1
|
Lee YJ, Lee C, Choi D, Lee Y, Lee SH. Effect of Soy Isoflavone on Prostate Cancer Cell Apoptosis Through Inhibition of STAT3, ERK, and AKT. Curr Issues Mol Biol 2024; 46:12512-12526. [PMID: 39590337 PMCID: PMC11592447 DOI: 10.3390/cimb46110743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/28/2024] Open
Abstract
Genistein, an isoflavone found in soybeans, exhibits antioxidant, anti-inflammatory, and anticancer properties. This study explored the molecular mechanisms behind genistein's anticancer effects in prostate cancer DU145 cells. In this study, genistein decreased cell viability, increased annexin V-PE(+) cells, and enhanced the sub-G0/G1 peak by flow cytometric analysis. Increased reactive oxygen species increased mitochondrial depolarization indicating mitochondrial dysfunction and inhibition of ATP formation were also observed in genistein-treated DU145 cells. Genistein upregulated p53 at the mRNA and protein levels and increased caspase-3/7 activity along with the cleavage of Bax, procaspase-3, and PARP. With the increasing genistein concentrations, the percentage of cells in the sub-G0/G1 peak and G2/M phase increased, which was inhibited by treatment with the pan-caspase inhibitor Z-VAD together with 100 μM genistein, which had little toxicity to normal prostate epithelial HPrEC cells. Genistein treatment simultaneously inhibited the activation of STAT3 and other closely related oncogenic kinases such as AKT and ERK and p38 and decreased VEGF expression. Taken together, these results suggest that genistein inhibits the growth of DU145 cells and induces apoptosis by inhibiting STAT3, AKT, ERK, and p38 which provides a molecular basis for the anticancer activity of genistein and suggests its potential as a valuable therapeutic candidate for prostate cancer.
Collapse
Affiliation(s)
- Yoon-Jin Lee
- Department of Biochemistry, College of Medicine, Soonchunhyang University, Cheonan 31511, Republic of Korea; (C.L.); (D.C.); (Y.L.); (S.-H.L.)
| | | | | | | | | |
Collapse
|
2
|
Marques V, Ourô S, Afonso MB, Rodrigues CMP. Modulation of rectal cancer stemness, patient outcome and therapy response by adipokines. J Physiol Biochem 2022:10.1007/s13105-022-00936-y. [DOI: 10.1007/s13105-022-00936-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 11/25/2022] [Indexed: 12/14/2022]
|
3
|
Lee YH, Kim H, Nam S, Chu JR, Kim JH, Lim JS, Kim SE, Sung MK. Protective Effects of High-Fat Diet against Murine Colitis in Association with Leptin Signaling and Gut Microbiome. Life (Basel) 2022; 12:life12070972. [PMID: 35888062 PMCID: PMC9323536 DOI: 10.3390/life12070972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/19/2022] [Accepted: 06/24/2022] [Indexed: 04/26/2023] Open
Abstract
Inflammatory bowel disease (IBD) is characterized by chronic intestinal-tract inflammation with dysregulated immune responses, which are partly attributable to dysbiosis. Given that diet plays a critical role in IBD pathogenesis and progression, we elucidated the effects of a high-fat diet (HFD) feeding on IBD development in relation to immune dysfunction and the gut microbiota. Five-week-old male C57BL/6J mice were fed either a normal diet (ND) or HFD for 14 weeks. The animals were further divided into ND, ND+ dextran sulfate sodium (DSS), HFD, and HFD+DSS treatment groups. The HFD+DSS mice exhibited lower body weight loss, lower disease activity index, longer colon length, and increased tight-junction protein expression and goblet-cell proportions compared with the ND+DSS mice. The T helper (h)1 and Th17 cell populations and pro-inflammatory cytokines involved in colitis pathogenesis were significantly more reduced in the HFD+DSS mice than in the ND+DSS mice. The HFD+DSS mice showed significantly increased serum leptin concentrations, colonic leptin receptor expression, enhanced anti-apoptotic AKT expression, and reduced pro-apoptotic MAPK and Bax expression compared with the ND+DSS mice, suggesting the involvement of the leptin-mediated pathway in intestinal epithelial cell apoptosis. The alterations in the gut-microbiota composition in the HFD+DSS group were the opposite of those in the ND+DSS group and rather similar to those of the ND group, indicating that the protective effects of HFD feeding against DSS-induced colitis are associated with changes in gut-microbiota composition. Overall, HFD feeding ameliorates DSS-induced colitis and colonic mucosal damage by reinforcing colonic barrier function and regulating immune responses in association with changes in gut-microbiota composition.
Collapse
Affiliation(s)
- Yun-Ha Lee
- Department of Food and Nutrition, Sookmyung Women’s University, Yongsan-gu, Seoul 04310, Korea; (Y.-H.L.); (H.K.); (J.-R.C.)
| | - Hyeyoon Kim
- Department of Food and Nutrition, Sookmyung Women’s University, Yongsan-gu, Seoul 04310, Korea; (Y.-H.L.); (H.K.); (J.-R.C.)
| | - Sorim Nam
- Division of Biological Sciences and Cellular Heterogeneity Research Center, Sookmyung Women’s University, Yongsan-gu, Seoul 04310, Korea; (S.N.); (J.-S.L.)
| | - Jae-Ryang Chu
- Department of Food and Nutrition, Sookmyung Women’s University, Yongsan-gu, Seoul 04310, Korea; (Y.-H.L.); (H.K.); (J.-R.C.)
| | - Jung-Hwan Kim
- Department of Pharmacology, School of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju 52727, Korea;
| | - Jong-Seok Lim
- Division of Biological Sciences and Cellular Heterogeneity Research Center, Sookmyung Women’s University, Yongsan-gu, Seoul 04310, Korea; (S.N.); (J.-S.L.)
| | - Sung-Eun Kim
- Department of Food and Nutrition, Sookmyung Women’s University, Yongsan-gu, Seoul 04310, Korea; (Y.-H.L.); (H.K.); (J.-R.C.)
- Correspondence: (S.-E.K.); (M.-K.S.); Tel.: +82-2-2077-7722 (S.-E.K.); +82-2-710-9395 (M.-K.S.)
| | - Mi-Kyung Sung
- Department of Food and Nutrition, Sookmyung Women’s University, Yongsan-gu, Seoul 04310, Korea; (Y.-H.L.); (H.K.); (J.-R.C.)
- Correspondence: (S.-E.K.); (M.-K.S.); Tel.: +82-2-2077-7722 (S.-E.K.); +82-2-710-9395 (M.-K.S.)
| |
Collapse
|
4
|
Misch M, Puthanveetil P. The Head-to-Toe Hormone: Leptin as an Extensive Modulator of Physiologic Systems. Int J Mol Sci 2022; 23:ijms23105439. [PMID: 35628271 PMCID: PMC9141226 DOI: 10.3390/ijms23105439] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/30/2022] [Accepted: 05/10/2022] [Indexed: 12/12/2022] Open
Abstract
Leptin is a well-known hunger-sensing peptide hormone. The role of leptin in weight gain and metabolic homeostasis has been explored for the past two decades. In this review, we have tried to shed light upon the impact of leptin signaling on health and diseases. At low or moderate levels, this peptide hormone supports physiological roles, but at chronically higher doses exhibits detrimental effects on various systems. The untoward effects we observe with chronically higher levels of leptin are due to their receptor-mediated effect or due to leptin resistance and are not well studied. This review will help us in understanding the non-anorexic roles of leptin, including their contribution to the metabolism of various systems and inflammation. We will be able to get an alternative perspective regarding the physiological and pathological roles of this mysterious peptide hormone.
Collapse
Affiliation(s)
- Monica Misch
- Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA;
| | - Prasanth Puthanveetil
- Department of Pharmacology, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA
- Correspondence: ; Tel.: +1-630-960-3935
| |
Collapse
|
5
|
Socol CT, Chira A, Martinez-Sanchez MA, Nuñez-Sanchez MA, Maerescu CM, Mierlita D, Rusu AV, Ruiz-Alcaraz AJ, Trif M, Ramos-Molina B. Leptin Signaling in Obesity and Colorectal Cancer. Int J Mol Sci 2022; 23:4713. [PMID: 35563103 PMCID: PMC9102849 DOI: 10.3390/ijms23094713] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 12/05/2022] Open
Abstract
Obesity and colorectal cancer (CRC) are among the leading diseases causing deaths in the world, showing a complex multifactorial pathology. Obesity is considered a risk factor in CRC development through inflammation, metabolic, and signaling processes. Leptin is one of the most important adipokines related to obesity and an important proinflammatory marker, mainly expressed in adipose tissue, with many genetic variation profiles, many related influencing factors, and various functions that have been ascribed but not yet fully understood and elucidated, the most important ones being related to energy metabolism, as well as endocrine and immune systems. Aberrant signaling and genetic variations of leptin are correlated with obesity and CRC, with the genetic causality showing both inherited and acquired events, in addition to lifestyle and environmental risk factors; these might also be related to specific pathogenic pathways at different time points. Moreover, mutation gain is a crucial factor enabling the genetic process of CRC. Currently, the inconsistent and insufficient data related to leptin's relationship with obesity and CRC indicate the necessity of further related studies. This review summarizes the current knowledge on leptin genetics and its potential relationship with the main pathogenic pathways of obesity and CRC, in an attempt to understand the molecular mechanisms of these associations, in the context of inconsistent and contradictory data. The understanding of these mechanisms linking obesity and CRC could help to develop novel therapeutic targets and prevention strategies, resulting in a better prognosis and management of these diseases.
Collapse
Affiliation(s)
| | - Alexandra Chira
- 2nd Medical Clinic, Department of Internal Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania;
| | - Maria Antonia Martinez-Sanchez
- Obesity and Metabolism Laboratory, Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (M.A.M.-S.); (M.A.N.-S.)
| | - Maria Angeles Nuñez-Sanchez
- Obesity and Metabolism Laboratory, Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (M.A.M.-S.); (M.A.N.-S.)
| | | | - Daniel Mierlita
- Department of Nutrition, University of Oradea, 410048 Oradea, Romania;
| | - Alexandru Vasile Rusu
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania;
- Faculty of Animal Science and Biotechnology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Antonio Jose Ruiz-Alcaraz
- Department of Biochemistry and Molecular B and Immunology, Faculty of Medicine, University of Murcia, 30100 Murcia, Spain;
| | - Monica Trif
- Department of Food Research, Centiv GmbH, 28857 Syke, Germany;
| | - Bruno Ramos-Molina
- Obesity and Metabolism Laboratory, Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (M.A.M.-S.); (M.A.N.-S.)
| |
Collapse
|
6
|
Role of Obesity, Physical Exercise, Adipose Tissue-Skeletal Muscle Crosstalk and Molecular Advances in Barrett's Esophagus and Esophageal Adenocarcinoma. Int J Mol Sci 2022; 23:ijms23073942. [PMID: 35409299 PMCID: PMC8999972 DOI: 10.3390/ijms23073942] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 02/07/2023] Open
Abstract
Both obesity and esophageal adenocarcinoma (EAC) rates have increased sharply in the United States and Western Europe in recent years. EAC is a classic example of obesity-related cancer where the risk of EAC increases with increasing body mass index. Pathologically altered visceral fat in obesity appears to play a key role in this process. Visceral obesity may promote EAC by directly affecting gastroesophageal reflux disease and Barrett’s esophagus (BE), as well as a less reflux-dependent effect, including the release of pro-inflammatory adipokines and insulin resistance. Deregulation of adipokine production, such as the shift to an increased amount of leptin relative to “protective” adiponectin, has been implicated in the pathogenesis of BE and EAC. This review discusses not only the epidemiology and pathophysiology of obesity in BE and EAC, but also molecular alterations at the level of mRNA and proteins associated with these esophageal pathologies and the potential role of adipokines and myokines in these disorders. Particular attention is given to discussing the possible crosstalk of adipokines and myokines during exercise. It is concluded that lifestyle interventions to increase regular physical activity could be helpful as a promising strategy for preventing the development of BE and EAC.
Collapse
|
7
|
Beales ILP, Ogunwobi OO. Leptin activates Akt in oesophageal cancer cells via multiple atorvastatin-sensitive small GTPases. Mol Cell Biochem 2021; 476:2307-2316. [PMID: 33582946 PMCID: PMC8119259 DOI: 10.1007/s11010-021-04067-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 01/12/2021] [Indexed: 12/14/2022]
Abstract
Obesity is a risk factor for Barrett's oesophagus and oesophageal adenocarcinoma. Adipose tissue secretes the hormone leptin. Leptin is a growth factor for several cell types, including Barrett's cells and oesophageal adenocarcinoma cells. Statins are associated with reduced rates of Barrett's oesophagus and oesophageal cancer and exhibit anti-cancer effects in vitro. The mechanisms of these effects are not fully established. We have examined the effects of leptin and the lipid-soluble statin, atorvastatin, on signalling via monomeric GTP-binding proteins and Akt. Proliferation and apoptosis were assessed in OE33 cells. Akt activity was quantified by cell-based ELISA and in vitro kinase assay. Specific small-molecule inhibitors and a dominant-negative construct were used to reduce Akt activity. Small GTPases were inhibited using transfection of dominant-negative plasmids, prenylation inhibitors and pretreatment with atorvastatin. Leptin stimulated Akt activity and cell proliferation and inhibited camptothecin-induced apoptosis in an Akt-sensitive manner. Leptin induced phosphorylation of Bad and FOXO1 in an Akt-sensitive manner. Leptin activated Ras, Rac, RhoA and cdc42. Transfection of dominant-negative plasmids confirmed that leptin-induced Akt activation required Ras, RhoA cdc42 but not Rac. Atorvastatin inhibited leptin-induced activation of Ras, RhoA, cdc42 and Akt. Co-treatment with mevalonate prevented these effects of atorvastatin. The protein kinase Akt is essential to the growth-promoting and anti-apoptotic effects of leptin in oesophageal adenocarcinoma cells. Akt is activated via Ras-, Rho- and cdc42-dependant pathways. Atorvastatin reduces leptin-induced Akt activation by inhibiting prenylation of small GTPases. This may explain the reduced incidence of oesophageal adenocarcinoma in statin-users.
Collapse
Affiliation(s)
- Ian L P Beales
- Department of Gastroenterology, Norfolk and Norwich University Hospital, Norwich, NR4 7UZ, UK.
- Gastrioenterology Research Unit, Norwich Medical School, University of East Anglia, Norwich, NR4 7TJ, UK.
| | - Olorunseun O Ogunwobi
- Gastrioenterology Research Unit, Norwich Medical School, University of East Anglia, Norwich, NR4 7TJ, UK
| |
Collapse
|
8
|
Chang ML, Yang Z, Yang SS. Roles of Adipokines in Digestive Diseases: Markers of Inflammation, Metabolic Alteration and Disease Progression. Int J Mol Sci 2020; 21:E8308. [PMID: 33167521 PMCID: PMC7663948 DOI: 10.3390/ijms21218308] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 10/30/2020] [Accepted: 11/01/2020] [Indexed: 12/13/2022] Open
Abstract
Adipose tissue is a highly dynamic endocrine tissue and constitutes a central node in the interorgan crosstalk network through adipokines, which cause pleiotropic effects, including the modulation of angiogenesis, metabolism, and inflammation. Specifically, digestive cancers grow anatomically near adipose tissue. During their interaction with cancer cells, adipocytes are reprogrammed into cancer-associated adipocytes and secrete adipokines to affect tumor cells. Moreover, the liver is the central metabolic hub. Adipose tissue and the liver cooperatively regulate whole-body energy homeostasis via adipokines. Obesity, the excessive accumulation of adipose tissue due to hyperplasia and hypertrophy, is currently considered a global epidemic and is related to low-grade systemic inflammation characterized by altered adipokine regulation. Obesity-related digestive diseases, including gastroesophageal reflux disease, Barrett's esophagus, esophageal cancer, colon polyps and cancer, non-alcoholic fatty liver disease, viral hepatitis-related diseases, cholelithiasis, gallbladder cancer, cholangiocarcinoma, pancreatic cancer, and diabetes, might cause specific alterations in adipokine profiles. These patterns and associated bases potentially contribute to the identification of prognostic biomarkers and therapeutic approaches for the associated digestive diseases. This review highlights important findings about altered adipokine profiles relevant to digestive diseases, including hepatic, pancreatic, gastrointestinal, and biliary tract diseases, with a perspective on clinical implications and mechanistic explorations.
Collapse
Affiliation(s)
- Ming-Ling Chang
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan
- Division of Hepatology, Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Zinger Yang
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA;
| | - Sien-Sing Yang
- Liver Center, Cathay General Hospital Medical Center, Taipei 10630, Taiwan;
| |
Collapse
|
9
|
d'Alessandro M, Bergantini L, Refini RM, Cameli P, Perillo F, Landi C, Icorne F, Perrone A, Sestini P, Bonella F, Bargagli E. Adiponectin and leptin levels in idiopathic pulmonary fibrosis: A new method for BAL and serum assessment. Immunobiology 2020; 225:151997. [PMID: 32962817 DOI: 10.1016/j.imbio.2020.151997] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/06/2020] [Accepted: 07/29/2020] [Indexed: 02/07/2023]
Abstract
Adipokines (APN) are mainly secreted by adipocytes, macrophages and various other cells, along with their role in the regulation and mediation of inflammatory responses. APN is almost exclusively synthesized by adipocytes and regulated by peroxisome proliferator-activated receptor γ (PPARγ) that is involved in the epithelial-mesenchymal transition, linked lung fibrosis. Leptin is involved in acute lung injury with a role in lung fibrogenesis. Little is known about the relationship between APN/leptin and idiopathic pulmonary fibrosis (IPF) and the few studies available in the literature used ELISA to detect these lipid mediators. Our study is also the first to measure adipokines by the new multiplex assay and for the first time were performed in bronchoalveolar lavage (BAL) from IPF patients. This preliminary study suggests that APN levels in serum could be useful for predicting the prognosis of IPF, as they are inversely correlated with DLco percentages and BMI. Moreover, this first analysis of APN in BAL from IPF patients by a new method demonstrated an inverse correlation between these levels and BMI values and a direct correlation with eosinophil percentages, both of which are negative prognostic factors of IPF.
Collapse
Affiliation(s)
- Miriana d'Alessandro
- Respiratory Diseases and Lung Transplantation, Department of Medical and Surgical Sciences & Neurosciences, Siena University Hospital, Siena, Italy.
| | - Laura Bergantini
- Respiratory Diseases and Lung Transplantation, Department of Medical and Surgical Sciences & Neurosciences, Siena University Hospital, Siena, Italy
| | - Rosa Metella Refini
- Respiratory Diseases and Lung Transplantation, Department of Medical and Surgical Sciences & Neurosciences, Siena University Hospital, Siena, Italy
| | - Paolo Cameli
- Respiratory Diseases and Lung Transplantation, Department of Medical and Surgical Sciences & Neurosciences, Siena University Hospital, Siena, Italy
| | - Felice Perillo
- Respiratory Diseases and Lung Transplantation, Department of Medical and Surgical Sciences & Neurosciences, Siena University Hospital, Siena, Italy
| | - Claudia Landi
- Respiratory Diseases and Lung Transplantation, Department of Medical and Surgical Sciences & Neurosciences, Siena University Hospital, Siena, Italy; Functional proteomics lab, Department of life sciences, University of Siena, Italy
| | - Fiorella Icorne
- Respiratory Diseases and Lung Transplantation, Department of Medical and Surgical Sciences & Neurosciences, Siena University Hospital, Siena, Italy
| | - Anna Perrone
- Respiratory Diseases and Lung Transplantation, Department of Medical and Surgical Sciences & Neurosciences, Siena University Hospital, Siena, Italy
| | - Piersante Sestini
- Respiratory Diseases and Lung Transplantation, Department of Medical and Surgical Sciences & Neurosciences, Siena University Hospital, Siena, Italy
| | - Francesco Bonella
- Center for Interstitial and Rare Lung Disease, Department of Pulmonology, Ruhrlandklinik University Hospital, Essen, Germany
| | - Elena Bargagli
- Respiratory Diseases and Lung Transplantation, Department of Medical and Surgical Sciences & Neurosciences, Siena University Hospital, Siena, Italy
| |
Collapse
|
10
|
Ye P, Xi Y, Huang Z, Xu P. Linking Obesity with Colorectal Cancer: Epidemiology and Mechanistic Insights. Cancers (Basel) 2020; 12:cancers12061408. [PMID: 32486076 PMCID: PMC7352519 DOI: 10.3390/cancers12061408] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 05/24/2020] [Accepted: 05/26/2020] [Indexed: 02/06/2023] Open
Abstract
The incidence of obesity and colorectal cancer (CRC) has risen rapidly in recent decades. More than 650 million obese and 2 billion overweight individuals are currently living in the world. CRC is the third most common cancer. Obesity is regarded as one of the key environmental risk factors for the pathogenesis of CRC. In the present review, we mainly focus on the epidemiology of obesity and CRC in the world, the United States, and China. We also summarize the molecular mechanisms linking obesity to CRC in different aspects, including nutriology, adipokines and hormones, inflammation, gut microbiota, and bile acids. The unmet medical needs for obesity-related CRC are still remarkable. Understanding the molecular basis of these associations will help develop novel therapeutic targets and approaches for the treatment of obesity-related CRC.
Collapse
Affiliation(s)
- Pengfei Ye
- College of Clinical Medicine, Henan University of Science and Technology, Luoyang 471003, China;
| | - Yue Xi
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15213, USA;
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China;
| | - Zhiying Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China;
| | - Pengfei Xu
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15213, USA;
- Correspondence: ; Tel.: +1-412-708-4694
| |
Collapse
|
11
|
Pakdemirli A, Karaca C, Sever T, Daşkin E, Leblebici A, Yiğitbaşi T, Başbinar Y. Carvacrol alters soluble factors in HCT-116 and HT-29 cell lines. Turk J Med Sci 2020; 50:271-276. [PMID: 31742371 PMCID: PMC7080355 DOI: 10.3906/sag-1907-173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 11/16/2019] [Indexed: 12/13/2022] Open
Abstract
Background/aim Natural products are popular insights for researchers to investigate promising anti-cancer agents since some of these substances have lesser adverse effects restricting the treatment than traditional chemotherapeutic agents. A well-known monoterpene Carvacrol, widely consumed in Mediterranean cuisine and lower risks of cancer, has efficient anticancer effects. However, the mechanism of action is yet to be discovered. Materials and methods The investigation aims to illuminate a new perceptive in the role of this substance on colorectal cancer treatment, by the means of differences in a well-defined range of soluble factors. Carvacrol effect on both HT-29 and HCT-116 cell lines was evaluated on proliferation and the IC50 values were calculated by the RTCA xCELLigence device. Then MAGPIX assay was performed to obtain the changes in soluble factors of the cell lines. Results The Multiplexing assay suggests some of these factors were altered in favor of surviving and proliferation in aggressive cell line HCT-116 whereas they were altered against these characters in HT-29, were correlated with the increased IC50 concentration of HCT- 116 in carvacrol treatment. Conclusion The current study indicates that differences in the levels of these soluble factors could modulate the anticancer effect related to carvacrol.
Collapse
Affiliation(s)
- Ahu Pakdemirli
- Department of First and Emergency Aid, Vocational School of Health Services, Dokuz Eylül University, İzmir, Turkey
| | - Caner Karaca
- Department of Basic Oncology, Institute of Health Sciences, Dokuz Eylül University, İzmir, Turkey
| | - Tolga Sever
- Department of Translational Oncology, Institute of Health Sciences, Dokuz Eylül University, İzmir, Turkey
| | - Ezgi Daşkin
- Department of Translational Oncology, Institute of Health Sciences, Dokuz Eylül University, İzmir, Turkey
| | - Asim Leblebici
- Department of Translational Oncology, Institute of Health Sciences, Dokuz Eylül University, İzmir, Turkey
| | - Türkan Yiğitbaşi
- Department of Biochemistry, Faculty of Medicine, İstanbul Medipol University, İstanbul, Turkey
| | - Yasemin Başbinar
- Department of Translational Oncology, Institute of Oncology, Dokuz Eylül University, İzmir, Turkey
| |
Collapse
|
12
|
Cao D, Luo Y, Qin S, Yu M, Mu Y, Ye G, Yang N, Cong Z, Chen J, Qin J, Cui R, Jing R, Cao H, Zhong M. Metallopanstimulin-1 (MPS-1) mediates the promotion effect of leptin on colorectal cancer through activation of JNK/c-Jun signaling pathway. Cell Death Dis 2019; 10:655. [PMID: 31506433 PMCID: PMC6736844 DOI: 10.1038/s41419-019-1911-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 08/24/2019] [Accepted: 08/26/2019] [Indexed: 01/11/2023]
Abstract
Obesity is a major epigenetic cause for colorectal cancer (CRC). Leptin is implicated in obesity-associated CRC, but the underlying mechanism remains unclear. The current study identified over-expression of metallopanstimulin-1 (MPS-1) in CRC patients through microarray and histological analysis, especially in obese CRC patients. MPS-1 was correlated with advanced tumor stage, suggesting its association with CRC progression. In addition, MPS-1 over-expression was associated with poor overall survival (OS) in obese CRC patients, but not in their non-obese counterparts, suggesting its potential as a prognostic marker of obese CRC patients. MPS-1 expression was positively associated with circulating leptin levels in CRC patients, especially in obese cases. Functional experiments demonstrated that MPS-1 silencing inhibited tumor proliferation and colony formation, and induced apoptosis of CRC cells in vitro. Converse results were obtained from the experiments with MPS-1 over-expression. Mechanistically, MPS-1 executed its action through induction of c-Jun N-terminal kinase (JNK)/c-Jun pathway. Moreover, the promotion effect of MPS-1 on CRC progression was modulated by leptin. In vivo studies demonstrated that MPS-1 silencing suppressed tumor growth of CRC via inhibiting JNK/c-Jun signaling. Collectively, this study indicates that MPS-1 promotes leptin-induced CRC via activating JNK/c-Jun pathway. MPS-1 might represent a potent candidate for the treatment and prognostic prediction of obesity-associated CRC.
Collapse
Affiliation(s)
- Dongxing Cao
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China
| | - Yang Luo
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China
| | - Shaolan Qin
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China
| | - Minhao Yu
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China
| | - Yifei Mu
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China
| | - Guangyao Ye
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China
| | - Nailin Yang
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China
| | - Zhijie Cong
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China
| | - Jianjun Chen
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China
| | - Jun Qin
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China
| | - Ran Cui
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China
| | - Ran Jing
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China
| | - Hui Cao
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China
| | - Ming Zhong
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China.
| |
Collapse
|
13
|
Amin MN, Hussain MS, Sarwar MS, Rahman Moghal MM, Das A, Hossain MZ, Chowdhury JA, Millat MS, Islam MS. How the association between obesity and inflammation may lead to insulin resistance and cancer. Diabetes Metab Syndr 2019; 13:1213-1224. [PMID: 31336467 DOI: 10.1016/j.dsx.2019.01.041] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 01/22/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND OBJECTIVES Obesity is associated with metabolic dysfunction and over nutrition. Increased body mass index and obesity are strongly amalgamated with changes in the physiological function of adipose tissue, leading to altered secretion of adipocytokines, inflammatory mediators release as well as chronic inflammation and insulin resistance. The purposes of this study were to review the evidence of how obesity and inflammation may lead to insulin resistance and cancer. SUMMARY Recent findings suggested that increased level of inflammatory mediators in obesity, plays an introductory and cabalistic role in the development of different types of inflammatory disorders including type 2 diabetes mellitus. Link between elevated body mass index and type 2 diabetes mellitus (T2DM). Several of the factors-such as increased levels of leptin, plasminogen activator inhibitor-1, decreased levels of adiponectin, insulin resistance, chronic inflammation etc. consequently result in carcinogenesis and carcinogenic progression too. CONCLUSION This review summarizes how cytokine production in adipose tissue of obese subject creates a chronic inflammatory environment that favors tumor cell motility and invasion to enhance the metastatic potential of tumor cells. High levels of cytokine in the circulation of affected individuals have been associated with a significantly worse outcome. This article also reconnoiters the mechanisms that link obesity to numerous disorders such as inflammation, diabetes, cancers and most specifically combine these processes in a single image. Understanding these mechanisms may assist to understand the consequences of obesity.
Collapse
Affiliation(s)
- Mohammad Nurul Amin
- Department of Pharmacy, Noakhali Science and Technology University, Sonapur, Noakhali, 3814, Bangladesh; Department of Pharmacy, Atish Dipankar University of Science and Technology, Sonapur, Uttara, Dhaka, Bangladesh
| | - Md Saddam Hussain
- Department of Pharmacy, Noakhali Science and Technology University, Sonapur, Noakhali, 3814, Bangladesh
| | - Md Shahid Sarwar
- Department of Pharmacy, Noakhali Science and Technology University, Sonapur, Noakhali, 3814, Bangladesh
| | - Md Mizanur Rahman Moghal
- Department of Pharmacy, Mawlana Bhashani Science and Technology University, Santosh, 1902, Tangail, Bangladesh
| | - Abhijit Das
- Department of Pharmacy, Noakhali Science and Technology University, Sonapur, Noakhali, 3814, Bangladesh
| | - Mohammad Zahid Hossain
- Department of Pharmacy, State University of Bangladesh, Dhanmondi, Dhaka, 1206, Bangladesh
| | - Jakir Ahmed Chowdhury
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Md Shalahuddin Millat
- Department of Pharmacy, Noakhali Science and Technology University, Sonapur, Noakhali, 3814, Bangladesh
| | - Mohammad Safiqul Islam
- Department of Pharmacy, Noakhali Science and Technology University, Sonapur, Noakhali, 3814, Bangladesh.
| |
Collapse
|
14
|
Malcomson FC. Mechanisms underlying the effects of nutrition, adiposity and physical activity on colorectal cancer risk. NUTR BULL 2018. [DOI: 10.1111/nbu.12359] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
15
|
Crean-Tate KK, Reizes O. Leptin Regulation of Cancer Stem Cells in Breast and Gynecologic Cancer. Endocrinology 2018; 159:3069-3080. [PMID: 29955847 PMCID: PMC6669812 DOI: 10.1210/en.2018-00379] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 06/19/2018] [Indexed: 12/18/2022]
Abstract
It is well established that obesity increases the incidence and worsens the prognosis of women's cancer. For breast cancer, women with obesity exhibit more than a twofold increase in the odds of being diagnosed with cancer, with a greater risk of advanced stage at diagnosis, and ≤40% greater risk of recurrence and death than their normal-weight counterparts. These findings are similar in gynecologic cancers, where women who are obese with a body mass index (BMI) >40 kg/m2 have up to six times greater risk of developing endometrial cancer and a 9.2% increase in mortality with every 10% increase in BMI. Likewise, patients with obesity exhibit a twofold higher risk of premenopausal ovarian cancer, and patients who are obese with advanced stage ovarian cancer have shown a shorter time to recurrence and poorer overall survival. Obesity is accompanied by changes in expression of adipose factors that act on local tissues and systemically. Once obesity was recognized as a factor in cancer incidence and progression, the adipose cytokine (adipokine) leptin became the focus of intense investigation as a putative link, with nearly 3000 publications on the topic. Leptin has been shown to increase cell proliferation, inhibit apoptosis, promote angiogenesis, and increase therapeutic resistance. These characteristics are associated with a subset of cells in both liquid and solid tumors known as cancer stem cells (CSCs), or tumor initiating cells. We will review the literature discussing leptin's role in breast and gynecologic cancer, focusing on its role in CSCs, and consider goals for targeting future therapy in this arena to disrupt tumor initiation and progression in women's cancer.
Collapse
Affiliation(s)
- Katie K Crean-Tate
- Department of Obstetrics and Gynecology, Women’s Health Institute, Cleveland Clinic, Cleveland, Ohio
| | - Ofer Reizes
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio
- Case Comprehensive Cancer Center, Cleveland, Ohio
- Correspondence: Ofer Reizes, PhD, Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, NC10, Cleveland, Ohio 44195. E-mail:
| |
Collapse
|
16
|
Tzanavari T, Tasoulas J, Vakaki C, Mihailidou C, Tsourouflis G, Theocharis S. The Role of Adipokines in the Establishment and Progression of Head and Neck Neoplasms. Curr Med Chem 2018; 26:4726-4748. [PMID: 30009699 DOI: 10.2174/0929867325666180713154505] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 03/13/2018] [Accepted: 07/06/2018] [Indexed: 12/15/2022]
Abstract
Adipokines constitute a family of protein factors secreted by white adipose tissue (WAT), that regulate the functions of WAT and other sites. Leptin, adiponectin and resistin, are the main adipokines present in serum and saliva, targeting several tissues and organs, including vessels, muscles, liver and pancreas. Besides body mass regulation, adipokines affect glucose homeostasis, inflammation, angiogenesis, cell proliferation and apoptosis, and other crucial cell procedures. Their involvement in tumor formation and growth is well established and deregulation of adipokine and adipokine receptors' expression is observed in several malignancies including those located in the head and neck region. Intracellular effects of adipokines are mediated by a plethora of receptors that activate several signaling cascades including Janus kinase/ Signal transducer and activator of transcription (JAK/ STAT pathway), Phospatidylinositol kinase (PI3/ Akt/ mTOR) and Peroxisome proliferator-activated receptor (PPAR). The present review summarizes the current knowledge on the role of adipokines family members in carcinogenesis of the head and neck region. The diagnostic and prognostic significance of adipokines and their potential role as serum and saliva biomarkers are also discussed.
Collapse
Affiliation(s)
- Theodora Tzanavari
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, Athens, 11527, Greece
| | - Jason Tasoulas
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, Athens, 11527, Greece
| | - Chrysoula Vakaki
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, Athens, 11527, Greece
| | - Chrysovalantou Mihailidou
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, Athens, 11527, Greece
| | - Gerasimos Tsourouflis
- Second Department of Propaedeutic Surgery, Medical School, National and Kapodistrian, University of Athens, Athens, 11527, Greece
| | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, Athens, 11527, Greece
| |
Collapse
|
17
|
Yunusova NV, Kondakova IV, Kolomiets LA, Afanas'ev SG, Chernyshova AL, Kudryavtsev IV, Tsydenova AA. Molecular targets for the therapy of cancer associated with metabolic syndrome (transcription and growth factors). Asia Pac J Clin Oncol 2017; 14:134-140. [PMID: 29115033 DOI: 10.1111/ajco.12780] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 08/20/2017] [Indexed: 12/23/2022]
Abstract
Metabolic syndrome (MS) is one of the leading risk factors for the development of cardiovascular diseases, type II diabetes mellitus and reproductive system diseases. Currently, not only cardiovascular disease and reproductive history risks related with MS are frequently discussed, but it has been also shown that MS is associated with increased risk of some common cancers (endometrial cancer, postmenopausal breast cancer, colorectal cancer, biliary tract cancers and liver cancer for men). Further studies are required to understand the mechanisms of the involvement of MS components in the pathogenesis of malignant neoplasms. Changes in the expression of transcription and growth factors in the peripheral tissues as well as in cancer tissues of patients with MS were revealed. Transcription factors (AMP-activated protein kinase-1, STAT3, sterol regulatory element-binding protein-1 and peroxisome proliferator-activated receptor-γ), leptin and adiponectin receptors seem to be the most promising molecular targets for the therapy of cancers associated with MS.
Collapse
Affiliation(s)
- Natalia V Yunusova
- Cancer Research Institute, Тomsk National Research Medical Center, Russian Academy of Science, Tomsk, Russian Federation.,Siberian State Medical University, Тоmsk, Russian Federation
| | - Irina V Kondakova
- Cancer Research Institute, Тomsk National Research Medical Center, Russian Academy of Science, Tomsk, Russian Federation
| | - Larisa A Kolomiets
- Cancer Research Institute, Тomsk National Research Medical Center, Russian Academy of Science, Tomsk, Russian Federation.,Siberian State Medical University, Тоmsk, Russian Federation
| | - Sergey G Afanas'ev
- Cancer Research Institute, Тomsk National Research Medical Center, Russian Academy of Science, Tomsk, Russian Federation
| | - Alena L Chernyshova
- Cancer Research Institute, Тomsk National Research Medical Center, Russian Academy of Science, Tomsk, Russian Federation
| | - Igor V Kudryavtsev
- School of Biomedicine, Far Eastern Federal University, Vladivostok, Russian Federation
| | | |
Collapse
|
18
|
Ghasemi A, Hashemy SI, Aghaei M, Panjehpour M. Leptin induces matrix metalloproteinase 7 expression to promote ovarian cancer cell invasion by activating ERK and JNK pathways. J Cell Biochem 2017; 119:2333-2344. [PMID: 28885729 DOI: 10.1002/jcb.26396] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 08/28/2017] [Indexed: 12/16/2022]
Abstract
Leptin, an adipokine secreted by adipose tissue, induces cell invasion and metastasis. MMP7 is a member of the matrix metalloproteinase family that plays an important role in cell invasion. Here we evaluate the possible role and underlying mechanism of MMP7 in the leptin-mediated cell invasion in ovarian cancer cell lines. All experiments were carried out in cultured SKOV3, OVCAR3, and CaoV-3 ovarian cell lines. MMP7 expression was determined using the Western blot following treatment to various concentrations of leptin for defined time intervals. The activation of ERK, JNK, and P38 MAP kinases were determined using Western blotting. Wound healing and BD matrigel invasion assays were used to measure cell migration and invasion. The siRNA approach and pharmacological inhibitors of ERK and JNK pathway were used to confirm the receptor-dependent effect of leptin and a role for ERK and JNK pathway. Zymography assay was employed to determine MMP2 and MMP9 activation. Results show that leptin induces ERK1/2 and JNK1/2 activation and subsequently promotes MMP7 expression in SKOV3 (4.8 ± 0.14 fold of control, P < 0.01) and OVCAR3 (3.1 ± 0.19 fold of control, P < 0.01) ovarian cancer cell lines. These effects was reversed by knockdown of OB-Rb and/or pre-incubation with PD98059 (ERK1/2 inhibitor), SP600125 (JNK1/2 inhibitor). Gelatin zymography showed that MMP7 gene silencing attenuated leptin-induced MMP9 activation in SKOV3 cell line. Taken together, our results suggest new evidences for a modulatory effect of leptin in regulation of ovarian cancer cell invasion by stimulating MMP7 expression via ERK and JNK pathways.
Collapse
Affiliation(s)
- Ahmad Ghasemi
- Department of Biochemistry and Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyed Isaac Hashemy
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Aghaei
- Department of Biochemistry and Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mojtaba Panjehpour
- Department of Biochemistry and Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
19
|
Leptin receptor signaling via Janus kinase 2/Signal transducer and activator of transcription 3 impacts on ovarian cancer cell phenotypes. Oncotarget 2017; 8:93530-93540. [PMID: 29212170 PMCID: PMC5706816 DOI: 10.18632/oncotarget.19873] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 07/11/2017] [Indexed: 12/12/2022] Open
Abstract
Ovarian cancer is a leading cause of cancer mortality in women world-wide. Considerable progress has been made to characterize the different subtypes of ovarian cancer, but specific therapies remain limited and prognosis poor. Cytokine signaling via the interleukin-6 receptor (IL-6R) family and related receptors has been implicated in a number of cancers, including those with an ovarian origin. The leptin receptor (LEPR) is structurally related to these receptors and utilizes similar downstream pathways. LEPR has diverse roles in metabolism, appetite and bone formation with obesity linked to both elevated levels of leptin and increased cancer incidence. This study investigated a potential role for LEPR signaling in ovarian cancer. Leptin stimulation led to increased proliferation, survival and migration of LEPR-expressing ovarian cancer cell lines, with the effects shown to be mediated by the downstream Janus kinase 2/Signal transducer and activator of transcription 3 (JAK2/STAT3) pathway. A significant correlation was identified between high co-expression of leptin and LEPR and decreased patient survival. This study collectively suggests that leptin/LEPR signaling via JAK2/STAT3 has the potential to significantly impact on pathogenesis in a subset of ovarian cancer patients who may benefit from strategies that dampen this pathway.
Collapse
|
20
|
Pan S, Hong W, Wu W, Chen Q, Zhao Q, Wu J, Jin Y. The relationship of nonalcoholic fatty liver disease and metabolic syndrome for colonoscopy colorectal neoplasm. Medicine (Baltimore) 2017; 96:e5809. [PMID: 28079806 PMCID: PMC5266168 DOI: 10.1097/md.0000000000005809] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Colorectal neoplasm is considered to have a strong association with nonalcoholic fatty liver disease (NAFLD) and metabolic syndrome (MetS), respectively. The relationship among NAFLD, MetS, and colorectal neoplasm was assessed in 1793 participants. Participants were divided into 4 groups based on the status of NAFLD and MetS. Relative excess risks of interaction (RERI), attributable proportion (AP), and synergy index (SI) were applied to evaluate the additive interaction. NAFLD and MetS were significantly correlated with colorectal neoplasm and colorectal cancer (CRC), respectively. The incidence of CRC in NAFLD (+) MetS (+) group was significantly higher than other 3 groups. The result of RERI, AP, and SI indicated the significant additive interaction of NAFLD and MetS on the development of CRC. NAFLD and MetS are risk factors for colorectal neoplasm and CRC, respectively. And NAFLD and MetS have an additive effect on the development of CRC.
Collapse
|
21
|
Nimri L, Saadi J, Peri I, Yehuda-Shnaidman E, Schwartz B. Mechanisms linking obesity to altered metabolism in mice colon carcinogenesis. Oncotarget 2016; 6:38195-209. [PMID: 26472027 PMCID: PMC4741993 DOI: 10.18632/oncotarget.5561] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 09/29/2015] [Indexed: 12/20/2022] Open
Abstract
There are an increasing number of reports on obesity being a key risk factor for the development of colon cancer. Our goal in this study was to explore the metabolic networks and molecular signaling pathways linking obesity, adipose tissue and colon cancer. Using in-vivo experiments, we found that mice fed a high-fat diet (HFD) and injected with MC38 colon cancer cells develop significantly larger tumors than their counterparts fed a control diet. In ex-vivo experiments, MC38 and CT26 colon cancer cells exposed to conditioned media (CM) from the adipose tissue of HFD-fed mice demonstrated significantly lower oxygen consumption rate as well as lower maximal oxygen consumption rate after carbonyl cyanide-4-trifluoromethoxy-phenylhydrazone treatment. In addition, in-vitro assays showed downregulated expression of mitochondrial genes in colon cancer cells exposed to CM prepared from the visceral fat of HFD-fed mice or to leptin. Interestingly, leptin levels detected in the media of adipose tissue explants co-cultured with MC38 cancer cells were higher than in adipose tissue explants cultures, indicating cross talk between the adipose tissue and the cancer cells. Salient findings of the present study demonstrate that this crosstalk is mediated at least partially by the JNK/STAT3-signaling pathway.
Collapse
Affiliation(s)
- Lili Nimri
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Janan Saadi
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Irena Peri
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Einav Yehuda-Shnaidman
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Betty Schwartz
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
22
|
Fiedor E, Gregoraszczuk EŁ. The molecular mechanism of action of superactive human leptin antagonist (SHLA) and quadruple leptin mutein Lan-2 on human ovarian epithelial cell lines. Cancer Chemother Pharmacol 2016; 78:611-22. [PMID: 27480179 PMCID: PMC5010610 DOI: 10.1007/s00280-016-3113-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 07/22/2016] [Indexed: 11/24/2022]
Abstract
Introduction A number of leptin receptor antagonists have been synthesised for therapeutic use, with pre-clinical tests suggesting their future use in anticancer therapy. To our knowledge, there are no data concerning the possible application of leptin receptor blockers in ovarian cancer. Methods In this study, we evaluated two leptin receptor antagonists: superactive human leptin antagonist (SHLA) and quadruple leptin mutein, Lan-2 (L39A/D40A/F41A/I42A), on cell proliferation (Alamar Blue test, BrdU assay), cell cycle gene (qPCR) and protein expression (Western blot) and cell signalling pathways (Western blot) in three different types of cell lines: OVCAR-3, CaOV-3 and HOSEpiC. Results Both receptor blockers had no effect on non-cancerous HOSEpiC cell line proliferation; however, both reversed the stimulatory effect of leptin on CaOV-3 cell line proliferation to control levels and to below control levels in OVCAR-3 cells. In metastatic carcinoma CaOV-3, both ObR antagonists had an inhibitory effect on the cdk2/cyclin D1 complex, while in serous carcinoma, OVCAR-3, they only had an effect on cdk2 and cdk4 protein expression. SHLA had an inhibitory effect on all investigated signalling pathways in OVCAR-3, while only on Stat3 in CaOV-3. Lan-2 had an inhibitory effect on Stat3 and ERK1/2 in CaOV-3, while in OVCAR-3 it only affected Akt protein phosphorylation. Conclusion Based on these results, we conclude that SHLA and Lan-2 are promising leptin receptor inhibitors which could be used to block leptin activity, eliminating its negative effects on activities related to carcinogenesis. However, the selection of a specific antagonist should be related to tumour type.
Collapse
Affiliation(s)
- Elżbieta Fiedor
- Department of Physiology and Toxicology of Reproduction, Chair of Animal Physiology, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387, Kraków, Poland
| | - Ewa Łucja Gregoraszczuk
- Department of Physiology and Toxicology of Reproduction, Chair of Animal Physiology, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387, Kraków, Poland.
| |
Collapse
|
23
|
Zheng XJ, Yang ZX, Dong YJ, Zhang GY, Sun MF, An XK, Pan LH, Zhang SL. Downregulation of leptin inhibits growth and induces apoptosis of lung cancer cells via the Notch and JAK/STAT3 signaling pathways. Biol Open 2016; 5:794-800. [PMID: 27185268 PMCID: PMC4920192 DOI: 10.1242/bio.017798] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Previous studies have documented that leptin is involved in the pathogenesis of many human cancer types by regulation of numerous signal transduction pathways. The aim of this study was to investigate the biological roles of leptin and the mechanisms attributed to its action in non-small cell lung cancer (NSCLC) cell lines. The expression of leptin was measured by quantitative real-time PCR and western blot in seven NSCLC cell lines. Proliferation and apoptosis of NSCLC cells in response to leptin knockdown were determined by MTT assay and flow cytometry, respectively. The effect of leptin knockdown on the Notch and JAK/STAT3 signaling pathways was further examined by western blot. Leptin expression was significantly increased in NSCLC cell lines compared with normal human bronchial epithelial cell HBE. Leptin knockdown inhibited cell proliferation and induced apoptosis in NSCLC cell lines through inactivation of the Notch and JAK/STAT3 signaling pathways. Furthermore, gene silencing of Notch signaling with Notch-1 siRNA or inhibition of JAK/STAT3 signaling by JSI-124, an inhibitor of STAT3, resulted in proliferation inhibition and apoptosis induction in NSCLC A549 cells. Our findings suggested that leptin knockdown could become a new approach for the prevention of lung cancer progression, which is likely to be mediated at least partially by inactivation of the Notch and JAK/STAT3 signaling pathways. Summary: Leptin knockdown could become a new approach for the prevention of lung cancer progression, which we have shown is likely to be mediated by inactivation of the Notch and JAK/STAT3 signaling pathways.
Collapse
Affiliation(s)
- Xian-Jie Zheng
- Department of Thoracic Surgery, The First Affiliated Hospital of Henan University, Kaifeng, Henan Province 475000, China
| | - Zhong-Xin Yang
- Department of Thoracic Surgery, The First Affiliated Hospital of Henan University, Kaifeng, Henan Province 475000, China
| | - Yan-Jun Dong
- Department of Thoracic Surgery, The First Affiliated Hospital of Henan University, Kaifeng, Henan Province 475000, China
| | - Guo-Yu Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Henan University, Kaifeng, Henan Province 475000, China
| | - Ming-Fei Sun
- Department of Thoracic Surgery, The First Affiliated Hospital of Henan University, Kaifeng, Henan Province 475000, China
| | - Xiao-Kang An
- Department of Thoracic Surgery, The First Affiliated Hospital of Henan University, Kaifeng, Henan Province 475000, China
| | - Li-Hong Pan
- Department of Thoracic Surgery, The First Affiliated Hospital of Henan University, Kaifeng, Henan Province 475000, China
| | - Shuang-Lin Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Henan University, Kaifeng, Henan Province 475000, China
| |
Collapse
|
24
|
Mahmoudi T, Farahani H, Nobakht H, Dabiri R, Zali MR. Genetic Variations in Leptin and Leptin Receptor and Susceptibility to Colorectal Cancer and Obesity. IRANIAN JOURNAL OF CANCER PREVENTION 2016; 9:e7013. [PMID: 27703650 PMCID: PMC5038839 DOI: 10.17795/ijcp-7013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 04/15/2016] [Indexed: 01/29/2023]
Abstract
Background Colorectal cancer (CRC) is the second most commonly diagnosed cancer and the fourth leading cause of cancer-related mortality around the world. Objectives With regard to the role of obesity in colorectal cancer (CRC) and the role of leptin in obesity, we investigated whether leptin (LEP) and leptin receptor (LEPR) gene variants are associated with CRC risk. Patients and Methods We evaluated LEP (rs7799039) and LEPR (rs1137101) gene variants by using PCR-RFLP method in 261 cases with CRC and 339 controls. Results No significant difference was found for rs7799039 and rs1137101gene variants between the cases with CRC and controls. However, the LEPR rs1137101 “GG” genotype compared with “AA” genotype and “AA + AG” genotype was associated with increased risks for obesity, and the differences remained significant after adjustment for confounding factors including age, sex, smoking status, and NSAID use (P = 0.015; OR = 2.42, 95%CI = 1.19 - 4.93 and P = 0.016; OR = 2.28, 95%CI = 1.17 - 4.48, respectively). In addition, the LEPR “G” allele compared with the “A” allele was associated with an increased risk for obesity (P = 0.024; OR = 1.44, 95%CI = 1.05 - 1.98). Conclusions Consistent with most previous studies, our findings found no association between LEP (rs7799039) and LEPR (rs1137101) gene variants and CRC risk. However, the LEPR rs1137101 “GG” genotype compared with the “AA” genotype and “AA+AG” genotype was associated with a 2.42-fold and a 2.28-fold increased risk for obesity, respectively.
Collapse
Affiliation(s)
- Touraj Mahmoudi
- Department of Cancer, Gastroenterology and Liver Diseases Research Center, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
| | - Hamid Farahani
- Department of Physiology, School of Medicine, Qom University of Medical Sciences, Qom, IR Iran
| | - Hossein Nobakht
- Internal Medicine Department, Semnan University of Medical Sciences, Semnan, IR Iran
| | - Reza Dabiri
- Internal Medicine Department, Semnan University of Medical Sciences, Semnan, IR Iran
| | - Mohammad Reza Zali
- Department of Cancer, Gastroenterology and Liver Diseases Research Center, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
| |
Collapse
|
25
|
Oh JS, Kim HH, Hwang HS, Yun DY, Kim BS, Lee CH, Han J, Kim HG, Jung JT, Kwon JG, Kim EY. [Comparison of blood leptin concentration and colonic mucosa leptin expression in colon adenoma patients and healthy control]. THE KOREAN JOURNAL OF GASTROENTEROLOGY 2016; 63:354-60. [PMID: 24953612 DOI: 10.4166/kjg.2014.63.6.354] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND/AIMS Obesity increases the risk of colorectal cancer and adenomatous polyp, and one of the underlying mechanisms of this increase is considered to be due to the growth promoting effects of adipokines, such as leptin. In order to investigate this finding, leptin expression in the colonic tissue and blood leptin concentration of the colonic adenoma patients were compared to those of the control group. METHODS Colonic adenoma tissues were obtained by polypectomy (n=60). In these patients, normal colonic mucosa at remote areas from the polyp was also obtained and blood samples were collected as well. Age and sex matched control subjects were selected among those who showed normal colonic mucosa in health screening colonoscopy (n=60). RESULTS There was no significant difference in serum leptin concentration between the colonic adenoma patients and control subjects. Leptin expression was noted in 43.3% of the colonic adenomas, but only in 6.7% of normal colonic mucosa from the control subjects (p<0.01). There were ten cases of concurrent adenocarcinoma in situ in adenoma patients, eight cases of which expressed leptin (p=0.01). In adenoma group, leptin expression rate was significantly high in larger adenomas and in obese patients (p<0.05). However, there was no statistically significant relationship between leptin expression in colonic mucosa and serum leptin level. CONCLUSIONS Leptin expression was more frequently observed in colonic adenomas, especially in larger adenomas associated with adenocarcinoma in situ, but blood leptin level was not related to tissue leptin expression. Leptin expression was more frequently observed in obese patients from the adenoma group. Therefore, leptin may play an important role in colonic tumorigenesis and progression, especially in obese patient.
Collapse
Affiliation(s)
- Jang Seok Oh
- Department of Internal Medicine, Catholic University of Daegu School of Medicine, 33 Duryugongwon-ro 17-gil, Nam-gu, Daegu 705-718, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Pietrzyk L, Torres A, Maciejewski R, Torres K. Obesity and Obese-related Chronic Low-grade Inflammation in Promotion of Colorectal Cancer Development. Asian Pac J Cancer Prev 2016; 16:4161-8. [PMID: 26028066 DOI: 10.7314/apjcp.2015.16.10.4161] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Colorectal cancer (CRC) is a worldwide health problem, being the third most commonly detected cancer in males and the second in females. Rising CRC incidence trends are mainly regarded as a part of the rapid 'Westernization' of life-style and are associated with calorically excessive high-fat/low-fibre diet, consumption of refined products, lack of physical activity, and obesity. Most recent epidemiological and clinical investigations have consistently evidenced a significant relationship between obesity-driven inflammation in particular steps of colorectal cancer development, including initiation, promotion, progression, and metastasis. Inflammation in obesity occurs by several mechanisms. Roles of imbalanced metabolism (MetS), distinct immune cells, cytokines, and other immune mediators have been suggested in the inflammatory processes. Critical mechanisms are accounted to proinflammatory cytokines (e.g. IL-1, IL-6, IL-8) and tumor necrosis factor-α (TNF-α). These molecules are secreted by macrophages and are considered as major agents in the transition between acute and chronic inflammation and inflammation-related CRC. The second factor promoting the CRC development in obese individuals is altered adipokine concentrations (leptin and adiponectin). The role of leptin and adiponectin in cancer cell proliferation, invasion, and metastasis is attributable to the activation of several signal transduction pathways (JAK/STAT, mitogen-activated protein kinase (MAPK), phosphatidylinositol 3 kinase (PI3K), mTOR, and 5'AMPK signaling pathways) and multiple dysregulation (COX-2 downregulation, mRNA expression).
Collapse
Affiliation(s)
- Lukasz Pietrzyk
- Laboratory of Biostructure, Department of Human Anatomy, Medical University of Lublin, Military Clinical Hospital, Lublin, Poland E-mail :
| | | | | | | |
Collapse
|
27
|
Nepal S, Kim MJ, Hong JT, Kim SH, Sohn DH, Lee SH, Song K, Choi DY, Lee ES, Park PH. Autophagy induction by leptin contributes to suppression of apoptosis in cancer cells and xenograft model: involvement of p53/FoxO3A axis. Oncotarget 2016; 6:7166-81. [PMID: 25704884 PMCID: PMC4466676 DOI: 10.18632/oncotarget.3347] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Accepted: 01/15/2015] [Indexed: 12/19/2022] Open
Abstract
Leptin, a hormone mainly produced from adipose tissue, has been shown to induce proliferation of cancer cells. However, the molecular mechanisms underlying leptin-induced tumor progression have not been clearly elucidated. In the present study, we investigated the role of autophagy in leptin-induced cancer cell proliferation using human hepatoma (HepG2) and breast cancer cells (MCF-7), and tumor growth in a xenograft model. Herein, we showed that leptin treatment caused autophagy induction as assessed by increase in expression of autophagy-related genes, including beclin-1, Atg5 and LC3 II, further induction of autophagosome formation and autophagic flux. Interestingly, inhibition of autophagic process by treatment with inhibitors and LC3B gene silencing blocked leptin-induced increase in cell number and suppression of apoptosis, indicating a crucial role of autophagy in leptin-induced tumor progression. Moreover, gene silencing of p53 or FoxO3A prevented leptin-induced LC3 II protein expression, suggesting an involvement of p53/FoxO3A axis in leptin-induced autophagy activation. Leptin administration also accelerated tumor growth in BALB/c nude mice, which was found to be autophagy dependent. Taken together, our results demonstrate that leptin-induced tumor growth is mediated by autophagy induction and autophagic process would be a promising target to regulate development of cancer caused by leptin production.
Collapse
Affiliation(s)
- Saroj Nepal
- College of Pharmacy, Yeungnam University, Gyeongsangbuk-do, Republic of Korea
| | - Mi Jin Kim
- College of Pharmacy, Yeungnam University, Gyeongsangbuk-do, Republic of Korea
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Sang Hyun Kim
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Dong-Hwan Sohn
- Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Iksan, Jeonbuk, Republic of Korea
| | - Sung Hee Lee
- Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Iksan, Jeonbuk, Republic of Korea
| | - Kyung Song
- Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Iksan, Jeonbuk, Republic of Korea
| | - Dong Young Choi
- College of Pharmacy, Yeungnam University, Gyeongsangbuk-do, Republic of Korea
| | - Eung Seok Lee
- College of Pharmacy, Yeungnam University, Gyeongsangbuk-do, Republic of Korea
| | - Pil-Hoon Park
- College of Pharmacy, Yeungnam University, Gyeongsangbuk-do, Republic of Korea
| |
Collapse
|
28
|
Lee J, Jeon JY, Meyerhardt JA. Diet and lifestyle in survivors of colorectal cancer. Hematol Oncol Clin North Am 2015; 29:1-27. [PMID: 25475570 DOI: 10.1016/j.hoc.2014.09.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Much research supports the association between diet and lifestyle in the development of colorectal cancer. Recent studies have demonstrated an association between various energy balance host factors (obesity, physical inactivity, and certain dietary factors) and outcomes. This review summarizes the impact of modifiable lifestyle factors, including prediagnosis and postdiagnosis adiposity, physical activity, and diet, on the prognosis of patients with colorectal cancer. The article focuses on associations of these factors in survivors of stage I to III colorectal cancer, and summarizes the possible mechanisms for the association between modifiable lifestyle factors and the prognosis of patients with colorectal cancer.
Collapse
Affiliation(s)
- Junga Lee
- Exercise Medicine Center for Cancer and Diabetes Patients, Department of Sport and Leisure Studies, 50 Yonsei-ro, Yonsei University, Seoul 120-749, Korea
| | - Justin Y Jeon
- Exercise Medicine Center for Cancer and Diabetes Patients, Department of Sport and Leisure Studies, 50 Yonsei-ro, Yonsei University, Seoul 120-749, Korea
| | - Jeffrey A Meyerhardt
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA.
| |
Collapse
|
29
|
Leptin receptor mutation results in defective neutrophil recruitment to the colon during Entamoeba histolytica infection. mBio 2014; 5:mBio.02046-14. [PMID: 25516614 PMCID: PMC4271549 DOI: 10.1128/mbio.02046-14] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Amebiasis is an enteric infection caused by Entamoeba histolytica, with symptoms ranging in severity from asymptomatic colonization to dysentery. Humans with the Q223R leptin receptor mutation have increased susceptibility to amebiasis, but the mechanism has been unclear. Using a mouse model expressing the mutation, we tested the impact of the Q223R mutation on the innate immune response to E. histolytica infection. The 223R mutation resulted in delayed clearance of amebae from the cecum, as had been previously observed. We found that neutrophil influx to the site of the infection was reduced 12 h after infection in 223R mice. Depletion of neutrophils with anti-Ly6G monoclonal antibody increased susceptibility of wild-type mice to infection, supporting the importance of neutrophils in innate defense. Leptin expression was increased in the cecum by E. histolytica infection, suggesting that leptin could serve as a homing signal for neutrophils to the gut. Interestingly, neutrophils from mice with the 223R mutation had diminished chemotaxis toward leptin. This impaired chemotaxis likely explained the reduced gut infiltration of neutrophils. The newly recognized effect of the leptin receptor Q223R mutation on neutrophil chemotaxis and the impact of this mutation on multiple infectious diseases suggest a broader impact of this mutation on susceptibility to disease. The Q223R leptin receptor mutation results in increased susceptibility of children and adults to E. histolytica, one of the leading causes of diarrhea morbidity and mortality in children of the developing world. Here we show that the mutation results in reduced neutrophil infiltration to the site of infection. This decreased infiltration is likely due to the mutation’s impact on neutrophil chemotaxis toward leptin, an inflammatory agent upregulated in the cecum after infection. The significance of this work thus extends beyond understanding E. histolytica susceptibility by also providing insight into the potential impact of leptin on neutrophil function in other states of altered leptin signaling, which include both malnutrition and obesity.
Collapse
|
30
|
Jiang N, Sun R, Sun Q. Leptin signaling molecular actions and drug target in hepatocellular carcinoma. DRUG DESIGN DEVELOPMENT AND THERAPY 2014; 8:2295-302. [PMID: 25484575 PMCID: PMC4238752 DOI: 10.2147/dddt.s69004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Previous reports indicate that over 13 different tumors, including hepatocellular carcinoma (HCC), are related to obesity. Obesity-associated inflammatory, metabolic, and endocrine mediators, as well as the functioning of the gut microbiota, are suspected to contribute to tumorigenesis. In obese people, proinflammatory cytokines/chemokines including tumor necrosis factor-alpha, interleukin (IL)-1 and IL-6, insulin and insulin-like growth factors, adipokines, plasminogen activator inhibitor-1, adiponectin, and leptin are found to play crucial roles in the initiation and development of cancer. The cytokines induced by leptin in adipose tissue or tumor cells have been intensely studied. Leptin-induced signaling pathways are critical for biological functions such as adiposity, energy balance, endocrine function, immune reaction, and angiogenesis as well as oncogenesis. Leptin is an activator of cell proliferation and anti-apoptosis in several cell types, and an inducer of cancer stem cells; its critical roles in tumorigenesis are based on its oncogenic, mitogenic, proinflammatory, and pro-angiogenic actions. This review provides an update of the pathological effects of leptin signaling with special emphasis on potential molecular mechanisms and therapeutic targeting, which could potentially be used in future clinical settings. In addition, leptin-induced angiogenic ability and molecular mechanisms in HCC are discussed. The stringent binding affinity of leptin and its receptor Ob-R, as well as the highly upregulated expression of both leptin and Ob-R in cancer cells compared to normal cells, makes leptin an ideal drug target for the prevention and treatment of HCC, especially in obese patients.
Collapse
Affiliation(s)
- Nan Jiang
- Shandong University School of Medicine, Jinan, Shandong Province, People's Republic of China
| | - Rongtong Sun
- Weihai Municipal Hospital, Weihai, Shandong Province, People's Republic of China
| | - Qing Sun
- Department of Pathology, QianFoShan Hospital Affiliated to Shandong University, Jinan, Shandong Province, People's Republic of China
| |
Collapse
|
31
|
Park J, Morley TS, Kim M, Clegg DJ, Scherer PE. Obesity and cancer--mechanisms underlying tumour progression and recurrence. Nat Rev Endocrinol 2014; 10:455-465. [PMID: 24935119 PMCID: PMC4374431 DOI: 10.1038/nrendo.2014.94] [Citation(s) in RCA: 564] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Over the past several years, the field of cancer research has directed increased interest towards subsets of obesity-associated tumours, which include mammary, renal, oesophageal, gastrointestinal and reproductive cancers in both men and women. The increased risk of breast cancer that is associated with obesity has been widely reported; this has drawn much attention and as such, warrants investigation of the key mechanisms that link the obese state with cancer aetiology. For instance, the obese setting provides a unique adipose tissue microenvironment with concomitant systemic endocrine alterations that favour both tumour initiation and progression. Major metabolic differences exist within tumours that distinguish them from non-transformed healthy tissues. Importantly, considerable metabolic differences are induced by tumour cells in the stromal vascular fraction that surrounds them. The precise mechanisms that underlie the association of obesity with cancer and the accompanying metabolic changes that occur in the surrounding microenvironment remain elusive. Nonetheless, specific therapeutic agents designed for patients with obesity who develop tumours are clearly needed. This Review discusses recent advances in understanding the contributions of obesity to cancer and their implications for tumour treatment.
Collapse
Affiliation(s)
- Jiyoung Park
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, 50 UNIST Street, Ulsan 689-798, South Korea (J.P.). Touchstone Diabetes Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA (T.S.M., M.K., D.J.C., P.E.S.)
| | - Thomas S Morley
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, 50 UNIST Street, Ulsan 689-798, South Korea (J.P.). Touchstone Diabetes Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA (T.S.M., M.K., D.J.C., P.E.S.)
| | - Min Kim
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, 50 UNIST Street, Ulsan 689-798, South Korea (J.P.). Touchstone Diabetes Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA (T.S.M., M.K., D.J.C., P.E.S.)
| | - Deborah J Clegg
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, 50 UNIST Street, Ulsan 689-798, South Korea (J.P.). Touchstone Diabetes Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA (T.S.M., M.K., D.J.C., P.E.S.)
| | - Philipp E Scherer
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, 50 UNIST Street, Ulsan 689-798, South Korea (J.P.). Touchstone Diabetes Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA (T.S.M., M.K., D.J.C., P.E.S.)
| |
Collapse
|
32
|
Zhou W, Tian Y, Gong H, Guo S, Luo C. Oncogenic role and therapeutic target of leptin signaling in colorectal cancer. Expert Opin Ther Targets 2014; 18:961-71. [PMID: 24946986 DOI: 10.1517/14728222.2014.926889] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Obesity is characterized by high secretion of several cytokines from adipose tissue and is a recognized risk factor for many cancers. Among these cytokines, leptin mainly produced by adipose tissue and cancer cells is the most studied adipokine. Leptin is an activator of cell proliferation, an antiapoptotic molecule and inducer of cancer stem cells in many cell types, and its critical roles in obesity-related tumorigenesis are based on its oncogenic, mitogenic, pro-inflammatory and pro-angiogenic actions. AREAS COVERED These leptin-induced signals and action are critical for their biological effects on energy balance, adiposity, endocrine systems, immunity, angiogenesis as well as oncogenesis. This review focuses on the up-to-date knowledge on the oncogenic role of leptin signaling, clinical significance and specific drug target development in colorectal cancer (CRC). Additionally, leptin-induced angiogenic ability and molecular mechanisms in CRC cells are discussed. EXPERT OPINION Stringent binding affinity of leptin/Ob-R and overexpression of leptin/Ob-R and their targets in cancer cells make it a unique drug target for prevention and treatment of CRC, particularly in obesity colorectal patients.
Collapse
Affiliation(s)
- Weiqiang Zhou
- Shenyang Medical College, Key Laboratory of Environmental Pollution and Microecology of Liaoning Province , No.146 North Huanghe St, Huanggu Dis, Shenyang City, Liaoning Pro 110034 , PR China
| | | | | | | | | |
Collapse
|
33
|
Lin XF, Shi KQ, You J, Liu WY, Luo YW, Wu FL, Chen YP, Wong DKH, Yuen MF, Zheng MH. Increased risk of colorectal malignant neoplasm in patients with nonalcoholic fatty liver disease: a large study. Mol Biol Rep 2014; 41:2989-2997. [PMID: 24449368 DOI: 10.1007/s11033-014-3157-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 01/13/2014] [Indexed: 12/12/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) has been suggested to be a strong risk factor of colorectal benign adenomas and advanced neoplasms. The aim of this large cohort study was to further investigate the prevalence of colorectal malignant neoplasm (CRMN) in patients with NAFLD and determine whether association between NAFLD and CRMN exists. 2,315 community subjects (1,370 males and 945 females) who underwent a routine colonoscopy according to international colorectal cancer screening guideline were recruited. Nature of colorectal lesions determined by biopsy and NAFLD was diagnosed by ultrasound. Binary logistic regression analysis was applied to explore the related associations. Prevalence of CRMN was 29.3% (77/263) in patients with NAFLD, which was significantly higher than 18.0% (369/2,052) in the control group (P<0.05). In addition, malignant neoplasm in NAFLD group occurred more frequently at sigmoid colon than in control group (14.3 vs. 11.9%). The incidence of highly-differentiated colorectal adenocarcinoma in NAFLD group was significantly higher than control group (62.3 vs. 9.8%). Univariate analysis showed that NAFLD had strong association with CRMN (OR 2.043; 95% CI 1.512-2.761; P<0.05). After adjusting for metabolic and other confounding factors, NAFLD remained as an independent risk factor for CRMN (OR 1.868; 95% CI 1.360-2.567; P<0.05). NAFLD was an independent risk factor for CRMN. Sigmoid carcinoma and highly differentiated colorectal adenocarcinoma were more commonly found in NAFLD. (ClinicalTrials.gov number, NCT01657773, website: http://clinicaltrials.gov/ct2/show/NCT01657773?term=zheng+minghua&rank=1 ).
Collapse
Affiliation(s)
- Xian-Feng Lin
- Department of Infection and Liver Diseases, Liver Research Center, The First Affiliated Hospital of Wenzhou Medical University, No. 2 Fuxue Lane, Wenzhou, 325000, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Guo S, Singh KK, Lillard JW, Yang L. Leptin Signaling in the Regulation of Stem and Cancer Stem Cells. CANCER STEM CELLS 2014:347-360. [DOI: 10.1002/9781118356203.ch26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
35
|
Beales ILP, Garcia-Morales C, Ogunwobi OO, Mutungi G. Adiponectin inhibits leptin-induced oncogenic signalling in oesophageal cancer cells by activation of PTP1B. Mol Cell Endocrinol 2014; 382:150-158. [PMID: 23994026 DOI: 10.1016/j.mce.2013.08.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 08/21/2013] [Accepted: 08/21/2013] [Indexed: 01/05/2023]
Abstract
Obesity is characterised by hyperleptinaemia and hypoadiponectinaemia and these metabolic abnormalities may contribute to the progression of several obesity-associated cancers including oesophageal adenocarcinoma (OAC). We have examined the effects of leptin and adiponectin on OE33 OAC cells. Leptin stimulated proliferation, invasion and migration and inhibited apoptosis in a STAT3-dependant manner. Leptin-stimulated MMP-2 secretion in a partly STAT3-dependent manner and MMP-9 secretion via a STAT3-independent pathway. Adiponectin inhibited leptin-induced proliferation, migration, invasion, MMP secretion and reduced the anti-apoptotic effects: these effects of adiponectin were ameliorated by both a non-specific tyrosine phosphatase inhibitor and a specific PTP1B inhibitor. Adiponectin reduced leptin-stimulated JAK2 activation and STAT3 transcriptional activity in a PTP1B-sensitive manner and adiponectin increased both PTP1B protein and activity. We conclude that adiponectin restrains leptin-induced signalling and pro-carcinogenic behaviour by inhibiting the early events in leptin-induced signal transduction by activating PTP1B. Relative adiponectin deficiency in obesity may contribute to the promotion of OAC.
Collapse
Affiliation(s)
- Ian L P Beales
- Department of Gastroenterology, Norfolk and Norwich University Hospital, Norwich NR4 7UZ, UK; Biomedical Research Centre, School of Medicine, Health Policy and Practice, University of East Anglia, Norwich NR4 7TJ, UK.
| | - Carla Garcia-Morales
- Biomedical Research Centre, School of Medicine, Health Policy and Practice, University of East Anglia, Norwich NR4 7TJ, UK
| | - Olorunseun O Ogunwobi
- Biomedical Research Centre, School of Medicine, Health Policy and Practice, University of East Anglia, Norwich NR4 7TJ, UK
| | - Gabriel Mutungi
- Biomedical Research Centre, School of Medicine, Health Policy and Practice, University of East Anglia, Norwich NR4 7TJ, UK
| |
Collapse
|
36
|
Leptin concentration and nutritional status in the course of treatment in children with brain tumours--preliminary report. Childs Nerv Syst 2014; 30:131-6. [PMID: 23780403 DOI: 10.1007/s00381-013-2183-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Accepted: 05/22/2013] [Indexed: 10/26/2022]
Abstract
PURPOSE To assess the nutritional status in children with central nervous system (CNS) tumours, including concentration of leptin, the neuropeptide responsible for regulation of energetic homeostasis in an organism. METHOD The studied group comprised 44 children with brain tumours, aged (4.02-18.7). In all children during the whole therapy (from the start to the period of 1 year and more after the end of therapy), a number of standard deviations (SDs) for the body mass index (SDS BMI) was derived from anthropometric measurements. Concentrations of leptin were assayed simultaneously. RESULT The lowest values of the anthropometric indices were found in children during the maintenance therapy. Concentrations of leptin in patients with malignant CNS tumours and significant undernutrition were slightly greater as compared to patients presenting normal nutritional status; however, without statistical significance. CONCLUSION In children with tumours of the central nervous system, there are quantitative disorders of the nutritional status which correlate with the period of the treatment. The most significant disorders in the nutritional status are observed during maintenance chemotherapy. There was no statistically significant correlation between the concentration of leptin and nutritional status in children with malignant brain tumours during the course of treatment and after its completion.
Collapse
|
37
|
Yuan Y, Zhang J, Cai L, Ding C, Wang X, Chen H, Wang X, Yan J, Lu J. Leptin induces cell proliferation and reduces cell apoptosis by activating c-myc in cervical cancer. Oncol Rep 2013; 29:2291-6. [PMID: 23588620 DOI: 10.3892/or.2013.2390] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 03/18/2013] [Indexed: 12/25/2022] Open
Abstract
Leptin may be involved in the pathogenesis of numerous cancer types by activation of cellular signal-transduction pathways. In this study, we analyzed the role of leptin and the mechanism(s) underlying its action in cervical carcinoma cells. Firstly, we examined the expression of leptin in 80 cases of cervical carcinoma using immunohistochemical staining. The results showed that the levels of leptin correlated significantly with the grades of cervical carcinoma. At the same time, the expression of leptin correlated positively with c-myc and its downstream gene, bcl-2. The expression of c-myc and bcl-2 was evaluated in leptin-treated HeLa cells by reverse transcription-polymerase chain reaction (RT-PCR) and western blotting. Recombinant leptin significantly activated the expression of bcl-2 and c-myc in HeLa cells. Finally, the apoptotic index, the proliferative activity and the expression levels of c-myc and bcl-2 were determined in the HeLa cells treated with silencing of leptin. We found that silencing of leptin inhibited the proliferation of HeLa cells and reduced the expression of bcl-2 and c-myc. Our data demonstrated that leptin interferes with the expression of oncogenic c-myc and anti-apoptotic bcl-2, and regulates cell turnover and facilitates the progression of cervical cancer.
Collapse
Affiliation(s)
- Yong Yuan
- Department of Pathology, Shaanxi Cancer Hospital, Xi'an, Shaanxi 710061, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Dutta D, Ghosh S, Pandit K, Mukhopadhyay P, Chowdhury S. Leptin and cancer: Pathogenesis and modulation. Indian J Endocrinol Metab 2012; 16:S596-S600. [PMID: 23565495 PMCID: PMC3602989 DOI: 10.4103/2230-8210.105577] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Leptin, a product of Ob gene from adipocytes regulates appetite, energy expenditure and body mass composition by decreasing orexigenic and increasing anorexigenic neuropeptide release from hypothalamus. Research over the past few years have suggested leptin/leptin receptor dysregulation to have a role in the development of a large variety of malignancies like breast ca, thyroid ca, endometrial ca and gastrointestinal malignancies, predominantly through JAK/STAT pathway which modulates PI3K/AKT3 signaling, ERK1/2 signaling, expression of antiapoptotic proteins (like XIAP), systemic inflammation (TNF-α, IL6), angiogenic factors (VEGF) and hypoxia inducible factor-1a (HIF-1a) expression. In this review, the current understanding of leptin's role in carcinogenesis has been elaborated. Also a few agents modulating leptin signaling to inhibit cancer cell growth has been described.
Collapse
Affiliation(s)
- Deep Dutta
- Department of Endocrinology and Metabolism, Institute of Post Graduate Medical Education and Research Kolkata, Kolkata, India
| | - Sujoy Ghosh
- Department of Endocrinology and Metabolism, Institute of Post Graduate Medical Education and Research Kolkata, Kolkata, India
| | - Kaushik Pandit
- Department of Endocrinology and Metabolism, Institute of Post Graduate Medical Education and Research Kolkata, Kolkata, India
| | - Pradip Mukhopadhyay
- Department of Endocrinology and Metabolism, Institute of Post Graduate Medical Education and Research Kolkata, Kolkata, India
| | - Subhankar Chowdhury
- Department of Endocrinology and Metabolism, Institute of Post Graduate Medical Education and Research Kolkata, Kolkata, India
| |
Collapse
|
39
|
Verkerke HP, Petri WA, Marie CS. The dynamic interdependence of amebiasis, innate immunity, and undernutrition. Semin Immunopathol 2012; 34:771-85. [PMID: 23114864 PMCID: PMC3510265 DOI: 10.1007/s00281-012-0349-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 09/21/2012] [Indexed: 01/27/2023]
Abstract
Entamoeba histolytica, the protozoan parasite that causes amebic dysentery, greatly contributes to disease burden in the developing world. Efforts to exhaustively characterize the pathogenesis of amebiasis have increased our understanding of the dynamic host-parasite interaction and the process by which E. histolytica trophozoites transition from gut commensals to invaders of the intestinal epithelium. Mouse models of disease continue to be instrumental in this area. At the same time, large-scale studies in human populations have identified genetic and environmental factors that influence susceptibility to amebiasis. Nutritional status has long been known to globally influence immune function. So it is not surprising that undernutrition has emerged as a critical risk factor. A better understanding of how nutritional status affects immunity to E. histolytica will have dramatic implications in the development of novel treatments. Future work should continue to characterize the fascinating host-parasite arms race that occurs at each stage of infection.
Collapse
Affiliation(s)
- Hans P. Verkerke
- Division of Infectious Diseases and International Health, University of Virginia Health System, Charlottesville, Virginia, United States of America
| | - William A. Petri
- Division of Infectious Diseases and International Health, University of Virginia Health System, Charlottesville, Virginia, United States of America
| | - Chelsea S. Marie
- Division of Infectious Diseases and International Health, University of Virginia Health System, Charlottesville, Virginia, United States of America
| |
Collapse
|
40
|
Hursting SD, Digiovanni J, Dannenberg AJ, Azrad M, Leroith D, Demark-Wahnefried W, Kakarala M, Brodie A, Berger NA. Obesity, energy balance, and cancer: new opportunities for prevention. Cancer Prev Res (Phila) 2012; 5:1260-72. [PMID: 23034147 DOI: 10.1158/1940-6207.capr-12-0140] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Obesity is associated with increased risk and poor prognosis for many types of cancer. The mechanisms underlying the obesity-cancer link are becoming increasingly clear and provide multiple opportunities for primary to tertiary prevention. Several obesity-related host factors can influence tumor initiation, progression and/or response to therapy, and these have been implicated as key contributors to the complex effects of obesity on cancer incidence and outcomes. These host factors include insulin, insulin-like growth factor-I, leptin, adiponectin, steroid hormones, cytokines, and inflammation-related molecules. Each of these host factors is considered in the context of energy balance and as potential targets for cancer prevention. The possibility of prevention at the systems level, including energy restriction, dietary composition, and exercise is considered as is the importance of the newly emerging field of stem cell research as a model for studying energy balance and cancer prevention.
Collapse
|
41
|
Abstract
Enhanced susceptibility to infection has long been recognized in children with congenital deficiency of leptin or its receptor. Studies in mice have demonstrated that leptin deficiency affects both the innate and acquired immune systems. Here, we review recent studies that demonstrate the impact on immunity of a common non-synonomous polymorphism of the leptin receptor. In a Bangladesh cohort of children, the presence of two copies of the ancestral Q223 allele was significantly associated with resistance to amebiasis. Children and mice with at least one copy of the leptin receptor 223R mutation were more susceptible to amebic colitis. Leptin signaling in the intestinal epithelium and downstream STAT3 (signal transducer and activator of transcription 3) and SHP2 (Src homology phosphatase 2) signaling were required for protection in the murine model of amebic colitis. Murine models have also implicated leptin in protection from other infections, including Mycobacterium tuberculosis, Klebsiella pneumoniae, and Streptococcus pneumoniae. Thus, the role of leptin signaling in infectious disease and specifically leptin-mediated protection of the intestinal epithelium will be the focus of this review.
Collapse
|
42
|
Surgical removal of the parametrial fat pads stimulates apoptosis and inhibits UVB-induced carcinogenesis in mice fed a high-fat diet. Proc Natl Acad Sci U S A 2012; 109:9065-70. [PMID: 22615388 DOI: 10.1073/pnas.1205810109] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Removal of the parametrial fat pads (partial lipectomy) from female SKH-1 mice fed a high-fat diet inhibited UVB-induced carcinogenesis, but this was not observed in mice fed a low-fat chow diet. Partial lipectomy in high-fat-fed mice decreased the number of keratoacanthomas and squamous cell carcinomas per mouse by 76 and 79%, respectively, compared with sham-operated control mice irradiated with UVB for 33 wk. Immunohistochemical analysis indicated that partial lipectomy increased caspase 3 (active form) positive cells by 48% in precancerous epidermis away from tumors, by 68% in keratoacanthomas, and by 224% in squamous cell carcinomas compared with sham-operated control mice. In addition, partial lipectomy decreased cell proliferation away from tumors and in tumors. RT-PCR analysis for adipokines revealed that mRNAs for TIMP1, MCP1, and SerpinE1 (proinflammatory/antiapoptotic cytokines) in the parametrial fat pads of sham-operated control mice were 54- to 83-fold higher than levels in compensatory fat that returned after surgery in partially lipectomized mice at the end of the tumor study. Feeding mice high-fat diets for 2 wk increased levels of TIMP1 and other adipokines in serum and epidermis, and these increases were inhibited by removal of the parametrial fat pads. Our results are a unique demonstration that surgical removal of a specific tissue fat results in inhibition of carcinogenesis in obese mice. This inhibition was associated with an increase in apoptosis and a decrease in proliferation in tumors and in precancerous areas away from tumors.
Collapse
|
43
|
Marie CS, Verkerke HP, Paul SN, Mackey AJ, Petri WA. Leptin protects host cells from Entamoeba histolytica cytotoxicity by a STAT3-dependent mechanism. Infect Immun 2012; 80:1934-43. [PMID: 22331430 PMCID: PMC3347425 DOI: 10.1128/iai.06140-11] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 01/29/2012] [Indexed: 11/20/2022] Open
Abstract
The adipocytokine leptin links nutritional status to immune function. Leptin signaling protects from amebiasis, but the molecular mechanism is not understood. We developed an in vitro model of ameba-host cell interaction to test the hypothesis that leptin prevents ameba-induced apoptosis in host epithelial cells. We demonstrated that activation of mammalian leptin signaling increased cellular resistance to amebic cytotoxicity, including caspase-3 activation. Exogenous expression of the leptin receptor conferred resistance in susceptible cells, and leptin stimulation enhanced protection. A series of leptin receptor signaling mutants showed that resistance to amebic cytotoxicity was dependent on activation of STAT3 but not the Src homology-2 domain-containing tyrosine phosphatase (SHP-2) or STAT5. A common polymorphism in the leptin receptor (Q223R) that increases susceptibility to amebiasis in humans and mice was found to increase susceptibility to amebic cytotoxicity in single cells. The Q223R polymorphism also decreased leptin-dependent STAT3 activation by 21% relative to that of the wild-type (WT) receptor (P = 0.035), consistent with a central role of STAT3 signaling in protection. A subset of genes uniquely regulated by STAT3 in response to leptin was identified. Most notable were the TRIB1 and suppressor of cytokine signaling 3 (SOCS3) genes, which have opposing roles in the regulation of apoptosis. Overall apoptotic genes were highly enriched in this gene set (P < 1E-05), supporting the hypothesis that leptin regulation of host apoptotic genes via STAT3 is responsible for protection. This is the first demonstration of a mammalian signaling pathway that restricts amebic pathogenesis and represents an important advance in our mechanistic understanding of how leptin links nutrition and susceptibility to infection.
Collapse
Affiliation(s)
- Chelsea S Marie
- Biology Department, Drew University, Madison, New Jersey, USA.
| | | | | | | | | |
Collapse
|
44
|
Ravussin Y, Koren O, Spor A, LeDuc C, Gutman R, Stombaugh J, Knight R, Ley RE, Leibel RL. Responses of gut microbiota to diet composition and weight loss in lean and obese mice. Obesity (Silver Spring) 2012; 20:738-47. [PMID: 21593810 PMCID: PMC3871199 DOI: 10.1038/oby.2011.111] [Citation(s) in RCA: 315] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Maintenance of a reduced body weight is accompanied by a decrease in energy expenditure beyond that accounted for by reduced body mass and composition, as well as by an increased drive to eat. These effects appear to be due--in part--to reductions in circulating leptin concentrations due to loss of body fat. Gut microbiota have been implicated in the regulation of body weight. The effects of weight loss on qualitative aspects of gut microbiota have been studied in humans and mice, but these studies have been confounded by concurrent changes in diet composition, which influence microbial community composition. We studied the impact of 20% weight loss on the microbiota of diet-induced obese (DIO: 60% calories fat) mice on a high-fat diet (HFD). Weight-reduced DIO (DIO-WR) mice had the same body weight and composition as control (CON) ad-libitum (AL) fed mice being fed a control diet (10% calories fat), allowing a direct comparison of diet and weight-perturbation effects. Microbial community composition was assessed by pyrosequencing 16S rRNA genes derived from the ceca of sacrificed animals. There was a strong effect of diet composition on the diversity and composition of the microbiota. The relative abundance of specific members of the microbiota was correlated with circulating leptin concentrations and gene expression levels of inflammation markers in subcutaneous white adipose tissue in all mice. Together, these results suggest that both host adiposity and diet composition impact microbiota composition, possibly through leptin-mediated regulation of mucus production and/or inflammatory processes that alter the gut habitat.
Collapse
Affiliation(s)
- Yann Ravussin
- Division of Molecular Genetics and Naomi Berrie Diabetes Center, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | - Omry Koren
- Department of Microbiology, Cornell University, Ithaca, New York, USA
| | - Ayme Spor
- Department of Microbiology, Cornell University, Ithaca, New York, USA
| | - Charles LeDuc
- Division of Molecular Genetics and Naomi Berrie Diabetes Center, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | - Roee Gutman
- Division of Molecular Genetics and Naomi Berrie Diabetes Center, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | - Jesse Stombaugh
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado, USA
| | - Rob Knight
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado, USA
- Howard Hughes Medical Institute, Boulder, Colorado, USA
| | - Ruth E. Ley
- Department of Microbiology, Cornell University, Ithaca, New York, USA
| | - Rudolph L. Leibel
- Division of Molecular Genetics and Naomi Berrie Diabetes Center, Columbia University College of Physicians and Surgeons, New York, New York, USA
| |
Collapse
|
45
|
Guo S, Liu M, Wang G, Torroella-Kouri M, Gonzalez-Perez RR. Oncogenic role and therapeutic target of leptin signaling in breast cancer and cancer stem cells. Biochim Biophys Acta Rev Cancer 2012; 1825:207-22. [PMID: 22289780 DOI: 10.1016/j.bbcan.2012.01.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Revised: 01/12/2012] [Accepted: 01/15/2012] [Indexed: 12/17/2022]
Abstract
Significant correlations between obesity and incidence of various cancers have been reported. Obesity, considered a mild inflammatory process, is characterized by a high level of secretion of several cytokines from adipose tissue. These molecules have disparate effects, which could be relevant to cancer development. Among the inflammatory molecules, leptin, mainly produced by adipose tissue and overexpressed with its receptor (Ob-R) in cancer cells is the most studied adipokine. Mutations of leptin or Ob-R genes associated with obesity or cancer are rarely found. However, leptin is an anti-apoptotic molecule in many cell types, and its central roles in obesity-related cancers are based on its pro-angiogenic, pro-inflammatory and mitogenic actions. Notably, these leptin actions are commonly reinforced through entangled crosstalk with multiple oncogenes, cytokines and growth factors. Leptin-induced signals comprise several pathways commonly triggered by many cytokines (i.e., canonical: JAK2/STAT; MAPK/ERK1/2 and PI-3K/AKT1 and, non-canonical signaling pathways: PKC, JNK and p38 MAP kinase). Each of these leptin-induced signals is essential to its biological effects on food intake, energy balance, adiposity, immune and endocrine systems, as well as oncogenesis. This review is mainly focused on the current knowledge of the oncogenic role of leptin in breast cancer. Additionally, leptin pro-angiogenic molecular mechanisms and its potential role in breast cancer stem cells will be reviewed. Strict biunivocal binding-affinity and activation of leptin/Ob-R complex makes it a unique molecular target for prevention and treatment of breast cancer, particularly in obesity contexts.
Collapse
Affiliation(s)
- Shanchun Guo
- Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | | | | | | | | |
Collapse
|
46
|
Oncogenic role and therapeutic target of leptin signaling in breast cancer and cancer stem cells. BIOCHIMICA ET BIOPHYSICA ACTA 2012. [PMID: 22289780 DOI: 10.1016/j.bbcan.2012.01.002.oncogenic] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Significant correlations between obesity and incidence of various cancers have been reported. Obesity, considered a mild inflammatory process, is characterized by a high level of secretion of several cytokines from adipose tissue. These molecules have disparate effects, which could be relevant to cancer development. Among the inflammatory molecules, leptin, mainly produced by adipose tissue and overexpressed with its receptor (Ob-R) in cancer cells is the most studied adipokine. Mutations of leptin or Ob-R genes associated with obesity or cancer are rarely found. However, leptin is an anti-apoptotic molecule in many cell types, and its central roles in obesity-related cancers are based on its pro-angiogenic, pro-inflammatory and mitogenic actions. Notably, these leptin actions are commonly reinforced through entangled crosstalk with multiple oncogenes, cytokines and growth factors. Leptin-induced signals comprise several pathways commonly triggered by many cytokines (i.e., canonical: JAK2/STAT; MAPK/ERK1/2 and PI-3K/AKT1 and, non-canonical signaling pathways: PKC, JNK and p38 MAP kinase). Each of these leptin-induced signals is essential to its biological effects on food intake, energy balance, adiposity, immune and endocrine systems, as well as oncogenesis. This review is mainly focused on the current knowledge of the oncogenic role of leptin in breast cancer. Additionally, leptin pro-angiogenic molecular mechanisms and its potential role in breast cancer stem cells will be reviewed. Strict biunivocal binding-affinity and activation of leptin/Ob-R complex makes it a unique molecular target for prevention and treatment of breast cancer, particularly in obesity contexts.
Collapse
|
47
|
Christy NCV, Petri WA. Mechanisms of adherence, cytotoxicity and phagocytosis modulate the pathogenesis of Entamoeba histolytica. Future Microbiol 2011; 6:1501-19. [DOI: 10.2217/fmb.11.120] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The unicellular parasite Entamoeba histolytica, the causative agent of the human disease amebiasis, has traditionally been distinguished from its nonpathogenic cousin Entamoeba dispar by its propensity for the ingestion of erythrocytes. This classic feature, along with the parasite’s ability to cause extensive host cell death, are critical mechanisms of pathogenesis during human infection. Recent advances have led to a greater understanding of the molecular components that allow E. histolytica to kill and phagocytose extracellular targets during human infection and include detailed studies of the role of the parasite’s cysteine proteinases and other effectors of cytotoxicity, as well as the mechanisms of ligand recognition, signaling and intracellular trafficking during phagocytosis.
Collapse
Affiliation(s)
- Nathaniel CV Christy
- Department of Microbiology, University of Virginia, Charlottesville, Virginia, 22908, USA
| | | |
Collapse
|
48
|
Leptin promotes human glioblastoma growth through activating Signal Transducers and Activators of Transcription 3 signaling. Brain Res Bull 2011; 87:274-9. [PMID: 22133921 DOI: 10.1016/j.brainresbull.2011.11.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 11/10/2011] [Accepted: 11/15/2011] [Indexed: 01/09/2023]
Abstract
Leptin plays an important role in cancer development and progression. However, its role on human glioblastoma cell line U87 growth and the underlying mechanism remains unexplored. In this study, we assessed the effect of leptin on U87 cells proliferation in vitro and in vivo, elucidating its underlying mechanism. The results showed that leptin significantly promoted U87 tumor cells growth in a time-and-dose-dependent manner. Leptin increased cell DNA synthesis and promoted G(0)/G(1) phase to S phase transition, but without any influence on cell apoptosis. In addition, leptin treatment resulted in phosphorylation of Signal Transducers and Activators of Transcription 3 (STAT3) on Tyr705, the key transcription factor in Janus-Activated Kinase (JAK)/STAT3 signaling pathway. All the data suggest that the JAK/STAT3 signaling pathway may be involved in promoting U87 glioblastoma growth mediated by leptin, which may be a target for anti-neoplastic treatments for glioblastoma.
Collapse
|
49
|
Woo S, Lee BL, Yoon J, Cho SJ, Baik TK, Chang MS, Lee HE, Park JW, Kim YH, Kim WH. Constitutive activation of signal transducers and activators of transcription 3 correlates with better prognosis, cell proliferation and hypoxia-inducible factor-1α in human gastric cancer. Pathobiology 2011; 78:295-301. [PMID: 22104200 DOI: 10.1159/000321696] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
OBJECTIVE We aimed to investigate the biological significance of signal transducers and activators of transcription 3 (STAT3) in gastric carcinoma. METHODS Immunohistochemistry was performed on tissue array slides containing 285 gastric carcinoma specimens. The relationship between the nuclear expression of phospho-Tyr705-STAT3 (pSTAT3), an active form of STAT3, and prognosis, clinicopathological factors, proliferation, cell cycle regulators, apoptosis regulators, or angiogenesis-related proteins was evaluated. RESULTS In nonneoplastic gastric mucosa, pSTAT3 was observed primarily in the nuclei of cells in the proliferative zone and intestinal metaplasia. In gastric carcinomas, nuclear STAT3 activation was observed in 36% of cases and was positively correlated with the Ki-67 labeling index and earlier tumor stage, whereas it was inversely correlated with lymphatic metastasis and distant metastasis (p< 0.05). Moreover, survival analyses showed that pSTAT3 expression was an independent prognostic factor of good survival. In addition, the expression of nuclear pSTAT3 positively correlated with that of cyclin D1, p21, p27, hypoxia-inducible factor-1α, or vascular endothelial growth factor (p< 0.05). CONCLUSIONS STAT3 activation is an early event in gastric tumorigenesis and significantly correlates with better prognosis, proliferation and angiogenesis. Thus, STAT3 activation may be a valuable prognostic variable and therapeutic target in gastric carcinoma.
Collapse
Affiliation(s)
- Sungmin Woo
- Department of Anatomy, Medical Research Center, Seoul National University College of Medicine, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Molecular mechanisms linking adipokines to obesity-related colon cancer: focus on leptin. Proc Nutr Soc 2011; 71:175-80. [PMID: 22014041 DOI: 10.1017/s0029665111003259] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Obesity is linked to increased risk of colon cancer, currently the third most common cancer. Consequently rising levels of obesity worldwide are likely to significantly impact on obesity-related colon cancers in the decades to come. Understanding the molecular mechanisms whereby obesity increases colon cancer risk is thus a focus for research to inform strategies to prevent the increasing trend in obesity-related cancers. This review will consider research on deregulation of adipokine signalling, a consequence of altered adipokine hormone secretion from excess adipose tissue, with a focus on leptin, which has been studied extensively as a potential mediator of obesity-related colon cancer. Numerous investigations using colon cell lines in vitro, in vivo studies in rodents and investigations of colon cancer patients illuminate the complexity of the interactions of leptin with colon tissues via leptin receptors expressed by the colon epithelium. Although evidence indicates a role for leptin in proliferation of colon epithelial cells in vitro, this has been contradicted by studies in rodent models. However, recent studies have indicated that leptin may influence inflammatory mediators linked with colon cancer and also promote cell growth dependent on genotype and is implicated in growth promotion of colon cancer cells. Studies in human cancer patients indicate that there may be different tumour sub-types with varying levels of leptin receptor expression, indicating the potential for leptin to induce variable responses in the different tumour types. These studies have provided insights into the complex interplay of adipokines with responsive tissues prone to obesity-related colon cancer. Deregulation of adipokine signalling via adipokine receptors located in the colon appears to be a significant factor in obesity-related colon cancer. Molecular profiling of colon tumours will be a useful tool in future strategies to characterise the influence that adipokines may have on tumour development and subsequent therapeutic intervention. Study of the molecular mechanisms linking obesity with cancer also supports recommendations to maintain a normal body weight to reduce the risk of colon cancer.
Collapse
|