1
|
Nguyen TV, Alfarsi A, Nguyen HT, Davidson G, Lloyd NDR, Kumar A. Metabolic disruptions induced by low concentrations of DMSO in RTgill-W1 fish cells: The importance of solvent controls in in vitro studies. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 283:107354. [PMID: 40209297 DOI: 10.1016/j.aquatox.2025.107354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 04/04/2025] [Accepted: 04/04/2025] [Indexed: 04/12/2025]
Abstract
Dimethyl sulfoxide (DMSO) is a widely used solvent in biological research due to its ability to enhance membrane permeability, facilitating drug delivery and molecular transport across cellular membranes. However, its effects on cellular metabolism, especially at low concentrations, remain insufficiently understood. This study investigated the metabolic disruptions induced by 0.1-10 % DMSO in the RTgill-W1 fish cell line, focusing on changes in cell viability, oxidative stress, and key metabolic pathways. Results revealed that DMSO exposure caused dose-dependent declines in cell viability at 0.5 % DMSO and increases in reactive oxygen species (ROS) at 4 % and higher, indicating elevated oxidative stress. Metabolomic profiling revealed altered levels of numerous metabolites and significant impacts on 41 metabolic pathways belonging to five major functional groups: amino acid metabolism, carbohydrate metabolism, lipid metabolism, vitamin and co-factor metabolism, and nucleotide metabolism. The effects were observed across all exposure concentrations (0.1, 0.5, 1, 4, and 8 %), with more pronounced impacts at higher concentrations. These findings highlight that DMSO, even at low concentrations (≤ 0.5 %), can have widespread effects on cellular metabolism, impacting experimental outcomes in in vitro studies. This study provides valuable insights into the biochemical impacts of DMSO on fish cell lines and emphasizes a caution in using DMSO in biological research to minimize unintended cellular effects. Additionally, it highlights the critical need to include solvent controls at matching concentrations to accurately distinguish solvent-induced effects from those caused by experimental treatments.
Collapse
Affiliation(s)
- Thao V Nguyen
- CSIRO Environment, Waite Campus, Urrbrae, South Australia 5064, Australia.
| | - Ali Alfarsi
- CSIRO Environment, Waite Campus, Urrbrae, South Australia 5064, Australia
| | - Huong Thanh Nguyen
- CSIRO Environment, Waite Campus, Urrbrae, South Australia 5064, Australia
| | - Georgia Davidson
- The Australian Wine Research Institute, PO Box 46, Glenside, SA 5065, Australia; Metabolomics Australia, PO Box 46, Glenside, SA 5065, Australia
| | - Natoiya D R Lloyd
- The Australian Wine Research Institute, PO Box 46, Glenside, SA 5065, Australia; Metabolomics Australia, PO Box 46, Glenside, SA 5065, Australia
| | - Anu Kumar
- CSIRO Environment, Waite Campus, Urrbrae, South Australia 5064, Australia.
| |
Collapse
|
2
|
Jannesar K, Soraya H. MPO and its role in cancer, cardiovascular and neurological disorders: An update. Biochem Biophys Res Commun 2025; 755:151578. [PMID: 40043618 DOI: 10.1016/j.bbrc.2025.151578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/31/2025] [Accepted: 03/01/2025] [Indexed: 03/17/2025]
Abstract
Myeloperoxidase (MPO) is an enzyme that contains a heme group, found mostly in neutrophils and in small amounts in monocytes and plays a major role in their anti-microbial activity. However, excessive levels of MPO have been linked to various disorders and identified as a major cause of tissue destruction. Inhibiting its activity can reduce the severity and extent of tissue damage. Over activity of MPO during chronic inflammation has been shown to be involved in tumorigenesis by inducing a hyper-mutagenic environment through oxidant interaction with DNA, causing DNA modification. Vascular endothelium is one of the most important targets of MPO and high levels have been associated with increased rates of cardiomyopathy, ischemic stroke, heart failure, myocardial infarction, and atrial fibrillation. Therefore, it may be considered a therapeutic target in the treatment of cardiovascular disorders. MPO also participates in the pathogenesis of neurodegenerative diseases. For example, an increase in MPO levels has been observed in the brain tissue of patients with Alzheimer's, Multiple sclerosis (MS), and Parkinson's diseases. In Alzheimer's disease, active MPO is mostly found in the location of beta amyloids and microglia. Therefore, targeting MPO may be a potential treatment and prevention strategy for neurological disorders. This review will discuss MPO's physiological and pathological role in cancer, cardiovascular, and neurological disorders.
Collapse
Affiliation(s)
- Kosar Jannesar
- Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Hamid Soraya
- Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
3
|
Yan SH, Nai W, Peng L, Wang J. Association of serum carotenoids and SII among general people, based on NHANES 2001-2006. Sci Rep 2025; 15:10107. [PMID: 40128356 PMCID: PMC11933377 DOI: 10.1038/s41598-025-94594-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 03/14/2025] [Indexed: 03/26/2025] Open
Abstract
As a novel inflammatory marker, Systemic Immune-Inflammation Index (SII) has recently been recognized as a prognostic indicator for a variety of diseases including malignant cancers, coronary artery disease, hyperlipidemia, and hepatic steatosis. Carotenoids are a group of abundant lipid-soluble phytochemicals, and studies have suggested that they have antioxidant, antiapoptotic, and anti-inflammatory properties. However, a systematic analysis of the association between serum carotenoids and SII is still lacking. The purpose of this investigation was to explore the association between serum carotenoid concentration and SII. The cross-sectional investigation included general people (age ≥ 20) with complete information on SII and five different serum carotenoids (Trans-lycopene, β-carotene, α-carotene, lutein/zeaxanthin, and β-cryptoxanthin). Multivariate linear regression analyses were used to evaluate the association between serum carotenoids and SII among general people. The potential non-linear relationship was determined using threshold effect analysis and fitted smoothing curves. Subgroup analysis was performed to explore the potential stratified factors. 15903 participants were enrolled in our investigation. Based on multivariate linear regressions, the highest quartiles of serum carotenoids were found significantly associated with SII compared with the lowest quartiles. The results showed the negative association between SII and the concentration of five different serum carotenoids. According to the non-linear analysis, we found that there are non-linear relationships between β-carotene and trans-lycopene and SII in general people with an inflection point of 6.90 (log2-transformed, ug/dL) and 4.01 (log2-transformed, ug/dL), respectively. The results from subgroup analysis provide several potential moderating effects, such as race, current drinker, and age. This study revealed the relationship between the concentration of several serum carotenoids and SII across the general American population. Further prospective and longitude investigations are needed.
Collapse
Affiliation(s)
- Shao-Hua Yan
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Wenqing Nai
- Department of Health Management Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - LuShan Peng
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Department of Pathology, School of Basic Medicine, Central South University, Changsha, China.
| | - Junpu Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Department of Pathology, School of Basic Medicine, Central South University, Changsha, China.
| |
Collapse
|
4
|
Szczepanik K, Dobrowolski P, Świątkiewicz M. Effects of Hermetia illucens larvae meal and astaxanthin on intestinal histology and expression of tight junction proteins in weaned piglets. J Anim Physiol Anim Nutr (Berl) 2024; 108:1820-1832. [PMID: 39016044 DOI: 10.1111/jpn.14024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/18/2024]
Abstract
The weaning phase in piglets causes significant physiological stress, disrupts intestinal integrity and reduces productivity, necessitating strategies to improve intestinal health and nutrient absorption. While current research highlights the role of diet in mitigating these adverse effects, identifying effective dietary supplements remains a challenge. This study evaluated the effects of Hermetia illucens (HI) larvae meal and astaxanthin (AST) on the intestinal histology of weaned piglets. In a controlled experiment, 48 weaned piglets were divided into six groups and received varying levels of HI larval meal (2.5% and 5%) and AST in their diets. The methodology involved comprehensive histological examinations of the small intestine, assessing absorption area, villi elongation, crypt depth, goblet cells, enterocytes and expression of ileal tight junction (TJ) proteins. The study found that HI larval meal significantly improved nutrient absorption in the jejunum and ileum (p < 0.001), thereby enhancing feed conversion. AST supplementation increased the number of enterocytes (p < 0.001). Both HI larval meal and AST positively affected intestinal morphology and function, increasing muscularis muscle mass and villi elongation (p < 0.001 and p < 0.05, respectively). The 2.5% HI meal improved the villi length to crypt depth ratio and slightly increased the goblet cell count (both p < 0.05). Ki-67 antibody analysis showed increased cell proliferation in the duodenal and jejunal crypts, particularly with the 2.5% HI meal (p < 0.001). Insect meal did not affect TJ protein expression, indicating that it had no effect on intestinal permeability. These findings suggest that HI larval meal and AST can enhance the intestinal wellness and productivity of weaned piglets.
Collapse
Affiliation(s)
- Kinga Szczepanik
- Department of Animal Nutrition and Feed Science, National Research Institute of Animal Production, Balice, Poland
| | - Piotr Dobrowolski
- Department of Functional Anatomy and Cytobiology, Maria Curie-Sklodowska University, Lublin, Poland
| | - Malgorzata Świątkiewicz
- Department of Animal Nutrition and Feed Science, National Research Institute of Animal Production, Balice, Poland
| |
Collapse
|
5
|
Lee S, Son SK, Cho E, Yoo S, Jang EA, Kwak SH. Protective Role of Astaxanthin in Regulating Lipopolysaccharide-Induced Inflammation and Apoptosis in Human Neutrophils. Curr Issues Mol Biol 2024; 46:8567-8575. [PMID: 39194721 DOI: 10.3390/cimb46080504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/22/2024] [Accepted: 07/30/2024] [Indexed: 08/29/2024] Open
Abstract
Astaxanthin, a keto-carotenoid, is known to have potent antioxidant properties. This study aims to investigate the anti-inflammatory effect of astaxanthin and its mechanism in human neutrophils. The effects of astaxanthin on lipopolysaccharide (LPS)-stimulated human neutrophils were investigated in vitro. Neutrophils were isolated from healthy volunteers and stimulated with LPS in the presence and absence of astaxanthin. We assessed cytokine production, signaling pathway activation via mitogen-activated protein kinases (MAPKs) and nuclear factor kappa B (NF-κB), and apoptosis. Astaxanthin's impact was evaluated at different concentrations, and both pretreatment and cotreatment protocols were tested. The results demonstrated that astaxanthin significantly reduced the production of pro-inflammatory cytokines TNF-α and IL-1β in LPS-stimulated neutrophils. It effectively inhibited the phosphorylation of ERK1/2 MAPK, without notably affecting p38 MAPK or NF-κB pathways. Furthermore, astaxanthin promoted apoptosis in neutrophils, counteracting the apoptosis-delaying effects of LPS. These effects were more pronounced with pretreatment. In conclusion, astaxanthin has protective effects on inflammatory responses in neutrophils by reducing cytokine production and enhancing apoptosis while selectively modulating intracellular signaling pathways. Astaxanthin demonstrates significant potential as a therapeutic agent in the management of severe inflammatory conditions.
Collapse
Affiliation(s)
- Seongheon Lee
- Department of Anesthesiology and Pain Medicine, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Sung Kuk Son
- Department of Anesthesiology and Pain Medicine, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Eunye Cho
- Department of Anesthesiology and Pain Medicine, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Sungah Yoo
- Department of Anesthesiology and Pain Medicine, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Eun-A Jang
- Department of Anesthesiology and Pain Medicine, Chonnam National University Hospital, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Sang Hyun Kwak
- Department of Anesthesiology and Pain Medicine, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| |
Collapse
|
6
|
Sun RL, Shang JC, Han RH, Xing GQ. Protective effect of astaxanthin on ANCA-associated vasculitis. Int Immunopharmacol 2024; 132:111928. [PMID: 38537540 DOI: 10.1016/j.intimp.2024.111928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/12/2024] [Accepted: 03/22/2024] [Indexed: 05/01/2024]
Abstract
OBJECTIVE Anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) is a systemic autoimmune disease characterized by inflammation and fibrinoid necrosis of medium and small vessels, and its pathogenesis is closely related to inflammation and oxidative stress. Astaxanthin (ATX) is a carotenoid with anti-inflammatory, antioxidant, and immunomodulatory effects. We hypothesized that ATX could play a role in AAV treatment. This study aimed to investigate whether ATX has a protective effect against AAV and to elucidate its regulatory mechanism. METHODS In vitro experiments, neutrophils isolated from healthy people were treated with ATX or not and cultured with serum from myeloperoxidase (MPO) -ANCA-positive patients and healthy persons. The levels of IL-6 and TNF-α in neutrophil culture supernatant before and after stimulation were measured. Neutrophil extracellular traps (NETs) and intracellular reactive oxygen species (ROS) in neutrophils were detected after stimulation. In vivo study, experimental autoimmune vasculitis (EAV) rat models were established and then treated with ATX via intragastric administration for 6 consecutive weeks. Urinary erythrocytes, urinary proteins, and serum creatinine were detected and HE staining was performed to assess renal injury in rats. Lung hemorrhage was observed by gross dissection and microscopic Prussian blue staining. The level of serum MPO-ANCA was detected. Serum IL-6, TNF-α, superoxide dismutase (SOD), and glutathione peroxidase (GSH-px) in rats were measured to explore the effects of ATX on oxidative stress and inflammation in EAV rats. The deposition of MPO in kidney and lung of rats was detected by immunohistochemistry. RESULTS ATX significantly inhibited neutrophil secretion of inflammatory factors IL-6 and TNF-α. ATX reduced the elevated levels of ROS in neutrophils stimulated by serum from AAV patients and alleviated the release of NETs. ATX administration was observed to reduce the degree of hematuria, proteinuria, and glomerular crescent formation in EAV rats. The degree of pulmonary hemorrhage was significantly reduced. Besides, the serum levels of IL-6 and TNF-α were attenuated, and antioxidant SOD and GSH-px increased in serum. Pathological results showed that MPO deposition was decreased in lung and kidney tissues after ATX treatment. CONCLUSION ATX could ameliorate the organ damages in EAV rats. It could serve as a hopeful therapy for AAV by its anti-inflammatory and anti-oxidative feature as a unique nature carotenoid.
Collapse
Affiliation(s)
- Ruo-Lan Sun
- Department of Renal Division, Affiliated Hospital of Qingdao University, Qingdao 266555, China
| | - Jin-Chun Shang
- Department of Renal Division, Affiliated Hospital of Qingdao University, Qingdao 266555, China
| | - Run-Hong Han
- Department of Renal Division, Affiliated Hospital of Qingdao University, Qingdao 266555, China
| | - Guang-Qun Xing
- Department of Renal Division, Affiliated Hospital of Qingdao University, Qingdao 266555, China.
| |
Collapse
|
7
|
Flieger J, Raszewska-Famielec M, Radzikowska-Büchner E, Flieger W. Skin Protection by Carotenoid Pigments. Int J Mol Sci 2024; 25:1431. [PMID: 38338710 PMCID: PMC10855854 DOI: 10.3390/ijms25031431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Sunlight, despite its benefits, can pose a threat to the skin, which is a natural protective barrier. Phototoxicity caused by overexposure, especially to ultraviolet radiation (UVR), results in burns, accelerates photoaging, and causes skin cancer formation. Natural substances of plant origin, i.e., polyphenols, flavonoids, and photosynthetic pigments, can protect the skin against the effects of radiation, acting not only as photoprotectors like natural filters but as antioxidant and anti-inflammatory remedies, alleviating the effects of photodamage to the skin. Plant-based formulations are gaining popularity as an attractive alternative to synthetic filters. Over the past 20 years, a large number of studies have been published to assess the photoprotective effects of natural plant products, primarily through their antioxidant, antimutagenic, and anti-immunosuppressive activities. This review selects the most important data on skin photodamage and photoprotective efficacy of selected plant carotenoid representatives from in vivo studies on animal models and humans, as well as in vitro experiments performed on fibroblast and keratinocyte cell lines. Recent research on carotenoids associated with lipid nanoparticles, nanoemulsions, liposomes, and micelles is reviewed. The focus was on collecting those nanomaterials that serve to improve the bioavailability and stability of carotenoids as natural antioxidants with photoprotective activity.
Collapse
Affiliation(s)
- Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland
| | - Magdalena Raszewska-Famielec
- Faculty of Physical Education and Health, University of Physicl Education, Akademicka 2, 21-500 Biała Podlaska, Poland;
| | - Elżbieta Radzikowska-Büchner
- Department of Plastic, Reconstructive and Maxillary Surgery, National Medical Institute of the Ministry of the Interior and Administration, Wołoska 137 Street, 02-507 Warszawa, Poland;
| | - Wojciech Flieger
- Chair and Department of Anatomy, Medical University of Lublin, K. Jaczewskiego 4, 20-090 Lublin, Poland;
| |
Collapse
|
8
|
Duan H, Yan W. Visual fatigue a comprehensive review of mechanisms of occurrence, animal model design and nutritional intervention strategies. Crit Rev Food Sci Nutr 2023; 65:1631-1655. [PMID: 38153314 DOI: 10.1080/10408398.2023.2298789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
When the eyes work intensively, it is easy to have eye discomfort such as blurred vision, soreness, dryness, and tearing, that is, visual fatigue. Visual fatigue not only affects work and study efficiency, but long-term visual fatigue can also easily affect physical and mental health. In recent years, with the popularization of electronic products, although it has brought convenience to the office and study, it has also caused more frequent visual fatigue among people who use electronic devices. Moreover, studies have reported that the number of people with visual fatigue is showing a trend of increasing year by year. The range of people involved is also extensive, especially students, people who have been engaged in computer work and fine instruments (such as microscopes) for a long time, and older adults with aging eye function. More and more studies have proposed that supplementation with the proper nutrients can effectively relieve visual fatigue and promote eye health. This review discusses the physiological mechanisms of visual fatigue and the design ideas of animal experiments from the perspective of modern nutritional science. Functional food ingredients with the ability to alleviate visual fatigue are discussed in detail.
Collapse
Affiliation(s)
- Hao Duan
- College of Biochemical Engineering, Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing, China
| | - Wenjie Yan
- College of Biochemical Engineering, Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing, China
| |
Collapse
|
9
|
Cutolo EA, Caferri R, Campitiello R, Cutolo M. The Clinical Promise of Microalgae in Rheumatoid Arthritis: From Natural Compounds to Recombinant Therapeutics. Mar Drugs 2023; 21:630. [PMID: 38132951 PMCID: PMC10745133 DOI: 10.3390/md21120630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
Rheumatoid arthritis (RA) is an invalidating chronic autoimmune disorder characterized by joint inflammation and progressive bone damage. Dietary intervention is an important component in the treatment of RA to mitigate oxidative stress, a major pathogenic driver of the disease. Alongside traditional sources of antioxidants, microalgae-a diverse group of photosynthetic prokaryotes and eukaryotes-are emerging as anti-inflammatory and immunomodulatory food supplements. Several species accumulate therapeutic metabolites-mainly lipids and pigments-which interfere in the pro-inflammatory pathways involved in RA and other chronic inflammatory conditions. The advancement of the clinical uses of microalgae requires the continuous exploration of phytoplankton biodiversity and chemodiversity, followed by the domestication of wild strains into reliable producers of said metabolites. In addition, the tractability of microalgal genomes offers unprecedented possibilities to establish photosynthetic microbes as light-driven biofactories of heterologous immunotherapeutics. Here, we review the evidence-based anti-inflammatory mechanisms of microalgal metabolites and provide a detailed coverage of the genetic engineering strategies to enhance the yields of endogenous compounds and to develop innovative bioproducts.
Collapse
Affiliation(s)
- Edoardo Andrea Cutolo
- Laboratory of Photosynthesis and Bioenergy, Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy;
| | - Roberto Caferri
- Laboratory of Photosynthesis and Bioenergy, Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy;
| | - Rosanna Campitiello
- Research Laboratory and Academic Division of Clinical Rheumatology, Department of Internal Medicine, IRCCS San Martino Polyclinic Hospital, University of Genoa, Viale Benedetto XV, 6, 16132 Genoa, Italy; (R.C.)
| | - Maurizio Cutolo
- Research Laboratory and Academic Division of Clinical Rheumatology, Department of Internal Medicine, IRCCS San Martino Polyclinic Hospital, University of Genoa, Viale Benedetto XV, 6, 16132 Genoa, Italy; (R.C.)
| |
Collapse
|
10
|
Effects of Hermetia illucens Larvae Meal and Astaxanthin as Feed Additives on Health and Production Indices in Weaned Pigs. Animals (Basel) 2022; 13:ani13010163. [PMID: 36611771 PMCID: PMC9817779 DOI: 10.3390/ani13010163] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023] Open
Abstract
Weaning is a critical period in farming, and therefore, searching for health-promoting feed additives of natural origin is necessary. This study aimed to evaluate the effects of full-fat H. illucens larvae meal (HI) and astaxanthin (AST) supplementation on the growth performance and health status of weaned pigs. The experiment was carried out on 48 pigs (8.7 kg) divided into six groups: I-control; II-2.5% HI; III-5% HI; IV-2.5% HI and AST; V-5% HI and AST; VI-AST. The experiment lasted from the 35th to 70th day of age, and animals were fed ad libitum. The results obtained indicate that HI meal and astaxanthin had no effect on feed intake and utilization, weight gain, or organ weight. Additionally, blood parameters remained within the norms. It seems that astaxanthin supports the inhibition of oxidative stress, which became apparent in the case of some red blood cell parameters. The 2.5% HI and AST supplementation can reduce the susceptibility of pork fat to oxidation (lower adipose tissue TBARS). However, 5% HI in feed was not beneficial because of the adverse changes in some red cell indices, and it should be combined with the antioxidant AST to improve these indices.
Collapse
|
11
|
Potential Properties of Natural Nutraceuticals and Antioxidants in Age-Related Eye Disorders. LIFE (BASEL, SWITZERLAND) 2022; 13:life13010077. [PMID: 36676026 PMCID: PMC9863869 DOI: 10.3390/life13010077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 12/23/2022] [Accepted: 12/25/2022] [Indexed: 12/29/2022]
Abstract
Eye health is crucial, and the onset of diseases can reduce vision and affect the quality of life of patients. The main causes of progressive and irreversible vision loss include various pathologies, such as cataracts, ocular atrophy, corneal opacity, age-related macular degeneration, uncorrected refractive error, posterior capsular opacification, uveitis, glaucoma, diabetic retinopathy, retinal detachment, undetermined disease and other disorders involving oxidative stress and inflammation. The eyes are constantly exposed to the external environment and, for this reason, must be protected from damage from the outside. Many drugs, including cortisonics and antinflammatory drugs have widely been used to counteract eye disorders. However, recent advances have been obtained via supplementation with natural antioxidants and nutraceuticals for patients. In particular, evidence has accumulated that polyphenols (mostly deriving from Citrus Bergamia) represent a reliable source of antioxidants able to counteract oxidative stress accompanying early stages of eye diseases. Luteolin in particular has been found to protect photoreceptors, thereby improving vision in many disease states. Moreover, a consistent anti-inflammatory response was found to occur when curcumin is used alone or in combination with other nutraceuticals. Additionally, Coenzyme Q10 has been demonstrated to produce a consistent effect in reducing ocular pressure, thereby leading to protection in patients undergoing glaucoma. Finally, both grape seed extract, rich in anthocyanosides, and polynsatured fatty acids seem to contribute to the prevention of retinal disorders. Thus, a combination of nutraceuticals and antioxidants may represent the right solution for a multi-action activity in eye protection, in association with current drug therapies, and this will be of potential interest in early stages of eye disorders.
Collapse
|
12
|
Sirohi P, Verma H, Singh SK, Singh VK, Pandey J, Khusharia S, Kumar D, Kaushalendra, Teotia P, Kumar A. Microalgal Carotenoids: Therapeutic Application and Latest Approaches to Enhance the Production. Curr Issues Mol Biol 2022; 44:6257-6279. [PMID: 36547088 PMCID: PMC9777246 DOI: 10.3390/cimb44120427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Microalgae are microscopic photosynthetic organisms frequently found in fresh and marine water ecosystems. Various microalgal species have been considered a reservoir of diverse health-value products, including vitamins, proteins, lipids, and polysaccharides, and are broadly utilized as food and for the treatment of human ailments such as cancer, cardiovascular diseases, allergies, and immunodeficiency. Microalgae-derived carotenoids are the type of accessory pigment that possess light-absorbing potential and play a significant role in metabolic functions. To date, nearly a thousand carotenoids have been reported, but a very less number of microalgae have been used for the commercial production of carotenoids. This review article briefly discussed the carotenoids of microalgal origin and their therapeutic application. In addition, we have briefly compiled the optimization of culture parameters used to enhance microalgal carotenoid production. In addition, the latest biotechnological approaches used to improve the yields of carotenoid has also been discussed.
Collapse
Affiliation(s)
- Priyanka Sirohi
- Department of Biotechnology, Noida International University, Greater Noida 203201, India
| | - Hariom Verma
- Department of Botany, B.R.D. Government Degree College Duddhi, Sonbhadra 231216, India
| | - Sandeep Kumar Singh
- Division of Microbiology, Indian Agricultural Research Institute, Pusa, New Delhi 110012, India
| | | | - Jyoti Pandey
- Department of Biochemistry, Singhania University, Pacheri Barı, Jhunjhunu 333515, India
| | - Saksham Khusharia
- Kuwar SatyaVira College of Engineering and Management, Bijnor 246701, India
| | - Dharmendra Kumar
- Department of Zoology, C.M.B. College, Deorh, Ghoghardiha 847402, India
| | - Kaushalendra
- Department of Zoology, Mizoram University (A Central University), Pachhunga University College Campus, Aizawl 796001, India
| | - Pratibha Teotia
- Department of Biotechnology, Noida International University, Greater Noida 203201, India
| | - Ajay Kumar
- Department of Postharvest Science, Agricultural Research Organization (ARO)—Volcani Center, Rishon Lezion 7505101, Israel
| |
Collapse
|
13
|
Regulation of Cholesterol Metabolism by Phytochemicals Derived from Algae and Edible Mushrooms in Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2022; 23:ijms232213667. [PMID: 36430146 PMCID: PMC9697193 DOI: 10.3390/ijms232213667] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
Cholesterol synthesis occurs in almost all cells, but mainly in hepatocytes in the liver. Cholesterol is garnering increasing attention for its central role in various metabolic diseases. In addition, cholesterol is one of the most essential elements for cells as both a structural source and a player participating in various metabolic pathways. Accurate regulation of cholesterol is necessary for the proper metabolism of fats in the body. Disturbances in cholesterol homeostasis have been linked to various metabolic diseases, such as hyperlipidemia and non-alcoholic fatty liver disease (NAFLD). For many years, the use of synthetic chemical drugs has been effective against many health conditions. Furthermore, from ancient to modern times, various plant-based drugs have been considered local medicines, playing important roles in human health. Phytochemicals are bioactive natural compounds that are derived from medicinal plants, fruit, vegetables, roots, leaves, and flowers and are used to treat a variety of diseases. They include flavonoids, carotenoids, polyphenols, polysaccharides, vitamins, and more. Many of these compounds have been proven to have antioxidant, anti-inflammatory, antiobesity and antihypercholesteremic activity. The multifaceted role of phytochemicals may provide health benefits to humans with regard to the treatment and control of cholesterol metabolism and the diseases associated with this disorder, such as NAFLD. In recent years, global environmental climate change, the COVID-19 pandemic, the current war in Europe, and other conflicts have threatened food security and human nutrition worldwide. This further emphasizes the urgent need for sustainable sources of functional phytochemicals to be included in the food industry and dietary habits. This review summarizes the latest findings on selected phytochemicals from sustainable sources-algae and edible mushrooms-that affect the synthesis and metabolism of cholesterol and improve or prevent NAFLD.
Collapse
|
14
|
Yaqoob Z, Arshad MS, Imran M, Munir H, Qaisrani TB, Khalid W, Asghar Z, Suleria HAR. Mechanistic role of astaxanthin derived from shrimp against certain metabolic disorders. Food Sci Nutr 2022; 10:12-20. [PMID: 35035906 PMCID: PMC8751436 DOI: 10.1002/fsn3.2623] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 01/21/2021] [Accepted: 01/23/2021] [Indexed: 12/24/2022] Open
Abstract
Oxidative stress caused by the imbalance between production of oxidants and antioxidants in the body leads to the development of different ailments. The bioactive compounds derived from marine sources are considered to be safe and appropriate to use. Astaxanthin possesses antioxidant activity about 100-500 times higher than other antioxidants such as α-tocopherol and β-carotene. It has numerous health benefits and vital pharmacological properties for the treatment of diseases like diabetes, hypertension, cancer, heart disease, ischemia, neurological disorders, and potential role in liver enzyme gamma-glutamyl transpeptidase which has significance in medicine as a diagnostic marker. The primary source of astaxanthin among crustaceans is shrimps and the presence of astaxanthin protects shrimps from oxidation of polyunsaturated fatty acids and cholesterol. Conclusively, astaxanthin derived from shrimps is very effective against oxidative stress which can lead to certain ailments.
Collapse
Affiliation(s)
- Zubda Yaqoob
- Department of Food ScienceFaculty of Life SciencesGovernment College UniversityFaisalabadPakistan
| | - Muhammad Sajid Arshad
- Department of Food ScienceFaculty of Life SciencesGovernment College UniversityFaisalabadPakistan
| | - Muhammad Imran
- Department of Diet and Nutritional SciencesUniversity of LahoreLahorePakistan
| | - Haroon Munir
- Department of Food ScienceFaculty of Life SciencesGovernment College UniversityFaisalabadPakistan
| | - Tahira Batool Qaisrani
- Department of Agricultural Engineering and TechnologyGhazi UniversityDera Ghazi KhanPakistan
| | - Waseem Khalid
- Department of Food ScienceFaculty of Life SciencesGovernment College UniversityFaisalabadPakistan
| | - Zubia Asghar
- Department of Food ScienceFaculty of Life SciencesGovernment College UniversityFaisalabadPakistan
| | - Hafiz Ansar Rasul Suleria
- School of Agriculture and FoodFaculty of Veterinary and Agricultural SciencesThe University of MelbourneParkvilleVictoriaAustralia
| |
Collapse
|
15
|
Singh S, Verma DK, Thakur M, Tripathy S, Patel AR, Shah N, Utama GL, Srivastav PP, Benavente-Valdés JR, Chávez-González ML, Aguilar CN. Supercritical fluid extraction (SCFE) as green extraction technology for high-value metabolites of algae, its potential trends in food and human health. Food Res Int 2021; 150:110746. [PMID: 34865764 DOI: 10.1016/j.foodres.2021.110746] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 10/01/2021] [Accepted: 10/06/2021] [Indexed: 02/07/2023]
Abstract
Application of high-value algal metabolites (HVAMs) in cosmetics, additives, pigments, foods and medicines are very important. These HVAMs can be obtained from the cultivation of micro- and macro-algae. These metabolites can benefit human and animal health in a physiological and nutritional manner. However, because of conventional extraction methods and their energy and the use of pollutant solvents, the availability of HVAMs from algae remains insufficient. Receiving their sustainability and environmental benefits have recently made green extraction technologies for HVAM extractions more desirable. But very little information is available about the technology of green extraction of algae from these HVAM. This review, therefore, highlights the supercritical fluid extraction (SCFE) as principal green extraction technologyand theirideal parameters for extracting HVAMs. In first, general information is provided concerning the HVAMs and their components of macro and micro origin. The review also includes a description of SCFE technology's properties, instrumentation operation, solvents used, and the merits and demerits. Moreover, there are several HVAMs associated with their numerous high-level biological activities which include high-level antioxidant, anti-inflammatory, anticancer and antimicrobial activity and have potential health-beneficial effects in humans since they are all HVAMs, such as foods and nutraceuticals. Finally, it provides future insights, obstacles, and suggestions for selecting the right technologies for extraction.
Collapse
Affiliation(s)
- Smita Singh
- Department of Nutrition and Dietetics, University Institute of Applied Health Sciences, Chandigarh University, Chandigarh 140413, Punjab, India.
| | - Deepak Kumar Verma
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India.
| | - Mamta Thakur
- Department of Food Technology, School of Sciences, ITM University, Gwalior 474001, Madhya Pradesh, India.
| | - Soubhagya Tripathy
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Ami R Patel
- Division of Dairy Microbiology, Mansinhbhai Institute of Dairy and Food Technology-MIDFT, Dudhsagar Dairy Campus, Mehsana 384 002, Gujarat, India
| | - Nihir Shah
- Division of Dairy Microbiology, Mansinhbhai Institute of Dairy and Food Technology-MIDFT, Dudhsagar Dairy Campus, Mehsana 384 002, Gujarat, India
| | - Gemilang Lara Utama
- Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Sumedang 45363, Indonesia; Center for Environment and Sustainability Science, Universitas Padjadjaran, Bandung 40132, Indonesia
| | - Prem Prakash Srivastav
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Juan Roberto Benavente-Valdés
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo Campus, 25280 Coahuila, Mexico
| | - Mónica L Chávez-González
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo Campus, 25280 Coahuila, Mexico
| | - Cristobal Noe Aguilar
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo Campus, 25280 Coahuila, Mexico.
| |
Collapse
|
16
|
Shatoor AS, Al Humayed S, Almohiy HM. Astaxanthin attenuates hepatic steatosis in high-fat diet-fed rats by suppressing microRNA-21 via transactivation of nuclear factor erythroid 2-related factor 2. J Physiol Biochem 2021; 78:151-168. [PMID: 34651285 DOI: 10.1007/s13105-021-00850-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 09/29/2021] [Indexed: 02/08/2023]
Abstract
This study examined whether astaxanthin (ASX) could alleviate hepatic steatosis in rats fed a high-fat diet (HFD) by modulating the nuclear factor erythroid 2-related factor 2 (Nrf2)/miR-21 axis. Rats (n = 8/group) were fed either a standard diet (3.8 kcal/g; 10% fat) or HFD (4.6 kcal/g; 40% fat) and treated orally with either the vehicle or ASX (6 mg/kg) daily for 8 days. Another group was fed HFD and treated with ASX and brusatol (an Nrf2 inhibitor) (2 mg/kg/twice per week/i.p.). ASX prevented the gain in body and liver weights and attenuated hepatic lipid accumulation in HFD-fed rats. In the control and HFD-fed rats, ASX did not affect food intake, serum free fatty acid (FFA) content, and glucose and insulin levels and tolerance. However, serum triglyceride (TG), cholesterol, and low-density lipoprotein-cholesterol levels; hepatic levels of TGs and FFAs; and hepatic levels of Srebp1, Srebp2, HMGCR, and fatty acid synthase mRNAs and miR-21 were reduced and the mRNA levels of Pparα were significantly increased in both the groups. These effects were associated with a reduction in the hepatic levels of reactive oxygen species, malondialdehyde, tumor necrosis factor-α, and interlukin-6 as well as an increase in superoxide dismutase levels, total glutathione content, and nuclear levels and activity of Nrf2. miR-21 levels were strongly correlated with the nuclear activity of Nrf2. Brusatol completely reversed the effects of ASX. In conclusion, ASX prevents hepatic steatosis mainly by transactivating Nrf2 and is associated with the suppression of miR-21 and Srebp1/2 and upregulation of Pparα expression.
Collapse
Affiliation(s)
- Abdullah S Shatoor
- Department of Medicine, Cardiology Section, College of Medicine, King Khalid University (KKU), Abha, Saudi Arabia.
| | - Suliman Al Humayed
- Department of Internal Medicine, College of Medicine, King Khalid University (KKU), Abha, Saudi Arabia
| | - Hussain M Almohiy
- Depatrtment of Radiology Science, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
17
|
Cao Y, Yang L, Qiao X, Xue C, Xu J. Dietary astaxanthin: an excellent carotenoid with multiple health benefits. Crit Rev Food Sci Nutr 2021:1-27. [PMID: 34581210 DOI: 10.1080/10408398.2021.1983766] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Astaxanthin is a carotenoid widely found in marine organisms and microorganisms. With extensive use in nutraceuticals, cosmetics, and animal feed, astaxanthin will have the largest share in the global market for carotenoids in the near future. Owing to its unique molecular features, astaxanthin has excellent antioxidant activity and holds promise for use in biochemical studies. This review focuses on the observed health benefits of dietary astaxanthin, as well as its underlying bioactivity mechanisms. Recent studies have increased our understanding of the role of isomerization and esterification in the structure-function relationship of dietary astaxanthin. Gut microbiota may involve the fate of astaxanthin during digestion and absorption; thus, further knowledge is needed to establish accurate recommendations for dietary intake of both healthy and special populations. Associated with the regulation of redox balance and multiple biological mechanisms, astaxanthin is proposed to affect oxidative stress, inflammation, cell death, and lipid metabolism in humans, thus exerting benefits for skin condition, eye health, cardiovascular system, neurological function, exercise performance, and immune response. Additionally, preclinical trials predict its potential effects such as intestinal flora regulation and anti-diabetic activity. Therefore, astaxanthin is worthy of further investigation for boosting human health, and wide applications in the food industry.
Collapse
Affiliation(s)
- Yunrui Cao
- College of Food Science and Engineering, Ocean University of China, Qingdao, PR China
| | - Lu Yang
- College of Food Science and Engineering, Ocean University of China, Qingdao, PR China
| | - Xing Qiao
- College of Food Science and Engineering, Ocean University of China, Qingdao, PR China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, PR China.,Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China
| | - Jie Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao, PR China
| |
Collapse
|
18
|
Ahmadi AR, Ayazi-Nasrabadi R. Astaxanthin protective barrier and its ability to improve the health in patients with COVID-19. IRANIAN JOURNAL OF MICROBIOLOGY 2021; 13:434-441. [PMID: 34557270 PMCID: PMC8421583 DOI: 10.18502/ijm.v13i4.6965] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Inflammation acts like a double-edged sword and can be harmful if not appropriately controlled. COVID-19 is created through a novel species of coronavirus SARS-CoV-2 (2019-nCoV). Elevated levels of inflammatory factors such as interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), etc. lead to Acute Respiratory Distress Syndrome (ARDS) and severe complications of infection in the lungs of coronavirus-infected patients. Astaxanthin is a natural and potent carotenoid with powerful antioxidant activity as well as an anti-inflammatory agent that supports good health. The effects of astaxanthin on the regulation of cyclooxygenase-2 (COX-2) pathways and the reduction and suppression of cytokines and other inflammatory agents such as IL-6 and TNF-α have already been identified. Therefore, these unique features can make this natural compound an excellent option to minimize inflammation and its consequences.
Collapse
Affiliation(s)
- Ali-Reza Ahmadi
- Department of Biomedical Sciences, Women Research Center, Alzahra University, Tehran, Iran
| | - Roya Ayazi-Nasrabadi
- Department of Biomedical Sciences, Women Research Center, Alzahra University, Tehran, Iran
| |
Collapse
|
19
|
Liang B, Cai XY, Gu N. Marine Natural Products and Coronary Artery Disease. Front Cardiovasc Med 2021; 8:739932. [PMID: 34621803 PMCID: PMC8490644 DOI: 10.3389/fcvm.2021.739932] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/24/2021] [Indexed: 12/18/2022] Open
Abstract
Coronary artery disease is the major cause of mortality worldwide, especially in low- and middle-income earners. To not only reduce angina symptoms and exercise-induced ischemia but also prevent cardiovascular events, pharmacological intervention strategies, including antiplatelet drugs, anticoagulant drugs, statins, and other lipid-lowering drugs, and renin-angiotensin-aldosterone system blockers, are conducted. However, the existing drugs for coronary artery disease are incomprehensive and have some adverse reactions. Thus, it is necessary to look for new drug research and development. Marine natural products have been considered a valuable source for drug discovery because of their chemical diversity and biological activities. The experiments and investigations indicated that several marine natural products, such as organic small molecules, polysaccharides, proteins, and bioactive peptides, and lipids were effective for treating coronary artery disease. Here, we particularly discussed the functions and mechanisms of active substances in coronary artery disease, including antiplatelet, anticoagulant, lipid-lowering, anti-inflammatory, and antioxidant activities.
Collapse
Affiliation(s)
- Bo Liang
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Xin-Yi Cai
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Ning Gu
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
20
|
SINGH SV, SOMAGOND YALLAPPAM, DESHPANDE ADITYA. Nutritional management of dairy animals for sustained production under heat stress scenario. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2021. [DOI: 10.56093/ijans.v91i5.115381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Dairy industry plays a significant role in the agriculture sector for sustainable growth. Heat stress, on the other hand, has been proven to have a detrimental impact on dairy output in terms of growth, reproductive performance and milk production in dairy animals, especially in tropical areas. Heat stress is one of the most significant issues facing the dairy industry, as rising temperatures and humidity limit animal productivity throughout the summer, resulting in devastating economic repercussions. The purpose of this review is to gather knowledge on the effects of heat stress on dairy output and how to ameliorate them. The diversion of energy resources from the production to the adaptation pathway may be responsible for the loss in productive capacity of dairy animals, when they are exposed to heat stress. There are different approaches pertaining to relieving the adverse effects of heat stress on dairy production system. These approaches may be classified into three major categories viz. genetic, management and nutritional interventions. These approaches might help dairy animals to perform better by reducing the harmful impacts of heat stress. Appropriate shelter design, giving shade, employing sprinklers, installing cooling devices, and using fans and ventilation systems are among the management strategies. The nutritional interventions comprise ration balancing and providing essential micronutrients to improve the productive and reproductive performance. Some of the most widely used dietary measures to ensure optimal production are inclusion of protein or fat (prill fat), micronutrients antioxidants (vitamins and minerals) and some feed additives (Astaxanthin, betaine, melatonin, Chlorophytum borivilianum) in the diet. These antioxidants and feed additives can be used to attenuate the negative effects of environmental stress. Furthermore, providing adequate energy and antioxidants help to ensure optimum growth, milk production and reproduction efficiency during heat stress. This review provides an overview of the consequences of heat stress on dairy animals, emphasizes essential nutritional strategies for heat stress reduction in dairy animals, and evaluates the influence of various feed supplements on growth, productivity and physiology.
Collapse
|
21
|
Dowey R, Iqbal A, Heller SR, Sabroe I, Prince LR. A Bittersweet Response to Infection in Diabetes; Targeting Neutrophils to Modify Inflammation and Improve Host Immunity. Front Immunol 2021; 12:678771. [PMID: 34149714 PMCID: PMC8209466 DOI: 10.3389/fimmu.2021.678771] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/10/2021] [Indexed: 12/16/2022] Open
Abstract
Chronic and recurrent infections occur commonly in both type 1 and type 2 diabetes (T1D, T2D) and increase patient morbidity and mortality. Neutrophils are professional phagocytes of the innate immune system that are critical in pathogen handling. Neutrophil responses to infection are dysregulated in diabetes, predominantly mediated by persistent hyperglycaemia; the chief biochemical abnormality in T1D and T2D. Therapeutically enhancing host immunity in diabetes to improve infection resolution is an expanding area of research. Individuals with diabetes are also at an increased risk of severe coronavirus disease 2019 (COVID-19), highlighting the need for re-invigorated and urgent focus on this field. The aim of this review is to explore the breadth of previous literature investigating neutrophil function in both T1D and T2D, in order to understand the complex neutrophil phenotype present in this disease and also to focus on the development of new therapies to improve aberrant neutrophil function in diabetes. Existing literature illustrates a dual neutrophil dysfunction in diabetes. Key pathogen handling mechanisms of neutrophil recruitment, chemotaxis, phagocytosis and intracellular reactive oxygen species (ROS) production are decreased in diabetes, weakening the immune response to infection. However, pro-inflammatory neutrophil pathways, mainly neutrophil extracellular trap (NET) formation, extracellular ROS generation and pro-inflammatory cytokine generation, are significantly upregulated, causing damage to the host and perpetuating inflammation. Reducing these proinflammatory outputs therapeutically is emerging as a credible strategy to improve infection resolution in diabetes, and also more recently COVID-19. Future research needs to drive forward the exploration of novel treatments to improve infection resolution in T1D and T2D to improve patient morbidity and mortality.
Collapse
Affiliation(s)
- Rebecca Dowey
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Ahmed Iqbal
- Sheffield Teaching Hospitals National Health Service (NHS) Foundation Trust, Sheffield, United Kingdom
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Simon R. Heller
- Sheffield Teaching Hospitals National Health Service (NHS) Foundation Trust, Sheffield, United Kingdom
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Ian Sabroe
- Sheffield Teaching Hospitals National Health Service (NHS) Foundation Trust, Sheffield, United Kingdom
| | - Lynne R. Prince
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
22
|
Satoh T, Gupta RC. Astaxanthin: health benefits and toxicity. NUTRACEUTICALS 2021:881-889. [DOI: 10.1016/b978-0-12-821038-3.00051-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
23
|
Pereira CPM, Souza ACR, Vasconcelos AR, Prado PS, Name JJ. Antioxidant and anti‑inflammatory mechanisms of action of astaxanthin in cardiovascular diseases (Review). Int J Mol Med 2021; 47:37-48. [PMID: 33155666 PMCID: PMC7723678 DOI: 10.3892/ijmm.2020.4783] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/12/2020] [Indexed: 11/06/2022] Open
Abstract
Cardiovascular diseases are the most common cause of mortality worldwide. Oxidative stress and inflammation are pathophysiological processes involved in the development of cardiovascular diseases; thus, anti‑inflammatory and antioxidant agents that modulate redox balance have become research targets so as to evaluate their molecular mechanisms of action and therapeutic properties. Astaxanthin, a carotenoid of the xanthophyll group, has potent antioxidant properties due to its molecular structure and its arrangement in the plasma membrane, factors that favor the neutralization of reactive oxygen and nitrogen species. This carotenoid also has prominent anti‑inflammatory activity, possibly interrelated with its antioxidant effect, and is also involved in the modulation of lipid and glucose metabolism. Considering the potential beneficial effects of astaxanthin on cardiovascular health evidenced by preclinical and clinical studies, the aim of the present review was to describe the molecular and cellular mechanisms associated with the antioxidant and anti‑inflammatory properties of this carotenoid in cardiovascular diseases, particularly atherosclerosis. The beneficial properties and safety profile of astaxanthin indicate that this compound may be used for preventing progression or as an adjuvant in the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
| | | | - Andrea Rodrigues Vasconcelos
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | | | - José João Name
- Kilyos Assessoria, Cursos e Palestras, São Paulo, SP 01311-100
| |
Collapse
|
24
|
Dludla PV, Nkambule BB, Mazibuko-Mbeje SE, Nyambuya TM, Silvestri S, Orlando P, Mxinwa V, Louw J, Tiano L. The impact of dimethyl sulfoxide on oxidative stress and cytotoxicity in various experimental models. Toxicology 2021. [DOI: 10.1016/b978-0-12-819092-0.00025-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
25
|
Jurić S, Jurić M, Król-Kilińska Ż, Vlahoviček-Kahlina K, Vinceković M, Dragović-Uzelac V, Donsì F. Sources, stability, encapsulation and application of natural pigments in foods. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1837862] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Slaven Jurić
- Faculty of Agriculture, Department of Chemistry, University of Zagreb, Zagreb, Croatia
| | - Marina Jurić
- Faculty of Pharmacy and Biochemistry, Department of Pharmacognosy, University of Zagreb, Zagreb, Croatia
| | - Żaneta Król-Kilińska
- Department of Functional Food Products Development, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | | | - Marko Vinceković
- Faculty of Agriculture, Department of Chemistry, University of Zagreb, Zagreb, Croatia
| | - Verica Dragović-Uzelac
- Faculty of Food Technology and Biotechnology, Department of Food Engineering, University of Zagreb, Zagreb, Croatia
| | - Francesco Donsì
- Department of Industrial Engineering, University of Salerno, Fisciano, Italy
| |
Collapse
|
26
|
Choo WT, Teoh ML, Phang SM, Convey P, Yap WH, Goh BH, Beardall J. Microalgae as Potential Anti-Inflammatory Natural Product Against Human Inflammatory Skin Diseases. Front Pharmacol 2020; 11:1086. [PMID: 32848730 PMCID: PMC7411303 DOI: 10.3389/fphar.2020.01086] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 07/03/2020] [Indexed: 01/06/2023] Open
Abstract
The skin is the first line of defense against pathogen and other environmental pollutant. The body is constantly exposed to reactive oxygen species (ROS) that stimulates inflammatory process in the skin. Many studies have linked ROS to various inflammatory skin diseases. Patients with skin diseases face various challenges with inefficient and inappropriate treatment in managing skin diseases. Overproduction of ROS in the body will result in oxidative stress which will lead to various cellular damage and alter normal cell function. Multiple signaling pathways are seen to have significant effects during ROS-mediated oxidative stress. In this review, microalgae have been selected as a source of natural-derived antioxidant to combat inflammatory skin diseases that are prominent in today’s society. Several studies have demonstrated that bioactive compounds isolated from microalgae have anti-inflammation and anti-oxidative properties that can help remedy various skin diseases. These compounds are able to inhibit production of pro-inflammatory cytokines and reduce the expression of inflammatory genes. Bioactive compounds from microalgae work in action by altering enzyme activities, regulating cellular activities, targeting major signaling pathways related to inflammation.
Collapse
Affiliation(s)
- Wu-Thong Choo
- School of Biosciences, Taylor's University, Lakeside Campus, Subang Jaya, Malaysia
| | - Ming-Li Teoh
- School of Biosciences, Taylor's University, Lakeside Campus, Subang Jaya, Malaysia.,Institute of Ocean and Earth Sciences, University of Malaya, Kuala Lumpur, Malaysia.,National Antarctic Research Centre, Institute of Graduate Studies, University of Malaya, Kuala Lumpur, Malaysia
| | - Siew-Moi Phang
- Institute of Ocean and Earth Sciences, University of Malaya, Kuala Lumpur, Malaysia.,Faculty of Applied Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Peter Convey
- British Antarctic Survey, NERC, Cambridge, United Kingdom
| | - Wei-Hsum Yap
- School of Biosciences, Taylor's University, Lakeside Campus, Subang Jaya, Malaysia
| | - Bey-Hing Goh
- Biofunctional Molecule Exploratory Research Group (BMEX), School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia.,College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - John Beardall
- School of Biological Sciences, Monash University, Clayton, VIC, Australia
| |
Collapse
|
27
|
Cao Q, Zhao J, Xing M, Xiao H, Zhang Q, Liang H, Ji A, Song S. Current Research Landscape of Marine-Derived Anti-Atherosclerotic Substances. Mar Drugs 2020; 18:md18090440. [PMID: 32854344 PMCID: PMC7551282 DOI: 10.3390/md18090440] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 12/18/2022] Open
Abstract
Atherosclerosis is a chronic disease characterized by lipid accumulation and chronic inflammation of the arterial wall, which is the pathological basis for coronary heart disease, cerebrovascular disease and thromboembolic disease. Currently, there is a lack of low-cost therapeutic agents that effectively slow the progression of atherosclerosis. Therefore, the development of new drugs is urgently needed. The research and development of marine-derived drugs have gained increasing interest from researchers across the world. Many marine organisms provide a rich material basis for the development of atherosclerotic drugs. This review focuses on the latest technological advances in the structures and mechanisms of action of marine-derived anti-atherosclerotic substances and the challenges of the application of these substances including marine polysaccharides, proteins and peptides, polyunsaturated fatty acids and small molecule compounds. Here, we describe the theoretical basis of marine biological resources in the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Qi Cao
- Marine College, Shandong University, Weihai 264209, China; (Q.C.); (J.Z.); (M.X.); (H.X.); (Q.Z.); (H.L.)
| | - Jiarui Zhao
- Marine College, Shandong University, Weihai 264209, China; (Q.C.); (J.Z.); (M.X.); (H.X.); (Q.Z.); (H.L.)
| | - Maochen Xing
- Marine College, Shandong University, Weihai 264209, China; (Q.C.); (J.Z.); (M.X.); (H.X.); (Q.Z.); (H.L.)
| | - Han Xiao
- Marine College, Shandong University, Weihai 264209, China; (Q.C.); (J.Z.); (M.X.); (H.X.); (Q.Z.); (H.L.)
| | - Qian Zhang
- Marine College, Shandong University, Weihai 264209, China; (Q.C.); (J.Z.); (M.X.); (H.X.); (Q.Z.); (H.L.)
| | - Hao Liang
- Marine College, Shandong University, Weihai 264209, China; (Q.C.); (J.Z.); (M.X.); (H.X.); (Q.Z.); (H.L.)
| | - Aiguo Ji
- Marine College, Shandong University, Weihai 264209, China; (Q.C.); (J.Z.); (M.X.); (H.X.); (Q.Z.); (H.L.)
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
- Correspondence: (A.J.); (S.S.)
| | - Shuliang Song
- Marine College, Shandong University, Weihai 264209, China; (Q.C.); (J.Z.); (M.X.); (H.X.); (Q.Z.); (H.L.)
- Correspondence: (A.J.); (S.S.)
| |
Collapse
|
28
|
Giannaccare G, Pellegrini M, Senni C, Bernabei F, Scorcia V, Cicero AFG. Clinical Applications of Astaxanthin in the Treatment of Ocular Diseases: Emerging Insights. Mar Drugs 2020; 18:md18050239. [PMID: 32370045 PMCID: PMC7281326 DOI: 10.3390/md18050239] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 12/12/2022] Open
Abstract
Astaxanthin is a naturally occurring red carotenoid pigment belonging to the family of xanthophylls, and is typically found in marine environments, especially in microalgae and seafood such as salmonids, shrimps and lobsters. Due to its unique molecular structure, astaxanthin features some important biologic properties, mostly represented by strong antioxidant, anti-inflammatory and antiapoptotic activities. A growing body of evidence suggests that astaxanthin is efficacious in the prevention and treatment of several ocular diseases, ranging from the anterior to the posterior pole of the eye. Therefore, the present review aimed at providing a comprehensive evaluation of current clinical applications of astaxanthin in the management of ocular diseases. The efficacy of this carotenoid in the setting of retinal diseases, ocular surface disorders, uveitis, cataract and asthenopia is reported in numerous animal and human studies, which highlight its ability of modulating several metabolic pathways, subsequently restoring the cellular homeostatic balance. To maximize its multitarget therapeutic effects, further long-term clinical trials are warranted in order to define appropriate dosage, route of administration and exact composition of the final product.
Collapse
Affiliation(s)
- Giuseppe Giannaccare
- Department of Ophthalmology, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (G.G.); (V.S.)
| | - Marco Pellegrini
- Ophthalmology Unit, S.Orsola-Malpighi Hospital, University of Bologna, 40138 Bologna, Italy; (M.P.); (C.S.); (F.B.)
| | - Carlotta Senni
- Ophthalmology Unit, S.Orsola-Malpighi Hospital, University of Bologna, 40138 Bologna, Italy; (M.P.); (C.S.); (F.B.)
| | - Federico Bernabei
- Ophthalmology Unit, S.Orsola-Malpighi Hospital, University of Bologna, 40138 Bologna, Italy; (M.P.); (C.S.); (F.B.)
| | - Vincenzo Scorcia
- Department of Ophthalmology, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (G.G.); (V.S.)
| | | |
Collapse
|
29
|
|
30
|
Barkia I, Saari N, Manning SR. Microalgae for High-Value Products Towards Human Health and Nutrition. Mar Drugs 2019; 17:E304. [PMID: 31137657 PMCID: PMC6562505 DOI: 10.3390/md17050304] [Citation(s) in RCA: 248] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 04/02/2019] [Indexed: 12/15/2022] Open
Abstract
Microalgae represent a potential source of renewable nutrition and there is growing interest in algae-based dietary supplements in the form of whole biomass, e.g., Chlorella and Arthrospira, or purified extracts containing omega-3 fatty acids and carotenoids. The commercial production of bioactive compounds from microalgae is currently challenged by the biorefinery process. This review focuses on the biochemical composition of microalgae, the complexities of mass cultivation, as well as potential therapeutic applications. The advantages of open and closed growth systems are discussed, including common problems encountered with large-scale growth systems. Several methods are used for the purification and isolation of bioactive compounds, and many products from microalgae have shown potential as antioxidants and treatments for hypertension, among other health conditions. However, there are many unknown algal metabolites and potential impurities that could cause harm, so more research is needed to characterize strains of interest, improve overall operation, and generate safe, functional products.
Collapse
Affiliation(s)
- Ines Barkia
- Department of Food Science, Universiti Putra Malaysia, Selangor 43400, Malaysia.
| | - Nazamid Saari
- Department of Food Science, Universiti Putra Malaysia, Selangor 43400, Malaysia.
| | - Schonna R Manning
- Department of Molecular Biosciences, UTEX Culture Collection of Algae, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
31
|
Kumar S, Singh SV. Inhibition of NF-κB signaling pathway by astaxanthin supplementation for prevention of heat stress-induced inflammatory changes and apoptosis in Karan Fries heifers. Trop Anim Health Prod 2019; 51:1125-1134. [PMID: 30612290 DOI: 10.1007/s11250-018-01793-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 12/20/2018] [Indexed: 01/07/2023]
Abstract
Present study was conducted on 12 Karan Fries (Holstein Friesian X Tharparkar) heifers (10-12 months) to assess the effect of astaxanthin supplementation on heat stress amelioration and inhibition of NF-κB signaling pathway for prevention of heat stress-induced inflammatory changes and apoptosis in the cell during the summer season. The heifers were randomly and equally divided into two groups, i.e., control (fed as per ICAR 2013) and treatment groups (additionally supplemented astaxanthin at a dose rate of 0.25 mg/kg BW/day/animal). Temperature humidity index used to assess the levels of summer stress during the experimental period. Blood samples were collected at the fortnightly interval for quantification of plasma cortisol and IL-12 from both the groups of the heifers and from collected blood samples, RNA was isolated and transcribed into cDNA for real time PCR, for genes expression of NF-κB, IL-2, caspase-3, and Bcl-2. Plasma cortisol, IL-12 levels, and expression pattern of NF-κB, IL-2, and caspase-3 were significantly (P ≤ 0.05) lower in treatment group of Karan Fries heifers than control group, whereas, Bcl-2 was higher (P ≤ 0.05) in astaxanthin supplemented group. The temperature humidity index had a positive correlation (P ≤ 0.05) with plasma cortisol and IL-12 and expression pattern of NF-κB, IL-2, and caspase-3. However, it was negatively correlated with Bcl-2. The supplementation of astaxanthin can ameliorate the impact of summer stress through NF-κB downregulation, might be due to the quenching of free radicals, which regulates the expression of pro-inflammatory mediators and apoptotic genes.
Collapse
Affiliation(s)
- Sunil Kumar
- Animal Physiology Division, ICAR, National Dairy Research Institute (NDRI), Karnal, Haryana, 132001, India.
| | - S V Singh
- Animal Physiology Division, ICAR, National Dairy Research Institute (NDRI), Karnal, Haryana, 132001, India
| |
Collapse
|
32
|
Liu ZW, Yue Z, Zeng XA, Cheng JH, Aadil RM. Ionic liquid as an effective solvent for cell wall deconstructing through astaxanthin extraction from Haematococcus pluvialis. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.14030] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Zhi-Wei Liu
- College of Food Science and Technology; Hunan Agricultural University; Changsha 410128 China
- Hunan Provincial Key Laboratory of Food Science and Biotechnology; Changsha 410128 China
| | - Zhou Yue
- College of Food Science and Technology; Hunan Agricultural University; Changsha 410128 China
- Hunan Provincial Key Laboratory of Food Science and Biotechnology; Changsha 410128 China
| | - Xin-An Zeng
- School of Food Science and Engineering; South China University of Technology; Guangzhou 510641 China
| | - Jun-Hu Cheng
- School of Food Science and Engineering; South China University of Technology; Guangzhou 510641 China
| | - Rana Muhammad Aadil
- School of Food Science and Engineering; South China University of Technology; Guangzhou 510641 China
- National Institute of Food Science and Technology; University of Agriculture; Faisalabad 38000 Pakistan
| |
Collapse
|
33
|
Chen JC, Wu CH, Peng YS, Zheng HY, Lin YC, Ma PF, Yen TC, Chen TY, Lin YW. Astaxanthin enhances erlotinib-induced cytotoxicity by p38 MAPK mediated xeroderma pigmentosum complementation group C (XPC) down-regulation in human lung cancer cells. Toxicol Res (Camb) 2018; 7:1247-1256. [PMID: 30555679 DOI: 10.1039/c7tx00292k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 09/07/2018] [Indexed: 12/11/2022] Open
Abstract
Astaxanthin has been demonstrated to exhibit a wide range of beneficial effects that include anti-cancer and anti-inflammatory properties. Xeroderma pigmentosum complementation group C (XPC) protein is an important DNA damage recognition factor in nucleotide excision repair and is involved in regulating non-small cell lung cancer (NSCLC) cell proliferation and viability. Erlotinib (TarcevaR) is a selective epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor that has demonstrated clinical activity in NSCLC cells. However, whether astaxanthin and erlotinib could induce synergistic cytotoxicity in NSCLC cells through modulating XPC expression is unknown. In this study, we found that p38 MAPK activation by astaxanthin decreased XPC expression in two human lung adenocarcinoma A549 and H1975 cells. Inactivation of p38 MAPK by pharmacological inhibitor SB203580 or the specific small interfering RNA (siRNA) rescued the astaxanthin-reduced XPC mRNA and protein levels. Enforced expression of XPC cDNA or inhibiting the p38 MAPK activity reduced the cytotoxicity and cell growth inhibition of astaxanthin. In contrast, knockdown of XPC using siRNA enhanced the cytotoxic effects of astaxanthin. Moreover, astaxanthin synergistically enhanced cytotoxicity and cell growth inhibition of erlotinib in NSCLC cells, which were associated with the down-regulation of XPC expression and activation of p38 MAPK. Our findings suggested that the astaxanthin induced p38 MAPK mediated XPC down-regulation enhanced the erlotinib-induced cytotoxicity in A549 and H1975 cells.
Collapse
Affiliation(s)
- Jyh-Cheng Chen
- Department of Food Science , National Chiayi University , Chiayi , Taiwan
| | - Chia-Hung Wu
- Department of Biochemical Science and Technology , National Chiayi University , Chiayi , Taiwan . ; ; Tel: +886-5-271-7770
| | - Yi-Shuan Peng
- Department of Biochemical Science and Technology , National Chiayi University , Chiayi , Taiwan . ; ; Tel: +886-5-271-7770
| | - Hao-Yu Zheng
- Department of Biochemical Science and Technology , National Chiayi University , Chiayi , Taiwan . ; ; Tel: +886-5-271-7770
| | - Yuan-Cheng Lin
- Department of Biochemical Science and Technology , National Chiayi University , Chiayi , Taiwan . ; ; Tel: +886-5-271-7770
| | - Peng-Fang Ma
- Department of Biochemical Science and Technology , National Chiayi University , Chiayi , Taiwan . ; ; Tel: +886-5-271-7770
| | - Ting-Chuan Yen
- Department of Biochemical Science and Technology , National Chiayi University , Chiayi , Taiwan . ; ; Tel: +886-5-271-7770
| | - Tzu-Ying Chen
- Department of Biochemical Science and Technology , National Chiayi University , Chiayi , Taiwan . ; ; Tel: +886-5-271-7770
| | - Yun-Wei Lin
- Department of Biochemical Science and Technology , National Chiayi University , Chiayi , Taiwan . ; ; Tel: +886-5-271-7770
| |
Collapse
|
34
|
Priyadarshini L, Aggarwal A. Astaxanthin inhibits cytokines production and inflammatory gene expression by suppressing IκB kinase-dependent nuclear factor κB activation in pre and postpartum Murrah buffaloes during different seasons. Vet World 2018; 11:782-788. [PMID: 30034170 PMCID: PMC6048090 DOI: 10.14202/vetworld.2018.782-788] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 05/04/2018] [Indexed: 11/17/2022] Open
Abstract
AIM We examined regulatory function of astaxanthin on mRNA expression of nuclear factor κB (NF-κB) p65, interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α), and interferon gamma (IFN-γ) in peripheral blood mononuclear cells in pre and postpartum Murrah buffaloes during summer (temperature-humidity index [THI]=86; relative humidity [RH]=24) and winter (THI=58.74; RH=73) seasons. MATERIALS AND METHODS A total of 32 Murrah buffaloes apparently healthy and in their one to four parity were selected from National Dairy Research Institute herd and equally distributed randomly into four groups (control and supplemented groups of buffaloes during summer and winter season, respectively). All groups were fed according to the nutrient requirement of buffaloes (ICAR, 2013). The treatment group was supplemented with astaxanthin at 0.25 mg/kg body weight/animal/day during the period 30 days before expected date of calving and up to 30 days postpartum. RESULTS There was downregulation of NF-κB p65 gene in all the groups. NF-κB p65 mRNA expression was lower (p<0.05) in treatment than control group from prepartum to postpartum during summer, while mRNA expression was low only on day 21 after calving during winter season. The mRNA expression of IL-6, TNF-α, and IFN-γ was lower (p<0.05) in treatment than a control group of buffaloes during summer and winter seasons. The mRNA expression of NFkB p65, IL-6, TNF-α, and IFN-γ was higher (p<0.05) in summer than in winter seasons. CONCLUSION The xanthophyll carotenoid astaxanthin a reddish-colored C-40 compound is a powerful broad-ranging antioxidant that naturally occurs in a wide variety of living organisms, such as microalgae, fungi, crustaceans, and complex plants. Astaxanthin blocked nuclear translocation of NF-κB p65 subunit and IκBα degradation, which correlated with its inhibitory effect on IκB kinase (IKK) activity. These results suggest that astaxanthin, probably due to its antioxidant activity, inhibits the production of inflammatory mediators by blocking NF-κB activation and as a consequent suppression of IKK activity and IκB-degradation.
Collapse
Affiliation(s)
- Lakshmi Priyadarshini
- Animal Physiology Division, ICAR-National Dairy Research Institute, Karnal - 132 001, Haryana, India
| | - Anjali Aggarwal
- Animal Physiology Division, ICAR-National Dairy Research Institute, Karnal - 132 001, Haryana, India
| |
Collapse
|
35
|
Effects of Rhodomyrtus tomentosa extract on virulence factors of Candida albicans and human neutrophil function. Arch Oral Biol 2018; 87:35-42. [DOI: 10.1016/j.archoralbio.2017.11.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 10/31/2017] [Accepted: 11/16/2017] [Indexed: 11/18/2022]
|
36
|
Sathasivam R, Ki JS. A Review of the Biological Activities of Microalgal Carotenoids and Their Potential Use in Healthcare and Cosmetic Industries. Mar Drugs 2018; 16:E26. [PMID: 29329235 PMCID: PMC5793074 DOI: 10.3390/md16010026] [Citation(s) in RCA: 220] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 01/08/2018] [Accepted: 01/08/2018] [Indexed: 12/12/2022] Open
Abstract
Carotenoids are natural pigments that play pivotal roles in many physiological functions. The characteristics of carotenoids, their effects on health, and the cosmetic benefits of their usage have been under investigation for a long time; however, most reviews on this subject focus on carotenoids obtained from several microalgae, vegetables, fruits, and higher plants. Recently, microalgae have received much attention due to their abilities in producing novel bioactive metabolites, including a wide range of different carotenoids that can provide for health and cosmetic benefits. The main objectives of this review are to provide an updated view of recent work on the health and cosmetic benefits associated with carotenoid use, as well as to provide a list of microalgae that produce different types of carotenoids. This review could provide new insights to researchers on the potential role of carotenoids in improving human health.
Collapse
Affiliation(s)
| | - Jang-Seu Ki
- Department of Biotechnology, Sangmyung University, Seoul 03016, Korea.
| |
Collapse
|
37
|
Chuyen HV, Eun JB. Marine carotenoids: Bioactivities and potential benefits to human health. Crit Rev Food Sci Nutr 2018; 57:2600-2610. [PMID: 26565683 DOI: 10.1080/10408398.2015.1063477] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Among natural pigments, carotenoids play important roles in physiological functions. The characteristics of carotenoids and their effects on human health have been reported for a long time, but most studies have focused on carotenoids from vegetables, fruits, and other parts of higher plants. Few reports are available on carotenoids from marine sources, such as seaweeds, microalgae, and marine animals, which have attracted attention in recent decades. Hundreds of carotenoids have been identified and isolated from marine organisms and their beneficial physiological functions, such as anticancer, antiobesity, antidiabetic, anti-inflammatory, and cardioprotective activities have been reported. The purpose of this review is to discuss the literature on the beneficial bioactivities of some of the most abundant marine carotenoids, including fucoxanthin, astaxanthin, cantaxanthin, peridinin, fucoxanthinol, and halocynthiaxanthin.
Collapse
Affiliation(s)
- Hoang Van Chuyen
- a Department of Food Science and Technology and Functional Food Research Center , Chonnam National University , Buk-gu, Gwangju , Korea.,b Department of Food and Agricultural Products Processing and Preservation , Faculty of Agriculture and Forestry, Tay Nguyen University , Daklak Province , Vietnam
| | - Jong-Bang Eun
- a Department of Food Science and Technology and Functional Food Research Center , Chonnam National University , Buk-gu, Gwangju , Korea
| |
Collapse
|
38
|
Meephansan J, Rungjang A, Yingmema W, Deenonpoe R, Ponnikorn S. Effect of astaxanthin on cutaneous wound healing. Clin Cosmet Investig Dermatol 2017; 10:259-265. [PMID: 28761364 PMCID: PMC5516620 DOI: 10.2147/ccid.s142795] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Wound healing consists of a complex series of convoluted processes which involve renewal of the skin after injury. ROS are involved in all phases of wound healing. A balance between oxidative and antioxidative forces is necessary for a favorable healing outcome. Astaxanthin, a member of the xanthophyll group, is considered a powerful antioxidant. In this study, we investigated the effect of topical astaxanthin on cutaneous wound healing. Full-thickness dermal wounds were created in 36 healthy female mice, which were divided into a control group and a group receiving 78.9 µM topical astaxanthin treatment twice daily for 15 days. Astaxanthin-treated wounds showed noticeable contraction by day 3 of treatment and complete wound closure by day 9, whereas the wounds of control mice revealed only partial epithelialization and still carried scabs. Wound healing biological markers including Col1A1 and bFGF were significantly increased in the astaxanthin-treated group since day 1. Interestingly, the oxidative stress marker iNOS showed a significantly lower expression in the study. The results indicate that astaxanthin is an effective compound for accelerating wound healing.
Collapse
Affiliation(s)
- Jitlada Meephansan
- Division of Dermatology, Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, Thailand
| | - Atiya Rungjang
- Division of Dermatology, Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, Thailand
| | - Werayut Yingmema
- Laboratory Animal Centers, Thammasat University, Pathum Thani, Thailand
| | - Raksawan Deenonpoe
- Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, Thailand
| | - Saranyoo Ponnikorn
- Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, Thailand
| |
Collapse
|
39
|
Kamada H, Akagi S, Watanabe S. Astaxanthin increases progesterone production in cultured bovine luteal cells. J Vet Med Sci 2017; 79:1103-1109. [PMID: 28442639 PMCID: PMC5487791 DOI: 10.1292/jvms.17-0044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Although astaxanthin (AST) is known to be a strong antioxidant, its effects on
reproductive function in domestic animals have not yet been elucidated in detail.
Therefore, we investigated the effects of AST on luteal cells, which produce progesterone
(P4), an important hormone for maintaining pregnancy. Luteal cells were prepared by
collagenase dispersion of the corpus luteum (CL). The addition of racemic AST at a low
concentration (<10 nM) to cultured bovine luteal cells increased P4 in the culture
medium (P<0.05). This effect was attributed to an increase in the
ability of luteal cells to produce P4 (P4/cell·DNA); however, the level of lipid peroxide
(TBARS: thiobarbituric acid reactive substances) per cell did not decrease with the
addition of AST, whose values were similar to that with the addition of luteinizing
hormone. When optical isomers of AST (SS and RR types) were added to the culture medium,
respectively, SS-AST was more effective in increasing P4 production than RR-AST. When 1
mg/kg·body weight of SS-AST derived from green algae was fed to cows for 2 weeks, its
concentration in blood plasma was 10.9 nM on average, which was sufficient to expect an
in vitro effect on the production of P4 in cows. These results
suggested the potential of SS-AST supplements for cows to elevate luteal function.
Collapse
Affiliation(s)
- Hachiro Kamada
- Institute of Livestock and Grassland Science, NARO, Ikenodai-2, Tsukuba, Ibaraki 305-0901, Japan
| | - Satoshi Akagi
- Institute of Livestock and Grassland Science, NARO, Ikenodai-2, Tsukuba, Ibaraki 305-0901, Japan
| | - Shinya Watanabe
- Institute of Livestock and Grassland Science, NARO, Ikenodai-2, Tsukuba, Ibaraki 305-0901, Japan
| |
Collapse
|
40
|
Milani A, Basirnejad M, Shahbazi S, Bolhassani A. Carotenoids: biochemistry, pharmacology and treatment. Br J Pharmacol 2017; 174:1290-1324. [PMID: 27638711 PMCID: PMC5429337 DOI: 10.1111/bph.13625] [Citation(s) in RCA: 426] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 08/21/2016] [Accepted: 08/31/2016] [Indexed: 01/06/2023] Open
Abstract
Carotenoids and retinoids have several similar biological activities such as antioxidant properties, the inhibition of malignant tumour growth and the induction of apoptosis. Supplementation with carotenoids can affect cell growth and modulate gene expression and immune responses. Epidemiological studies have shown a correlation between a high carotenoid intake in the diet with a reduced risk of breast, cervical, ovarian, colorectal cancers, and cardiovascular and eye diseases. Cancer chemoprevention by dietary carotenoids involves several mechanisms, including effects on gap junctional intercellular communication, growth factor signalling, cell cycle progression, differentiation-related proteins, retinoid-like receptors, antioxidant response element, nuclear receptors, AP-1 transcriptional complex, the Wnt/β-catenin pathway and inflammatory cytokines. Moreover, carotenoids can stimulate the proliferation of B- and T-lymphocytes, the activity of macrophages and cytotoxic T-cells, effector T-cell function and the production of cytokines. Recently, the beneficial effects of carotenoid-rich vegetables and fruits in health and in decreasing the risk of certain diseases has been attributed to the major carotenoids, β-carotene, lycopene, lutein, zeaxanthin, crocin (/crocetin) and curcumin, due to their antioxidant effects. It is thought that carotenoids act in a time- and dose-dependent manner. In this review, we briefly describe the biological and immunological activities of the main carotenoids used for the treatment of various diseases and their possible mechanisms of action. LINKED ARTICLES This article is part of a themed section on Principles of Pharmacological Research of Nutraceuticals. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.11/issuetoc.
Collapse
Affiliation(s)
- Alireza Milani
- Department of Hepatitis and AIDSPasteur Institute of IranTehranIran
| | | | - Sepideh Shahbazi
- Department of Hepatitis and AIDSPasteur Institute of IranTehranIran
| | - Azam Bolhassani
- Department of Hepatitis and AIDSPasteur Institute of IranTehranIran
| |
Collapse
|
41
|
Lin X, Zhao Y, Li S. Astaxanthin attenuates glutamate-induced apoptosis via inhibition of calcium influx and endoplasmic reticulum stress. Eur J Pharmacol 2017; 806:43-51. [PMID: 28400209 DOI: 10.1016/j.ejphar.2017.04.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 04/06/2017] [Accepted: 04/07/2017] [Indexed: 10/19/2022]
Abstract
Astaxanthin (AST) is a carotenoid that has been shown to have neuroprotective effects. In this study, it was found that AST significantly inhibited glutamate-induced loss of cell viability and apoptosis. AST pretreatment attenuated glutamate-induced activation of caspase-3, reduction of anti-apoptotic protein Bcl-2, and increase of pro-apoptotic protein Bak. In addition, AST pretreatment suppressed the production of intracellular reactive oxygen species. AST treatment also prevented glutamate-induced increase of the level of activated p38 mitogen-activated protein kinase (MAPK), which has been shown to promote apoptotic events. Furthermore, AST treatment greatly reduced the elevation of intracellular calcium level induced by glutamate and inhibited the activity of calpain, a calcium-dependent protease that plays an important role in mediating apoptosis stimulated by calcium overload in cytoplasm. Both oxidative stress and calcium overload can lead to endoplasmic reticulum (ER) stress. C/EBP-homologous protein (CHOP) is a bZIP transcription factor that can be activated by ER stress and promotes apoptosis. Here we found that AST attenuated glutamate-induced elevation of CHOP and ER chaperone glucose-regulated protein (GRP78). Overall, these results suggested that AST might protect cells against glutamate-induced apoptosis through maintaining redox balance and inhibiting glutamate-induced calcium influx and ER stress.
Collapse
Affiliation(s)
- Xiaotong Lin
- Department of Bioengineering, Harbin Institute of Technology, Weihai, Shandong 264209, PR China
| | - Yan Zhao
- Department of Bioengineering, Harbin Institute of Technology, Weihai, Shandong 264209, PR China.
| | - Shanhe Li
- Department of Bioengineering, Harbin Institute of Technology, Weihai, Shandong 264209, PR China
| |
Collapse
|
42
|
Matos J, Cardoso C, Bandarra NM, Afonso C. Microalgae as healthy ingredients for functional food: a review. Food Funct 2017; 8:2672-2685. [DOI: 10.1039/c7fo00409e] [Citation(s) in RCA: 189] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Microalgae are very interesting and valuable natural sources of highly valuable bioactive compounds, such as vitamins, essential amino acids, polyunsaturated fatty acids, minerals, carotenoids, enzymes and fibre.
Collapse
Affiliation(s)
- J. Matos
- Division of Aquaculture and Upgrading
- Portuguese Institute of the Sea and Atmosphere
- IPMA
- 1449-006 Lisboa
- Portugal
| | - C. Cardoso
- Division of Aquaculture and Upgrading
- Portuguese Institute of the Sea and Atmosphere
- IPMA
- 1449-006 Lisboa
- Portugal
| | - N. M. Bandarra
- Division of Aquaculture and Upgrading
- Portuguese Institute of the Sea and Atmosphere
- IPMA
- 1449-006 Lisboa
- Portugal
| | - C. Afonso
- Division of Aquaculture and Upgrading
- Portuguese Institute of the Sea and Atmosphere
- IPMA
- 1449-006 Lisboa
- Portugal
| |
Collapse
|
43
|
Ravi Kumar S, Narayan B, Sawada Y, Hosokawa M, Miyashita K. Combined effect of astaxanthin and squalene on oxidative stress in vivo. Mol Cell Biochem 2016; 417:57-65. [DOI: 10.1007/s11010-016-2713-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 04/27/2016] [Indexed: 01/08/2023]
|
44
|
Potential Anti-Atherosclerotic Properties of Astaxanthin. Mar Drugs 2016; 14:md14020035. [PMID: 26861359 PMCID: PMC4771988 DOI: 10.3390/md14020035] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 01/22/2016] [Accepted: 01/26/2016] [Indexed: 01/20/2023] Open
Abstract
Astaxanthin is a naturally occurring red carotenoid pigment classified as a xanthophyll, found in microalgae and seafood such as salmon, trout, and shrimp. This review focuses on astaxanthin as a bioactive compound and outlines the evidence associated with its potential role in the prevention of atherosclerosis. Astaxanthin has a unique molecular structure that is responsible for its powerful antioxidant activities by quenching singlet oxygen and scavenging free radicals. Astaxanthin has been reported to inhibit low-density lipoprotein (LDL) oxidation and to increase high-density lipoprotein (HDL)-cholesterol and adiponectin levels in clinical studies. Accumulating evidence suggests that astaxanthin could exert preventive actions against atherosclerotic cardiovascular disease (CVD) via its potential to improve oxidative stress, inflammation, lipid metabolism, and glucose metabolism. In addition to identifying mechanisms of astaxanthin bioactivity by basic research, much more epidemiological and clinical evidence linking reduced CVD risk with dietary astaxanthin intake is needed.
Collapse
|
45
|
Costanzo M, Cesi V, Prete E, Negroni A, Palone F, Cucchiara S, Oliva S, Leter B, Stronati L. Krill oil reduces intestinal inflammation by improving epithelial integrity and impairing adherent-invasive Escherichia coli pathogenicity. Dig Liver Dis 2016; 48:34-42. [PMID: 26493628 DOI: 10.1016/j.dld.2015.09.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 09/03/2015] [Accepted: 09/19/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND Krill oil is a marine derived oil rich in phospholipids, astaxanthin and omega-3 fatty acids. Several studies have found benefits of krill oil against oxidative and inflammatory damage. AIMS We aimed at assessing the ability of krill oil to reduce intestinal inflammation by improving epithelial barrier integrity, increasing cell survival and reducing pathogenicity of adherent-invasive Escherichia coli. METHODS CACO2 and HT29 cells were exposed to cytomix (TNFα and IFNγ) to induce inflammation and co-exposed to cytomix and krill oil. E-cadherin, ZO-1 and F-actin levels were analyzed by immunofluorescence to assess barrier integrity. Scratch test was performed to measure wound healing. Cell survival was analyzed by flow cytometry. Adherent-invasive Escherichia coli LF82 was used for adhesion/invasion assay. RESULTS In inflamed cells E-cadherin and ZO-1 decreased, with loss of cell-cell adhesion, and F-actin polymerization increased stress fibres; krill oil restored initial conditions and improved wound healing, reduced bacterial adhesion/invasion in epithelial cells and survival within macrophages; krill oil reduced LF82-induced mRNA expression of pro-inflammatory cytokines. CONCLUSIONS Krill oil improves intestinal barrier integrity and epithelial restitution during inflammation and controls bacterial adhesion and invasion to epithelial cells. Thus, krill oil may represent an innovative tool to reduce intestinal inflammation.
Collapse
Affiliation(s)
| | - Vincenzo Cesi
- Department of Radiobiology and Human Health, ENEA, Rome, Italy
| | - Enrica Prete
- Department of Radiobiology and Human Health, ENEA, Rome, Italy
| | - Anna Negroni
- Department of Radiobiology and Human Health, ENEA, Rome, Italy
| | | | - Salvatore Cucchiara
- Department of Paediatrics and Infantile Neuropsychiatry, Paediatric Gastroenterology and Liver Unit, Sapienza University of Rome, Italy
| | - Salvatore Oliva
- Department of Paediatrics and Infantile Neuropsychiatry, Paediatric Gastroenterology and Liver Unit, Sapienza University of Rome, Italy
| | - Beatrice Leter
- Department of Paediatrics and Infantile Neuropsychiatry, Paediatric Gastroenterology and Liver Unit, Sapienza University of Rome, Italy
| | - Laura Stronati
- Department of Radiobiology and Human Health, ENEA, Rome, Italy.
| |
Collapse
|
46
|
|
47
|
Brizio P, Benedetto A, Righetti M, Prearo M, Gasco L, Squadrone S, Abete MC. Astaxanthin and canthaxanthin (xanthophyll) as supplements in rainbow trout diet: in vivo assessment of residual levels and contributions to human health. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:10954-10959. [PMID: 24156372 DOI: 10.1021/jf4012664] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Many studies have demonstrated that xanthophylls, such as astaxanthin, have beneficial effects in human health, and their use in food supplements is thus encouraged. Moreover, such nutrients are frequently used in aquaculture to meet consumer demand for salmonoid flesh pigmentation. In this study different xanthophyll administration protocols were tested to verify pigmentation properties and safety of such mixtures of additives in trout diet. Residues of xanthophylls in muscle samples were determined by HPLC-MS/MS, reaching levels of 3.70 ± 0.04 mg/kg (astaxanthin) and 1.21 ± 0.06 mg/kg (canthaxanthin) during a 56 day administration period. On the basis of the average fish consumption in the human diet, the highest astaxanthin and canthaxanthin concentrations detected in trout fillets could result in weekly intakes of 1.63 and 0.53 mg, respectively, in humans; these values are not sufficient to achieve the positive effects described by many authors, but their residues could still represent an important source of carotenoids, alternative to the use of synthetic dietary supplements.
Collapse
Affiliation(s)
- Paola Brizio
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta , Via Bologna 148, 10154 Torino, Italy
| | | | | | | | | | | | | |
Collapse
|
48
|
Fucoxanthin in association with Vitamin c acts as modulators of human neutrophil function. Eur J Nutr 2013; 53:779-92. [DOI: 10.1007/s00394-013-0582-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 08/27/2013] [Indexed: 01/06/2023]
|
49
|
Changes in lymphocyte oxidant/antioxidant parameters after carbonyl and antioxidant exposure. Int Immunopharmacol 2012; 14:690-7. [DOI: 10.1016/j.intimp.2012.10.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 10/04/2012] [Accepted: 10/04/2012] [Indexed: 01/20/2023]
|
50
|
Guerra BA, Bolin AP, Morandi AC, Otton R. Glycolaldehyde impairs neutrophil biochemical parameters by an oxidative and calcium-dependent mechanism--protective role of antioxidants astaxanthin and vitamin C. Diabetes Res Clin Pract 2012; 98:108-18. [PMID: 22921203 DOI: 10.1016/j.diabres.2012.07.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 07/06/2012] [Accepted: 07/19/2012] [Indexed: 01/24/2023]
Abstract
AIM The present study examined the effects of glycolaldehyde (GC) on biochemical parameters of human neutrophils and whether the antioxidant astaxanthin associated with vitamin C can modulate these parameters. METHODS Neutrophils from healthy subjects were treated with GC (1mM) followed or not by the antioxidants astaxanthin (2 μM) and vitamin C (100 μM). We examined the phagocytic capacity, hypochlorous acid, myeloperoxidase (MPO) and glucose-6-phosphate dehydrogenase (G6PDH) activities, cytokines and [Ca(2+)](i). Also, superoxide anion, hydrogen peroxide, nitric oxide production, antioxidant enzyme activities and glutathione-recycling system were evaluated. RESULTS GC promoted a marked reduction on the phagocytic capacity, maximal G6PDH and MPO activities, hypochlorous acid production and release of IL-1β, IL-6 and TNF-α cytokines. Some impairment in the neutrophils biochemical parameters appears to be mediated by oxidative stress through ROS/RNS production and calcium reduction. Oxidative stress was evidenced by reduction in the activities of the main antioxidant enzymes, GSH/GSSG ratio and in the increment of O(2)(-) and H(2)O(2) and NO. CONCLUSIONS Treatment of cells with the combination of the antioxidants astaxanthin and vitamin C was able to restore some neutrophils function mainly by decreasing ROS/RNS production and improving the redox state. Overall, our findings demonstrate that GC modulates several neutrophils biochemical parameters in vitro.
Collapse
Affiliation(s)
- Beatriz Alves Guerra
- Postgraduate Program, Health Sciences, CBS, Universidade Cruzeiro do Sul, 03342000 São Paulo, SP, Brazil
| | | | | | | |
Collapse
|