1
|
Ruperto EF, Taraborelli PA, Menéndez J, Sassi PL. Behavioral plasticity in two endemic rodents from the Andes Mountains: strategies for thermal and energetic balance. Mamm Biol 2022. [DOI: 10.1007/s42991-022-00263-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
2
|
Boumansour L, Benhafri N, Guillon G, Corbani M, Touati H, Dekar-Madoui A, Ouali-Hassenaoui S. Vasopressin and oxytocin expression in hypothalamic supraoptic nucleus and plasma electrolytes changes in water-deprived male Meriones libycus. Anim Cells Syst (Seoul) 2021; 25:337-346. [PMID: 34745439 PMCID: PMC8567926 DOI: 10.1080/19768354.2021.1986130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
In mammals, plasmatic osmolality needs to be stable, and it is highly related to the hydric state of the animals which depends on the activity of the hypothalamic neurohypophysial system and more particularly by vasopressin secretion. Meriones, a desert rodent, can survive even without drinking for more than one month. The mechanism(s) by which they survive under these conditions remains poorly understood. In this study, we examine the water’s deprivation consequences on the: (1) anatomy, morphology, and physiology of the hypothalamic supraoptic nucleus, (2) body mass and plasma electrolytes changes in male desert rodents ‘Meriones libycus’ subjected to water deprivation for 30 days. The effect of water deprivation was evaluated on the structural and cellular organization of the supraoptic nucleus by morphological observations and immunohistochemical approaches, allowing the labeling of AVP but also oxytocin. Our finding demonstrated that upon water deprivation (1) the body weight decreased and reached a plateau after a month of water restriction. (2) The plasmatic osmolality began to decrease and return to values similar to control animals at day 30. (3) The SON, both in hydrated and water-deprived animals, is highly developed.(4) The AVP labeling in the SON increased upon dehydration at variance with OT. These changes observed in body mass and plasma osmolality reveal an important adaptive process of male Meriones in response to prolonged water deprivation. Overall, this animal represents an interesting model for the study of water body homeostasis and the mechanisms underlying the survival of desert rodents to xeric environments.
Collapse
Affiliation(s)
- Lydia Boumansour
- Faculty of Biological Sciences, Laboratory of Biology and Physiology of Organisms, Neurobiology, University of Sciences and Technology Houari Boumediene (USTHB), Algiers, Algeria.,Université de Montpellier, CNRS, ISERM, Institut de Génomique Fonctionnelle, Montpellier, France
| | - Nadir Benhafri
- Faculty of Biological Sciences, Laboratory of Biology and Physiology of Organisms, Neurobiology, University of Sciences and Technology Houari Boumediene (USTHB), Algiers, Algeria
| | - Gilles Guillon
- Université de Montpellier, CNRS, ISERM, Institut de Génomique Fonctionnelle, Montpellier, France
| | - Maithe Corbani
- Université de Montpellier, CNRS, ISERM, Institut de Génomique Fonctionnelle, Montpellier, France
| | - Hanane Touati
- Faculty of Biological Sciences, Laboratory of Biology and Physiology of Organisms, Neurobiology, University of Sciences and Technology Houari Boumediene (USTHB), Algiers, Algeria
| | - Aicha Dekar-Madoui
- Faculty of Biological Sciences, Laboratory of Biology and Physiology of Organisms, Neurobiology, University of Sciences and Technology Houari Boumediene (USTHB), Algiers, Algeria
| | - Saliha Ouali-Hassenaoui
- Faculty of Biological Sciences, Laboratory of Biology and Physiology of Organisms, Neurobiology, University of Sciences and Technology Houari Boumediene (USTHB), Algiers, Algeria
| |
Collapse
|
3
|
Wen J, Chi QS, Wang DH, Zhao ZJ. The responses of metabolic rate and neuropeptides to food deprivation in striped hamsters (Cricetulus barabensis) with different basal metabolic rate. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2020; 333:483-492. [PMID: 32314557 DOI: 10.1002/jez.2362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/30/2020] [Accepted: 03/30/2020] [Indexed: 11/08/2022]
Abstract
High basal metabolic rate (BMR) is related to a powerful metabolic engine even under food shortage, which can lead to high levels of daily energy expenditure and requires more energy for maintenance in small mammals. To test the hypothesis that animals with different BMR levels respond differently to food shortage, we compared the changes in metabolism, morphology, and gene expression in response to food deprivation (FD) in male-striped hamsters (Cricetulus barabensis) with low (L)- or high (H)-BMR levels. After 36 hr of FD, energy expenditure, metabolic rate (MR), mass of body composition, and leptin and agouti-related peptide gene expressions in the white adipose tissues and the hypothalamus, respectively, decreased significantly in hamsters. The energy expenditure of H-BMR hamsters was reduced more than that of L-BMR hamsters after 36 hr of FD. Furthermore, MR was significantly reduced by FD, and that of the H-BMR group decreased more than that of the L-BMR group during the daytime. Therefore, our data suggest that striped hamsters with different BMR display different responses to variations in food availability. During FD, MR in H-BMR hamsters was more flexible than that in L-BMR animals and L-BMR hamsters could not reduce their MR any lower.
Collapse
Affiliation(s)
- Jing Wen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Qing-Sheng Chi
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - De-Hua Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Zhi-Jun Zhao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| |
Collapse
|
4
|
Boratyński JS, Iwińska K, Bogdanowicz W. An intra-population heterothermy continuum: notable repeatability of body temperature variation in food-deprived yellow-necked mice. ACTA ACUST UNITED AC 2019; 222:222/6/jeb197152. [PMID: 30877147 DOI: 10.1242/jeb.197152] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 02/11/2019] [Indexed: 11/20/2022]
Abstract
Theoretical modelling predicts that the thermoregulatory strategies of endothermic animals range from those represented by thermal generalists to those characteristic for thermal specialists. While the generalists tolerate wide variations in body temperature (T b), the specialists maintain T b at a more constant level. The model has gained support from inter-specific comparisons relating to species and population levels. However, little is known about consistent among-individual variation within populations that could be shaped by natural selection. We studied the consistency of individual heterothermic responses to environmental challenges in a single population of yellow-necked mice (Apodemus flavicollis), by verifying the hypothesis that T b variation is a repeatable trait. To induce the heterothermic response, the same individuals were repeatedly food deprived for 24 h. We measured T b with implanted miniaturised data loggers. Before each fasting experiment, we measured basal metabolic rate (BMR). Thus, we also tested whether individual variation of heterothermy correlates with individual self-maintenance costs, and the potential benefits arising from heterothermic responses that should correlate with body size/mass. We found that some individuals clearly entered torpor while others kept T b stable, and that there were also individuals that showed intermediate thermoregulatory patterns. Heterothermy was found to correlate negatively with body mass and slightly positively with the BMR achieved 1-2 days before fasting. Nonetheless, heterothermy was shown to be highly repeatable, irrespective of whether we controlled for self-maintenance costs and body size. Our results indicate that specialist and generalist thermoregulatory phenotypes can co-exist in a single population, creating a heterothermy continuum.
Collapse
Affiliation(s)
- Jan S Boratyński
- Mammal Research Institute, Polish Academy of Sciences, 17-230 Białowieża, Poland .,Museum and Institute of Zoology, Polish Academy of Sciences, 00-679 Warszawa, Poland
| | - Karolina Iwińska
- Institute of Biology, University of Białystok, 15-328 Białystok, Poland
| | - Wiesław Bogdanowicz
- Museum and Institute of Zoology, Polish Academy of Sciences, 00-679 Warszawa, Poland
| |
Collapse
|
5
|
Aghová T, Palupčíková K, Šumbera R, Frynta D, Lavrenchenko LA, Meheretu Y, Sádlová J, Votýpka J, Mbau JS, Modrý D, Bryja J. Multiple radiations of spiny mice (Rodentia: Acomys) in dry open habitats of Afro-Arabia: evidence from a multi-locus phylogeny. BMC Evol Biol 2019; 19:69. [PMID: 30832573 PMCID: PMC6399835 DOI: 10.1186/s12862-019-1380-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 02/01/2019] [Indexed: 01/02/2023] Open
Abstract
Background Spiny mice of the genus Acomys are distributed mainly in dry open habitats in Africa and the Middle East, and they are widely used as model taxa for various biological disciplines (e.g. ecology, physiology and evolutionary biology). Despite their importance, large distribution and abundance in local communities, the phylogeny and the species limits in the genus are poorly resolved, and this is especially true for sub-Saharan taxa. The main aims of this study are (1) to reconstruct phylogenetic relationships of Acomys based on the largest available multilocus dataset (700 genotyped individuals from 282 localities), (2) to identify the main biogeographical divides in the distribution of Acomys diversity in dry open habitats in Afro-Arabia, (3) to reconstruct the historical biogeography of the genus, and finally (4) to estimate the species richness of the genus by application of the phylogenetic species concept. Results The multilocus phylogeny based on four genetic markers shows presence of five major groups of Acomys called here subspinosus, spinosissimus, russatus, wilsoni and cahirinus groups. Three of these major groups (spinosissimus, wilsoni and cahirinus) are further sub-structured to phylogenetic lineages with predominantly parapatric distributions. Combination of alternative species delimitation methods suggests the existence of 26 molecular operational taxonomic units (MOTUs), potentially corresponding to separate species. The highest genetic diversity was found in Eastern Africa. The origin of the genus Acomys is dated to late Miocene (ca. 8.7 Ma), when the first split occurred between spiny mice of eastern (Somali-Masai) and south-eastern (Zambezian) savannas. Further diversification, mostly in Plio-Pleistocene, and the current distribution of Acomys were influenced by the interplay of global climatic factors (e.g., Messinian salinity crisis, intensification of Northern Hemisphere glaciation) with local geomorphology (mountain chains, aridity belts, water bodies). Combination of divergence dating, species distribution modelling and historical biogeography analysis suggests repeated “out-of-East-Africa” dispersal events into western Africa, the Mediterranean region and Arabia. Conclusions The genus Acomys is very suitable model for historical phylogeographic and biogeographic reconstructions of dry non-forested environments in Afro-Arabia. We provide the most thorough phylogenetic reconstruction of the genus and identify major factors that influenced its evolutionary history since the late Miocene. We also highlight the urgent need of integrative taxonomic revision of east African taxa. Electronic supplementary material The online version of this article (10.1186/s12862-019-1380-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- T Aghová
- Institute of Vertebrate Biology of the Czech Academy of Sciences, 603 65, Brno, Czech Republic. .,Department of Zoology, National Museum, 115 79, Prague, Czech Republic.
| | - K Palupčíková
- Department of Zoology, Faculty of Science, Charles University, 128 44, Prague, Czech Republic
| | - R Šumbera
- Department of Zoology, Faculty of Science, University of South Bohemia, 370 05, České Budějovice, Czech Republic
| | - D Frynta
- Department of Zoology, Faculty of Science, Charles University, 128 44, Prague, Czech Republic
| | - L A Lavrenchenko
- A. N. Severtsov Institute of Ecology and Evolution RAS, 119071, Moscow, Russia
| | - Y Meheretu
- Department of Biology and Institute of Mountain Research and Development, Mekelle University, P.O. Box 3102, Mekelle, Tigray, Ethiopia
| | - J Sádlová
- Department of Parasitology, Faculty of Science, Charles University, 128 44, Prague, Czech Republic
| | - J Votýpka
- Department of Parasitology, Faculty of Science, Charles University, 128 44, Prague, Czech Republic.,Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, 370 05, České Budějovice, Czech Republic
| | - J S Mbau
- Department of Land Resource Management and Agricultural Technology, College of Agriculture and Veterinary Sciences, University of Nairobi, Nairobi, Kenya
| | - D Modrý
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, 370 05, České Budějovice, Czech Republic.,Department of Pathology and Parasitology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences, 612 42, Brno, Czech Republic
| | - J Bryja
- Institute of Vertebrate Biology of the Czech Academy of Sciences, 603 65, Brno, Czech Republic.,Department of Botany and Zoology, Faculty of Science, Masaryk University, 602 00, Brno, Czech Republic
| |
Collapse
|
6
|
Mathot KJ, Dingemanse NJ, Nakagawa S. The covariance between metabolic rate and behaviour varies across behaviours and thermal types: meta‐analytic insights. Biol Rev Camb Philos Soc 2018; 94:1056-1074. [DOI: 10.1111/brv.12491] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 11/26/2018] [Accepted: 11/30/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Kimberley J. Mathot
- Canada Research Chair in Integrative Ecology, Department of Biological SciencesUniversity of Alberta CW405 Biological Sciences Building, T6G 2E9 Edmonton Alberta Canada
- NIOZ Royal Netherlands Institute for Sea ResearchDepartment of Coastal Systems and Utrecht University 1790 AB, den Burg, Texel The Netherlands
| | - Niels J. Dingemanse
- Behavioural Ecology, Department Biology IILudwig‐Maximilians University of Munich Grosshadener Strasse 2, DE‐82152, Planegg‐Martinsried, Munich Germany
| | - Shinichi Nakagawa
- Evolution and Ecology Research Centre and School of Biological, Earth and Environmental SciencesUniversity of New South Wales Sydney New South Wales 2052 Australia
- Diabetes and Metabolism Division, Garvan Institute of Medical Research 384 Victoria Street, Darlinghurst, Sydney New South Wales 2010 Australia
| |
Collapse
|
7
|
WEN J, TAN S, WANG D, ZHAO Z. Variation of food availability affects male striped hamsters (Cricetulus barabensis
) with different levels of metabolic rate. Integr Zool 2018; 13:769-782. [DOI: 10.1111/1749-4877.12337] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jing WEN
- College of Life and Environmental Science; Wenzhou University; Wenzhou China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences; Beijing China
| | - Song TAN
- College of Life and Environmental Science; Wenzhou University; Wenzhou China
| | - Dehua WANG
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences; Beijing China
| | - Zhijun ZHAO
- College of Life and Environmental Science; Wenzhou University; Wenzhou China
| |
Collapse
|
8
|
Leptin resistance was involved in susceptibility to overweight in the striped hamster re-fed with high fat diet. Sci Rep 2018; 8:920. [PMID: 29343842 PMCID: PMC5772526 DOI: 10.1038/s41598-017-18158-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 12/06/2017] [Indexed: 02/03/2023] Open
Abstract
Food restriction (FR) is the most commonly used intervention to prevent the overweight. However, the lost weight is usually followed by “compensatory growth” when FR ends, resulting in overweight. The present study was aimed to examining the behavior patterns and hormones mechanisms underpinning the over-weight. Energy budget and body fat content, and several endocrine markers related to leptin signals were examined in the striped hamsters under 20% FR refed by either low-fat diet (LF group) or high-fat diet (HF group). Body mass and fat content significantly regained when FR ended, and the hamsters in HF group showed 49.1% more body fat than in LF group (P < 0.01). Digestive energy intake was higher by 20.1% in HF than LF group, while metabolic thermogenesis and behavior patterns did not differed between the two groups. Gene expression of leptin receptor and anorexigenic peptides of pro-opiomelanocortin and cocaine- and amphetamine-regulated transcript in hypothalamus were significantly up-regulated in LF group, but down-regulated in HF group. It suggests that effective leptin signals to the brain were involved in attenuation of hyperphagia in hamsters refed with LF. However, “leptin resistance” probably occurred in hamsters refed with HF, which impaired the control of hyperphagia, resulting in development of over-weight.
Collapse
|
9
|
WEN J, TAN S, QIAO Q, SHI L, HUANG Y, ZHAO Z. Strategies of behavior, energetic and thermogenesis of striped hamsters in response to food deprivation. Integr Zool 2018; 13:70-83. [DOI: 10.1111/1749-4877.12259] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jing WEN
- College of Life and Environmental ScienceWenzhou University Wenzhou China
| | - Song TAN
- College of Life and Environmental ScienceWenzhou University Wenzhou China
| | - Qinggang QIAO
- College of Life and Environmental ScienceWenzhou University Wenzhou China
| | - Lulu SHI
- College of Life and Environmental ScienceWenzhou University Wenzhou China
| | - Yixin HUANG
- College of Life and Environmental ScienceWenzhou University Wenzhou China
| | - Zhijun ZHAO
- College of Life and Environmental ScienceWenzhou University Wenzhou China
| |
Collapse
|
10
|
Chi QS, Li XJ, Wang DH. 2-Deoxy-D-glucose, not mercaptoacetate, induces a reversible reduction of body temperature in male desert hamsters (Phodopus roborovskii). J Therm Biol 2017; 71:189-194. [PMID: 29301689 DOI: 10.1016/j.jtherbio.2017.11.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 11/18/2017] [Accepted: 11/20/2017] [Indexed: 11/17/2022]
Abstract
The initiation of torpor is supposed to be related to the availability of metabolic fuels. Studies on metabolic fuel inhibition of glucose by using 2-deoxy-D-glucose (2DG) or fatty acid by mercaptoacetate (MA) in heterothermic mammals produced mixed outcomes. To examine the roles of availability of glucose and fatty acid in the initiation of torpor in desert hamsters (Phodopus roborovskii), we intraperitoneally administrated 2DG and MA to summer-acclimated male hamsters while body temperature (Tb), metabolic rate (MR) and respiratory quotient (RQ) were simultaneously recorded to monitor their thermoregulatory response. 2DG induced a reversible reduction of Tb in desert hamsters both at ambient temperature (Ta) of 23°C and 5°C. At Ta of 23°C, Tb, MR and RQ decreased in a dose-dependent manner with a large Tb-Ta differential (> 6.5°C) and a lowest Tb of 28.0°C which were comparable to those in fasted hamsters. At Ta of 5°C, 2DG-treated hamsters also decreased Tb to the same level as at Ta 23°C, but MR was significantly higher than that at Ta of 23°C at each dose, suggesting doses of 2DG directly affected the hypothalamic Tb set-point. Different from fasted hamsters which maintain normothermic at Ta of 5°C, 2DG-treated hamsters showed a substantial reduction of Tb at Ta 5°C, indicating an overwhelming effect on the thermoregulatory system regardless of Ta. Furthermore, the rapid decrease of Tb and outstretched body posture in 2DG-treated hamsters suggest that the effects of 2DG were not simply mimicking the torpor pathways but that other mechanisms are involved. Interestingly, MA failed to induce a torpor-like state in male desert hamsters. Our results suggest that availability of glucose rather than fatty acid plays an important role for initiation of torpor in desert hamsters.
Collapse
Affiliation(s)
- Qing-Sheng Chi
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beichen Xilu, Chaoyang, Beijing 100101, China
| | - Xiu-Juan Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beichen Xilu, Chaoyang, Beijing 100101, China; Institute of Health Sciences, Anhui University, Hefei, Anhui 230601, China
| | - De-Hua Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beichen Xilu, Chaoyang, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
11
|
Genoud M, Isler K, Martin RD. Comparative analyses of basal rate of metabolism in mammals: data selection does matter. Biol Rev Camb Philos Soc 2017; 93:404-438. [PMID: 28752629 DOI: 10.1111/brv.12350] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 05/29/2017] [Accepted: 06/05/2017] [Indexed: 12/21/2022]
Abstract
Basal rate of metabolism (BMR) is a physiological parameter that should be measured under strictly defined experimental conditions. In comparative analyses among mammals BMR is widely used as an index of the intensity of the metabolic machinery or as a proxy for energy expenditure. Many databases with BMR values for mammals are available, but the criteria used to select metabolic data as BMR estimates have often varied and the potential effect of this variability has rarely been questioned. We provide a new, expanded BMR database reflecting compliance with standard criteria (resting, postabsorptive state; thermal neutrality; adult, non-reproductive status for females) and examine potential effects of differential selectivity on the results of comparative analyses. The database includes 1739 different entries for 817 species of mammals, compiled from the original sources. It provides information permitting assessment of the validity of each estimate and presents the value closest to a proper BMR for each entry. Using different selection criteria, several alternative data sets were extracted and used in comparative analyses of (i) the scaling of BMR to body mass and (ii) the relationship between brain mass and BMR. It was expected that results would be especially dependent on selection criteria with small sample sizes and with relatively weak relationships. Phylogenetically informed regression (phylogenetic generalized least squares, PGLS) was applied to the alternative data sets for several different clades (Mammalia, Eutheria, Metatheria, or individual orders). For Mammalia, a 'subsampling procedure' was also applied, in which random subsamples of different sample sizes were taken from each original data set and successively analysed. In each case, two data sets with identical sample size and species, but comprising BMR data with different degrees of reliability, were compared. Selection criteria had minor effects on scaling equations computed for large clades (Mammalia, Eutheria, Metatheria), although less-reliable estimates of BMR were generally about 12-20% larger than more-reliable ones. Larger effects were found with more-limited clades, such as sciuromorph rodents. For the relationship between BMR and brain mass the results of comparative analyses were found to depend strongly on the data set used, especially with more-limited, order-level clades. In fact, with small sample sizes (e.g. <100) results often appeared erratic. Subsampling revealed that sample size has a non-linear effect on the probability of a zero slope for a given relationship. Depending on the species included, results could differ dramatically, especially with small sample sizes. Overall, our findings indicate a need for due diligence when selecting BMR estimates and caution regarding results (even if seemingly significant) with small sample sizes.
Collapse
Affiliation(s)
- Michel Genoud
- Department of Ecology and Evolution, University of Lausanne, CH-1015, Lausanne, Switzerland.,Division of Conservation Biology, Institute of Ecology and Evolution, Department of Biology, University of Bern, CH-3012, Bern, Switzerland
| | - Karin Isler
- Department of Anthropology, University of Zürich-Irchel, CH-8057, Zürich, Switzerland
| | - Robert D Martin
- Integrative Research Center, The Field Museum, Chicago, IL, 60605-2496, U.S.A.,Institute of Evolutionary Medicine, University of Zürich-Irchel, CH-8057, Zürich, Switzerland
| |
Collapse
|
12
|
Ruf T, Geiser F. Daily torpor and hibernation in birds and mammals. Biol Rev Camb Philos Soc 2015; 90:891-926. [PMID: 25123049 PMCID: PMC4351926 DOI: 10.1111/brv.12137] [Citation(s) in RCA: 525] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 07/16/2014] [Accepted: 07/16/2014] [Indexed: 12/11/2022]
Abstract
Many birds and mammals drastically reduce their energy expenditure during times of cold exposure, food shortage, or drought, by temporarily abandoning euthermia, i.e. the maintenance of high body temperatures. Traditionally, two different types of heterothermy, i.e. hypometabolic states associated with low body temperature (torpor), have been distinguished: daily torpor, which lasts less than 24 h and is accompanied by continued foraging, versus hibernation, with torpor bouts lasting consecutive days to several weeks in animals that usually do not forage but rely on energy stores, either food caches or body energy reserves. This classification of torpor types has been challenged, suggesting that these phenotypes may merely represent extremes in a continuum of traits. Here, we investigate whether variables of torpor in 214 species (43 birds and 171 mammals) form a continuum or a bimodal distribution. We use Gaussian-mixture cluster analysis as well as phylogenetically informed regressions to quantitatively assess the distinction between hibernation and daily torpor and to evaluate the impact of body mass and geographical distribution of species on torpor traits. Cluster analysis clearly confirmed the classical distinction between daily torpor and hibernation. Overall, heterothermic endotherms tend to be small; hibernators are significantly heavier than daily heterotherms and also are distributed at higher average latitudes (∼35°) than daily heterotherms (∼25°). Variables of torpor for an average 30 g heterotherm differed significantly between daily heterotherms and hibernators. Average maximum torpor bout duration was >30-fold longer, and mean torpor bout duration >25-fold longer in hibernators. Mean minimum body temperature differed by ∼13°C, and the mean minimum torpor metabolic rate was ∼35% of the basal metabolic rate (BMR) in daily heterotherms but only 6% of BMR in hibernators. Consequently, our analysis strongly supports the view that hibernators and daily heterotherms are functionally distinct groups that probably have been subject to disruptive selection. Arguably, the primary physiological difference between daily torpor and hibernation, which leads to a variety of derived further distinct characteristics, is the temporal control of entry into and arousal from torpor, which is governed by the circadian clock in daily heterotherms, but apparently not in hibernators.
Collapse
Affiliation(s)
- Thomas Ruf
- Department of Integrative Biology and Evolution, Research Institute of Wildlife Ecology, University of Veterinary Medicine, Vienna, Savoyenstraße 1, A-1160 Vienna, Austria
- Centre for Behavioural and Physiological Ecology, Zoology, University of New England, Armidale, New South Wales 2351, Australia
| | - Fritz Geiser
- Centre for Behavioural and Physiological Ecology, Zoology, University of New England, Armidale, New South Wales 2351, Australia
| |
Collapse
|
13
|
Hou C, Amunugama K. On the complex relationship between energy expenditure and longevity: Reconciling the contradictory empirical results with a simple theoretical model. Mech Ageing Dev 2015; 149:50-64. [DOI: 10.1016/j.mad.2015.06.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 05/06/2015] [Accepted: 06/02/2015] [Indexed: 12/31/2022]
|
14
|
Zhao ZJ, Chi QS, Zhao L, Zhu QX, Cao J, Wang DH. Effect of food restriction on energy budget in warm-acclimated striped hamsters. Physiol Behav 2015; 147:220-6. [PMID: 25936822 DOI: 10.1016/j.physbeh.2015.04.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 04/27/2015] [Accepted: 04/28/2015] [Indexed: 12/23/2022]
Abstract
The capacity of small mammals to sustain periods of food shortage largely depends on the adaptive regulation of energy budget in response to the decrease in food supply. In addition to food availability, ambient temperature (Ta) is an important factor affecting the rates of both energy intake and expenditure. To examine the effect of Ta on energy strategy and the capacity to sustain food shortage, striped hamsters were exposed to a warm condition (30°C) and were then restricted to 70% of ad libitum food intake. Body mass, energy intake and expenditure and physiological markers indicative of thermogenesis were measured. Warm exposure had no effect on body mass and digestibility, but decreased energy intake, basal metabolic rate and maximum nonshivering thermogenesis. The mitochondria protein content, cytochrome c oxidase activity and uncoupling protein 1 level of brown adipose tissue were significantly lower in hamsters at 30°C than at 21°C. Food restriction induced a significant decrease in body mass, but the decreased body mass was attenuated at 30°C relative to 21°C. This suggests that striped hamsters could not compensate for the limited food supply by decreasing daily energy expenditure at 21°C, whereas they could at 30°C. The significant reductions in the rates of metabolism and thermogenesis in warm-acclimated hamsters increase the capacity to cope with food shortage. Although, it remains uncertain whether this response represents some generalized evolutionary adaptation, the Ta-dependent adjustment in the capacity to survive food restriction may reflect that warm acclimation plays an important role in adaptive regulation of both physiology and behavior in response to the variations of food availability.
Collapse
Affiliation(s)
- Zhi-Jun Zhao
- School of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China; State Key Laboratory of Integrated Management for Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, China.
| | - Qing-Sheng Chi
- State Key Laboratory of Integrated Management for Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, China
| | - Liang Zhao
- School of Agricultural Science, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Qiao-Xia Zhu
- School of Agricultural Science, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Jing Cao
- School of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China
| | - De-Hua Wang
- State Key Laboratory of Integrated Management for Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, China
| |
Collapse
|
15
|
Leslie AM, Stewart M, Price E, Munn AJ. Daily changes in food availability, but not long-term unpredictability, determine daily torpor-bout occurrences and frequency in stripe-faced dunnarts (Sminthopsis macroura). AUST J ZOOL 2015. [DOI: 10.1071/zo14058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Daily torpor, a short-term reduction in body temperature and metabolism, is an energy-saving strategy that has been interpreted as an adaptation to unpredictable resource availability. However, the effect of food-supply variability on torpor, separately from consistent food restriction, remains largely unexamined. In this study, we investigated the effect of unpredictable food availability on torpor in stripe-faced dunnarts (Sminthopsis macroura). After a control period of ad libitum feeding, dunnarts were offered 65% of their average daily ad libitum intake over 31 days, either as a constant restriction (i.e. as equal amount of food offered each day) or as an unpredictable schedule of feed offered, varied daily as 0%, 30%, 60%, 100% or 130% of ad libitum. Both feeding groups had increased torpor-bout occurrences (as a proportion of all dunnarts on a given day) and torpor-bout frequency (average number of bouts each day) when on a restricted diet compared with ad libitum feeding, but torpor frequency did not differ between the consistently restricted and unpredictably restricted groups. Most importantly, torpor occurrence and daily bout frequency by the unpredictably restricted group appeared to change in direct association with the amount of food offered on each day; torpor frequency was higher on days of low food availability. Our data do not support the interpretation that torpor is a response to unpredictable food availability per se, but rather that torpor allowed a rapid adjustment of energy expenditure to manage daily fluctuations in food availability.
Collapse
|
16
|
Taste and physiological responses to glucosinolates: seed predator versus seed disperser. PLoS One 2014; 9:e112505. [PMID: 25383693 PMCID: PMC4226557 DOI: 10.1371/journal.pone.0112505] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 10/16/2014] [Indexed: 11/19/2022] Open
Abstract
In contrast to most other plant tissues, fleshy fruits are meant to be eaten in order to facilitate seed dispersal. Although fleshy fruits attract consumers, they may also contain toxic secondary metabolites. However, studies that link the effect of fruit toxins with seed dispersal and predation are scarce. Glucosinolates (GLSs) are a family of bitter-tasting compounds. The fleshy fruit pulp of Ochradenus baccatus was previously found to harbor high concentrations of GLSs, whereas the myrosinase enzyme, which breaks down GLSs to produce foul tasting chemicals, was found only in the seeds. Here we show the differential behavioral and physiological responses of three rodent species to high dose (80%) Ochradenus’ fruits diets. Acomys russatus, a predator of Ochradenus’ seeds, was the least sensitive to the taste of the fruit and the only rodent to exhibit taste-related physiological adaptations to deal with the fruits’ toxins. In contrast, Acomys cahirinus, an Ochradenus seed disperser, was more sensitive to a diet containing the hydrolyzed products of the GLSs. A third rodent (Mus musculus) was deterred from Ochradenus fruits consumption by the GLSs and their hydrolyzed products. We were able to alter M. musculus avoidance of whole fruit consumption by soaking Ochradenus fruits in a water solution containing 1% adenosine monophosphate, which blocks the bitter taste receptor in mice. The observed differential responses of these three rodent species may be due to evolutionary pressures that have enhanced or reduced their sensitivity to the taste of GLSs.
Collapse
|
17
|
Vuarin P, Henry PY. Field evidence for a proximate role of food shortage in the regulation of hibernation and daily torpor: a review. J Comp Physiol B 2014; 184:683-97. [DOI: 10.1007/s00360-014-0833-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 04/30/2014] [Indexed: 02/06/2023]
|
18
|
Zhao ZJ, Chen KX, Liu YA, Wang CM, Cao J. Decreased circulating leptin and increased neuropeptide Y gene expression are implicated in food deprivation-induced hyperactivity in striped hamsters, Cricetulus barabensis. Horm Behav 2014; 65:355-62. [PMID: 24631583 DOI: 10.1016/j.yhbeh.2014.03.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 02/15/2014] [Accepted: 03/02/2014] [Indexed: 11/15/2022]
Abstract
Physiological and behavioral adjustments of small mammals are important strategies in response to variations in food availability. Although numerous of studies have been carried out in rodents, behavioral patterns in response to food deprivation and re-feeding (FD-RF) are still inconsistent. Here we examined effects of a 24h FD followed by RF on general activity, serum leptin concentrations and gene expression of orexigenic and anorexigenic hypothalamic neuropeptides in striped hamsters (Cricetulus barabensis) with/without leptin supplements. The time spent on activity was increased by 2.5 fold in FD hamsters compared with controls fed ad libitum (P<0.01). Body mass, fat mass as well as serum leptin concentrations were significantly decreased in FD hamsters in comparison with ad libitum controls, which were in parallel with hyperactivity. During re-feeding, leptin concentrations increased rapidly to pre-deprivation levels by 12h, but locomotor activity decreased gradually and did not return to pre-deprivation levels until 5days after re-feeding. Leptin administration to FD hamsters significantly attenuated the increased activity. Gene expression of hypothalamic neuropeptide Y (NPY) was upregulated in FD hamsters and fell down to control levels when hamsters were re-fed ad libitum, similar to that observed in activity behavior. Leptin supplement induced increases in serum leptin concentrations (184.1%, P<0.05) in FD hamsters and simultaneously attenuated the increase in activity (45.8%, P<0.05) and NPY gene expression (35%, P<0.05). This may allow us to draw a more generalized conclusion that decreased leptin concentrations function as a starvation signal in animals under food shortage; to induce an increase in activity levels, leading animals to forage and/or migrate, and consequently increasing the chance of survival. Decreased concentrations of serum leptin in animals subjected to food shortage may induce an upregulation of gene expression of hypothalamus NPY, consequently driving a significant increase in foraging behavior.
Collapse
Affiliation(s)
- Zhi-Jun Zhao
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325027, China; State Key Laboratory of Integrated Management for Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; School of Agricultural Science, Liaocheng University, Liaocheng, Shandong 252059, China.
| | - Ke-Xin Chen
- School of Agricultural Science, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Yong-An Liu
- School of Agricultural Science, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Chun-Ming Wang
- School of Agricultural Science, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Jing Cao
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325027, China; School of Agricultural Science, Liaocheng University, Liaocheng, Shandong 252059, China
| |
Collapse
|
19
|
Kronfeld-Schor N, Dayan T. Thermal Ecology, Environments, Communities, and Global Change: Energy Intake and Expenditure in Endotherms. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2013. [DOI: 10.1146/annurev-ecolsys-110512-135917] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To survive, animals must maintain a balance between energy acquisition (foraging) and energy expenditure. This challenge is particularly great for endotherm vertebrates that require high amounts of energy to maintain homeothermy. Many of these endotherms use hibernation or daily torpor as a mechanism to reduce energy expenditure during anticipated or stochastic periods of stress. Although ecological researchers have focused extensively on energy acquisition, physiologists have largely studied thermal ecology and the mechanisms allowing endotherms to regulate energy expenditure, with little research explicitly linking ecology and thermal biology. Nevertheless, theoretical considerations and research conducted so far point to a significant ecological role for torpor in endotherms. Moreover, global-change challenges facing vertebrate endotherms are also considered in view of their ability to regulate their energy expenditure. We review the thermal ecology of endothermic vertebrates and some of its ecological and evolutionary implications.
Collapse
Affiliation(s)
| | - Tamar Dayan
- Department of Zoology, Tel Aviv University, Tel Aviv 69978, Israel;,
| |
Collapse
|
20
|
Grimpo K, Kutschke M, Kastl A, Meyer CW, Heldmaier G, Exner C, Jastroch M. Metabolic depression during warm torpor in the Golden spiny mouse (Acomys russatus) does not affect mitochondrial respiration and hydrogen peroxide release. Comp Biochem Physiol A Mol Integr Physiol 2013; 167:7-14. [PMID: 24021912 DOI: 10.1016/j.cbpa.2013.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 09/03/2013] [Accepted: 09/03/2013] [Indexed: 01/08/2023]
Abstract
Small mammals actively decrease metabolism during daily torpor and hibernation to save energy. Recently, depression of mitochondrial substrate oxidation in isolated liver mitochondria was observed and associated to hypothermic/hypometabolic states in Djungarian hamsters, mice and hibernators. We aimed to clarify whether hypothermia or hypometabolism causes mitochondrial depression during torpor by studying the Golden spiny mouse (Acomys russatus), a desert rodent which performs daily torpor at high ambient temperatures of 32°C. Notably, metabolic rate but not body temperature is significantly decreased under these conditions. In isolated liver, heart, skeletal muscle or kidney mitochondria we found no depression of respiration. Moderate cold exposure lowered torpor body temperature but had minor effects on minimal metabolic rate in torpor. Neither decreased body temperature nor metabolic rate impacted mitochondrial respiration. Measurements of mitochondrial proton leak kinetics and determination of P/O ratio revealed no differences in mitochondrial efficiency. Hydrogen peroxide release from mitochondria was not affected. We conclude that interspecies differences of mitochondrial depression during torpor do not support a general relationship between mitochondrial respiration, body temperature and metabolic rate. In Golden spiny mice, reduction of metabolic rate at mild temperatures is not triggered by depression of substrate oxidation as found in liver mitochondria from other cold-exposed rodents.
Collapse
Affiliation(s)
- Kirsten Grimpo
- Philipps-Universität Marburg, Faculty of Biology, Department of Animal Physiology, Karl-von-Frisch-Strasse 8, 35043 Marburg, Germany
| | | | | | | | | | | | | |
Collapse
|
21
|
|
22
|
Kutschke M, Grimpo K, Kastl A, Schneider S, Heldmaier G, Exner C, Jastroch M. Depression of mitochondrial respiration during daily torpor of the Djungarian hamster, Phodopus sungorus, is specific for liver and correlates with body temperature. Comp Biochem Physiol A Mol Integr Physiol 2013; 164:584-9. [DOI: 10.1016/j.cbpa.2013.01.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 01/17/2013] [Accepted: 01/18/2013] [Indexed: 02/04/2023]
|
23
|
Zhao ZJ, Zhu QX, Chen KX, Wang YK, Cao J. Energy budget, behavior and leptin in striped hamsters subjected to food restriction and refeeding. PLoS One 2013; 8:e54244. [PMID: 23372694 PMCID: PMC3553171 DOI: 10.1371/journal.pone.0054244] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2012] [Accepted: 12/10/2012] [Indexed: 01/28/2023] Open
Abstract
Food restriction induces a loss of body mass that is often followed by rapid regaining of the lost weight when the restriction ends, consequently increasing a risk of development of obesity. To determine the physiological and behavioral mechanisms underlining the regaining, striped hamsters were restricted to 85% of initial food intake for 4 weeks and refed ad libitum for another 4 weeks. Changes in body mass, energy budget, activity, body composition and serum leptin level were measured. Body mass, body fat mass and serum leptin level significantly decreased in food-restricted hamsters, and increased when the restriction ended, showing a short “compensatory growth” rather than over-weight or obesity compared with ad libitum controls. During restriction, the time spent on activity increased significantly, which was opposite to the changes in serum leptin level. Food intake increased shortly during refeeding, which perhaps contributed to the rapid regaining of body mass. No correlation was observed between serum leptin and energy intake, while negative correlations were found in hamsters that were refed for 7 and 28 days. Exogenous leptin significantly decreased the time spent on activity during food restriction and attenuated the increase in food intake during refeeding. This suggests that low leptin in restricted animals may function as a starvation signal to induce an increase in activity behavior, and high leptin likely serves as a satiety signal to prevent activity during refeeding. Leptin may play a crucial role in controlling food intake when the restriction ends, and consequently preventing overweight.
Collapse
Affiliation(s)
- Zhi-Jun Zhao
- School of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang, China.
| | | | | | | | | |
Collapse
|
24
|
Samuni-Blank M, Izhaki I, Dearing D, Karasov W, Gerchman Y, Kohl K, Lymberakis P, Kurnath P, Arad Z. Physiological and behavioural effects of fruit toxins on seed-predating versus seed-dispersing congeneric rodents. J Exp Biol 2013; 216:3667-73. [DOI: 10.1242/jeb.089664] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Summary
Fleshy, ripe fruits attract seed dispersers but also seed predators. Although many fruit consumers (legitimate seed dispersers as well as seed predators) are clearly exposed to plant secondary compounds (PSCs), their impact on the consumers’ physiology and foraging behaviour has been largely overlooked. Here, we document the divergent behavioural and physiological responses of three congeneric rodent species in the Middle East, seed dispersers versus seed predators, to fruit consumption. The fruit pulp of the desert plant Ochradenus baccatus contains high concentrations of glucosinolates (GLSs). These GLSs are hydrolyzed into active toxic compounds upon contact with the myrosinase enzyme released from seeds crushed during fruit consumption. Acomys russatus and A. cahirinus share a desert habitat. Acomys russatus acts as an O. baccatus seed predator, and A. cahirinus circumvents the activation of the GLSs by orally expelling vital seeds. We found that between the three species examined, A. russatus was physiologically most tolerant to whole fruit consumption and even A. minous, which is evolutionarily naïve to O. baccatus, exhibits greater tolerance to whole fruit consumption than A. cahirinus. However, like A. cahirinus, A. minous may also behaviourally avoid the activation of the GLSs by making a hole in the pulp and consuming only the seeds. Our findings demonstrate that seed predators have a higher physiological tolerance than seed dispersers when consuming fruits containing toxic PSCs. The findings also demonstrate the extreme ecological/evolutionary ability of this plant-animal symbiosis to shift from predation to mutualism and vice versa.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Zeev Arad
- Technion-Israel Institute of Technology
| |
Collapse
|
25
|
That’s hot: golden spiny mice display torpor even at high ambient temperatures. J Comp Physiol B 2012; 183:567-81. [DOI: 10.1007/s00360-012-0721-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 11/13/2012] [Accepted: 11/13/2012] [Indexed: 10/27/2022]
|
26
|
Barker JM, Cooper CE, Withers PC, Cruz-Neto AP. Thermoregulation by an Australian murine rodent, the ash-grey mouse (Pseudomys albocinereus). Comp Biochem Physiol A Mol Integr Physiol 2012; 163:336-42. [DOI: 10.1016/j.cbpa.2012.07.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 07/20/2012] [Accepted: 07/20/2012] [Indexed: 12/01/2022]
|
27
|
Levy O, Dayan T, Rotics S, Kronfeld-Schor N. Foraging sequence, energy intake and torpor: an individual-based field study of energy balancing in desert golden spiny mice. Ecol Lett 2012; 15:1240-1248. [PMID: 22906198 DOI: 10.1111/j.1461-0248.2012.01845.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2012] [Revised: 03/23/2012] [Accepted: 07/11/2012] [Indexed: 12/12/2022]
Abstract
We studied the relationship between sequence of foraging, energy acquired and use of torpor as an energy-balancing strategy in diurnally active desert golden spiny mice. We hypothesised that individuals that arrive earlier to forage will get higher returns and consequently spend less time torpid. If that is the case, then early foragers can be viewed as more successful; if the same individuals arrive repeatedly early, they are likely to have higher fitness under conditions of resource limitation. For the first time, we show a relationship between foraging sequence and amount of resources removed, with individuals that arrive later to a foraging patch tending to receive lower energetic returns and to spend more time torpid. Torpor bears not only benefits but also significant costs, so these individuals pay a price both in lower energy intake and in extended periods of torpor, in what may well be a positive feedback loop.
Collapse
Affiliation(s)
- Ofir Levy
- Department of Zoology, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Tamar Dayan
- Department of Zoology, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Shay Rotics
- Department of Zoology, Tel Aviv University, Tel Aviv, 69978, Israel
| | | |
Collapse
|
28
|
|
29
|
Seasonal changes in thermogenesis of a free-ranging afrotherian small mammal, the Western rock elephant shrew (Elephantulus rupestris). J Comp Physiol B 2012; 182:715-27. [PMID: 22349624 DOI: 10.1007/s00360-012-0647-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2011] [Revised: 01/15/2012] [Accepted: 01/26/2012] [Indexed: 01/04/2023]
Abstract
We report on the seasonal metabolic adjustments of a small-sized member of the phylogenetically ancient Afrotheria, the Western rock elephant shrew (Elephantulus rupestris). We recorded body temperature (T (b)) patterns and compared the capacity for adrenergically induced nonshivering thermogenesis (NST) in E. rupestris captured in the wild in summer and winter. Noradrenaline (NA) treatment (0.4-0.5 mg/kg, s.c.) induced a pronounced elevation in oxygen consumption compared to controls (saline), and the increase in oxygen consumption following injection of NA was 1.8-fold higher in winter compared to summer. This suggests that the smaller members of Afrotheria possess functional brown adipose tissue, which changes in thermogenic capacity depending on the season. Torpor was recorded in both seasons, but in winter the incidence of torpor was higher (n = 205 out of 448 observations) and minimal T (b) during torpor was lower (T (b)min: 11.9°C) than in summer (n = 24 out of 674 observations; T (b)min: 26°C). In addition to cold, high air humidity emerged as a likely predictor for torpor entry. Overall, E. rupestris showed a high degree of thermoregulatory plasticity, which was mainly reflected in a variable timing of torpor entry and arousal. We conclude that E. rupestris exhibits seasonal metabolic adjustments comparable to what has been long known for many Holarctic rodents.
Collapse
|
30
|
Elsukova EI, Medvedev LN, Mizonova OV, Taidonov SV. Effect of Calorie Restricted Diet on Brown Adipose Tissue in Mice. Bull Exp Biol Med 2012; 152:286-8. [DOI: 10.1007/s10517-012-1509-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
31
|
Hou C, Bolt KM, Bergman A. A general model for ontogenetic growth under food restriction. Proc Biol Sci 2011; 278:2881-90. [PMID: 21345868 PMCID: PMC3151715 DOI: 10.1098/rspb.2011.0047] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Accepted: 01/31/2011] [Indexed: 01/14/2023] Open
Abstract
Food restriction (FR) retards animals' growth. Understanding the underlying mechanisms of this phenomenon is important to conceptual problems in life-history theory, as well as to applied problems in animal husbandry and biomedicine. Despite a considerable amount of empirical data published since the 1930s, there is no relevant general theoretical framework that predicts how animals vary their energy budgets and life-history traits under FR. In this paper, we develop such a general quantitative model based on fundamental principles of metabolic energy allocation during ontogeny. This model predicts growth curves under varying conditions of FR, such as the compensatory growth, different age at which FR begins, its degree and its duration. Our model gives a quantitative explanation for the counterintuitive phenomenon that under FR, lower body temperature and lower metabolism lead to faster growth and larger adult size. This model also predicts that the animals experiencing FR reach the same fraction of their adult mass at the same age as their ad libitum counterparts. All predictions are well supported by empirical data from mammals and birds of varying body size, under different conditions of FR.
Collapse
Affiliation(s)
| | | | - Aviv Bergman
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
32
|
Levy O, Dayan T, Kronfeld-Schor N. Interspecific Competition and Torpor in Golden Spiny Mice: Two Sides of the Energy-Acquisition Coin. Integr Comp Biol 2011; 51:441-8. [DOI: 10.1093/icb/icr071] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
33
|
Lovegrove BG. The evolution of endothermy in Cenozoic mammals: a plesiomorphic-apomorphic continuum. Biol Rev Camb Philos Soc 2011; 87:128-62. [DOI: 10.1111/j.1469-185x.2011.00188.x] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
34
|
Hou C, Bolt K, Bergman A. A general life history theory for effects of caloric restriction on health maintenance. BMC SYSTEMS BIOLOGY 2011; 5:78. [PMID: 21595962 PMCID: PMC3123202 DOI: 10.1186/1752-0509-5-78] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 05/19/2011] [Indexed: 12/18/2022]
Abstract
Background Caloric restriction (CR) has been shown to keep organisms in a relatively youthful and healthy state compared to ad libitum fed counterparts, as well as to extend the lifespan of a diverse set of organisms. Several attempts have been made to understand the underlying mechanisms from the viewpoint of energy tradeoffs in organisms' life histories. However, most models are based on assumptions which are difficult to justify, or are endowed with free-adjusting parameters whose biological relevancy is unclear. Results In this paper, we derive a general quantitative, predictive model based on physiological data for endotherms. We test the hypothesis that an animal's state of health is correlated with biological mechanisms responsible for the maintenance of that animal's functional integrities. Such mechanisms require energy. By suppressing animals' caloric energy supply and biomass synthesis, CR alters animals' energy allocation strategies and channels additional energy to those maintenance mechanisms, therefore enhancing their performance. Our model corroborates the observation that CR's effects on health maintenance are positively correlated with the degree and duration of CR. Furthermore, our model shows that CR's effects on health maintenance are negatively correlated to the temperature drop observed in endothermic animals, and is positively correlated to animals' body masses. These predictions can be tested by further experimental research. Conclusion Our model reveals how animals will alter their energy budget when food availability is low, and offers better understanding of the tradeoffs between growth and somatic maintenance; therefore shedding new light on aging research from an energetic viewpoint.
Collapse
Affiliation(s)
- Chen Hou
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | | | |
Collapse
|
35
|
Levy O, Dayan T, Kronfeld-Schor N. Adaptive Thermoregulation in Golden Spiny Mice: The Influence of Season and Food Availability on Body Temperature. Physiol Biochem Zool 2011; 84:175-84. [DOI: 10.1086/658171] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
36
|
Zelová J, Šumbera R, Okrouhlík J, Šklíba J, Lövy M, Burda H. A seasonal difference of daily energy expenditure in a free-living subterranean rodent, the silvery mole-rat (Heliophobius argenteocinereus; Bathyergidae). Comp Biochem Physiol A Mol Integr Physiol 2011; 158:17-21. [DOI: 10.1016/j.cbpa.2010.07.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 06/29/2010] [Accepted: 07/02/2010] [Indexed: 10/19/2022]
|
37
|
Torpor patterns, arousal rates, and temporal organization of torpor entry in wildtype and UCP1-ablated mice. J Comp Physiol B 2010; 181:137-45. [DOI: 10.1007/s00360-010-0503-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2010] [Revised: 07/19/2010] [Accepted: 07/20/2010] [Indexed: 10/19/2022]
|
38
|
Munn AJ, Kern P, McAllan BM. Coping with chaos: unpredictable food supplies intensify torpor use in an arid-zone marsupial, the fat-tailed dunnart (Sminthopsis crassicaudata). Naturwissenschaften 2010; 97:601-5. [PMID: 20442980 DOI: 10.1007/s00114-010-0670-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 04/08/2010] [Accepted: 04/08/2010] [Indexed: 12/20/2022]
Abstract
The severity, duration and amplitude of extreme weather events are forecast to intensify with current climate trends, over both long (e.g. seasonal) and short (e.g. daily) time-scales. As such, the predictability of food supplies for many small endotherms is likely to become increasingly important. Numerous small mammals and birds combat food shortages using torpor, a controlled reduction in metabolic rate and body temperature that helps lower their daily energy requirements. As such, torpor often has been cited as a key feature allowing some small endotherms to survive highly unpredictable climates, such as tropics or dry deserts, but mensurative demonstrations of this are lacking. We have shown here that when a small desert marsupial, the fat-tailed dunnart (Sminthopsis crassicaudata), is offered unpredictable levels of daily food, they increase frequency of daily torpor and length of bouts compared with animals offered ad libitum food, but this was not found for animals offered a 75% [corrected] food-restricted diet. Our data suggest that simple food restriction may not be sufficient for evaluating the efficacy of torpor as a strategy for managing unpredictable climates.
Collapse
Affiliation(s)
- Adam J Munn
- Faculty of Veterinary Science, The University of Sydney, Sydney, NSW, 2006, Australia.
| | | | | |
Collapse
|
39
|
McCue MD. Starvation physiology: reviewing the different strategies animals use to survive a common challenge. Comp Biochem Physiol A Mol Integr Physiol 2010; 156:1-18. [PMID: 20060056 DOI: 10.1016/j.cbpa.2010.01.002] [Citation(s) in RCA: 452] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Revised: 12/30/2009] [Accepted: 01/03/2010] [Indexed: 11/26/2022]
Abstract
All animals face the possibility of limitations in food resources that could ultimately lead to starvation-induced mortality. The primary goal of this review is to characterize the various physiological strategies that allow different animals to survive starvation. The ancillary goals of this work are to identify areas in which investigations of starvation can be improved and to discuss recent advances and emerging directions in starvation research. The ubiquity of food limitation among animals, inconsistent terminology associated with starvation and fasting, and rationale for scientific investigations into starvation are discussed. Similarities and differences with regard to carbohydrate, lipid, and protein metabolism during starvation are also examined in a comparative context. Examples from the literature are used to underscore areas in which reporting and statistical practices, particularly those involved with starvation-induced changes in body composition and starvation-induced hypometabolism can be improved. The review concludes by highlighting several recent advances and promising research directions in starvation physiology. Because the hundreds of studies reviewed here vary so widely in their experimental designs and treatments, formal comparisons of starvation responses among studies and taxa are generally precluded; nevertheless, it is my aim to provide a starting point from which we may develop novel approaches, tools, and hypotheses to facilitate meaningful investigations into the physiology of starvation in animals.
Collapse
Affiliation(s)
- Marshall D McCue
- Mitrani Department of Desert Ecology, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel.
| |
Collapse
|
40
|
Storey KB, Heldmaier G, Rider MH. Mammalian Hibernation: Physiology, Cell Signaling, and Gene Controls on Metabolic Rate Depression. DORMANCY AND RESISTANCE IN HARSH ENVIRONMENTS 2010. [DOI: 10.1007/978-3-642-12422-8_13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
41
|
Issartel J, Voituron Y, Guillaume O, Clobert J, Hervant F. Selection of physiological and metabolic adaptations to food deprivation in the Pyrenean newt Calotriton asper during cave colonisation. Comp Biochem Physiol A Mol Integr Physiol 2010; 155:77-83. [DOI: 10.1016/j.cbpa.2009.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Revised: 10/01/2009] [Accepted: 10/02/2009] [Indexed: 11/16/2022]
|
42
|
Trade-off between energy budget, thermogenesis and behavior in Swiss mice under stochastic food deprivation. J Therm Biol 2009. [DOI: 10.1016/j.jtherbio.2009.03.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
43
|
Levy O, Dayan T, Kronfeld-Schor N. The Relationship between the Golden Spiny Mouse Circadian System and Its Diurnal Activity: An Experimental Field Enclosures and Laboratory Study. Chronobiol Int 2009; 24:599-613. [PMID: 17701675 DOI: 10.1080/07420520701534640] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Examples of animals that switch activity times between nocturnality and diurnality in nature are relatively infrequent. Furthermore, the mechanism for switching activity time is not clear: does a complete inversion of the circadian system occur in conjunction with activity pattern? Are there switching centers downstream from the internal clock that interpret the clock differently? Or does the switch reflect a masking effect? Answering these key questions may shed light on the mechanisms regulating activity patterns and their evolution. The golden spiny mouse (Acomys russatus) can switch between nocturnal and diurnal activity. This study investigated the relationship between its internal circadian clock and its diurnal activity pattern observed in the field. The goal is to understand the mechanisms underlying species rhythm shifts in order to gain insight into the evolution of activity patterns. All golden spiny mice had opposite activity patterns in the field than those under controlled continuous dark conditions in the laboratory. Activity and body temperature patterns in the field were diurnal, while in the laboratory all individuals immediately showed a free-running rhythm starting with a nocturnal pattern. No phase transients were found toward the preferred nocturnal activity pattern, as would be expected in the case of true entrainment. Moreover, the fact that the free-running activity patterns began from the individuals' subjective night suggests that golden spiny mice are nocturnal and that their diurnality in their natural habitat in the field results from a change that is downstream to the internal clock or reflects a masking effect.
Collapse
Affiliation(s)
- Ofir Levy
- Department of Zoology, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | |
Collapse
|
44
|
Cohen R, Smale L, Kronfeld‐Schor N. Plasticity of Circadian Activity and Body Temperature Rhythms in Golden Spiny Mice. Chronobiol Int 2009; 26:430-46. [DOI: 10.1080/07420520902820939] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
45
|
Gutman R, Hacmon-Keren R, Choshniak I, Kronfeld-Schor N. Effect of food availability and leptin on the physiology and hypothalamic gene expression of the golden spiny mouse: a desert rodent that does not hoard food. Am J Physiol Regul Integr Comp Physiol 2008; 295:R2015-23. [DOI: 10.1152/ajpregu.00105.2008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Food availability and quality in desert habitats are spatially and temporally unpredictable, and animals face periods of food shortage. The golden spiny mouse ( Acomys russatus) is an omnivorous desert rodent that does not hoard food, requiring it to withstand such periods by physiological means alone. In response to food restriction, plasma leptin concentrations, core body temperature, and energy expenditure of the spiny mouse decrease significantly after 24 h, and most spiny mice are able to maintain their body mass to ∼85% of ad libitum for a prolonged period of time. Both 1-day food deprivation and long-term food restriction had a significant effect on body mass and plasma leptin concentrations, which decreased significantly with a high correlation, as well as on the orexigenic agouti-related protein, which increased significantly as a result of the 24-h food deprivation; and on neuropeptide Y (NPY), in which the increase was more pronounced under long-term food restriction. Food restriction and food deprivation had no effect, however, on the anorexigenic pro-opiomelanocortin and cocaine and amphetamine-related transcript. Leptin administration to food-restricted spiny mice did not affect food intake or the rate of decrease in body mass, indicating that it cannot overcome the drive to eat when food is scarce. However, it did result in a significant decrease in NPY levels, and the spiny mice spent less time at low body temperatures compared with PBS-treated golden spiny mice. These results show that in food-restricted golden spiny mice, leptin affects thermogenesis, but not food consumption, and suggest that the thermoregulatory effects of leptin are mediated by NPY.
Collapse
|
46
|
McCue MD. Snakes survive starvation by employing supply- and demand-side economic strategies. ZOOLOGY 2007; 110:318-27. [PMID: 17644357 DOI: 10.1016/j.zool.2007.02.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2006] [Revised: 01/09/2007] [Accepted: 02/23/2007] [Indexed: 11/28/2022]
Abstract
Animals vary widely in their abilities to tolerate extended periods of food limitation. Although some snakes are known for their unique ability to survive periods of inanition that last up to 2 years, very little is known about the biological mechanisms that allow them to do this. Consequently, the present study examined physiological, compositional, and morphological responses to 168 days of starvation among three distantly related snake species (i.e., ball python, Python regius; ratsnake, Elaphe obsoleta; and western diamondback rattlesnake, Crotalus atrox). Results revealed that each of these species was able to successfully tolerate starvation by adaptively utilizing supply- and demand-side regulatory strategies. Effective demand-side strategies included the ability of snakes to depress their resting metabolic demands by up to 72%. Moreover, supply-side regulation of resources was evidenced by the ability of snakes to spare their structurally critical protein stores at the expense of lipid catabolism. Such physiological strategies for minimizing endogenous mass and energy flux during periods of resource limitation might help explain the evolutionary persistence of snakes over the past 100 million years, as well as the repeated radiation of snake lineages into relatively low-energy environments. The final section of this study outlines a novel modeling approach developed to characterize material and chemical flux through animals during complete inanition. This approach was used to make comparisons about the efficacy of various supply- and demand-side starvation strategies among the three species examined, but could also be used to make similar comparisons among other types of animals.
Collapse
Affiliation(s)
- Marshall D McCue
- Department of Biological Sciences, University of Arkansas, 601 Science Engineering, Fayetteville, AR 72701-4033, USA.
| |
Collapse
|
47
|
Gutman R, Yosha D, Choshniak I, Kronfeld-Schor N. Two strategies for coping with food shortage in desert golden spiny mice. Physiol Behav 2006; 90:95-102. [PMID: 17045622 DOI: 10.1016/j.physbeh.2006.08.033] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2006] [Revised: 06/21/2006] [Accepted: 08/28/2006] [Indexed: 10/24/2022]
Abstract
Desert rodents face periods of food shortage and use different strategies for coping with it, including changes in activity level. Golden spiny mice (Acomys russatus) inhabit rock crevasses and do not dig burrows nor store food. When kept under 50% food restriction most, but not all, golden spiny mice defend their body mass by physiological means. We tested the hypothesis that these rodents use two different behavioral strategies, i.e., increasing activity level and searching for food or decreasing activity level and conserving energy to cope with food shortage. Twelve golden spiny mice were fed ad libitum for 14 days, followed by 40 days of 50% food restriction, and 14 days of refeeding. Body mass, food consumption and general activity were monitored. Seven mice significantly reduced activity level, concentrating their activity around feeding time, lowering energy expenditure and thus keeping their body mass constant ("resistant"), while five ("non-resistant") significantly increased activity level (possibly searching for food) and thus energy expenditure, thereby losing mass rapidly (more than 25% of body mass). The non-resistant golden spiny mice were active throughout many hours of the day, with high variability both between and among individuals. The use of two strategies to cope with food shortage as found in the golden spiny mice may be of evolutionary advantage, since it allows a more flexible reaction to food restriction at the population level.
Collapse
Affiliation(s)
- Roee Gutman
- Department of Zoology, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | |
Collapse
|
48
|
Gelegen C, Collier DA, Campbell IC, Oppelaar H, Kas MJH. Behavioral, physiological, and molecular differences in response to dietary restriction in three inbred mouse strains. Am J Physiol Endocrinol Metab 2006; 291:E574-81. [PMID: 16670152 DOI: 10.1152/ajpendo.00068.2006] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Food restriction paradigms are widely used in animal studies to investigate systems involved in energy regulation. We have observed behavioral, physiological, and molecular differences in response to food restriction in three inbred mouse strains, C57BL/6J, A/J, and DBA/2J. These are the progenitors of chromosome substitution and recombinant inbred mouse strains used for mapping complex traits. DBA/2J and A/J mice increased their locomotor activity during food restriction, and both displayed a decrease in body temperature, but the decrease was significantly larger in DBA/2J compared with A/J mice. C57BL/6J mice did not increase their locomotor activity and displayed a large decrease in their body temperature. The large decline in body temperature during food restriction in DBA/2J and C57BL/6J strains was associated with a robust reduction in plasma leptin levels. DBA/2J mice showed a marked decrease in white and brown adipose tissue masses and an upregulation of the antithermogenic hypothalamic neuropeptide Y Y(1) receptor. In contrast, A/J mice showed a reduction in body temperature to a lesser extent that may be explained by downregulation of the thermogenic melanocortin 3 receptor and by behavioral thermoregulation as a consequence of their increased locomotor activity. These data indicate that genetic background is an important parameter in controlling an animal's adaptation strategy in response to food restriction. Therefore, mouse genetic mapping populations based on these progenitor lines are highly valuable for investigating mechanisms underlying strain-dependent differences in behavioral physiology that are seen during reduced food availability.
Collapse
Affiliation(s)
- Cigdem Gelegen
- Department of Pharmacology and Anatomy, Behavioural Genomics Section, Rudolf Magnus Institute of Neuroscience, University Medical Centre Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
49
|
Abstract
The ability of animals to survive food deprivation is clearly of considerable survival value. Unsurprisingly, therefore, all animals exhibit adaptive biochemical and physiological responses to the lack of food. Many animals inhabit environments in which food availability fluctuates or encounters with appropriate food items are rare and unpredictable; these species offer interesting opportunities to study physiological adaptations to fasting and starvation. When deprived of food, animals employ various behavioral, physiological, and structural responses to reduce metabolism, which prolongs the period in which energy reserves can cover metabolism. Such behavioral responses can include a reduction in spontaneous activity and a lowering in body temperature, although in later stages of food deprivation in which starvation commences, activity may increase as food-searching is activated. In most animals, the gastrointestinal tract undergoes marked atrophy when digestive processes are curtailed; this structural response and others seem particularly pronounced in species that normally feed at intermittent intervals. Such animals, however, must be able to restore digestive functions soon after feeding, and these transitions appear to occur at low metabolic costs.
Collapse
Affiliation(s)
- Tobias Wang
- Department of Zoophysiology, Aarhus University, 8000 Aarhus C, Denmark.
| | | | | |
Collapse
|