1
|
Ohno T, Iwatake N, Miyasaka Y. Mouse NOD/Shi and NSY/Hos strains infected with Plasmodium berghei ANKA are models for experimental cerebral malaria. Exp Anim 2025; 74:31-38. [PMID: 39069480 PMCID: PMC11742482 DOI: 10.1538/expanim.24-0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 07/21/2024] [Indexed: 07/30/2024] Open
Abstract
In humans, cerebral malaria is the most common cause of malaria-related mortality. Mouse C57BL/6 (B6) sub-strains are the major model system for experimental cerebral malaria (ECM) as they show similar pathophysiology to human cerebral malaria after infection with the rodent malaria parasite Plasmodium berghei ANKA. This model system has been used to analyze the molecular mechanisms of cerebral malaria. To develop new mouse models, we analyzed the ECM susceptibility of NOD/Shi (NOD) and NSY/Hos (NSY) strains established from the non-inbred ICR strain. Both NOD and NSY strains exhibited clinical symptoms and pathologies similar to ECM in C57BL/6J (B6J) mice and died within 11 days of infection. Thus, the NOD and NSY strains are susceptible to ECM and may be useful as new ECM models. The ECM susceptibility of both strains is suggested to be due to homozygosity for the cerebral malaria susceptibility allele of the ECM susceptible ICR strain. Although analyses using B6 sub-strains have proposed that complement component 5 (C5) plays an important role in ECM pathogenesis, we found that C5 was not essential as the ECM susceptible NOD strain is C5 deficient. Thus, results obtained from B6 sub-strains may not reflect the full picture of ECM in mice. Comparative analyses of multiple ECM models will contribute to a more accurate identification of the factors essential for ECM.
Collapse
Affiliation(s)
- Tamio Ohno
- Division of Experimental Animals, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Nozomi Iwatake
- Division of Experimental Animals, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Yuki Miyasaka
- Division of Experimental Animals, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| |
Collapse
|
2
|
Das A, Suar M, Reddy K. Hormones in malaria infection: influence on disease severity, host physiology, and therapeutic opportunities. Biosci Rep 2024; 44:BSR20240482. [PMID: 39492784 PMCID: PMC11581842 DOI: 10.1042/bsr20240482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/01/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024] Open
Abstract
Human malaria, caused by Plasmodium parasites, is a fatal disease that disrupts the host's physiological balance and affects the neuroendocrine system. This review explores how malaria influences and is influenced by hormones. Malaria activates the Hypothalamus-Pituitary-Adrenal axis, leading to increased cortisol, aldosterone, and epinephrine. Cortisol, while reducing inflammation, aids parasite survival, whereas epinephrine helps manage hypoglycemia. The Hypothalamus-Pituitary-Gonad and Hypothalamus-Pituitary-Thyroid axes are also impacted, resulting in lower sex and thyroid hormone levels. Malaria disrupts the renin-angiotensin-aldosterone system (RAAS), causing higher angiotensin-II and aldosterone levels, contributing to edema, hyponatremia and hypertension. Malaria-induced anemia is exacerbated by increased hepcidin, which impairs iron absorption, reducing both iron availability for the parasite and red blood cell formation, despite elevated erythropoietin. Hypoglycemia is common due to decreased glucose production and hyperinsulinemia, although some cases show hyperglycemia due to stress hormones and inflammation. Hypocalcemia, and hypophosphatemia are associated with low Vitamin D3 and parathyroid hormone but high calcitonin. Hormones such as DHEA, melatonin, PTH, Vitamin D3, hepcidin, progesterone, and erythropoietin protects against malaria. Furthermore, synthetic analogs, receptor agonists and antagonists or mimics of hormones like DHEA, melatonin, serotonin, PTH, vitamin D3, estrogen, progesterone, angiotensin, and somatostatin are being explored as potential antimalarial treatments or adjunct therapies. Additionally, hormones like leptin and PCT are being studied as probable markers of malaria infection.
Collapse
Affiliation(s)
- Aleena Das
- School of Biotechnology, Kalinga Institute of Industrial Technology (Deemed University), Bhubaneswar, 751024, India
| | - Mrutyunjay Suar
- School of Biotechnology, Kalinga Institute of Industrial Technology (Deemed University), Bhubaneswar, 751024, India
- Technology Business Incubator, Kalinga Institute of Industrial Technology (Deemed University), Bhubaneswar, 751024, India
| | - K Sony Reddy
- School of Biotechnology, Kalinga Institute of Industrial Technology (Deemed University), Bhubaneswar, 751024, India
| |
Collapse
|
3
|
de Moraes BPT, da Silva KP, Paese K, Sinhorin AP, Guterres SS, Pohlmann AR, Moraes-de-Souza I, de Oliveira Rodrigues S, SouzaSouza KFCE, da Cunha CMC, de Almeida MAP, Bozza PT, de Castro-Faria-Neto HC, Silva AR, Gonçalves-de-Albuquerque CF, Ferrarini SR. Effects of nanocapsules containing lumefantrine and artemether in an experimental model of cerebral malaria. DISCOVER NANO 2024; 19:184. [PMID: 39542943 PMCID: PMC11564608 DOI: 10.1186/s11671-024-04121-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/01/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND Malaria, a tropical neglected disease, imposes a significant burden on global health, leading to the loss of thousands of lives annually. Its gold standard treatment is a combination therapy of lumefantrine (LUM) and artemether (ART). Nanotechnology holds significant potential for improving drug bioavailability and potency while reducing adverse effects. OBJECTIVES This study aimed to develop lipid-core nanocapsules containing ART and LUM and evaluate their effects in an experimental cerebral malaria model (ECM). METHODS The polymeric interfacial deposition method was used to develop lipid-core nanocapsules (LNCs) containing ART and LUM (LNCARTLUM) and were characterized using micrometric and nanometric scales. Male C57BL/6 mice were infected with Plasmodium (P.) berghei ANKA (PbA, 1 × 105 PbA-parasitized red blood cells, intraperitoneally). On day 5 post-infection, PbA-infected mice were orally administered with ART + LUM, LNCARTLUM, blank nanocapsules (LNCBL), or ethanol as a control. Parasitemia, clinical scores, and survival rates were monitored throughout the experiment. Organ-to-body weight ratios, cytokine quantification, and intravital microscopy analyses were conducted on day 7 post-infection. RESULTS LNCs were successfully developed and characterized. The treatment with LNCARTLUM in ECM resulted in complete clearance of parasitemia at 10 dpi, decreased clinical scores, and maintained 100% survival rates. Thereated mice exhibited splenomegaly and reduced TNF-α, IL-1β, and MCP1 levels in the brain. Furthermore, the LNCARTLUM treatment protected the brain microvasculature, reducing the number of cells in the rolling process and adherent to the microvasculature endothelium. CONCLUSION Nanoformulations can potentially improve the efficacy of antimalarial drugs and be considered a promising approach to treat malaria.
Collapse
Affiliation(s)
- Bianca Portugal Tavares de Moraes
- Post-Graduation Program in Neuroscience, Fluminense Federal University, Rio de Janeiro, Brazil
- Immunopharmacology Laboratory, Federal University of State of Rio de Janeiro, Rio de Janeiro, Brazil
- Immunopharmacology Laboratory, Oswaldo Cruz Institut, Rio de Janeiro, Brazil
| | - Karoline Paiva da Silva
- Health Sciences Post-Graduation Program, Federal University Mato Grosso, Sinop, 78550-728, Brazil
| | - Karina Paese
- Environmental SciencesPost-Graduation Program, Federal University of Mato Grosso, Sinop, 78550-728, Brazil
| | - Adilson Paulo Sinhorin
- Environmental SciencesPost-Graduation Program, Federal University of Mato Grosso, Sinop, 78550-728, Brazil
| | - Silvia S Guterres
- Pharmaceutical Sciences Post-Graduation Program, Federal University of Rio Grande Do Sul, Porto Alegre, 90610-000, Brazil
| | - Adriana R Pohlmann
- Pharmaceutical Sciences Post-Graduation Program, Federal University of Rio Grande Do Sul, Porto Alegre, 90610-000, Brazil
| | - Isabelle Moraes-de-Souza
- Immunopharmacology Laboratory, Federal University of State of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | - Adriana Ribeiro Silva
- Post-Graduation Program in Neuroscience, Fluminense Federal University, Rio de Janeiro, Brazil
- Immunopharmacology Laboratory, Oswaldo Cruz Institut, Rio de Janeiro, Brazil
| | - Cassiano Felippe Gonçalves-de-Albuquerque
- Immunopharmacology Laboratory, Federal University of State of Rio de Janeiro, Rio de Janeiro, Brazil.
- Immunopharmacology Laboratory, Oswaldo Cruz Institut, Rio de Janeiro, Brazil.
| | - Stela Regina Ferrarini
- Health Sciences Post-Graduation Program, Federal University Mato Grosso, Sinop, 78550-728, Brazil.
| |
Collapse
|
4
|
Olivier JF, Langlais D, Jeyakumar T, Polyak MJ, Galarneau L, Cayrol R, Jiang H, Molloy KR, Xu G, Suzuki H, LaCava J, Gros P, Fodil N. CCDC88B interacts with RASAL3 and ARHGEF2 and regulates dendritic cell function in neuroinflammation and colitis. Commun Biol 2024; 7:77. [PMID: 38200184 PMCID: PMC10781698 DOI: 10.1038/s42003-023-05751-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
CCDC88B is a risk factor for several chronic inflammatory diseases in humans and its inactivation causes a migratory defect in DCs in mice. CCDC88B belongs to a family of cytoskeleton-associated scaffold proteins that feature protein:protein interaction domains. Here, we identified the Rho/Rac Guanine Nucleotide Exchange Factor 2 (ARHGEF2) and the RAS Protein Activator Like 3 (RASAL3) as CCDC88B physical and functional interactors. Mice defective in Arhgef2 or Rasal3 show dampened neuroinflammation, and display altered cellular response and susceptibility to colitis; ARHGEF2 maps to a human Chromosome 1 locus associated with susceptibility to IBD. Arhgef2 and Rasal3 mutant DCs show altered migration and motility in vitro, causing either reduced (Arhgef2) or enhanced (Rasal3) migratory properties. The CCDC88B/RASAL3/ARHGEF2 complex appears to regulate DCs migration by modulating activation of RHOA, with ARHGEF2 and RASAL3 acting in opposite regulatory fashions, providing a molecular mechanism for the involvement of these proteins in DCs immune functions.
Collapse
Affiliation(s)
- Jean-Frederic Olivier
- Department of Biochemistry, McGill University, Montreal, QC, Canada
- McGill Research Center on Complex Traits, Montreal, QC, Canada
| | - David Langlais
- McGill Research Center on Complex Traits, Montreal, QC, Canada
- Department of Human Genetics, Victor Phillip Dahdaleh Institute of Genomic Medicine, Montreal, QC, Canada
| | - Thiviya Jeyakumar
- Department of Biochemistry, McGill University, Montreal, QC, Canada
- McGill Research Center on Complex Traits, Montreal, QC, Canada
| | - Maria J Polyak
- Department of Biochemistry, McGill University, Montreal, QC, Canada
- McGill Research Center on Complex Traits, Montreal, QC, Canada
| | - Luc Galarneau
- Department of Medicine, Sherbrooke University, Sherbrooke, QC, Canada
| | - Romain Cayrol
- Department of Pathology, University of Montreal Hospital Center (CHUM), Montreal, QC, Canada
- University of Montreal Hospital Center Research Center (CR-CHUM), Montreal, QC, Canada
- Department of Pathology and Cellular Biology, University of Montreal, Montreal, QC, Canada
| | - Hua Jiang
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, USA
| | - Kelly R Molloy
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY, USA
| | - Guoyue Xu
- Department of Human Genetics, Victor Phillip Dahdaleh Institute of Genomic Medicine, Montreal, QC, Canada
| | - Harumi Suzuki
- Department of Immunology and Pathology, National Center for Global Health and Medicine, Tokyo, Japan
| | - John LaCava
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, USA
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, The Netherlands
| | - Philippe Gros
- Department of Biochemistry, McGill University, Montreal, QC, Canada.
- McGill Research Center on Complex Traits, Montreal, QC, Canada.
| | - Nassima Fodil
- McGill Research Center on Complex Traits, Montreal, QC, Canada
- CERMO-FC, Pavillon des Sciences Biologiques, Montreal, QC, Canada
| |
Collapse
|
5
|
Azzuolo A, Yang Y, Berghuis A, Fodil N, Gros P. Biphosphoglycerate Mutase: A Novel Therapeutic Target for Malaria? Transfus Med Rev 2023; 37:150748. [PMID: 37827586 DOI: 10.1016/j.tmrv.2023.150748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/22/2023] [Accepted: 06/28/2023] [Indexed: 10/14/2023]
Abstract
Biphosphoglycerate mutase (BPGM) is a tri-functional enzyme expressed exclusively in erythroid cells and tissues that is responsible for the production of 2,3-biphosphoglycerate (2,3-BPG) through the Rapoport-Luebering shunt. The 2,3-BPG is required for efficient glycolysis and ATP production under anaerobic conditions, but is also a critical allosteric regulator of hemoglobin (Hb), acting to regulate oxygen release in peripheral tissues. In humans, BPGM deficiency is very rare, and is associated with reduced levels of erythrocytic 2,3-BPG and ATP, left shifted Hb-O2 dissociation curve, low P50, elevated Hb and constitutive erythrocytosis. BPGM deficiency in mice recapitulates the erythroid defects seen in human patients. A recent report has shown that BPGM deficiency in mice affords striking protection against both severe malaria anemia and cerebral malaria. These findings are reminiscent of studies of another erythrocyte specific glycolytic enzyme, Pyruvate Kinase (PKLR), which mutational inactivation protects humans and mice against malaria through impairment of glycolysis and ATP production in erythrocytes. BPGM, and PKLR join glucose-6-phosphate dehydrogenase (G6PD) and other erythrocyte variants as modulating response to malaria. Recent studies reviewed suggest glycolysis in general, and BPGM in particular, as a novel pharmacological target for therapeutic intervention in malaria.
Collapse
Affiliation(s)
- Alessia Azzuolo
- Department of Biochemistry, Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, Quebec, Canada; Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, Quebec, Canada
| | - Yunxiang Yang
- Department of Biochemistry, Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, Quebec, Canada; Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, Quebec, Canada
| | - Albert Berghuis
- Department of Biochemistry, Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, Quebec, Canada
| | - Nassima Fodil
- Department of Biochemistry, Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, Quebec, Canada; Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, Quebec, Canada
| | - Philippe Gros
- Department of Biochemistry, Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, Quebec, Canada; Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
6
|
Abstract
Immunity to infection has been extensively studied in humans and mice bearing naturally occurring or experimentally introduced germline mutations. Mouse studies are sometimes neglected by human immunologists, on the basis that mice are not humans and the infections studied are experimental and not natural. Conversely, human studies are sometimes neglected by mouse immunologists, on the basis of the uncontrolled conditions of study and small numbers of patients. However, both sides would agree that the infectious phenotypes of patients with inborn errors of immunity often differ from those of the corresponding mutant mice. Why is that? We argue that this important question is best addressed by revisiting and reinterpreting the findings of both mouse and human studies from a genetic perspective. Greater caution is required for reverse-genetics studies than for forward-genetics studies, but genetic analysis is sufficiently strong to define the studies likely to stand the test of time. Genetically robust mouse and human studies can provide invaluable complementary insights into the mechanisms of immunity to infection common and specific to these two species.
Collapse
Affiliation(s)
- Philippe Gros
- McGill University Research Center on Complex Traits, Department of Biochemistry, and Department of Human Genetics, McGill University, Montréal, Québec, Canada;
| | - Jean-Laurent Casanova
- Howard Hughes Medical Institute and St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA;
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, and University of Paris Cité, Imagine Institute and Necker Hospital for Sick Children, Paris, France
| |
Collapse
|
7
|
Altered gastrointestinal tract structure and microbiome following cerebral malaria infection. Parasitol Res 2023; 122:789-799. [PMID: 36602586 DOI: 10.1007/s00436-022-07775-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 12/20/2022] [Indexed: 01/06/2023]
Abstract
Cerebral malaria (CM) is the most severe form of malaria with the highest mortality rate and can result in life-long neurological deficits and ongoing comorbidities. Factors contributing to severity of infection and development of CM are not fully elucidated. Recent studies have indicated a key role of the gut microbiome in a range of health conditions that affect the brain, but limited microbiome research has been conducted in the context of malaria. To address this knowledge gap, the impact of CM on the gut microbiome was investigated in mice. C57BL/6J mice were infected with Plasmodium berghei ANKA (PbA) parasites and compared to non-infected controls. Microbial DNA from faecal pellets collected daily for 6-days post-infection were extracted, and microbiome comparisons conducted using 16S rRNA profiling. We identified significant differences in the composition of bacterial communities between the infected and the non-infected groups, including a higher abundance of the genera Akkermansia, Alistipes and Alloprevotella in PbA-infected mice. Furthermore, intestinal samples were collected post-cull for morphological analysis. We determined that the caecal weight was significantly lower, and the small intestine was significantly longer in PbA-infected mice than in the non-infected controls. We concluded that changes in microbial community composition were primarily driven by the infection protocol and, to a lesser extent, by the time of infection. Our findings pave the way for a new area of research and novel intervention strategies to modulate the severity of cerebral malaria disease.
Collapse
|
8
|
Su XZ, Wu J, Xu F, Pattaradilokrat S. Genetic mapping of determinants in drug resistance, virulence, disease susceptibility, and interaction of host-rodent malaria parasites. Parasitol Int 2022; 91:102637. [PMID: 35926693 PMCID: PMC9452477 DOI: 10.1016/j.parint.2022.102637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 12/31/2022]
Abstract
Genetic mapping has been widely employed to search for genes linked to phenotypes/traits of interest. Because of the ease of maintaining rodent malaria parasites in laboratory mice, many genetic crosses of rodent malaria parasites have been performed to map the parasite genes contributing to malaria parasite development, drug resistance, host immune response, and disease pathogenesis. Drs. Richard Carter, David Walliker, and colleagues at the University of Edinburgh, UK, were the pioneers in developing the systems for genetic mapping of malaria parasite traits, including characterization of genetic markers to follow the inheritance and recombination of parasite chromosomes and performing the first genetic cross using rodent malaria parasites. Additionally, many genetic crosses of inbred mice have been performed to link mouse chromosomal loci to the susceptibility to malaria parasite infections. In this chapter, we review and discuss past and recent advances in genetic marker development, performing genetic crosses, and genetic mapping of both parasite and host genes. Genetic mappings using models of rodent malaria parasites and inbred mice have contributed greatly to our understanding of malaria, including parasite development within their hosts, mechanism of drug resistance, and host-parasite interaction.
Collapse
Affiliation(s)
- Xin-Zhuan Su
- Malaria Functional Genomics Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA.
| | - Jian Wu
- Malaria Functional Genomics Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA
| | - Fangzheng Xu
- Malaria Functional Genomics Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
9
|
Identification of Key Determinants of Cerebral Malaria Development and Inhibition Pathways. mBio 2022; 13:e0370821. [PMID: 35073748 PMCID: PMC8787489 DOI: 10.1128/mbio.03708-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cerebral malaria (CM), coma caused by Plasmodium falciparum-infected red blood cells (iRBCs), is the deadliest complication of malaria. The mechanisms that lead to CM development are incompletely understood. Here we report on the identification of activation and inhibition pathways leading to mouse CM with supporting evidence from the analysis of human specimens. We find that CM suppression can be induced by vascular injury when sporozoites exit the circulation to infect the liver and that CM suppression is mediated by the release of soluble factors into the circulation. Among these factors is insulin like growth factor 1 (IGF1), administration of which inhibits CM development in mice. IMPORTANCE Liver infection by Plasmodium sporozoites is a required step for infection of the organism. We found that alternate pathways of sporozoite liver infection differentially influence cerebral malaria (CM) development. CM is one of the primary causes of death following malaria infection. To date, CM research has focused on how CM phenotypes develop but no successful therapeutic treatment or prognostic biomarkers are available. Here we show for the first time that sporozoite liver invasion can trigger CM-inhibitory immune responses. Importantly, we identified a number of early-stage prognostic CM inhibitory biomarkers, many of which had never been associated with CM development. Serological markers identified using a mouse model are directly relevant to human CM.
Collapse
|
10
|
Xu G, van Bruggen R, Gualtieri CO, Moradin N, Fois A, Vallerand D, De Sa Tavares Russo M, Bassenden A, Lu W, Tam M, Lesage S, Girouard H, Avizonis DZ, Deblois G, Prchal JT, Stevenson M, Berghuis A, Muir T, Rabinowitz J, Vidal SM, Fodil N, Gros P. Bisphosphoglycerate Mutase Deficiency Protects against Cerebral Malaria and Severe Malaria-Induced Anemia. Cell Rep 2020; 32:108170. [PMID: 32966787 DOI: 10.1016/j.celrep.2020.108170] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 07/07/2020] [Accepted: 08/27/2020] [Indexed: 11/30/2022] Open
Abstract
The replication cycle and pathogenesis of the Plasmodium malarial parasite involves rapid expansion in red blood cells (RBCs), and variants of certain RBC-specific proteins protect against malaria in humans. In RBCs, bisphosphoglycerate mutase (BPGM) acts as a key allosteric regulator of hemoglobin/oxyhemoglobin. We demonstrate here that a loss-of-function mutation in the murine Bpgm (BpgmL166P) gene confers protection against both Plasmodium-induced cerebral malaria and blood-stage malaria. The malaria protection seen in BpgmL166P mutant mice is associated with reduced blood parasitemia levels, milder clinical symptoms, and increased survival. The protective effect of BpgmL166P involves a dual mechanism that enhances the host's stress erythroid response to Plasmodium-driven RBC loss and simultaneously alters the intracellular milieu of the RBCs, including increased oxyhemoglobin and reduced energy metabolism, reducing Plasmodium maturation, and replication. Overall, our study highlights the importance of BPGM as a regulator of hemoglobin/oxyhemoglobin in malaria pathogenesis and suggests a new potential malaria therapeutic target.
Collapse
Affiliation(s)
- Guoyue Xu
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada; McGill University Research Centre on Complex Traits, McGill University, Montreal, QC H3G 0B1, Canada
| | - Rebekah van Bruggen
- McGill University Research Centre on Complex Traits, McGill University, Montreal, QC H3G 0B1, Canada; Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada
| | - Christian O Gualtieri
- McGill University Research Centre on Complex Traits, McGill University, Montreal, QC H3G 0B1, Canada; Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada
| | - Neda Moradin
- McGill University Research Centre on Complex Traits, McGill University, Montreal, QC H3G 0B1, Canada
| | - Adrien Fois
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Center, Montréal, QC H1T 2M4, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Diane Vallerand
- Université de Montréal, Département de Pharmacologie et Physiologie, Pav Roger-Gaudry, 2900 Édouard-Montpetit, Montréal, QC H3T 1J4, Canada
| | | | - Angelia Bassenden
- Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada
| | - Wenyun Lu
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Mifong Tam
- Department of Microbiology and Immunology, McGill University, Montréal, QC H3A 2B4, Canada
| | - Sylvie Lesage
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Center, Montréal, QC H1T 2M4, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Hélène Girouard
- Université de Montréal, Département de Pharmacologie et Physiologie, Pav Roger-Gaudry, 2900 Édouard-Montpetit, Montréal, QC H3T 1J4, Canada
| | - Daina Zofija Avizonis
- Rosalind and Morris Goodman Cancer Research Centre, 1160 Pin Avenue West, Montréal, QC H3A 1A3, Canada
| | - Geneviève Deblois
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada; Faculté de Pharmacie, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Josef T Prchal
- Division of Hematology, School of Medicine, University of Utah, Salt Lake City, UT 84132, USA
| | - Mary Stevenson
- Department of Microbiology and Immunology, McGill University, Montréal, QC H3A 2B4, Canada
| | - Albert Berghuis
- Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada
| | - Tom Muir
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Joshua Rabinowitz
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Silvia M Vidal
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada; McGill University Research Centre on Complex Traits, McGill University, Montreal, QC H3G 0B1, Canada; Department of Microbiology and Immunology, McGill University, Montréal, QC H3A 2B4, Canada
| | - Nassima Fodil
- McGill University Research Centre on Complex Traits, McGill University, Montreal, QC H3G 0B1, Canada; Centre CERMO-FC Pavillon des Sciences Biologiques, 141 Avenue du Président Kennedy, Montréal, QC H2X 3Y7, Canada.
| | - Philippe Gros
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada; McGill University Research Centre on Complex Traits, McGill University, Montreal, QC H3G 0B1, Canada; Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada.
| |
Collapse
|
11
|
Olivier JF, Fodil N, Al Habyan S, Gopal A, Artusa P, Mandl JN, McCaffrey L, Gros P. CCDC88B is required for mobility and inflammatory functions of dendritic cells. J Leukoc Biol 2020; 108:1787-1802. [PMID: 32480428 DOI: 10.1002/jlb.3a0420-386r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 04/13/2020] [Accepted: 05/08/2020] [Indexed: 12/17/2022] Open
Abstract
The Coiled Coil Domain Containing Protein 88B (CCDC88B) gene is associated with susceptibility to several inflammatory diseases in humans and its inactivation in mice protects against acute neuroinflammation and models of intestinal colitis. We report that mice lacking functional CCDC88B (Ccdc88bMut ) are defective in several dendritic cells (DCs)-dependent inflammatory and immune reactions in vivo. In these mice, an inflammatory stimulus (LPS) fails to induce the recruitment of DCs into the draining lymph nodes (LNs). In addition, OVA-pulsed Ccdc88bMut DCs injected in the footpad do not induce recruitment and activation of antigen-specific CD4+ and CD8+ T cells in their draining LN. Experiments in vitro indicate that this defect is independent of the ability of mutant DCs to capture and present peptide antigen to T cells. Rather, kinetic analyses in vivo of wild-type and Ccdc88bMut DCs indicate a reduced migration capacity in the absence of the CCDC88B protein expression. Moreover, using time-lapse light microscopy imaging, we show that Ccdc88bMut DCs have an intrinsic motility defect. Furthermore, in vivo studies reveal that these reduced migratory properties lead to dampened contact hypersensitivity reactions in Ccdc88b mutant mice. These findings establish a critical role of CCDC88B in regulating movement and migration of DCs. Thus, regulatory variants impacting Ccdc88b expression in myeloid cells may cause variable degrees of DC-dependent inflammatory response in situ, providing a rationale for the genetic association of CCDC88B with several inflammatory and autoimmune diseases in humans.
Collapse
Affiliation(s)
- Jean-Frederic Olivier
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada.,McGill Research Center for Complex Traits, McGill University, Montreal, Quebec, Canada
| | - Nassima Fodil
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada.,McGill Research Center for Complex Traits, McGill University, Montreal, Quebec, Canada
| | - Sara Al Habyan
- Department of Oncology, McGill University, Montreal, Quebec, Canada.,Goodman Cancer Research Center, McGill University, Montreal, Quebec, Canada
| | - Angelica Gopal
- McGill Research Center for Complex Traits, McGill University, Montreal, Quebec, Canada.,Department of Chemistry, McGill University, Montreal, Quebec, Canada.,Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - Patricio Artusa
- McGill Research Center for Complex Traits, McGill University, Montreal, Quebec, Canada.,Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - Judith N Mandl
- McGill Research Center for Complex Traits, McGill University, Montreal, Quebec, Canada.,Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - Luke McCaffrey
- Department of Oncology, McGill University, Montreal, Quebec, Canada.,Goodman Cancer Research Center, McGill University, Montreal, Quebec, Canada
| | - Philippe Gros
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada.,McGill Research Center for Complex Traits, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
12
|
ZBTB7B (ThPOK) Is Required for Pathogenesis of Cerebral Malaria and Protection against Pulmonary Tuberculosis. Infect Immun 2020; 88:IAI.00845-19. [PMID: 31792077 DOI: 10.1128/iai.00845-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 11/08/2019] [Indexed: 11/20/2022] Open
Abstract
We used a genome-wide screen in N-ethyl-N-nitrosourea (ENU)-mutagenized mice to identify genes in which recessive loss-of-function mutations protect against pathological neuroinflammation. We identified an R367Q mutation in the ZBTB7B (ThPOK) protein in which homozygosity causes protection against experimental cerebral malaria (ECM) caused by infection with Plasmodium berghei ANKA. Zbtb7bR367Q homozygous mice show a defect in the lymphoid compartment expressed as severe reduction in the number of single-positive CD4 T cells in the thymus and in the periphery, reduced brain infiltration of proinflammatory leukocytes in P. berghei ANKA-infected mice, and reduced production of proinflammatory cytokines by primary T cells ex vivo and in vivo Dampening of proinflammatory immune responses in Zbtb7bR367Q mice is concomitant to increased susceptibility to infection with avirulent (Mycobacterium bovis BCG) and virulent (Mycobacterium tuberculosis H37Rv) mycobacteria. The R367Q mutation maps to the first DNA-binding zinc finger domain of ThPOK and causes loss of base contact by R367 in the major groove of the DNA, which is predicted to impair DNA binding. Global immunoprecipitation of ThPOK-containing chromatin complexes coupled to DNA sequencing (ChIP-seq) identified transcriptional networks and candidate genes likely to play key roles in CD4+ CD8+ T cell development and in the expression of lineage-specific functions of these cells. This study highlights ThPOK as a global regulator of immune function in which alterations may affect normal responses to infectious and inflammatory stimuli.
Collapse
|
13
|
Chen G, Du YT, Liu JH, Li Y, Zheng L, Qin XS, Cao YM. Modulation of anti-malaria immunity by vitamin A in C57BL/6J mice infected with heterogenic plasmodium. Int Immunopharmacol 2019; 76:105882. [PMID: 31520991 DOI: 10.1016/j.intimp.2019.105882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 12/12/2022]
Abstract
Vitamin A (VA) is an anti-inflammatory agent that is important in modulating and balancing the immune system. The present study aimed to investigate the immunoregulatory effects of vitamin A supplement (VAS) in C57BL/6J mice infected with Plasmodium yoelii 17XL (P.y17XL) or Plasmodium berghei ANKA (P.bANKA). Following VA treatment, parasitaemia decreased, but survival rate did not significantly change during P.y17XL infection. However, in P.bANKA infected C57BL/6J mice, VA pretreatment decreased parasitaemia, and a lag in cerebral malaria (CM) was observed during the early stages of infection. Furthermore, VA pretreatment was also demonstrated to upregulate MHCII expression in dendritic cells (DCs), downregulate Th1 and Tregs, and downregulate TNF-α and IFN-γ production. The results of the current study indicated that VAS downregulated the inflammation response in CM, but did not exhibit an immunoregulatory effect against P.y17XL infection. VAS protected the onset of CM by reducing inflammation, and was also correlated with the downregulation of Th1 by modifying the function of DCs and Tregs. However, no significant effect was observed during P.y17XL infection.
Collapse
Affiliation(s)
- Guang Chen
- Department of Basic Medical Sciences, Taizhou University Hospital, Taizhou University, No 1139 Shifu Road, Jiaojiang District, Taizhou 318000, China; Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang 110013, China
| | - Yun-Ting Du
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang 110013, China; Department of Clinical Lab, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Number 44 Xiaoheyan Road, Dadong District, Shenyang 110042, China
| | - Jian-Hua Liu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Ying Li
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Li Zheng
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang 110013, China
| | - Xiao-Song Qin
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Ya-Ming Cao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang 110013, China.
| |
Collapse
|
14
|
Expression of CD300lf by microglia contributes to resistance to cerebral malaria by impeding the neuroinflammation. Genes Immun 2019; 21:45-62. [PMID: 31501529 DOI: 10.1038/s41435-019-0085-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/30/2019] [Accepted: 06/06/2019] [Indexed: 01/28/2023]
Abstract
Genetic mapping and genome-wide studies provide evidence for the association of several genetic polymorphisms with malaria, a complex pathological disease with multiple severity degrees. We have previously described Berr1and Berr2 as candidate genes identified in the WLA/Pas inbreed mouse strain predisposing to resistance to cerebral malaria (CM) induced by P. berghei ANKA. We report in this study the phenotypic and functional characteristics of a congenic strain we have derived for Berr2WLA allele on the C57BL/6JR (B6) background. B6.WLA-Berr2 was found highly resistant to CM compared to C57BL/6JR susceptible mice. The mechanisms associated with CM resistance were analyzed by combining genotype, transcriptomic and immune response studies. We found that B6.WLA-Berr2 mice showed a reduced parasite sequestration and blood-brain barrier disruption with low CXCR3+ T cell infiltration in the brain along with altered glial cell response upon P. berghei ANKA infection compared to B6. In addition, we have identified the CD300f, belonging to a family of Ig-like encoding genes, as a potential candidate associated with CM resistance. Microglia cells isolated from the brain of infected B6.WLA-Berr2 mice significantly expressed higher level of CD300f compared to CMS mice and were associated with inhibition of inflammatory response.
Collapse
|
15
|
Jeyakumar T, Beauchemin N, Gros P. Impact of the Microbiome on the Human Genome. Trends Parasitol 2019; 35:809-821. [PMID: 31451407 DOI: 10.1016/j.pt.2019.07.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/30/2019] [Accepted: 07/30/2019] [Indexed: 02/07/2023]
Abstract
Humans live in a microbial world that includes pathogenic bacteria, viruses, and fungi that cause lethal infections. In addition, a large number of microbial communities inhabit mucosal surfaces where they provide key metabolic activities, facilitating adaptation to changing environments. New genome technologies enable both sequencing of the human genome and sequence-based cataloging of microbial communities inhabiting human mucosal surfaces. These have revealed intricate two-way relationships between the microbiome and the genome, including strong effects of human genotypes on the composition and activity of the microbiome. Likewise, the microbiome plays an important role in training and regulating the immune system, and acts to modify expression of human genetic risk for debilitating chronic inflammatory and immune conditions. These studies are suggesting a new role of the microbiome in human health and disease.
Collapse
Affiliation(s)
- Thiviya Jeyakumar
- Department of Biochemistry, McGill University, Montreal, Canada; McGill Center for the Study of Complex Traits, McGill University, Montreal, Canada
| | - Nicole Beauchemin
- Department of Biochemistry, McGill University, Montreal, Canada; Goodman Cancer Research Center, McGill University, Montreal, Canada
| | - Philippe Gros
- Department of Biochemistry, McGill University, Montreal, Canada; McGill Center for the Study of Complex Traits, McGill University, Montreal, Canada; Goodman Cancer Research Center, McGill University, Montreal, Canada.
| |
Collapse
|
16
|
Sengupta A, Keswani T, Sarkar S, Ghosh S, Mukherjee S, Bhattacharyya A. Autophagic induction modulates splenic plasmacytoid dendritic cell mediated immune response in cerebral malarial infection model. Microbes Infect 2019; 21:475-484. [PMID: 31185303 DOI: 10.1016/j.micinf.2019.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 05/16/2019] [Accepted: 05/28/2019] [Indexed: 02/06/2023]
Abstract
Splenic plasmacytoid dendritic cells (pDC) possess the capability to harbor live replicative Plasmodium parasite. Isolated splenic pDC from infected mice causes malaria when transferred to naïve mice. Incomplete autophagic degradation might cause poor antigen processing and poor immune response. Induction of autophagic flux by rapamycin treatment led to better prognosis by boosting pDC centered immune response against the pathogen. Splenic pDC from rapamycin-treated infected mice, caused less parasitemia in naïve mice. The downregulation of adhesion with unaltered phagocytic potential of the cells post autophagic induction restricted excessive parasite burden within them. Rapamycin-treated pDC played a better role in antigen presentation. They showed higher expression of co-stimulatory molecules CD80, CD86, DEC205, MHCI. Rapamycin-treated pDC induced CD28 expression on CD8+ T cells and suppressed FasL level. This cells also influenced differentiation of effector, memory T cell population. The increase in IL10: TNFα ratio, Treg: Th17 ratio and lowering of myeloid DC: plasmacytoid DC ratio was observed. It shifted the overaggressive inflammation mediated Th1 pathway that is reported to incur host damage, to a better well-balanced cytokine profile exhibiting Th2 pathway. Autophagic flux induction within pDC proved to be beneficial in combating malarial pathogenicity.
Collapse
Affiliation(s)
- Anirban Sengupta
- Immunology Laboratory, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India.
| | - Tarun Keswani
- Basic and Clinical Immunology of Parasitic Diseases, Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Centre of Infection and Immunity Lille, F-59000 Lille, France, 1 Rue du Professeur Calmette, 59019, Lille, France.
| | - Samrat Sarkar
- Immunology Laboratory, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India.
| | - Soubhik Ghosh
- Immunology Laboratory, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India.
| | - Saikat Mukherjee
- Immunology Laboratory, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India.
| | - Arindam Bhattacharyya
- Immunology Laboratory, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India.
| |
Collapse
|
17
|
Ohno T, Miyasaka Y, Kuga M, Ushida K, Matsushima M, Kawabe T, Kikkawa Y, Mizuno M, Takahashi M. Mouse NC/Jic strain provides novel insights into host genetic factors for malaria research. Exp Anim 2019; 68:243-255. [PMID: 30880305 PMCID: PMC6699971 DOI: 10.1538/expanim.18-0185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Malaria is caused by Plasmodium parasites and is one of the most
life-threatening infectious diseases in humans. Infection can result in severe
complications such as cerebral malaria, acute lung injury/acute respiratory distress
syndrome, and acute renal injury. These complications are mainly caused by P.
falciparum infection and are major causes of death associated with malaria.
There are a few species of rodent-infective malaria parasites, and mice infected with such
parasites are now widely used for screening candidate drugs and vaccines and for studying
host immune responses and pathogenesis associated with disease-related complications. We
found that mice of the NC/Jic strain infected with rodent malarial parasites exhibit
distinctive disease-related complications such as cerebral malaria and nephrotic syndrome,
in addition to a rapid increase in parasitemia. Here, we focus on the analysis of host
genetic factors that affect malarial pathogenesis and describe the characteristic
features, utility, and future prospects for exploitation of the NC/Jic strain as a novel
mouse model for malaria research.
Collapse
Affiliation(s)
- Tamio Ohno
- Division of Experimental Animals, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Yuki Miyasaka
- Division of Experimental Animals, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Masako Kuga
- Division of Experimental Animals, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Kaori Ushida
- Department of Pathology, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Miyoko Matsushima
- Department of Pathophysiological Laboratory Sciences, Graduate School of Medicine, Nagoya University, 1-1-20 Daikou-minami, Higashi-ku, Nagoya, Aichi 461-8673, Japan
| | - Tsutomu Kawabe
- Department of Pathophysiological Laboratory Sciences, Graduate School of Medicine, Nagoya University, 1-1-20 Daikou-minami, Higashi-ku, Nagoya, Aichi 461-8673, Japan
| | - Yoshiaki Kikkawa
- Mammalian Genetics Project, Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Masashi Mizuno
- Renal Replacement Therapy, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Masahide Takahashi
- Department of Pathology, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| |
Collapse
|