1
|
Walker SL, Glasper ER. Unraveling sex differences in maternal and paternal care impacts on social behaviors and neurobiological responses to early-life adversity. Front Neuroendocrinol 2025; 76:101162. [PMID: 39561882 PMCID: PMC11811932 DOI: 10.1016/j.yfrne.2024.101162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/11/2024] [Accepted: 11/11/2024] [Indexed: 11/21/2024]
Abstract
Early-life stress (ELS) affects the development of prosocial behaviors and social-cognitive function, often leading to structural brain changes and increased psychosocial disorders. Recent studies suggest that mother- and father-child relationships independently influence social development in a sex-specific manner, but the effects of impaired father-child relationships are often overlooked. This review examines preclinical rodent studies to explore how parental neglect impacts neuroplasticity and social behaviors in offspring. We highlight that disruptions in maternal interactions may affect male pups more in uniparental rodents, while impaired paternal interactions in biparental rodents tend to impact female pups more. Due to limited research, the separate effects of maternal and paternal neglect on brain development and social behaviors in biparental species remain unclear. Addressing these gaps could clarify the sex-specific mechanisms underlying social and neurobiological deficits following parental neglect.
Collapse
Affiliation(s)
- Shakeera L Walker
- Department of Neuroscience, The Ohio State University, Columbus, OH, 43210, United States; Neuroscience Graduate Program, The Ohio State University, Columbus, OH, 43210, United States
| | - Erica R Glasper
- Department of Neuroscience, The Ohio State University, Columbus, OH, 43210, United States; Neuroscience Graduate Program, The Ohio State University, Columbus, OH, 43210, United States; Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, 43210, United States.
| |
Collapse
|
2
|
Hiura LC, Lazaro VA, Ophir AG. Paternal absence and increased caregiving independently and interactively shape the development of male prairie voles at subadult and adult life stages. Horm Behav 2024; 164:105605. [PMID: 39032207 PMCID: PMC11330720 DOI: 10.1016/j.yhbeh.2024.105605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/22/2024]
Abstract
The influence of maternal caregiving is a powerful force on offspring development. The absence of a father during early life in biparental species also has profound implications for offspring development, although it is far less studied than maternal influences. Moreover, we have limited understanding of the interactive forces that maternal and paternal caregiving impart on offspring. We investigated if behaviorally upregulating maternal care compensates for paternal absence on prairie vole (Microtus ochrogaster) pup development. We used an established handling manipulation to increase levels of caregiving in father-absent and biparental families, and later measured male offspring behavioral outcomes at sub-adulthood and adulthood. Male offspring raised without fathers were more prosocial (or possibly less socially anxious) than those raised biparentally. Defensive behavior and responses to contextual novelty were also influenced by the absence of fathers, but only in adulthood. Offensive aggression and movement in the open field test changed as a function of life-stage but not parental exposure. Notably, adult pair bonding was not impacted by our manipulations. Boosting parental care produced males that moved more in the open field test. Parental handling also increased oxytocin immunoreactive cells within the supraoptic nucleus of the hypothalamus (SON), and in the paraventricular nucleus (PVN) of biparentally-reared males. We found no differences in vasopressinergic cell groups. We conclude that male prairie voles are contextually sensitive to the absence of fathers and caregiving intensity. Our study highlights the importance of considering the ways early experiences synergistically shape offspring behavioral and neural phenotypes across the lifespan.
Collapse
Affiliation(s)
- Lisa C Hiura
- Department of Psychology, Cornell University, Ithaca, NY 14853, USA
| | - Vanessa A Lazaro
- Department of Psychology, Cornell University, Ithaca, NY 14853, USA
| | - Alexander G Ophir
- Department of Psychology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
3
|
Abstract
Fathers have been an important source of child endurance and prosperity since the dawn of civilization, promoting adaptation to social rules, defining cultural meaning systems, teaching daily living skills, and providing the material background against which children developed; still, the recent reformulation in the role of the father requires theory-building. Paternal caregiving is rare in mammals, occurring in 3-5% of species, expresses in multiple formats, and involves flexible neurobiological accommodations to ecological conditions and active caregiving. Here, we discuss father contribution to resilience across development. Our model proposes three tenets of resilience - plasticity, sociality, and meaning - and discussion focuses on father-specific contributions to each tenet at different developmental stages; newborn, infant, preschooler, child, and adolescent. Father's style of high arousal, energetic physicality, guided participation in daily skills, joint adventure, and conflict resolution promotes children's flexible approach and social competence within intimate bonds and social groups. By expanding children's interests, sharpening cognitions, tuning affect regulation, encouraging exploration, and accompanying the search for identity, fathers support the sense of meaning, enhancing the human-specific dimension of resilience. We end by highlighting pitfalls to paternal contribution, including absence, abuse, rigidity, expectations, and gender typing, and the need to formulate novel theories to accommodate the "involved dad."
Collapse
Affiliation(s)
- Ruth Feldman
- Center for Developmental Social Neuroscience, Reichman University,Israel
- Yale Child Study Center, New Haven, USA
| |
Collapse
|
4
|
Sex-specific effects of neonatal paternal deprivation on microglial cell density in adult California mouse (Peromyscus californicus) dentate gyrus. Brain Behav Immun 2022; 106:1-10. [PMID: 35908654 DOI: 10.1016/j.bbi.2022.07.161] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/20/2022] [Accepted: 07/26/2022] [Indexed: 11/20/2022] Open
Abstract
Adverse early-life experiences are risk factors for psychiatric disease development, resulting in stress-related neuronal modeling and neurobehavioral changes. Stressful experiences modulate the immune system, contributing to neuronal damage in higher cortical regions, like the hippocampus. Moreover, early-life stressors dysregulate the function of microglia, the resident immune cells of the brain, in the developing hippocampus. Paternal deprivation, an early-life stressor in many biparental species, facilitates sex-dependent inhibitions in hippocampal plasticity, but parental contributors to these sex-specific outcomes are unknown. Also, neurobiological mechanisms contributing to impairments in hippocampal neuroplasticity are less known. Thus, our goals were to 1) determine whether parental behavior is altered in maternal females following removal of the paternal male, 2) assess the effects of paternal deprivation on dentate gyrus (DG) volume and microglia proliferation, and 3) determine if early-life experimental handling mitigates sex-specific reductions in DG cell survival. California mice were born to multiparous breeders and reared by both parents (biparental care) or by their mother alone (i.e., father removed on postnatal day 1; paternal deprivation). One cohort of offspring underwent offspring retrieval tests for eight days beginning on postnatal day 2. On PND 68, these offspring (and a second cohort of mice without behavioral testing) were euthanized and brains visualized for bromodeoxyuridine (BrdU) and neuron-specific class III beta-tubulin (TuJ-1) or ionized calcium binding adaptor molecule 1 (Iba1). While mate absence did not impair maternal retrieval, paternal deprivation reduced DG volume, but Iba1+ cell density was only higher in paternally-deprived females. Neither sex or paternal deprivation significantly altered the number of BrdU+ or Tuj1+ cells in the DG - an absence of a reduction in cell survival may be related to daily handing during early offspring retrieval tests. Together, these data suggest that paternal deprivation impairs hippocampal plasticity; however, sex and early environment may influence the magnitude of these outcomes.
Collapse
|
5
|
Individual and Combined Effects of Paternal Deprivation and Developmental Exposure to Firemaster 550 on Socio-Emotional Behavior in Prairie Voles. TOXICS 2022; 10:toxics10050268. [PMID: 35622681 PMCID: PMC9147230 DOI: 10.3390/toxics10050268] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 12/05/2022]
Abstract
The prevalence of neurodevelopmental disorders (NDDs) is rapidly rising, suggesting a confluence of environmental factors that are likely contributing, including developmental exposure to environmental contaminants. Unfortunately, chemical exposures and social stressors frequently occur simultaneously in many communities, yet very few studies have sought to establish the combined effects on neurodevelopment or behavior. Social deficits are common to many NDDs, and we and others have shown that exposure to the chemical flame retardant mixture, Firemaster 550 (FM 550), or paternal deprivation impairs social behavior and neural function. Here, we used a spontaneously prosocial animal model, the prairie vole (Microtus ochrogaster), to explore the effects of perinatal chemical (FM 550) exposure alone or in combination with an early life stressor (paternal absence) on prosocial behavior. Dams were exposed to vehicle (sesame oil) or 1000 µg FM 550 orally via food treats from conception through weaning and the paternal absence groups were generated by removing the sires the day after birth. Adult offspring of both sexes were then subjected to open-field, sociability, and a partner preference test. Paternal deprivation (PD)-related effects included increased anxiety, decreased sociability, and impaired pair-bonding in both sexes. FM 550 effects include heightened anxiety and partner preference in females but reduced partner preference in males. The combination of FM 550 exposure and PD did not exacerbate any behaviors in either sex except for distance traveled by females in the partner preference test and, to a lesser extent, time spent with, and the number of visits to the non-social stimulus by males in the sociability test. FM 550 ameliorated the impacts of parental deprivation on partner preference behaviors in both sexes. This study is significant because it provides evidence that chemical and social stressors can have unique behavioral effects that differ by sex but may not produce worse outcomes in combination.
Collapse
|
6
|
Condon EM, Dettmer A, Baker E, McFaul C, Stover CS. Early Life Adversity and Males: Biology, Behavior, and Implications for Fathers' Parenting. Neurosci Biobehav Rev 2022; 135:104531. [PMID: 35063493 PMCID: PMC9236197 DOI: 10.1016/j.neubiorev.2022.104531] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 01/23/2023]
Abstract
Fathers have an important and unique influence on child development, but influences on fathers' parenting have been vastly understudied in the scientific literature. In particular, very little empirical research exists on the effects of early life adversity (ELA; e.g. childhood maltreatment, parental separation) on later parenting among fathers. In this review, we draw from both the human and non-human animal literature to examine the effects of ELA, specifically among males, in the following areas: 1) neurobiology and neurocognitive functioning, 2) hormones and hormone receptors, 3) gene-environment interactions and epigenetics, and 4) behavior and development. Based on these findings, we present a conceptual model to describe the biological and behavioral pathways through which exposure to ELA may influence parenting among males, with a goal of guiding future research and intervention development in this area. Empirical studies are needed to improve understanding of the relationship between ELA and father's parenting, inform the development of paternal and biparental interventions, and prevent intergenerational transmission of ELA.
Collapse
Affiliation(s)
- Eileen M Condon
- University of Connecticut School of Nursing, 231 Glenbrook Rd, Storrs CT 06269, United States; Yale Early Stress and Adversity Consortium, United States.
| | - Amanda Dettmer
- Yale Early Stress and Adversity Consortium, United States; Yale Child Study Center, 230 S Frontage Rd, New Haven, CT 06519, United States
| | - Ellie Baker
- Yale Child Study Center, 230 S Frontage Rd, New Haven, CT 06519, United States; Division of Psychology and Language Science, University College London (UCL), 26 Bedford Way, Bloomsbury, London WC1H 0AP, United Kingdom
| | - Ciara McFaul
- Yale Child Study Center, 230 S Frontage Rd, New Haven, CT 06519, United States
| | - Carla Smith Stover
- Yale Early Stress and Adversity Consortium, United States; Yale Child Study Center, 230 S Frontage Rd, New Haven, CT 06519, United States
| |
Collapse
|
7
|
Rogers FD, Freeman SM, Anderson M, Palumbo MC, Bales KL. Compositional variation in early-life parenting structures alters oxytocin and vasopressin 1a receptor development in prairie voles (Microtus ochrogaster). J Neuroendocrinol 2021; 33:e13001. [PMID: 34189787 PMCID: PMC8486352 DOI: 10.1111/jne.13001] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 05/31/2021] [Accepted: 05/31/2021] [Indexed: 12/27/2022]
Abstract
Paternal absence can significantly alter bio-behavioural development in many biparental species. This effect has generally been demonstrated by comparing the development of offspring reared under biparental care with those reared by a single mother. However, studies employing this design conflate two significant modifications to early-life experience: removal of father-specific qualities and the general reduction of offspring-directed care. In the socially monogamous prairie vole (Microtus ochrogaster), the experience of paternal absence without substitution during development inhibits partner preference formation in adulthood, a hallmark of social monogamy, in females and males. Employing alloparents as substitutes for fathers, our previous work demonstrated that paternal absence affects pair-bond formation in female offspring via reduced quantity of care, although it affects pair-bond formation in male offspring by means of a missing paternal quality (or qualities). Here, we present evidence that paternal absence (with and without alloparental substitution) may alter the ontogeny of neural oxytocin receptor (OXTR) and/or vasopressin 1a receptor (AVPR1a) distribution in male and female prairie voles. Compared to biparentally reared controls (BPC), male offspring reared in mother only (MON) and maternal-plus-alloparental (MPA) conditions show lower densities of OXTR in the central amygdala; and MPA males show lower densities of OXTR in the caudate putamen and nucleus accumbens. Early-life experience was not associated with differences in AVPR1a density in males. However, MON and MPA females show greater densities of AVPR1a in the medial amygdala than BPC; and MPA females show greater densities of AVPR1a in the ventromedial nucleus of the hypothalamus. We also demonstrate with corticosterone concentrations that MON and MPA offspring are not differentially susceptible to a stressor (ie, social isolation) than BPC offspring. These findings suggest that paternal absence, although likely not a salient early-life stressor, has neuroendocrine consequences for offspring, some of which may affect partner preference formation.
Collapse
Affiliation(s)
- Forrest D Rogers
- Psychology Graduate Program, University of California, Davis, CA, USA
- Department of Psychology, University of California, Davis, CA, USA
| | - Sara M Freeman
- Department of Psychology, University of California, Davis, CA, USA
- California National Primate Research Center, Davis, CA, USA
- Department of Biology, Utah State University, Logan, UT, USA
| | - Marina Anderson
- Department of Psychology, University of California, Davis, CA, USA
- California National Primate Research Center, Davis, CA, USA
| | - Michelle C Palumbo
- Department of Psychology, University of California, Davis, CA, USA
- California National Primate Research Center, Davis, CA, USA
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Karen L Bales
- Department of Psychology, University of California, Davis, CA, USA
- California National Primate Research Center, Davis, CA, USA
| |
Collapse
|
8
|
Čater M, Majdič G. How early maternal deprivation changes the brain and behavior? Eur J Neurosci 2021; 55:2058-2075. [PMID: 33870558 DOI: 10.1111/ejn.15238] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 01/30/2023]
Abstract
Early life stress can adversely influence brain development and reprogram brain function and consequently behavior in adult life. Adequate maternal care in early childhood is therefore particularly important for the normal brain development, and adverse early life experiences can lead to altered emotional, behavioral, and neuroendocrine stress responses in the adulthood. As a form of neonatal stress, maternal deprivation/separation is often used in behavioral studies to examine the effects of early life stress and for modeling the development of certain psychiatric disorders and brain pathologies in animal models. The temporary loss of maternal care during the critical postpartum periods remodels the offspring's brain and provokes long-term effects on learning and cognition, the development of mental disorders, aggression, and an increased tendency for the drug abuse. Early life stress through maternal deprivation affects neuroendocrine responses to stress in adolescence and adulthood by dysregulating the hypothalamic-pituitary-adrenal axis and permanently disrupts stress resilience. In this review, we focused on how improper maternal care during early postnatal life affects brain development resulting in modified behavior later in life.
Collapse
Affiliation(s)
- Maša Čater
- Veterinary Faculty, Laboratory for Animal Genomics, Institute for Preclinical Studies, University of Ljubljana, Ljubljana, Slovenia.,Faculty of Medicine, Institute of Physiology, University of Maribor, Maribor, Slovenia
| | - Gregor Majdič
- Veterinary Faculty, Laboratory for Animal Genomics, Institute for Preclinical Studies, University of Ljubljana, Ljubljana, Slovenia.,Faculty of Medicine, Institute of Physiology, University of Maribor, Maribor, Slovenia
| |
Collapse
|
9
|
Wu R, Wu X, Li S, Li G, Jiang Z, Zhong H, Wang B, Yang S, Wei W. Predator odor exposure increases social contact in adolescents and parental behavior in adulthood in Brandt's voles. Behav Processes 2021; 186:104372. [PMID: 33667486 DOI: 10.1016/j.beproc.2021.104372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 11/28/2022]
Abstract
Research suggests that predation risk during adolescence can program adult stress response and emotional behavior; however, little is known about the short-term and lasting residual effects of this experience on social behavior. We explored this concept in social Brandt's voles (Lasiopodomys brandtii). Adolescent male and female voles were exposed to distilled water, rabbit urine (as a non-predator stimulus), and cat urine for 60 min daily from postnatal day (PND) 28-49. Social play tests were conducted immediately following exposure on PND 28, 35, 42, and 49. In the social play test, repeated cat odor (CO) exposure enhanced the contact behavior of voles with their cagemate. Adolescent exposure to CO did not affect behavioral responses toward unrelated pups in the alloparental behavior test or same-sex individuals in the social interaction test. However, exposure to CO significantly enhanced the licking/grooming behavior of voles towards their own pups in the home cage parental behavior test. Repeated CO exposure significantly inhibited weight gain in male voles during adolescence. This effect was transmitted to the next generation, with lower weight gain in offspring before weaning. Following repeated CO exposure, males tended to have more female offspring whereas females produced more offspring, suggesting an adaptive strategy to increase inclusive fitness under predatory risk. These findings demonstrate that adolescent exposure to predatory risk augments adolescent social contact and adult parental behavior and suggest a role for improved inclusive fitness in mediating long-term outcomes.
Collapse
Affiliation(s)
- Ruiyong Wu
- Department of Animal Behavior, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| | - Xueyan Wu
- Department of Animal Behavior, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Shan Li
- Department of Animal Behavior, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Guran Li
- Department of Animal Behavior, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Ziyi Jiang
- Department of Animal Behavior, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Haocheng Zhong
- Department of Animal Behavior, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Bo Wang
- Genetic Engineering Laboratory, School of Biological and Environmental Engineering, Xi'an University of Arts and Science, Xi'an, Shaanxi 710065, China
| | - Shengmei Yang
- Department of Animal Behavior, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Wanhong Wei
- Department of Animal Behavior, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
10
|
Ceschim VC, Sumarán P, Borges AA, Girardi CEN, Suchecki D. Maternal deprivation during early infancy in rats increases oxytocin immunoreactivity in females and corticosterone reactivity to a social test in both sexes without changing emotional behaviour. Horm Behav 2021; 129:104928. [PMID: 33453261 DOI: 10.1016/j.yhbeh.2021.104928] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 11/18/2022]
Abstract
Impairment of social behaviour is a hallmark of emotional disorders, with increased avoidance of social contact. In rats, the 24 h maternal deprivation (DEP) paradigm is used to understand the impact of extreme neglect on neurodevelopment. Due to the distinct immediate effects of DEP on postnatal days (PND) 3 (DEP3) or 11 (DEP11), in the present study we investigated the long-term effects of DEP at these ages on anxiety-like behaviour, by recording the visits and time spent in the centre part of the open-field, social investigation of a confined, same-sex, unfamiliar animal, basal and post-social test corticosterone plasma levels and the immunoreactivity to oxytocin in the paraventricular (PVN) and supraoptic nuclei of the hypothalamus (SON). Whole litters were distributed into control (CTL), DEP3 or DEP11 groups and behavioural tests and biological samples were collected between PNDs 40 and 45 in males and females. There were no differences in the exploration of the central part of the open field or on the time investigating the unfamiliar rat. However, the percent increase in post-test corticosterone secretion from baseline was greater for both DEP3 male and female subgroups than their CTL and DEP11 counterparts. DEP3 females showed more oxytocin staining than DEP11 counterparts in magnocellular neurons of the SON and PVN. These results suggest that DEP at the ages chosen does not alter social investigation, although it results in distinct neurobiological outcomes, depending on the developmental phase when it is imposed.
Collapse
Affiliation(s)
- Viviane C Ceschim
- Department of Psychobiology, Universidade Federal de São Paulo -, São Paulo, Brazil
| | - Paula Sumarán
- Department of Psychobiology, Universidade Federal de São Paulo -, São Paulo, Brazil
| | - Andrea A Borges
- Department of Psychobiology, Universidade Federal de São Paulo -, São Paulo, Brazil
| | | | - Deborah Suchecki
- Department of Psychobiology, Universidade Federal de São Paulo -, São Paulo, Brazil.
| |
Collapse
|
11
|
Pillay N, Rymer TL. Sons benefit from paternal care in African striped mice. Dev Psychobiol 2020; 63:662-675. [PMID: 33098084 DOI: 10.1002/dev.22050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/27/2020] [Accepted: 10/01/2020] [Indexed: 12/26/2022]
Abstract
Mammalian paternal care is rare and is often linked to enhanced fitness under particular ecological conditions. The proximate consequences of paternal care on offspring are lacking, however. Here, we tested whether levels of paternal care predict the behavioural, cognitive and physiological development of sons in the naturally paternal African striped mouse (Rhabdomys pumilio). We focused on sons raised in two treatments: biparental (both parents) or uniparental (mother alone) families. We recorded levels of interactions between pups with both parents, and later assessed the behaviour, cognition and physiology of sons at three developmental stages: juvenile, sub-adult and adult (sexual maturity). Sons from biparental families showed (a) reduced anxiety as juveniles; (b) greater exploration and social interaction at different stages; (c) better cognition; and (d) reduced corticosterone concentrations than sons from uniparental families. In contrast, sons from uniparental families showed greater levels of paternal care, although prolactin concentrations did not differ between treatments. Paternal care in striped mice enhances fitness of males. Here, we also show that sons benefit psychologically and physiologically through interactions with their fathers. However, sons also trade-off such benefits against their own paternal care behaviour, suggesting that fathers influence the development of their son's phenotype in complex ways.
Collapse
Affiliation(s)
- Neville Pillay
- School of Animal, Plant and Environmental Science, University of the Witwatersrand, Johannesburg, South Africa
| | - Tasmin L Rymer
- School of Animal, Plant and Environmental Science, University of the Witwatersrand, Johannesburg, South Africa.,College of Science and Engineering, James Cook University, Cairns, QLD, Australia.,Centre for Tropical Environmental and Sustainability Sciences, James Cook University, Cairns, QLD, Australia
| |
Collapse
|
12
|
de Schultz T, Bock J, Braun K. Paternal Deprivation and Female Biparental Family Rearing Induce Dendritic and Synaptic Changes in Octodon degus: I. Medial Prefrontal Cortex. Front Synaptic Neurosci 2020; 12:38. [PMID: 33013347 PMCID: PMC7498658 DOI: 10.3389/fnsyn.2020.00038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 07/31/2020] [Indexed: 12/31/2022] Open
Abstract
In most mammalian species parent-offspring interactions during early life periods primarily comprise social contacts with the mother, whereas the role of males in parental care is one of the most overlooked and understudied topics. The present study addressed the hypothesis that the complete deprivation of paternal care delays or permanently retards synaptic connectivity in the brain, particularly in the medial prefrontal cortex (mPFC) of the offspring in a sex-specific manner. Another aim of this study was to address the question whether and in which way replacing the father with a female caregiver (in our experiments the “aunt”) can “buffer” the detrimental effects of paternal deprivation on neuronal development. The comparison of: (a) single mother rearing; (b) biparental rearing by father and mother; and (c) biparental rearing by two female caregivers revealed that: (i) paternal care represents a critical environmental factor for synaptic and dendritic development of pyramidal neurons in the vmPFC of their offspring; (ii) a second female caregiver (“aunt”) does not “buffer” the neuronal consequences of paternal deprivation; and that (iii) neuronal development in the vmPFC is differentially affected in male and female offspring in response to different family constellations.
Collapse
Affiliation(s)
- Tony de Schultz
- Department of Zoology, Developmental Neurobiology, Institute of Biology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Joerg Bock
- PG "Epigenetics and Structural Plasticity," Institute of Biology, Otto von Guericke, University Magdeburg, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Katharina Braun
- Department of Zoology, Developmental Neurobiology, Institute of Biology, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany
| |
Collapse
|
13
|
Yu P, Zhang M, Nan X, Zhao H, Gong D. Differences in the number of oxytocin, vasopressin, and tyrosine hydroxylase cells in brain regions associated with mating among great, midday, and Mongolian gerbils. Brain Res 2020; 1733:146677. [PMID: 32001244 DOI: 10.1016/j.brainres.2020.146677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 01/13/2020] [Accepted: 01/20/2020] [Indexed: 10/25/2022]
Abstract
Neurotransmitters, such as oxytocin (OT), vasopressin (AVP), and dopamine (DA), within the mesolimbic system have deeply conserved roles in regulating mating-related behaviors. However, comparative studies among monogamous and polygamous animals focus mainly on Microtus; very little research has been done in gerbils. Here, we measured body weight, body length, tail length, serum hormone concentrations, and the immunoreactive (ir)-cells of OT, AVP, and tyrosine hydroxylase (TH) in the brain of the polygamous great gerbil (Rhombomys opimus), midday gerbil (Meriones meridianus), and monogamous Mongolian gerbil (Meriones unguiculatus). Body weight, body length, tail length, and serum AVP concentrations were greater in the great gerbil than in the midday gerbil and Mongolian gerbil. The number of OT and AVP cells in the para ventricular nucleus (PVN) and supra optic nucleus (SON) of the hypothalamus were greater in the Mongolian gerbil than in the great gerbil and midday gerbil. Similarly, the number of TH cells in the PVN, medial preoptic area (MPOA), and ventral tegmental area (VTA) was greater in the Mongolian gerbil than in the great gerbil and midday gerbil. To summarize, the number of OT and AVP cells in the PVN and SON and TH cells in the PVN, MPOA, and VTA in the monogamous Mongolian gerbil are greater than those in the great gerbil and midday gerbil.
Collapse
Affiliation(s)
- Peng Yu
- Institute of Behavioral and Physical Sciences, College of Life Sciences, Northwest Normal University, Lanzhou 730070, Gansu, China
| | - Mingyu Zhang
- Institute of Behavioral and Physical Sciences, College of Life Sciences, Northwest Normal University, Lanzhou 730070, Gansu, China
| | - Xumei Nan
- Institute of Behavioral and Physical Sciences, College of Life Sciences, Northwest Normal University, Lanzhou 730070, Gansu, China
| | - Haochi Zhao
- Institute of Behavioral and Physical Sciences, College of Life Sciences, Northwest Normal University, Lanzhou 730070, Gansu, China
| | - Dajie Gong
- Institute of Behavioral and Physical Sciences, College of Life Sciences, Northwest Normal University, Lanzhou 730070, Gansu, China.
| |
Collapse
|
14
|
Agarwal P, Palin N, Walker SL, Glasper ER. Sex-dependent effects of paternal deprivation and chronic variable stress on novel object recognition in adult California mice (Peromyscus californicus). Horm Behav 2020; 117:104610. [PMID: 31669457 DOI: 10.1016/j.yhbeh.2019.104610] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/30/2019] [Accepted: 10/03/2019] [Indexed: 12/16/2022]
Abstract
Early-life stress exposure can confer vulnerability for development of psychiatric illnesses and impaired cognition in adulthood. It is well-known that early-life stress can dysregulate the hypothalamic-pituitary-adrenal (HPA) axis in a sex-dependent manner. Specifically, uniparental rodent models of prolonged disrupted mother-offspring relationships (e.g., maternal separation) have demonstrated greater alterations in stress responsivity in adult males, compared to females. Also, chronic early-life stressors (e.g., limited bedding model) impair cognitive function in males more than females. However, the sex-dependent effects of early-life stress and later-life chronic HPA axis activation on cognition have not been well-characterized. Here, we utilized the biparental California mouse (Peromyscus californicus) to model the early-life adversity of paternal deprivation (PD). Fathers either remained in the nest (biparental care) or were permanently removed (PD) on postnatal day (PND) 1. Adult offspring were exposed to daily handling (control) or chronic variable stress (CVS; three stressors for seven days). Twenty-four hours after the final stressor, the novel object recognition (NOR) task commenced, followed by serum collection for corticosterone (CORT) analysis. Independent of sex or rearing, CVS increased CORT. Exploration during acquisition for the NOR task was increased as a result of CVS and PD. During NOR testing, non-stressed females exhibited greater difference scores (i.e., increased recognition memory), compared to non-stressed males. However, the addition of CVS diminished difference scores in females - an effect not observed in CVS-exposed males. Overall, these data suggest that neonatal paternal experience, sex, and chronic stress contribute to exploratory behavior, cognition, and stress hormone concentrations in a biparental species.
Collapse
Affiliation(s)
- P Agarwal
- Department of Psychology, University of Maryland, College Park, MD 20742, USA
| | - N Palin
- Department of Psychology, University of Maryland, College Park, MD 20742, USA
| | - S L Walker
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD 20742, USA
| | - E R Glasper
- Department of Psychology, University of Maryland, College Park, MD 20742, USA; Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
15
|
Abstract
In recent decades, human sociocultural changes have increased the numbers of fathers that are involved in direct caregiving in Western societies. This trend has led to a resurgence of interest in understanding the mechanisms and effects of paternal care. Across the animal kingdom, paternal caregiving has been found to be a highly malleable phenomenon, presenting with great variability among and within species. The emergence of paternal behaviour in a male animal has been shown to be accompanied by substantial neural plasticity and to be shaped by previous and current caregiving experiences, maternal and infant stimuli and ecological conditions. Recent research has allowed us to gain a better understanding of the neural basis of mammalian paternal care, the genomic and circuit-level mechanisms underlying paternal behaviour and the ways in which the subcortical structures that support maternal caregiving have evolved into a global network of parental care. In addition, the behavioural, neural and molecular consequences of paternal caregiving for offspring are becoming increasingly apparent. Future cross-species research on the effects of absence of the father and the transmission of paternal influences across generations may allow research on the neuroscience of fatherhood to impact society at large in a number of important ways.
Collapse
|
16
|
Freeman AR, Wood TJ, Bairos-Novak KR, Anderson WG, Hare JF. Gone girl: Richardson's ground squirrel offspring and neighbours are resilient to female removal. ROYAL SOCIETY OPEN SCIENCE 2019; 6:190904. [PMID: 31598313 PMCID: PMC6774953 DOI: 10.1098/rsos.190904] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/23/2019] [Indexed: 05/21/2023]
Abstract
Within matrilineal societies, the presence of mothers and female kin can greatly enhance survival and reproductive success owing to kin-biased alarm calling, cooperation in territory defence, protection from infanticidal conspecifics, joint care of young and enhanced access to resources. The removal of mothers by predators or disease is expected to increase the stress experienced by offspring via activation of their hypothalamic-pituitary-adrenal axis, increasing circulating glucocorticoids and reducing offspring survival and reproductive success. Yet, few studies have removed mothers in the post-weaning period to examine the assumed physiological and fitness consequences associated with these mortality events. We examined how the loss of a mother affects juvenile Richardson's ground squirrels' (Urocitellus richardsonii) faecal glucocorticoid metabolites and their survival. Given that neighbours are often close kin, we further hypothesized that conspecific removal would similarly diminish the fitness of neighbouring individuals. Upon removing the mother, we detected no impact on offspring or neighbouring conspecific faecal glucocorticoid metabolites in the removal year, or on overwinter survival in the following year. Furthermore, no impact on neighbour reproductive success was detected. Given the high predation rates of ground squirrels in wild populations, resilience to a changing social environment would prove adaptive for both surviving kin and non-kin.
Collapse
Affiliation(s)
- Angela R. Freeman
- Department of Psychology, Cornell University, Ithaca, NY, USA
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Thomas J. Wood
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Kevin R. Bairos-Novak
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - W. Gary Anderson
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - James F. Hare
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
17
|
Zhao M, Harris BN, Nguyen CTY, Saltzman W. Effects of single parenthood on mothers' behavior, morphology, and endocrine function in the biparental California mouse. Horm Behav 2019; 114:104536. [PMID: 31153926 DOI: 10.1016/j.yhbeh.2019.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 03/31/2019] [Accepted: 05/24/2019] [Indexed: 12/29/2022]
Abstract
Motherhood is energetically costly for mammals and is associated with pronounced changes in mothers' physiology, morphology and behavior. In ~5% of mammals, fathers assist their mates with rearing offspring and can enhance offspring survival and development. Although these beneficial consequences of paternal care can be mediated by direct effects on offspring, they might also be mediated indirectly, through beneficial effects on mothers. We tested the hypothesis that fathers in the monogamous, biparental California mouse (Peromyscus californicus) reduce the burden of parental care on their mates, and therefore, that females rearing offspring with and without assistance from their mates will show differences in endocrinology, morphology and behavior, as well as in the survival and development of their pups. We found that pups' survival and development in the lab did not differ between those raised by a single mother and those reared by both mother and father. Single mothers spent more time in feeding behaviors than paired mothers. Both single and paired mothers had higher lean mass and/or lower fat mass and showed more anxiety-like behavior in open-field tests and tail-suspension tests, compared to non-breeding females. Single mothers had higher body-mass-corrected liver and heart masses, but lower ovarian and uterine masses, than paired mothers and/or non-breeding females. Mass of the gastrointestinal tract did not differ between single and paired mothers, but single mothers had heavier gastrointestinal tract compared to non-breeding females. Single motherhood also induced a flattened diel corticosterone rhythm and a blunted corticosterone response to stress, compared to non-breeding conditions. These findings suggest that the absence of a mate induces morphological and endocrine changes in mothers, which might result from increased energetic demands of pup care and could potentially help maintain normal survival and development of pups.
Collapse
Affiliation(s)
- Meng Zhao
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, United States of America
| | - Breanna N Harris
- Department of Biological Sciences, Texas Tech University, United States of America
| | - Catherine T Y Nguyen
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, United States of America
| | - Wendy Saltzman
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, United States of America.
| |
Collapse
|
18
|
Rossi A, Parada FJ, Stewart R, Barwell C, Demas G, Allen C. Hormonal Correlates of Exploratory and Play-Soliciting Behavior in Domestic Dogs. Front Psychol 2018; 9:1559. [PMID: 30250441 PMCID: PMC6139352 DOI: 10.3389/fpsyg.2018.01559] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 08/06/2018] [Indexed: 12/03/2022] Open
Abstract
Exploration and play are considered to be crucial behaviors during mammalian development. Even though the relationship between glucocorticoids and exploratory behavior, stress, and anxiety is well described in the literature, very little is known about their role in play behavior in non-rodents. Likewise, the functional role of the “social hormone” oxytocin in exploration, play, stress, and anxiety is still unknown. The present work addresses this literature gap by studying plasma hormone profiles for cortisol (CORT) and oxytocin (OT) of domestic dogs exposed to a novel arena containing two unfamiliar trainers who did not interact with the dogs. We provide evidence suggesting a functional relationship between hormonal measures of cortisol and oxytocin and adaptive behavior (play-soliciting and exploration) in freely behaving domestic dogs. We have taken into account several possible factors in our analyses and interpretations, from the nature and quality of the measurements to demographic factors to statistical robustness. Our results indicate that reduced CORT levels are associated with increments of both play-soliciting behavior frequency and exploratory behavior duration. Furthermore, taken together, our data and our simulations suggest a relationship between OT and the enactment of play-soliciting behaviors by freely behaving domestic dogs that must be further investigated. Future studies should consider naturalistic structured and semi-structured experimental approaches linking behavior with (neuro) physiological measures, taking into account demographic factors such as age and relevant interphase factors such as the sex of the dog; and socio-historic factors such as the playfulness of the dog, history of interaction with young humans, among others, to take full account of interaction between humans and animals in comparative studies (Parada and Rossi, 2018).
Collapse
Affiliation(s)
- Alejandra Rossi
- Laboratorio de Neurociencia Cognitiva y Social, Facultad de Psicología, Universidad Diego Portales, Santiago, Chile.,Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, United States.,Cognitive Science Program, Indiana University, Bloomington, IN, United States.,Program in Neuroscience, Indiana University, Bloomington, IN, United States
| | - Francisco J Parada
- Laboratorio de Neurociencia Cognitiva y Social, Facultad de Psicología, Universidad Diego Portales, Santiago, Chile.,Program in Neuroscience, Indiana University, Bloomington, IN, United States
| | - Rosemary Stewart
- Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, United States
| | - Casey Barwell
- Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, United States.,College of Veterinary Medicine, Ohio State University, Columbus, OH, United States
| | - Gregory Demas
- Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, United States.,Program in Neuroscience, Indiana University, Bloomington, IN, United States
| | - Colin Allen
- Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, United States.,Cognitive Science Program, Indiana University, Bloomington, IN, United States.,Program in Neuroscience, Indiana University, Bloomington, IN, United States.,Department of History and Philosophy of Science, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
19
|
Yohn CN, Leithead AB, Ford J, Gill A, Becker EA. Paternal Care Impacts Oxytocin Expression in California Mouse Offspring and Basal Testosterone in Female, but Not Male Pups. Front Behav Neurosci 2018; 12:181. [PMID: 30210315 PMCID: PMC6123359 DOI: 10.3389/fnbeh.2018.00181] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/02/2018] [Indexed: 12/20/2022] Open
Abstract
Natural variations in parenting are associated with differences in expression of several hormones and neuropeptides which may mediate lasting effects on offspring development, like regulation of stress reactivity and social behavior. Using the bi-parental California mouse, we have demonstrated that parenting and aggression are programmed, at least in part, by paternal behavior as adult offspring model the degree of parental behavior received in development and are more territorial following high as compared to low levels of care. Development of these behaviors may be driven by transient increases in testosterone following paternal retrievals and increased adult arginine vasopressin (AVP) immunoreactivity within the bed nucleus of the stria terminalis (BNST) among high-care (HC) offspring. It remains unclear, however, whether other neuropeptides, such as oxytocin (OT), which is sensitive to gonadal steroids, are similarly impacted by father-offspring interactions. To test this question, we manipulated paternal care (high and low care) and examined differences in adult offspring OT-immunoreactive (OT-ir) within social brain areas as well as basal T and corticosterone (Cort) levels. HC offspring had more OT-ir within the paraventricular nucleus (PVN) and supraoptic nucleus (SON) than low-care (LC) offspring. Additionally, T levels were higher among HC than LC females, but no differences were found in males. There were no differences in Cort indicating that our brief father-pup separations likely had no consequences on stress reactivity. Together with our previous work, our data suggest that social behavior may be programmed by paternal care through lasting influences on the neuroendocrine system.
Collapse
Affiliation(s)
- Christine N Yohn
- Department of Psychology, Saint Joseph's University, Philadelphia, PA, United States.,Department of Psychology, Rutgers University, Piscataway, NJ, United States
| | - Amanda B Leithead
- Department of Psychology, Saint Joseph's University, Philadelphia, PA, United States
| | - Julian Ford
- Department of Psychology, Saint Joseph's University, Philadelphia, PA, United States
| | - Alexander Gill
- Department of Psychology, Saint Joseph's University, Philadelphia, PA, United States
| | - Elizabeth A Becker
- Department of Psychology, Saint Joseph's University, Philadelphia, PA, United States
| |
Collapse
|
20
|
Glasper ER, Hyer MM, Hunter TJ. Enduring Effects of Paternal Deprivation in California Mice ( Peromyscus californicus): Behavioral Dysfunction and Sex-Dependent Alterations in Hippocampal New Cell Survival. Front Behav Neurosci 2018; 12:20. [PMID: 29487509 PMCID: PMC5816956 DOI: 10.3389/fnbeh.2018.00020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 01/23/2018] [Indexed: 12/28/2022] Open
Abstract
Early-life experiences with caregivers can significantly affect offspring development in human and non-human animals. While much of our knowledge of parent-offspring relationships stem from mother-offspring interactions, increasing evidence suggests interactions with the father are equally as important and can prevent social, behavioral, and neurological impairments that may appear early in life and have enduring consequences in adulthood. In the present study, we utilized the monogamous and biparental California mouse (Peromyscus californicus). California mouse fathers provide extensive offspring care and are essential for offspring survival. Non-sibling virgin male and female mice were randomly assigned to one of two experimental groups following the birth of their first litter: (1) biparental care: mate pairs remained with their offspring until weaning; or (2) paternal deprivation (PD): paternal males were permanently removed from their home cage on postnatal day (PND) 1. We assessed neonatal mortality rates, body weight, survival of adult born cells in the dentate gyrus of the hippocampus, and anxiety-like and passive stress-coping behaviors in male and female young adult offspring. While all biparentally-reared mice survived to weaning, PD resulted in a ~35% reduction in survival of offspring. Despite this reduction in survival to weaning, biparentally-reared and PD mice did not differ in body weight at weaning or into young adulthood. A sex-dependent effect of PD was observed on new cell survival in the dentate gyrus of the hippocampus, such that PD reduced cell survival in female, but not male, mice. While PD did not alter classic measures of anxiety-like behavior during the elevated plus maze task, exploratory behavior was reduced in PD mice. This observation was irrespective of sex. Additionally, PD increased some passive stress-coping behaviors (i.e., percent time spent immobile) during the forced swim task—an effect that was also not sex-dependent. Together, these findings demonstrate that, in a species where paternal care is not only important for offspring survival, PD can also contribute to altered structural and functional neuroplasticity of the hippocampus. The mechanisms contributing to the observed sex-dependent alterations in new cell survival in the dentate gyrus should be further investigated.
Collapse
Affiliation(s)
- Erica R Glasper
- Department of Psychology, University of Maryland, College Park, College Park, MD, United States.,Program in Neuroscience and Cognitive Science, University of Maryland, College Park, College Park, MD, United States
| | - Molly M Hyer
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, College Park, MD, United States
| | - Terrence J Hunter
- Department of Psychology, University of Maryland, College Park, College Park, MD, United States
| |
Collapse
|
21
|
Yohn CN, Leithead AB, Ford J, Gill A, Becker EA. Paternal Care Impacts Oxytocin Expression in California Mouse Offspring and Basal Testosterone in Female, but Not Male Pups. Front Behav Neurosci 2018. [PMID: 30210315 DOI: 10.3389/fnbeh.2018.00181/bibtex] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
Abstract
Natural variations in parenting are associated with differences in expression of several hormones and neuropeptides which may mediate lasting effects on offspring development, like regulation of stress reactivity and social behavior. Using the bi-parental California mouse, we have demonstrated that parenting and aggression are programmed, at least in part, by paternal behavior as adult offspring model the degree of parental behavior received in development and are more territorial following high as compared to low levels of care. Development of these behaviors may be driven by transient increases in testosterone following paternal retrievals and increased adult arginine vasopressin (AVP) immunoreactivity within the bed nucleus of the stria terminalis (BNST) among high-care (HC) offspring. It remains unclear, however, whether other neuropeptides, such as oxytocin (OT), which is sensitive to gonadal steroids, are similarly impacted by father-offspring interactions. To test this question, we manipulated paternal care (high and low care) and examined differences in adult offspring OT-immunoreactive (OT-ir) within social brain areas as well as basal T and corticosterone (Cort) levels. HC offspring had more OT-ir within the paraventricular nucleus (PVN) and supraoptic nucleus (SON) than low-care (LC) offspring. Additionally, T levels were higher among HC than LC females, but no differences were found in males. There were no differences in Cort indicating that our brief father-pup separations likely had no consequences on stress reactivity. Together with our previous work, our data suggest that social behavior may be programmed by paternal care through lasting influences on the neuroendocrine system.
Collapse
Affiliation(s)
- Christine N Yohn
- Department of Psychology, Saint Joseph's University, Philadelphia, PA, United States
- Department of Psychology, Rutgers University, Piscataway, NJ, United States
| | - Amanda B Leithead
- Department of Psychology, Saint Joseph's University, Philadelphia, PA, United States
| | - Julian Ford
- Department of Psychology, Saint Joseph's University, Philadelphia, PA, United States
| | - Alexander Gill
- Department of Psychology, Saint Joseph's University, Philadelphia, PA, United States
| | - Elizabeth A Becker
- Department of Psychology, Saint Joseph's University, Philadelphia, PA, United States
| |
Collapse
|
22
|
Wang J, Fang Q, Yang C. Effects of paternal deprivation on cocaine-induced behavioral response and hypothalamic oxytocin immunoreactivity and serum oxytocin level in female mandarin voles. Behav Brain Res 2017; 334:135-141. [PMID: 28756211 DOI: 10.1016/j.bbr.2017.07.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 07/24/2017] [Accepted: 07/25/2017] [Indexed: 10/19/2022]
Abstract
Early paternal behavior plays a critical role in behavioral development in monogamous species. The vast majority of laboratory studies investigating the influence of parental behavior on cocaine vulnerability focus on the effects of early maternal separation. However, comparable studies on whether early paternal deprivation influences cocaine-induced behavioral response are substantially lacking. Mandarin vole (Microtus mandarinus) is a monogamous rodent with high levels of paternal care. After mandarin vole pups were subjected to early paternal deprivation, acute cocaine- induced locomotion, anxiety- like behavior and social behavior were examined in 45day old female pups, while hypothalamic oxytocin immunoreactivity and serum oxytocin level were also assessed. We found that cocaine increased locomotion and decreased social investigation, contact behavior and serum oxytocin level regardless of paternal care. Cocaine increased anxiety levels and decreased oxytocin immunoreactive neurons of the paraventricular nuclei and supraoptic nuclei in the bi-parental care group, whilst there were no specific effects in the paternal deprivation group. These results indicate that paternal deprivation results in different behavioral response to acute cocaine exposure in adolescents, which may be in part associated with the alterations in oxytocin immunoreactivity and peripheral OT level.
Collapse
Affiliation(s)
- Jianli Wang
- College of Biological Sciences and Engineering, Beifang University of Nationalities, Yinchuan, Ningxia 750021, China.
| | - Qianqian Fang
- College of Biological Sciences and Engineering, Beifang University of Nationalities, Yinchuan, Ningxia 750021, China; College of Life Sciences, Shaanxi Normal University, Xian, Shaanxi 710062, China
| | - Chenxi Yang
- College of Biological Sciences and Engineering, Beifang University of Nationalities, Yinchuan, Ningxia 750021, China
| |
Collapse
|
23
|
Microbial lysate upregulates host oxytocin. Brain Behav Immun 2017; 61:36-49. [PMID: 27825953 PMCID: PMC5431580 DOI: 10.1016/j.bbi.2016.11.002] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 10/17/2016] [Accepted: 11/03/2016] [Indexed: 12/12/2022] Open
Abstract
Neuropeptide hormone oxytocin has roles in social bonding, energy metabolism, and wound healing contributing to good physical, mental and social health. It was previously shown that feeding of a human commensal microbe Lactobacillus reuteri (L. reuteri) is sufficient to up-regulate endogenous oxytocin levels and improve wound healing capacity in mice. Here we show that oral L. reuteri-induced skin wound repair benefits extend to human subjects. Further, dietary supplementation with a sterile lysate of this microbe alone is sufficient to boost systemic oxytocin levels and improve wound repair capacity. Oxytocin-producing cells were found to be increased in the caudal paraventricular nucleus [PVN] of the hypothalamus after feeding of a sterile lysed preparation of L. reuteri, coincident with lowered blood levels of stress hormone corticosterone and more rapid epidermal closure, in mouse models. We conclude that microbe viability is not essential for regulating host oxytocin levels. The results suggest that a peptide or metabolite produced by bacteria may modulate host oxytocin secretion for potential public or personalized health goals.
Collapse
|
24
|
Tabbaa M, Lei K, Liu Y, Wang Z. Paternal deprivation affects social behaviors and neurochemical systems in the offspring of socially monogamous prairie voles. Neuroscience 2017; 343:284-297. [PMID: 27998780 PMCID: PMC5266501 DOI: 10.1016/j.neuroscience.2016.12.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 12/06/2016] [Accepted: 12/07/2016] [Indexed: 12/13/2022]
Abstract
Early life experiences, particularly the experience with parents, are crucial to phenotypic outcomes in both humans and animals. Although the effects of maternal deprivation on offspring well-being have been studied, paternal deprivation (PD) has received little attention despite documented associations between father absence and children health problems in humans. In the present study, we utilized the socially monogamous prairie vole (Microtus ochrogaster), which displays male-female pair bonding and bi-parental care, to examine the effects of PD on adult behaviors and neurochemical expression in the hippocampus. Male and female subjects were randomly assigned into one of two experimental groups that grew up with both the mother and father (MF) or with the mother-only (MO, to generate PD experience). Our data show that MO subjects received less parental licking/grooming and carrying and were left alone in the nest more frequently than MF subjects. At adulthood (∼75days of age), MO subjects displayed increased social affiliation (SOA) toward a conspecific compared to MF subjects, but the two groups did not differ in social recognition (SOR) and anxiety-like behavior. Interestingly, MO subjects showed consistent increases in both gene and protein expression of the brain-derived neurotrophic factor (BDNF) and tropomyosin receptor kinase B (TrkB) as well as the levels of total histone 3 and histone 3 acetylation in the hippocampus compared to MF subjects. Further, PD experience increased glucocorticoid receptor beta (GRβ) protein expression in the hippocampus of females as well as increased corticotrophin receptor 2 (CRHR2) protein expression in the hippocampus of males, but decreased CRHR2 mRNA in both sexes. Together, our data suggest that PD has a long-lasting, behavior-specific effect on SOA and alters hippocampal neurochemical systems in the vole brain. The functional role of such altered neurochemical systems in social behaviors and the potential involvement of epigenetic events should be further studied.
Collapse
Affiliation(s)
- Manal Tabbaa
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| | - Kelly Lei
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| | - Yan Liu
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| | - Zuoxin Wang
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|
25
|
Wang J, Liu C, Ma Y. Parents induced- conditioned place preference and the neuronal expression of oxytocin and tyrosine hydroxylase in preweanling female pups. Behav Brain Res 2016; 317:528-535. [PMID: 27746207 DOI: 10.1016/j.bbr.2016.10.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 10/04/2016] [Accepted: 10/11/2016] [Indexed: 12/12/2022]
Abstract
Parents-offspring bonding is critical for development of offspring in mammals. While it is known that pups stimuli provide rewarding effects on their parents, few studies have assessed whether parental stimuli serve as a reinforcing agent to their pups, and what the neural mechanisms underlying this reward process may be. In addition to maternal care, male ICR mice display pairmate-dependent parental behavior. Using the conditioned place preference (CPP) paradigm, we examined the effects of maternal and paternal conditioning on the postnatal day 17-21 female ICR mice pups, and compared the expression of oxytocin (OT)- and tyrosine hydroxylase (TH)- immunoreactive (IR) neurons. We found that the pups established dam- or sire- induced CPP when using mother conditioning (MC) or father conditioning (FC) alone. However, the pups failed to show any preference when using mother versus father conditioning (MFC). Compared to the control group, the MC and MFC groups displayed more OT-IR neurons in the supraoptic nucleus and more TH-IR neurons in the ventral tegmental area (VTA). The FC group showed more TH-IR neurons in the VTA compared to the control group, but there were no significant differences in OT-IR neurons. These findings indicate that female ICR mice pups may establish mother- or father- induced CPP. The underpinnings of preference for parents are associated with the activity of VTA dopaminergic neurons, and the preference of pups for mother in particular appears to be associated with OT levels.
Collapse
Affiliation(s)
- Jianli Wang
- College of Biological Sciences and Engineering, Beifang University of Nationalities, Yinchuan 750021, China.
| | - Chaobao Liu
- College of Biological Sciences and Engineering, Beifang University of Nationalities, Yinchuan 750021, China
| | - Yongping Ma
- College of Biological Sciences and Engineering, Beifang University of Nationalities, Yinchuan 750021, China
| |
Collapse
|
26
|
Bales KL, Saltzman W. Fathering in rodents: Neurobiological substrates and consequences for offspring. Horm Behav 2016; 77:249-59. [PMID: 26122293 PMCID: PMC4691427 DOI: 10.1016/j.yhbeh.2015.05.021] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 05/27/2015] [Accepted: 05/28/2015] [Indexed: 01/08/2023]
Abstract
This article is part of a Special Issue "Parental Care". Paternal care, though rare among mammals, is routinely displayed by several species of rodents. Here we review the neuroanatomical and hormonal bases of paternal behavior, as well as the behavioral and neuroendocrine consequences of paternal behavior for offspring. Fathering behavior is subserved by many of the same neural substrates which are also involved in maternal behavior (for example, the medial preoptic area of the hypothalamus). While gonadal hormones such as testosterone, estrogen, and progesterone, as well as hypothalamic neuropeptides such as oxytocin and vasopressin, and the pituitary hormone prolactin, are implicated in the activation of paternal behavior, there are significant gaps in our knowledge of their actions, as well as pronounced differences between species. Removal of the father in biparental species has long-lasting effects on behavior, as well as on these same neuroendocrine systems, in offspring. Finally, individual differences in paternal behavior can have similarly long-lasting, if more subtle, effects on offspring behavior. Future studies should examine similar outcome measures in multiple species, including both biparental species and closely related uniparental species. Careful phylogenetic analyses of the neuroendocrine systems presumably important to male parenting, as well as their patterns of gene expression, will also be important in establishing the next generation of hypotheses regarding the regulation of male parenting behavior.
Collapse
Affiliation(s)
- Karen L Bales
- Department of Psychology, University of California, Davis, USA; California National Primate Research Center, USA.
| | - Wendy Saltzman
- Department of Biology, University of California, Riverside, USA
| |
Collapse
|
27
|
Elson AE, Simerly RB. Developmental specification of metabolic circuitry. Front Neuroendocrinol 2015; 39:38-51. [PMID: 26407637 PMCID: PMC4681622 DOI: 10.1016/j.yfrne.2015.09.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 09/18/2015] [Accepted: 09/21/2015] [Indexed: 01/16/2023]
Abstract
The hypothalamus contains a core circuitry that communicates with the brainstem and spinal cord to regulate energy balance. Because metabolic phenotype is influenced by environmental variables during perinatal development, it is important to understand how these neural pathways form in order to identify key signaling pathways that are responsible for metabolic programming. Recent progress in defining gene expression events that direct early patterning and cellular specification of the hypothalamus, as well as advances in our understanding of hormonal control of central neuroendocrine pathways, suggest several key regulatory nodes that may represent targets for metabolic programming of brain structure and function. This review focuses on components of central circuitry known to regulate various aspects of energy balance and summarizes what is known about their developmental neurobiology within the context of metabolic programming.
Collapse
Affiliation(s)
- Amanda E Elson
- The Saban Research Institute, Children's Hospital Los Angeles, University of Southern California, Keck School of Medicine, Los Angeles, CA 90027, USA
| | - Richard B Simerly
- The Saban Research Institute, Children's Hospital Los Angeles, University of Southern California, Keck School of Medicine, Los Angeles, CA 90027, USA.
| |
Collapse
|
28
|
Early-life experience, epigenetics, and the developing brain. Neuropsychopharmacology 2015; 40:141-53. [PMID: 24917200 PMCID: PMC4262891 DOI: 10.1038/npp.2014.140] [Citation(s) in RCA: 190] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 06/03/2014] [Accepted: 06/05/2014] [Indexed: 02/07/2023]
Abstract
Development is a dynamic process that involves interplay between genes and the environment. In mammals, the quality of the postnatal environment is shaped by parent-offspring interactions that promote growth and survival and can lead to divergent developmental trajectories with implications for later-life neurobiological and behavioral characteristics. Emerging evidence suggests that epigenetic factors (ie, DNA methylation, posttranslational histone modifications, and small non-coding RNAs) may have a critical role in these parental care effects. Although this evidence is drawn primarily from rodent studies, there is increasing support for these effects in humans. Through these molecular mechanisms, variation in risk of psychopathology may emerge, particularly as a consequence of early-life neglect and abuse. Here we will highlight evidence of dynamic epigenetic changes in the developing brain in response to variation in the quality of postnatal parent-offspring interactions. The recruitment of epigenetic pathways for the biological embedding of early-life experience may also have transgenerational consequences and we will describe and contrast two routes through which this transmission can occur: experience dependent vs germline inheritance. Finally, we will speculate regarding the future directions of epigenetic research and how it can help us gain a better understanding of the developmental origins of psychiatric dysfunction.
Collapse
|
29
|
Qiao X, Yan Y, Tai F, Wu R, Hao P, Fang Q, Zhang S. Levels of central oxytocin and glucocorticoid receptor and serum adrenocorticotropic hormone and corticosterone in mandarin voles with different levels of sociability. Behav Brain Res 2014; 274:226-34. [DOI: 10.1016/j.bbr.2014.08.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 08/05/2014] [Accepted: 08/09/2014] [Indexed: 12/30/2022]
|
30
|
Weinstein TAR, Bales KL, Maninger N, Hostetler CM, Capitanio JP. Early involvement in friendships predicts later plasma concentrations of oxytocin and vasopressin in juvenile rhesus macaques (Macaca mulatta). Front Behav Neurosci 2014; 8:295. [PMID: 25221489 PMCID: PMC4147354 DOI: 10.3389/fnbeh.2014.00295] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 08/12/2014] [Indexed: 01/03/2023] Open
Abstract
The neuropeptides oxytocin (OT) and arginine vasopressin (AVP) are involved in social bonding in attachment relationships, but their role in friendship is poorly understood. We investigated whether rhesus macaques' (Macaca mulatta) friendships at age one predicted plasma OT and AVP at two later time points. Subjects were 54 rhesus macaques at the California National Primate Research Center (CNPRC). Blood was drawn during a brief capture-and-release in the home cage, and plasma assayed for OT and AVP using an enzyme immunoassay (EIA). Separate linear mixed models for each sex tested the effects of dominance rank, age, sampling time point, housing condition, parturition status, two blood draw timing measures, and five friendship types: proximity friendships, play friendships, reciprocal friendships (a preference for a peer that also preferred the subject), multiplex friendships (friendships displayed in more than one behavioral domain), and total number of friendships. Females' number of reciprocal and play friendships at age one significantly predicted later OT; additionally, these two friendship types interacted with rank, such that high-ranking females with the fewest friendships had the highest OT concentrations. Friendship did not predict later OT levels in males, however proximity, play, reciprocal, and total number of friendships predicted males' plasma AVP. Play and total number of friendships also tended to predict AVP in females. Our results show that peripheral measures of neuroendocrine functioning in juvenile rhesus monkeys are influenced by early involvement in friendships. Friendships have an especially strong impact on an individual's psychosocial development, and our data suggest OT and AVP as potential underlying mechanisms. Moreover, sex differences in the functioning of the OT and AVP systems, and their relation to friendship, may have important clinical implications for the use of OT as a therapeutic, as well as informing the social context in which it is administered.
Collapse
Affiliation(s)
| | - Karen L. Bales
- California National Primate Research Center, University of CaliforniaDavis, CA, USA
| | - Nicole Maninger
- California National Primate Research Center, University of CaliforniaDavis, CA, USA
| | - Caroline M. Hostetler
- California National Primate Research Center, University of CaliforniaDavis, CA, USA
- Department of Behavioral Neuroscience, Oregon Health and Science UniversityPortland, OR, USA
| | - John P. Capitanio
- California National Primate Research Center, University of CaliforniaDavis, CA, USA
| |
Collapse
|
31
|
Neonatal melanocortin receptor agonist treatment reduces play fighting and promotes adult attachment in prairie voles in a sex-dependent manner. Neuropharmacology 2014; 85:357-66. [PMID: 24923239 DOI: 10.1016/j.neuropharm.2014.05.041] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 05/15/2014] [Accepted: 05/23/2014] [Indexed: 02/03/2023]
Abstract
The melanocortin receptor (MCR) system has been studied extensively for its role in feeding and sexual behavior, but effects on social behavior have received little attention. α-MSH interacts with neural systems involved in sociality, including oxytocin, dopamine, and opioid systems. Acute melanotan-II (MTII), an MC3/4R agonist, potentiates brain oxytocin (OT) release and facilitates OT-dependent partner preference formation in socially monogamous prairie voles. Here we examined the long-term impact of early-life MCR stimulation on hypothalamic neuronal activity and social development in prairie voles. Male and female voles were given daily subcutaneous injections of 10 mg/kg MTII or saline between postnatal days (PND) 1-7. Neonatally-treated males displayed a reduction in initiated play fighting bouts as juveniles compared to control males. Neonatal exposure to MTII facilitated partner preference formation in adult females, but not males, after a brief cohabitation with an opposite-sex partner. Acute MTII injection elicited a significant burst of the immediate early gene EGR-1 immunoreactivity in hypothalamic OT, vasopressin, and corticotrophin releasing factor neurons, when tested in PND 6-7 animals. Daily neonatal treatment with 1 mg/kg of a more selective, brain penetrant MC4R agonist, PF44687, promoted adult partner preferences in both females and males compared with vehicle controls. Thus, developmental exposure to MCR agonists lead to a persistent change in social behavior, suggestive of structural or functional changes in the neural circuits involved in the formation of social relationships.
Collapse
|
32
|
Wu R, Song Z, Wang S, Shui L, Tai F, Qiao X, He F. Early paternal deprivation alters levels of hippocampal brain-derived neurotrophic factor and glucocorticoid receptor and serum corticosterone and adrenocorticotropin in a sex-specific way in socially monogamous mandarin voles. Neuroendocrinology 2014; 100:119-28. [PMID: 25116057 DOI: 10.1159/000366441] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 07/31/2014] [Indexed: 11/19/2022]
Abstract
In monogamous mammals, fathers play an important role in the development of the brain and typical behavior in offspring, but the exact nature of this process is not well understood. In particular, little research has addressed whether the presence or absence of paternal care alters levels of hippocampal glucocorticoid receptor (GR) and brain-derived neurotrophic factor (BDNF), and basal levels of serum corticosterone (CORT) and adrenocorticotropin (ACTH). Here, we explored this concept using socially monogamous mandarin voles (Microtus mandarinus), a species in which fathers display high levels of paternal care toward their pups. Our immunohistochemical study shows that paternal deprivation (PD) significantly decreased levels of GR and BDNF protein in the CA1 and CA2/3 of the hippocampus. In the dental gyrus, decreases in GR and BDNF induced by PD were evident in females but not in males. Additionally, enzyme-linked immunosorbent assay results show that PD significantly upregulated levels of serum CORT and ACTH in females, but not males. These findings demonstrate that PD alters HPA axis activity in a sex-specific way. The changes in stress hormones documented here may be associated with alteration in hippocampal BDNF and GR levels.
Collapse
Affiliation(s)
- Ruiyong Wu
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | | | | | | | | | | | | |
Collapse
|
33
|
Sociality and oxytocin and vasopressin in the brain of male and female dominant and subordinate mandarin voles. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2013; 200:149-59. [PMID: 24292210 DOI: 10.1007/s00359-013-0870-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Revised: 11/14/2013] [Accepted: 11/16/2013] [Indexed: 12/12/2022]
Abstract
The dominant-subordinate hierarchy in animals often needs to be established via agonistic encounters and consequently affects reproduction and survival. Differences in brain neuropeptides and sociality among dominant and subordinate males and females remain poorly understood. Here we explore neuropeptide levels and sociality during agonistic encounter tests in mandarin voles. We found that dominant mandarin voles engaged in higher levels of approaching, investigating, self-grooming and exploring behavior than subordinates. Dominant males habituated better to a stimulus vole than dominant females. Dominant males displayed significantly less oxytocin-immunoreactive neurons in the paraventricular nuclei and more vasopressin-immunoreactive neurons in the paraventricular nuclei, supraoptic nuclei, and the lateral and anterior hypothalamus than subordinates. Dominant females displayed significantly more vasopressin-immunoreactive neurons in the lateral hypothalamus and anterior hypothalamus than subordinates. Sex differences were found in the level of oxytocin and vasopressin. These results indicate that distinct parameters related to central nervous oxytocin and vasopressin are associated with behaviors during agonistic encounters in a sex-specific manner in mandarin voles.
Collapse
|