMC6677723 DOI: 10.1038/s42003-019-0539-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 07/10/2019] [Indexed: 01/31/2023] Open
Abstract
Black coat color (nonagouti) is a widespread classical mutation in laboratory mouse strains. The intronic insertion of endogenous retrovirus VL30 in the nonagouti (a) allele of agouti gene was previously reported as the cause of the nonagouti phenotype. Here, we report agouti mouse strains from East Asia that carry the VL30 insertion, indicating that VL30 alone does not cause the nonagouti phenotype. We find that a rare type of endogenous retrovirus, β4, was integrated into the VL30 region at the a allele through nested retrotransposition, causing abnormal splicing. Targeted complete deletion of the β4 element restores agouti gene expression and agouti coat color, whereas deletion of β4 except for a single long terminal repeat results in black-and-tan coat color. Phylogenetic analyses show that the a allele and the β4 retrovirus originated from an East Asian mouse lineage most likely related to Japanese fancy mice. These findings reveal the causal mechanism and historic origin of the classical nonagouti mutation.
Collapse
Affiliation(s)
- Akira Tanave
- Mouse Genomics Resource Laboratory, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540 Japan
- Present Address: Laboratory for Mouse Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, 1–3 Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Yuji Imai
- Mouse Genomics Resource Laboratory, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540 Japan
| | - Tsuyoshi Koide
- Mouse Genomics Resource Laboratory, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540 Japan
- Department of Genetics, SOKENDAI (The Graduate University for Advanced Studies), 1111 Yata, Mishima, Shizuoka 411-8540 Japan
| |
Collapse
|
31
|
Abstract
Mutation provides the ultimate source of all new alleles in populations, including variants that cause disease and fuel adaptation. Recent whole genome sequencing studies have uncovered variation in the mutation rate among individuals and differences in the relative frequency of specific nucleotide changes (the mutation spectrum) between populations. Although parental age is a major driver of differences in overall mutation rate among individuals, the causes of variation in the mutation spectrum remain less well understood. Here, I use high-quality whole genome sequences from 29 inbred laboratory mouse strains to explore the root causes of strain variation in the mutation spectrum. My analysis leverages the unique, mosaic patterns of genetic relatedness among inbred mouse strains to identify strain private variants residing on haplotypes shared between multiple strains due to their recent descent from a common ancestor. I show that these strain-private alleles are strongly enriched for recent de novo mutations and lack signals of widespread purifying selection, suggesting their faithful recapitulation of the spontaneous mutation landscape in single strains. The spectrum of strain-private variants varies significantly among inbred mouse strains reared under standardized laboratory conditions. This variation is not solely explained by strain differences in age at reproduction, raising the possibility that segregating genetic differences affect the constellation of new mutations that arise in a given strain. Collectively, these findings imply the action of remarkably precise nucleotide-specific genetic mechanisms for tuning the de novo mutation landscape in mammals and underscore the genetic complexity of mutation rate control.
Collapse
|
32
|
Nagafuchi S, Mine K, Takahashi H, Anzai K, Yoshikai Y. Viruses with masked pathogenicity and genetically susceptible hosts-How to discover potentially pathogenic viruses. J Med Virol 2019; 91:1365-1367. [PMID: 30927455 DOI: 10.1002/jmv.25472] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/22/2019] [Accepted: 03/25/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Seiho Nagafuchi
- Division of Metabolism and Endocrinology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Keiichiro Mine
- Division of Metabolism and Endocrinology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan.,Division of Host Defense, Research Center for the Prevention of Infectious Diseases, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Hirokazu Takahashi
- Division of Metabolism and Endocrinology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Keizo Anzai
- Division of Metabolism and Endocrinology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Yasunobu Yoshikai
- Division of Host Defense, Research Center for the Prevention of Infectious Diseases, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| |
Collapse
|
33
|
Yeung A, Hale C, Clare S, Palmer S, Bartholdson Scott J, Baker S, Dougan G. Using a Systems Biology Approach To Study Host-Pathogen Interactions. Microbiol Spectr 2019; 7:10.1128/microbiolspec.bai-0021-2019. [PMID: 30953425 PMCID: PMC11590422 DOI: 10.1128/microbiolspec.bai-0021-2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Indexed: 12/18/2022] Open
Abstract
The rapid development of genomics and other "-omics" approaches has significantly impacted how we have investigated host-pathogen interactions since the turn of the millennium. Technologies such as next-generation sequencing, stem cell biology, and high-throughput proteomics have transformed the scale and sensitivity with which we interrogate biological samples. These approaches are impacting experimental design in the laboratory and transforming clinical management in health care systems. Here, we review this area from the perspective of research on bacterial pathogens.
Collapse
Affiliation(s)
- Amy Yeung
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Christine Hale
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Simon Clare
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Sophie Palmer
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom
| | - Josefin Bartholdson Scott
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom
| | - Stephen Baker
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom
- Oxford University Clinical Research Unit, The Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Gordon Dougan
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom
| |
Collapse
|
34
|
Sima J, Chakraborty A, Dileep V, Michalski M, Klein KN, Holcomb NP, Turner JL, Paulsen MT, Rivera-Mulia JC, Trevilla-Garcia C, Bartlett DA, Zhao PA, Washburn BK, Nora EP, Kraft K, Mundlos S, Bruneau BG, Ljungman M, Fraser P, Ay F, Gilbert DM. Identifying cis Elements for Spatiotemporal Control of Mammalian DNA Replication. Cell 2019; 176:816-830.e18. [PMID: 30595451 PMCID: PMC6546437 DOI: 10.1016/j.cell.2018.11.036] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 10/01/2018] [Accepted: 11/21/2018] [Indexed: 01/09/2023]
Abstract
The temporal order of DNA replication (replication timing [RT]) is highly coupled with genome architecture, but cis-elements regulating either remain elusive. We created a series of CRISPR-mediated deletions and inversions of a pluripotency-associated topologically associating domain (TAD) in mouse ESCs. CTCF-associated domain boundaries were dispensable for RT. CTCF protein depletion weakened most TAD boundaries but had no effect on RT or A/B compartmentalization genome-wide. By contrast, deletion of three intra-TAD CTCF-independent 3D contact sites caused a domain-wide early-to-late RT shift, an A-to-B compartment switch, weakening of TAD architecture, and loss of transcription. The dispensability of TAD boundaries and the necessity of these "early replication control elements" (ERCEs) was validated by deletions and inversions at additional domains. Our results demonstrate that discrete cis-regulatory elements orchestrate domain-wide RT, A/B compartmentalization, TAD architecture, and transcription, revealing fundamental principles linking genome structure and function.
Collapse
Affiliation(s)
- Jiao Sima
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | | | - Vishnu Dileep
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Marco Michalski
- Nuclear Dynamics Program, The Babraham Institute, Cambridge CB22 3AT, UK
| | - Kyle N Klein
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Nicolas P Holcomb
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Jesse L Turner
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Michelle T Paulsen
- Departments of Radiation Oncology and Environmental Health Sciences, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | | | | - Daniel A Bartlett
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Peiyao A Zhao
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Brian K Washburn
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Elphège P Nora
- Gladstone Institute of Cardiovascular Disease and Roddenberry Center for Stem Cell Biology and Medicine, San Francisco, CA 94158, USA
| | - Katerina Kraft
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany; Institute for Medical and Human Genetics, Charité Universitäts Medizin Berlin, 13353 Berlin, Germany
| | - Stefan Mundlos
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany; Institute for Medical and Human Genetics, Charité Universitäts Medizin Berlin, 13353 Berlin, Germany
| | - Benoit G Bruneau
- Gladstone Institute of Cardiovascular Disease and Roddenberry Center for Stem Cell Biology and Medicine, San Francisco, CA 94158, USA; Department of Pediatrics, Cardiovascular Research Institute, University of California at San Francisco, San Francisco, CA 94158, USA; Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Mats Ljungman
- Departments of Radiation Oncology and Environmental Health Sciences, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Peter Fraser
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA; Nuclear Dynamics Program, The Babraham Institute, Cambridge CB22 3AT, UK
| | - Ferhat Ay
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA; UC San Diego, School of Medicine, La Jolla, CA 92037, USA
| | - David M Gilbert
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|
35
|
Fauteux-Daniel S, Faure F, Marotel M, Geary C, Daussy C, Sun JC, Walzer T. Styk1 expression is a hallmark of murine NK cells and other NK1.1 + subsets but is dispensable for NK-cell development and effector functions. Eur J Immunol 2019; 49:677-685. [PMID: 30690705 DOI: 10.1002/eji.201847721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 11/29/2018] [Accepted: 01/24/2019] [Indexed: 02/01/2023]
Abstract
To gain insight into the biology of NK cells, others and we previously identified the NK-cell signature, defined as the set of transcripts which expression is highly enriched in these cells compared to other immune subtypes. The transcript encoding the Serine/threonine/tyrosine kinase 1 (Styk1) is part of this signature. However, the role of Styk1 in the immune system is unknown. Here, we report the generation of a novel transgenic mouse model, in which Styk1 expression is invalidated and replaced by an EGFP reporter cassette. We demonstrated that Styk1 expression is a hallmark of NK cells and other NK1.1 expressing cells such as liver type 1 innate lymphoid cells (ILC1) and NK1.1+ γδ T cells. Styk1 expression is maintained by IL-15 in NK cells and negatively correlates with the expression of educating NK-cell receptors. Analysis of phosphorylation levels of mTOR substrates suggested that Styk1 could moderately contribute to the activity of the PI3K/Akt/mTOR pathway. However, Styk1-deficient NK cells develop normally and have normal in vitro and in vivo effector functions. Thus Styk1 expression is a hallmark of NK cells, ILC1 and NK1.1+ T cells but is dispensable for their development and immune functions.
Collapse
Affiliation(s)
- Sébastien Fauteux-Daniel
- CIRI, Centre International de Recherche en Infectiologie - International Center for Infectiology Research, Lyon, France.,Inserm, U1111, Lyon, France.,Ecole Normale Supérieure de Lyon, Lyon, France.,Université Lyon 1, Lyon, France.,CNRS, UMR5308, Lyon, France
| | - Fabrice Faure
- CIRI, Centre International de Recherche en Infectiologie - International Center for Infectiology Research, Lyon, France.,Inserm, U1111, Lyon, France.,Ecole Normale Supérieure de Lyon, Lyon, France.,Université Lyon 1, Lyon, France.,CNRS, UMR5308, Lyon, France
| | - Marie Marotel
- CIRI, Centre International de Recherche en Infectiologie - International Center for Infectiology Research, Lyon, France.,Inserm, U1111, Lyon, France.,Ecole Normale Supérieure de Lyon, Lyon, France.,Université Lyon 1, Lyon, France.,CNRS, UMR5308, Lyon, France
| | - Clair Geary
- Department of Immunology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Cécile Daussy
- CIRI, Centre International de Recherche en Infectiologie - International Center for Infectiology Research, Lyon, France.,Inserm, U1111, Lyon, France.,Ecole Normale Supérieure de Lyon, Lyon, France.,Université Lyon 1, Lyon, France.,CNRS, UMR5308, Lyon, France
| | - Joseph C Sun
- Department of Immunology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Thierry Walzer
- CIRI, Centre International de Recherche en Infectiologie - International Center for Infectiology Research, Lyon, France.,Inserm, U1111, Lyon, France.,Ecole Normale Supérieure de Lyon, Lyon, France.,Université Lyon 1, Lyon, France.,CNRS, UMR5308, Lyon, France
| |
Collapse
|
36
|
Fuentes R, Letelier J, Tajer B, Valdivia LE, Mullins MC. Fishing forward and reverse: Advances in zebrafish phenomics. Mech Dev 2018; 154:296-308. [PMID: 30130581 PMCID: PMC6289646 DOI: 10.1016/j.mod.2018.08.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 08/06/2018] [Accepted: 08/17/2018] [Indexed: 12/15/2022]
Abstract
Understanding how the genome instructs the phenotypic characteristics of an organism is one of the major scientific endeavors of our time. Advances in genetics have progressively deciphered the inheritance, identity and biological relevance of genetically encoded information, contributing to the rise of several, complementary omic disciplines. One of them is phenomics, an emergent area of biology dedicated to the systematic multi-scale analysis of phenotypic traits. This discipline provides valuable gene function information to the rapidly evolving field of genetics. Current molecular tools enable genome-wide analyses that link gene sequence to function in multi-cellular organisms, illuminating the genome-phenome relationship. Among vertebrates, zebrafish has emerged as an outstanding model organism for high-throughput phenotyping and modeling of human disorders. Advances in both systematic mutagenesis and phenotypic analyses of embryonic and post-embryonic stages in zebrafish have revealed the function of a valuable collection of genes and the general structure of several complex traits. In this review, we summarize multiple large-scale genetic efforts addressing parental, embryonic, and adult phenotyping in the zebrafish. The genetic and quantitative tools available in the zebrafish model, coupled with the broad spectrum of phenotypes that can be assayed, make it a powerful model for phenomics, well suited for the dissection of genotype-phenotype associations in development, physiology, health and disease.
Collapse
Affiliation(s)
- Ricardo Fuentes
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joaquín Letelier
- Centro Andaluz de Biología del Desarrollo (CSIC/UPO/JA), Seville, Spain; Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Benjamin Tajer
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Leonardo E Valdivia
- Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago, Chile.
| | - Mary C Mullins
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
37
|
|
38
|
Kluin RJC, Kemper K, Kuilman T, de Ruiter JR, Iyer V, Forment JV, Cornelissen-Steijger P, de Rink I, Ter Brugge P, Song JY, Klarenbeek S, McDermott U, Jonkers J, Velds A, Adams DJ, Peeper DS, Krijgsman O. XenofilteR: computational deconvolution of mouse and human reads in tumor xenograft sequence data. BMC Bioinformatics 2018; 19:366. [PMID: 30286710 PMCID: PMC6172735 DOI: 10.1186/s12859-018-2353-5] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 08/30/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Mouse xenografts from (patient-derived) tumors (PDX) or tumor cell lines are widely used as models to study various biological and preclinical aspects of cancer. However, analyses of their RNA and DNA profiles are challenging, because they comprise reads not only from the grafted human cancer but also from the murine host. The reads of murine origin result in false positives in mutation analysis of DNA samples and obscure gene expression levels when sequencing RNA. However, currently available algorithms are limited and improvements in accuracy and ease of use are necessary. RESULTS We developed the R-package XenofilteR, which separates mouse from human sequence reads based on the edit-distance between a sequence read and reference genome. To assess the accuracy of XenofilteR, we generated sequence data by in silico mixing of mouse and human DNA sequence data. These analyses revealed that XenofilteR removes > 99.9% of sequence reads of mouse origin while retaining human sequences. This allowed for mutation analysis of xenograft samples with accurate variant allele frequencies, and retrieved all non-synonymous somatic tumor mutations. CONCLUSIONS XenofilteR accurately dissects RNA and DNA sequences from mouse and human origin, thereby outperforming currently available tools. XenofilteR is open source and available at https://github.com/PeeperLab/XenofilteR .
Collapse
Affiliation(s)
- Roelof J C Kluin
- Central Genomic Facility, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Kristel Kemper
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Plesmanlaan 121, 1066, CX, Amsterdam, The Netherlands
| | - Thomas Kuilman
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Plesmanlaan 121, 1066, CX, Amsterdam, The Netherlands
| | - Julian R de Ruiter
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Division of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Vivek Iyer
- Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, UK
| | - Josep V Forment
- The Wellcome Trust/Cancer Research UK (CRUK) Gurdon Institute, University of Cambridge, Cambridge, UK
- Present address: DNA Damage Response Biology, Bioscience Oncology IMED Biotech Unit, AstraZeneca, Cambridge, CB4 0WG, UK
| | - Paulien Cornelissen-Steijger
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Plesmanlaan 121, 1066, CX, Amsterdam, The Netherlands
| | - Iris de Rink
- Central Genomic Facility, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Petra Ter Brugge
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ji-Ying Song
- Division of Experimental Animal Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Sjoerd Klarenbeek
- Division of Experimental Animal Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ultan McDermott
- Cancer Genome Project, The Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Jos Jonkers
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Arno Velds
- Central Genomic Facility, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - David J Adams
- Division of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Daniel S Peeper
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Plesmanlaan 121, 1066, CX, Amsterdam, The Netherlands.
| | - Oscar Krijgsman
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Plesmanlaan 121, 1066, CX, Amsterdam, The Netherlands.
| |
Collapse
|
39
|
Li HD, Cuevas I, Zhang M, Lu C, Alam MM, Fu YX, You MJ, Akbay EA, Zhang H, Castrillon DH. Polymerase-mediated ultramutagenesis in mice produces diverse cancers with high mutational load. J Clin Invest 2018; 128:4179-4191. [PMID: 30124468 PMCID: PMC6118636 DOI: 10.1172/jci122095] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 07/03/2018] [Indexed: 12/26/2022] Open
Abstract
Mutations underlie all cancers, and their identification and study are the foundation of cancer biology. We describe what we believe to be a novel approach to mutagenesis and cancer studies based on the DNA polymerase ε (POLE) ultramutator phenotype recently described in human cancers, in which a single amino acid substitution (most commonly P286R) in the proofreading domain results in error-prone DNA replication. We engineered a conditional PoleP286R allele in mice. PoleP286R/+ embryonic fibroblasts exhibited a striking mutator phenotype and immortalized more efficiently. PoleP286R/+ mice were born at Mendelian ratios but rapidly developed lethal cancers of diverse lineages, yielding the most cancer-prone monoallelic model described to date, to our knowledge. Comprehensive whole-genome sequencing analyses showed that the cancers were driven by high base substitution rates in the range of human cancers, overcoming a major limitation of previous murine cancer models. These data establish polymerase-mediated ultramutagenesis as an efficient in vivo approach for the generation of diverse animal cancer models that recapitulate the high mutational loads inherent to human cancers.
Collapse
Affiliation(s)
- Hao-Dong Li
- Department of Pathology and Simmons Comprehensive Cancer Center, University of Texas Southwestern (UTSW) Medical Center, Dallas, Texas, USA
| | - Ileana Cuevas
- Department of Pathology and Simmons Comprehensive Cancer Center, University of Texas Southwestern (UTSW) Medical Center, Dallas, Texas, USA
| | - Musi Zhang
- Department of Pathology and Simmons Comprehensive Cancer Center, University of Texas Southwestern (UTSW) Medical Center, Dallas, Texas, USA
| | - Changzheng Lu
- Department of Pathology and Simmons Comprehensive Cancer Center, University of Texas Southwestern (UTSW) Medical Center, Dallas, Texas, USA
| | - Md Maksudul Alam
- Department of Pathology and Simmons Comprehensive Cancer Center, University of Texas Southwestern (UTSW) Medical Center, Dallas, Texas, USA
| | - Yang-Xin Fu
- Department of Pathology and Simmons Comprehensive Cancer Center, University of Texas Southwestern (UTSW) Medical Center, Dallas, Texas, USA
| | - M. James You
- Department of Hematopathology, Division of Pathology and Laboratory Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Esra A. Akbay
- Department of Pathology and Simmons Comprehensive Cancer Center, University of Texas Southwestern (UTSW) Medical Center, Dallas, Texas, USA
| | - He Zhang
- Lyda Hill Department of Bioinformatics, UTSW Medical Center, Dallas, Texas, USA
| | - Diego H. Castrillon
- Department of Pathology and Simmons Comprehensive Cancer Center, University of Texas Southwestern (UTSW) Medical Center, Dallas, Texas, USA
| |
Collapse
|
40
|
Brind'Amour J, Kobayashi H, Richard Albert J, Shirane K, Sakashita A, Kamio A, Bogutz A, Koike T, Karimi MM, Lefebvre L, Kono T, Lorincz MC. LTR retrotransposons transcribed in oocytes drive species-specific and heritable changes in DNA methylation. Nat Commun 2018; 9:3331. [PMID: 30127397 PMCID: PMC6102241 DOI: 10.1038/s41467-018-05841-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/26/2018] [Indexed: 12/29/2022] Open
Abstract
De novo DNA methylation (DNAme) during mouse oogenesis occurs within transcribed regions enriched for H3K36me3. As many oocyte transcripts originate in long terminal repeats (LTRs), which are heterogeneous even between closely related mammals, we examined whether species-specific LTR-initiated transcription units (LITs) shape the oocyte methylome. Here we identify thousands of syntenic regions in mouse, rat, and human that show divergent DNAme associated with private LITs, many of which initiate in lineage-specific LTR retrotransposons. Furthermore, CpG island (CGI) promoters methylated in mouse and/or rat, but not human oocytes, are embedded within rodent-specific LITs and vice versa. Notably, at a subset of such CGI promoters, DNAme persists on the maternal genome in fertilized and parthenogenetic mouse blastocysts or in human placenta, indicative of species-specific epigenetic inheritance. Polymorphic LITs are also responsible for disparate DNAme at promoter CGIs in distantly related mouse strains, revealing that LITs also promote intra-species divergence in CGI DNAme.
Collapse
Affiliation(s)
- Julie Brind'Amour
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Hisato Kobayashi
- NODAI Genome Research Center, Tokyo University of Agriculture, Tokyo, 156-8502, Japan.
| | - Julien Richard Albert
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Kenjiro Shirane
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Akihiko Sakashita
- Department of BioScience, Tokyo University of Agriculture, Tokyo, 113-0033, Japan
- Division of Reproductive Sciences, Cincinnati's Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Asuka Kamio
- NODAI Genome Research Center, Tokyo University of Agriculture, Tokyo, 156-8502, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Aaron Bogutz
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Tasuku Koike
- Department of BioScience, Tokyo University of Agriculture, Tokyo, 113-0033, Japan
| | - Mohammad M Karimi
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
- MRC London Institute of Medical Sciences, Imperial College, London, W12 0NN, UK
| | - Louis Lefebvre
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Tomohiro Kono
- Department of BioScience, Tokyo University of Agriculture, Tokyo, 113-0033, Japan
| | - Matthew C Lorincz
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
41
|
Iyer V, Boroviak K, Thomas M, Doe B, Riva L, Ryder E, Adams DJ. No unexpected CRISPR-Cas9 off-target activity revealed by trio sequencing of gene-edited mice. PLoS Genet 2018; 14:e1007503. [PMID: 29985941 PMCID: PMC6057650 DOI: 10.1371/journal.pgen.1007503] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 07/24/2018] [Accepted: 06/19/2018] [Indexed: 02/07/2023] Open
Abstract
CRISPR-Cas9 technologies have transformed genome-editing of experimental organisms and have immense therapeutic potential. Despite significant advances in our understanding of the CRISPR-Cas9 system, concerns remain over the potential for off-target effects. Recent studies have addressed these concerns using whole-genome sequencing (WGS) of gene-edited embryos or animals to search for de novo mutations (DNMs), which may represent candidate changes introduced by poor editing fidelity. Critically, these studies used strain-matched, but not pedigree-matched controls and thus were unable to reliably distinguish generational or colony-related differences from true DNMs. Here we used a trio design and whole genome sequenced 8 parents and 19 embryos, where 10 of the embryos were mutagenised with well-characterised gRNAs targeting the coat colour Tyrosinase (Tyr) locus. Detailed analyses of these whole genome data allowed us to conclude that if CRISPR mutagenesis were causing SNV or indel off-target mutations in treated embryos, then the number of these mutations is not statistically distinguishable from the background rate of DNMs occurring due to other processes.
Collapse
Affiliation(s)
- Vivek Iyer
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Katharina Boroviak
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Mark Thomas
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Brendan Doe
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Laura Riva
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Edward Ryder
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - David J. Adams
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| |
Collapse
|
42
|
Richard Albert J, Koike T, Younesy H, Thompson R, Bogutz AB, Karimi MM, Lorincz MC. Development and application of an integrated allele-specific pipeline for methylomic and epigenomic analysis (MEA). BMC Genomics 2018; 19:463. [PMID: 29907088 PMCID: PMC6003194 DOI: 10.1186/s12864-018-4835-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 05/29/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Allele-specific transcriptional regulation, including of imprinted genes, is essential for normal mammalian development. While the regulatory regions controlling imprinted genes are associated with DNA methylation (DNAme) and specific histone modifications, the interplay between transcription and these epigenetic marks at allelic resolution is typically not investigated genome-wide due to a lack of bioinformatic packages that can process and integrate multiple epigenomic datasets with allelic resolution. In addition, existing ad-hoc software only consider SNVs for allele-specific read discovery. This limitation omits potentially informative INDELs, which constitute about one fifth of the number of SNVs in mice, and introduces a systematic reference bias in allele-specific analyses. RESULTS Here, we describe MEA, an INDEL-aware Methylomic and Epigenomic Allele-specific analysis pipeline which enables user-friendly data exploration, visualization and interpretation of allelic imbalance. Applying MEA to mouse embryonic datasets yields robust allele-specific DNAme maps and low reference bias. We validate allele-specific DNAme at known differentially methylated regions and show that automated integration of such methylation data with RNA- and ChIP-seq datasets yields an intuitive, multidimensional view of allelic gene regulation. MEA uncovers numerous novel dynamically methylated loci, highlighting the sensitivity of our pipeline. Furthermore, processing and visualization of epigenomic datasets from human brain reveals the expected allele-specific enrichment of H3K27ac and DNAme at imprinted as well as novel monoallelically expressed genes, highlighting MEA's utility for integrating human datasets of distinct provenance for genome-wide analysis of allelic phenomena. CONCLUSIONS Our novel pipeline for standardized allele-specific processing and visualization of disparate epigenomic and methylomic datasets enables rapid analysis and navigation with allelic resolution. MEA is freely available as a Docker container at https://github.com/julienrichardalbert/MEA .
Collapse
Affiliation(s)
- Julien Richard Albert
- Department of Medical Genetics, The University of British Columbia, Vancouver, BC, Canada
| | - Tasuku Koike
- Department of BioScience, Tokyo University of Agriculture, Setagaya-ku, Tokyo, Japan
| | - Hamid Younesy
- Graphics Usability and Visualization Lab, School of Computing Science, Simon Fraser University, Burnaby, BC, Canada.,Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, Canada.,Biomedical Research Centre, The University of British Columbia, Vancouver, BC, Canada
| | - Richard Thompson
- Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Aaron B Bogutz
- Department of Medical Genetics, The University of British Columbia, Vancouver, BC, Canada
| | - Mohammad M Karimi
- MRC London Institute of Medical Sciences, Imperial College, London, UK.
| | - Matthew C Lorincz
- Department of Medical Genetics, The University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
43
|
Montoliu L, Whitelaw CBA. Unexpected mutations were expected and unrelated to CRISPR-Cas9 activity. Transgenic Res 2018; 27:315-319. [PMID: 29855762 DOI: 10.1007/s11248-018-0081-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 05/26/2018] [Indexed: 12/26/2022]
Abstract
The scientific journal Nature Methods have just retracted a publication that reported numerous unexpected mutations after a CRISPR-Cas9 experiment based on collecting whole genome sequencing information from one control and two experimental genome edited mice. In the intervening 10 months since publication the data presented have been strongly contested and criticized by the scientific and biotech communities, through publications, open science channels and social networks. The criticism focused on the animal used as control, which was derived from the same mouse strain as the experimental individuals but from an unrelated sub-colony, hence control and experimental mice were genetically divergent. The most plausible explanation for the vast majority of the reported unexpected mutations were the expected underlying genetic polymorphisms that normally accumulate in two different colonies of the same mouse strain which occur as a result of spontaneous mutations and genetic drift. Therefore, the reported mutations were most likely not related to CRISPR-Cas9 activity.
Collapse
Affiliation(s)
- Lluis Montoliu
- National Centre for Biotechnology (CNB-CSIC), Biomedical Research Networking Centre Consortium on Rare Diseases (CIBERER-ISCIII), Darwin 3, 28049, Madrid, Spain.
| | - C Bruce A Whitelaw
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK.
| |
Collapse
|
44
|
Trontti K, Väänänen J, Sipilä T, Greco D, Hovatta I. Strong conservation of inbred mouse strain microRNA loci but broad variation in brain microRNAs due to RNA editing and isomiR expression. RNA (NEW YORK, N.Y.) 2018; 24:643-655. [PMID: 29445025 PMCID: PMC5900563 DOI: 10.1261/rna.064881.117] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 01/17/2018] [Indexed: 06/08/2023]
Abstract
Diversity in the structure and expression of microRNAs, important regulators of gene expression, arises from SNPs, duplications followed by divergence, production of isomiRs, and RNA editing. Inbred mouse strains and crosses using them are important reference populations for genetic mapping, and as models of human disease. We determined the nature and extent of interstrain miRNA variation by (i) identifying miRNA SNPs in whole-genome sequence data from 36 strains, and (ii) examining miRNA editing and expression in hippocampus (Hpc) and frontal cortex (FCx) of six strains, to facilitate the study of miRNAs in neurobehavioral phenotypes. miRNA loci were strongly conserved among the 36 strains, but even the highly conserved seed region contained 16 SNPs. In contrast, we identified RNA editing in 58.9% of miRNAs, including 11 consistent editing events in the seed region. We confirmed the functional significance of three conserved edits in the miR-379/410 cluster, demonstrating that edited miRNAs gained novel target mRNAs not recognized by the unedited miRNAs. We found significant interstrain differences in miRNA and isomiR expression: Of 779 miRNAs expressed in Hpc and 719 in FCx, 262 were differentially expressed (190 in Hpc, 126 in FCx, 54 in both). We also identified 32 novel miRNA candidates using miRNA prediction tools. Our studies provide the first comprehensive analysis of SNP, isomiR, and RNA editing variation in miRNA loci across inbred mouse strains, and a detailed catalog of expressed miRNAs in Hpc and FCx in six commonly used strains. These findings will facilitate the molecular analysis of neurological and behavioral phenotypes in this model organism.
Collapse
Affiliation(s)
- Kalevi Trontti
- Department of Biosciences, University of Helsinki, Helsinki FI-00790, Finland
| | - Juho Väänänen
- Department of Biosciences, University of Helsinki, Helsinki FI-00790, Finland
| | - Tessa Sipilä
- Department of Biosciences, University of Helsinki, Helsinki FI-00790, Finland
| | - Dario Greco
- Insitute of Biotechnology, University of Helsinki, Helsinki FI-00790, Finland
| | - Iiris Hovatta
- Department of Biosciences, University of Helsinki, Helsinki FI-00790, Finland
| |
Collapse
|
45
|
Dornbos P, LaPres JJ. Incorporating population-level genetic variability within laboratory models in toxicology: From the individual to the population. Toxicology 2018; 395:1-8. [PMID: 29275117 PMCID: PMC5801153 DOI: 10.1016/j.tox.2017.12.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/22/2017] [Accepted: 12/18/2017] [Indexed: 12/20/2022]
Abstract
Humans respond to chemical exposures differently due to many factors, such as previous and concurrent stressors, age, sex, and genetic background. The vast majority of laboratory-based toxicology studies, however, have not considered the impact of population-level variability within dose-response relationships. The lack of data dealing with the influence of genetic diversity on the response to chemical exposure provides a difficult challenge for risk assessment as individuals within the population will display a wide-range of responses following toxicant challenge. Notably, the genetic background of individuals plays a major role in the variability seen in a population-level response to a drug or chemical and, thus, there is growing interest in including genetic diversity into laboratory-models. Here we outline several laboratory-based models that can be used to assay the influence of genetic variability on an individual's response to chemicals: 1) genetically-diverse cell lines, 2) human primary cells, 3) and genetically-diverse mouse panels. We also provide a succinct review for several seminal studies to highlight the capability, feasibility, and power of each of these models. This article is intended to highlight the need to include population-level genetic diversity into toxicological study designs via laboratory-based models with the goal to provide and supplement evidence in assessing the risk posed by chemicals to the human population. As such, incorporation of genetic variability will positively impact human-based risk assessment and provide empirical data to aid and influence decision-making processes in relation to chemical exposures.
Collapse
Affiliation(s)
- Peter Dornbos
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA; Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
| | - John J LaPres
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA; Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA; Center for Mitochondrial Science and Medicine, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
46
|
Parks MM, Kurylo CM, Dass RA, Bojmar L, Lyden D, Vincent CT, Blanchard SC. Variant ribosomal RNA alleles are conserved and exhibit tissue-specific expression. SCIENCE ADVANCES 2018; 4:eaao0665. [PMID: 29503865 PMCID: PMC5829973 DOI: 10.1126/sciadv.aao0665] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 01/08/2018] [Indexed: 05/25/2023]
Abstract
The ribosome, the integration point for protein synthesis in the cell, is conventionally considered a homogeneous molecular assembly that only passively contributes to gene expression. Yet, epigenetic features of the ribosomal DNA (rDNA) operon and changes in the ribosome's molecular composition have been associated with disease phenotypes, suggesting that the ribosome itself may possess inherent regulatory capacity. Analyzing whole-genome sequencing data from the 1000 Genomes Project and the Mouse Genomes Project, we find that rDNA copy number varies widely across individuals, and we identify pervasive intra- and interindividual nucleotide variation in the 5S, 5.8S, 18S, and 28S ribosomal RNA (rRNA) genes of both human and mouse. Conserved rRNA sequence heterogeneities map to functional centers of the assembled ribosome, variant rRNA alleles exhibit tissue-specific expression, and ribosomes bearing variant rRNA alleles are present in the actively translating ribosome pool. These findings provide a critical framework for exploring the possibility that the expression of genomically encoded variant rRNA alleles gives rise to physically and functionally heterogeneous ribosomes that contribute to mammalian physiology and human disease.
Collapse
Affiliation(s)
- Matthew M. Parks
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
| | - Chad M. Kurylo
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
| | - Randall A. Dass
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
| | - Linda Bojmar
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Surgery, County Council of Östergötland, and Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, 58185 Linköping, Sweden
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - David Lyden
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - C. Theresa Vincent
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Scott C. Blanchard
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
- Tri-Institutional Training Program in Chemical Biology, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
47
|
Abdelhamed Z, Vuong SM, Hill L, Shula C, Timms A, Beier D, Campbell K, Mangano FT, Stottmann RW, Goto J. A mutation in Ccdc39 causes neonatal hydrocephalus with abnormal motile cilia development in mice. Development 2018; 145:145/1/dev154500. [PMID: 29317443 DOI: 10.1242/dev.154500] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 11/16/2017] [Indexed: 12/24/2022]
Abstract
Pediatric hydrocephalus is characterized by an abnormal accumulation of cerebrospinal fluid (CSF) and is one of the most common congenital brain abnormalities. However, little is known about the molecular and cellular mechanisms regulating CSF flow in the developing brain. Through whole-genome sequencing analysis, we report that a homozygous splice site mutation in coiled-coil domain containing 39 (Ccdc39) is responsible for early postnatal hydrocephalus in the progressive hydrocephalus (prh) mouse mutant. Ccdc39 is selectively expressed in embryonic choroid plexus and ependymal cells on the medial wall of the forebrain ventricle, and the protein is localized to the axoneme of motile cilia. The Ccdc39prh/prh ependymal cells develop shorter cilia with disorganized microtubules lacking the axonemal inner arm dynein. Using high-speed video microscopy, we show that an orchestrated ependymal ciliary beating pattern controls unidirectional CSF flow on the ventricular surface, which generates bulk CSF flow in the developing brain. Collectively, our data provide the first evidence for involvement of Ccdc39 in hydrocephalus and suggest that the proper development of medial wall ependymal cilia is crucial for normal mouse brain development.
Collapse
Affiliation(s)
- Zakia Abdelhamed
- Division of Pediatric Neurosurgery, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45242, USA.,Department of Anatomy and Embryology, Faculty of Medicine (Girls' Section), Al-Azhar University, Cairo 11651, Egypt
| | - Shawn M Vuong
- Division of Pediatric Neurosurgery, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45242, USA
| | - Lauren Hill
- Division of Pediatric Neurosurgery, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45242, USA
| | - Crystal Shula
- Division of Pediatric Neurosurgery, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45242, USA
| | - Andrew Timms
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Hospital, 4800 Sand Point Way NE, Seattle, WA 98105, USA
| | - David Beier
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Hospital, 4800 Sand Point Way NE, Seattle, WA 98105, USA
| | - Kenneth Campbell
- Division of Pediatric Neurosurgery, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45242, USA.,Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45242 USA
| | - Francesco T Mangano
- Division of Pediatric Neurosurgery, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45242, USA
| | - Rolf W Stottmann
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45242 USA .,Division of Human Genetics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45242 USA
| | - June Goto
- Division of Pediatric Neurosurgery, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45242, USA
| |
Collapse
|
48
|
Zerbino DR, Achuthan P, Akanni W, Amode M, Barrell D, Bhai J, Billis K, Cummins C, Gall A, Girón CG, Gil L, Gordon L, Haggerty L, Haskell E, Hourlier T, Izuogu OG, Janacek SH, Juettemann T, To JK, Laird MR, Lavidas I, Liu Z, Loveland JE, Maurel T, McLaren W, Moore B, Mudge J, Murphy DN, Newman V, Nuhn M, Ogeh D, Ong CK, Parker A, Patricio M, Riat HS, Schuilenburg H, Sheppard D, Sparrow H, Taylor K, Thormann A, Vullo A, Walts B, Zadissa A, Frankish A, Hunt SE, Kostadima M, Langridge N, Martin FJ, Muffato M, Perry E, Ruffier M, Staines DM, Trevanion SJ, Aken BL, Cunningham F, Yates A, Flicek P. Ensembl 2018. Nucleic Acids Res 2018; 46:D754-D761. [PMID: 29155950 PMCID: PMC5753206 DOI: 10.1093/nar/gkx1098] [Citation(s) in RCA: 1987] [Impact Index Per Article: 283.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 10/17/2017] [Accepted: 10/21/2017] [Indexed: 01/29/2023] Open
Abstract
The Ensembl project has been aggregating, processing, integrating and redistributing genomic datasets since the initial releases of the draft human genome, with the aim of accelerating genomics research through rapid open distribution of public data. Large amounts of raw data are thus transformed into knowledge, which is made available via a multitude of channels, in particular our browser (http://www.ensembl.org). Over time, we have expanded in multiple directions. First, our resources describe multiple fields of genomics, in particular gene annotation, comparative genomics, genetics and epigenomics. Second, we cover a growing number of genome assemblies; Ensembl Release 90 contains exactly 100. Third, our databases feed simultaneously into an array of services designed around different use cases, ranging from quick browsing to genome-wide bioinformatic analysis. We present here the latest developments of the Ensembl project, with a focus on managing an increasing number of assemblies, supporting efforts in genome interpretation and improving our browser.
Collapse
Affiliation(s)
- Daniel R Zerbino
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Premanand Achuthan
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Wasiu Akanni
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - M Ridwan Amode
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Daniel Barrell
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
- Eagle Genomics Ltd., Wellcome Genome Campus, Hinxton, Cambridge CB10 1DR, UK
| | - Jyothish Bhai
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Konstantinos Billis
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Carla Cummins
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Astrid Gall
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Carlos García Girón
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Laurent Gil
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Leo Gordon
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Leanne Haggerty
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Erin Haskell
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Thibaut Hourlier
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Osagie G Izuogu
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Sophie H Janacek
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Thomas Juettemann
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Jimmy Kiang To
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Matthew R Laird
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Ilias Lavidas
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Zhicheng Liu
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Jane E Loveland
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Thomas Maurel
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - William McLaren
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Benjamin Moore
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Jonathan Mudge
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Daniel N Murphy
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Victoria Newman
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Michael Nuhn
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Denye Ogeh
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Chuang Kee Ong
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Anne Parker
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Mateus Patricio
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Harpreet Singh Riat
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Helen Schuilenburg
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Dan Sheppard
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Helen Sparrow
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Kieron Taylor
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Anja Thormann
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Alessandro Vullo
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Brandon Walts
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Amonida Zadissa
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Adam Frankish
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Sarah E Hunt
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Myrto Kostadima
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Nicholas Langridge
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Fergal J Martin
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Matthieu Muffato
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Emily Perry
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Magali Ruffier
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Dan M Staines
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Stephen J Trevanion
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Bronwen L Aken
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Fiona Cunningham
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Andrew Yates
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Paul Flicek
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| |
Collapse
|
49
|
Hunt SE, McLaren W, Gil L, Thormann A, Schuilenburg H, Sheppard D, Parton A, Armean IM, Trevanion SJ, Flicek P, Cunningham F. Ensembl variation resources. Database (Oxford) 2018; 2018:5255129. [PMID: 30576484 PMCID: PMC6310513 DOI: 10.1093/database/bay119] [Citation(s) in RCA: 290] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/25/2018] [Accepted: 10/04/2018] [Indexed: 12/31/2022]
Abstract
The major goal of sequencing humans and many other species is to understand the link between genomic variation, phenotype and disease. There are numerous valuable and well-established variation resources, but collating and making sense of non-homogeneous, often large-scale data sets from disparate sources remains a challenge. Without a systematic catalogue of these data and appropriate query and annotation tools, understanding the genome sequence of an individual and assessing their disease risk is impossible. In Ensembl, we substantially solve this problem: we develop methods to facilitate data integration and broad access; aggregate information in a consistent manner and make it available a variety of standard formats, both visually and programmatically; build analysis pipelines to compare variants to comprehensive genomic annotation sets; and make all tools and data publicly available.
Collapse
Affiliation(s)
- Sarah E Hunt
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - William McLaren
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Laurent Gil
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Anja Thormann
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Helen Schuilenburg
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Dan Sheppard
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Andrew Parton
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Irina M Armean
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Stephen J Trevanion
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Paul Flicek
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Fiona Cunningham
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| |
Collapse
|
50
|
Martín-Gálvez D, Dunoyer de Segonzac D, Ma MCJ, Kwitek AE, Thybert D, Flicek P. Genome variation and conserved regulation identify genomic regions responsible for strain specific phenotypes in rat. BMC Genomics 2017; 18:986. [PMID: 29272997 PMCID: PMC5741965 DOI: 10.1186/s12864-017-4351-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 11/27/2017] [Indexed: 11/10/2022] Open
Abstract
Background The genomes of laboratory rat strains are characterised by a mosaic haplotype structure caused by their unique breeding history. These mosaic haplotypes have been recently mapped by extensive sequencing of key strains. Comparison of genomic variation between two closely related rat strains with different phenotypes has been proposed as an effective strategy for the discovery of candidate strain-specific regions involved in phenotypic differences. We developed a method to prioritise strain-specific haplotypes by integrating genomic variation and genomic regulatory data predicted to be involved in specific phenotypes. Specifically, we aimed to identify genomic regions associated with Metabolic Syndrome (MetS), a disorder of energy utilization and storage affecting several organ systems. Results We compared two Lyon rat strains, Lyon Hypertensive (LH) which is susceptible to MetS, and Lyon Low pressure (LL), which is susceptible to obesity as an intermediate MetS phenotype, with a third strain (Lyon Normotensive, LN) that is resistant to both MetS and obesity. Applying a novel metric, we ranked the identified strain-specific haplotypes using evolutionary conservation of the occupancy three liver-specific transcription factors (HNF4A, CEBPA, and FOXA1) in five rodents including rat. Consideration of regulatory information effectively identified regions with liver-associated genes and rat orthologues of human GWAS variants related to obesity and metabolic traits. We attempted to find possible causative variants and compared them with the candidate genes proposed by previous studies. In strain-specific regions with conserved regulation, we found a significant enrichment for published evidence to obesity—one of the metabolic symptoms shown by the Lyon strains—amongst the genes assigned to promoters with strain-specific variation. Conclusions Our results show that the use of functional regulatory conservation is a potentially effective approach to select strain-specific genomic regions associated with phenotypic differences among Lyon rats and could be extended to other systems. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-4351-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- David Martín-Gálvez
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Denis Dunoyer de Segonzac
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Man Chun John Ma
- Department of Pharmacology, University of Iowa, Iowa City, IA, USA.,Iowa Institute of Human Genetics, University of Iowa, Iowa City, IA, USA.,Present address: MD Anderson Cancer Center, University of Texas, Houston, TX, USA
| | - Anne E Kwitek
- Department of Pharmacology, University of Iowa, Iowa City, IA, USA.,Iowa Institute of Human Genetics, University of Iowa, Iowa City, IA, USA
| | - David Thybert
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK. .,Present address: Earlham Institute, Norwich research Park, Norwich, NR4 7UH, UK.
| | - Paul Flicek
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK.
| |
Collapse
|