1
|
King C, Plakke B. Maternal choline supplementation in neurodevelopmental disorders: mechanistic insights from animal models and future directions. Nutr Neurosci 2025; 28:405-424. [PMID: 39046330 DOI: 10.1080/1028415x.2024.2377084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
OBJECTIVES To synthesize evidence from animal models of neurodevelopmental disorders (NDD) using maternal choline supplementation, to characterize current knowledge on the mechanisms of choline's protective effects against NDD, and to identify gaps in knowledge for future study. METHODS A literature review was conducted in PubMed to identify studies using prenatal choline supplementation interventions in rodent models of neurodevelopmental disorders. 24 studies were identified, and behavioral and biological findings were extracted from each. Studies examining both genetic and environmental risk factors were included. RESULTS Maternal choline supplementation during gestation is protective against both genetic and environmental NDD risk factors. Maternal choline supplementation improves both cognitive and affective outcomes throughout the lifespan in NDD models. Prenatal choline improved these outcomes through its participation in processes like neurogenesis, epigenetic regulation, and anti-inflammatory signaling. DISCUSSION Maternal choline supplementation improves behavioral and neurobiological outcomes in animal models of NDD, paralleling findings in humans. Animal models provide a unique opportunity to study the mechanisms by which gestational choline improves neurodevelopmental outcomes. This is especially important since nearly 90% of pregnant people in the United States are deficient in choline intake. However, much is still unknown about the mechanisms through which choline and its derivatives act. Further research into this topic, especially mechanistic studies in animal models, is critical to modernize maternal choline intake guidelines and to develop interventions to increase maternal choline intake in vulnerable populations.
Collapse
Affiliation(s)
- Cole King
- Psychological Sciences, Kansas State University, Manhattan, KS, USA
| | - Bethany Plakke
- Psychological Sciences, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
2
|
Drenckpohl DC, Christifano DN, Carlson SE. Is choline deficiency an unrecognized factor in necrotizing enterocolitis of preterm infants? Pediatr Res 2024; 96:875-883. [PMID: 38658665 DOI: 10.1038/s41390-024-03212-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/23/2024] [Accepted: 03/15/2024] [Indexed: 04/26/2024]
Abstract
We undertook this review to determine if it is plausible that choline or phosphatidylcholine (PC) deficiency is a factor in necrotizing enterocolitis (NEC) after two clinical trials found a dramatic and unexpected reduction in NEC in an experimental group provided higher PC compared to a control group. Sources and amounts of choline/PC for preterm infants are compared to the choline status of preterm infants at birth and following conventional nutritional management. The roles of choline/PC in intestinal structure, mucus, mesenteric blood flow, and the cholinergic anti-inflammatory system are summarized. Low choline/PC status is linked to prematurity/immaturity, parenteral and enteral feeding, microbial dysbiosis and hypoxia/ischemia, factors long associated with the risk of developing NEC. We conclude that low choline status exists in preterm infants provided conventional parenteral and enteral nutritional management, and that it is plausible low choline/PC status adversely affects intestinal function to set up the vicious cycle of inflammation, loss of intestinal barrier function and worsening tissue hypoxia that occurs with NEC. In conclusion, this review supports the need for randomized clinical trials to test the hypothesis that additional choline or PC provided parenterally or enterally can reduce the incidence of NEC in preterm infants. IMPACT STATEMENT: Low choline status in preterm infants who are managed by conventional nutrition is plausibly linked to the risk of developing necrotizing enterocolitis.
Collapse
Affiliation(s)
- Douglas C Drenckpohl
- Department of Food & Nutrition, OSF Healthcare Saint Francis Medical Center, Peoria, IL, 61637, USA
- Department of Dietetics and Nutrition, University of Kansas Medical Center, Kansas City, KS, 66106, USA
| | - Danielle N Christifano
- Department of Dietetics and Nutrition, University of Kansas Medical Center, Kansas City, KS, 66106, USA
| | - Susan E Carlson
- Department of Dietetics and Nutrition, University of Kansas Medical Center, Kansas City, KS, 66106, USA.
| |
Collapse
|
3
|
Mok JH, Song J, Hahn WH, Cho S, Park JM, Koh J, Kim H, Kang NM. Biochemical Profiling of Urine Metabolome in Premature Infants Based on LC-MS Considering Maternal Influence. Nutrients 2024; 16:411. [PMID: 38337695 PMCID: PMC10857068 DOI: 10.3390/nu16030411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
In this study, Liquid Chromatography-Mass Spectrometry (LC-MS)-based metabolomics profiling was conducted to elucidate the urinary profiles of premature infants during early and late postnatal stages. As a result, we discovered significant excretion of maternal drugs in early-stage infants and identified crucial metabolites like hormones and amino acids. These findings shed light on the maternal impact on neonatal metabolism and underscore the beneficial effects of breastfeeding on the metabolism of essential amino acids in infants. This research not only enhances our understanding of maternal-infant nutritional interactions and their long-term implications for preterm infants but also offers critical insights into the biochemical characteristics and physiological mechanisms of preterm infants, laying a groundwork for future clinical studies focused on neonatal development and health.
Collapse
Affiliation(s)
- Jeong-Hun Mok
- Department of Medical Device Management and Research, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul 06355, Republic of Korea;
| | - Junhwan Song
- Department of Pediatrics, Soonchunhyang University Cheonan Hospital, Cheonan 31151, Republic of Korea; (J.S.); (J.K.); (H.K.)
| | - Won-Ho Hahn
- Department of Pediatrics, Soonchunhyang University Seoul Hospital, Seoul 04401, Republic of Korea;
| | - Seonghyeon Cho
- Basil Biotech, Incheon 22002, Republic of Korea; (S.C.); (J.-M.P.)
| | - Jong-Moon Park
- Basil Biotech, Incheon 22002, Republic of Korea; (S.C.); (J.-M.P.)
| | - Jiwon Koh
- Department of Pediatrics, Soonchunhyang University Cheonan Hospital, Cheonan 31151, Republic of Korea; (J.S.); (J.K.); (H.K.)
| | - Ho Kim
- Department of Pediatrics, Soonchunhyang University Cheonan Hospital, Cheonan 31151, Republic of Korea; (J.S.); (J.K.); (H.K.)
| | - Nam Mi Kang
- Department of Nursing, Research Institute for Biomedical & Health Science, Konkuk University, Chungju-si 27478, Republic of Korea
| |
Collapse
|
4
|
Minarski M, Maas C, Heinrich C, Böckmann KA, Bernhard W, Shunova A, Poets CF, Franz AR. Choline and Betaine Levels in Plasma Mirror Choline Intake in Very Preterm Infants. Nutrients 2023; 15:4758. [PMID: 38004152 PMCID: PMC10675502 DOI: 10.3390/nu15224758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Choline is essential for cell membrane formation and methyl transfer reactions, impacting parenchymal and neurological development. It is therefore enriched via placental transfer, and fetal plasma concentrations are high. In spite of the greater needs of very low birth weight infants (VLBWI), choline content of breast milk after preterm delivery is lower (median (p25-75): 158 mg/L (61-360 mg/L) compared to term delivery (258 mg/L (142-343 mg/L)). Even preterm formula or fortified breast milk currently provide insufficient choline to achieve physiological plasma concentrations. This secondary analysis of a randomized controlled trial comparing growth of VLBWI with different levels of enteral protein supply aimed to investigate whether increased enteral choline intake results in increased plasma choline, betaine and phosphatidylcholine concentrations. We measured total choline content of breast milk from 33 mothers of 34 VLBWI. Enteral choline intake from administered breast milk, formula and fortifier was related to the respective plasma choline, betaine and phosphatidylcholine concentrations. Plasma choline and betaine levels in VLBWI correlated directly with enteral choline intake, but administered choline was insufficient to achieve physiological (fetus-like) concentrations. Hence, optimizing maternal choline status, and the choline content of milk and fortifiers, is suggested to increase plasma concentrations of choline, ameliorate the choline deficit and improve growth and long-term development of VLBWI.
Collapse
Affiliation(s)
- Michaela Minarski
- Department of Neonatology, University Children’s Hospital, Tübingen University Hospital, 72076 Tübingen, Germany (W.B.)
| | - Christoph Maas
- Department of Neonatology, University Children’s Hospital, Tübingen University Hospital, 72076 Tübingen, Germany (W.B.)
| | - Christine Heinrich
- Department of Neonatology, University Children’s Hospital, Tübingen University Hospital, 72076 Tübingen, Germany (W.B.)
| | - Katrin A. Böckmann
- Department of Neonatology, University Children’s Hospital, Tübingen University Hospital, 72076 Tübingen, Germany (W.B.)
| | - Wolfgang Bernhard
- Department of Neonatology, University Children’s Hospital, Tübingen University Hospital, 72076 Tübingen, Germany (W.B.)
| | - Anna Shunova
- Department of Neonatology, University Children’s Hospital, Tübingen University Hospital, 72076 Tübingen, Germany (W.B.)
| | - Christian F. Poets
- Department of Neonatology, University Children’s Hospital, Tübingen University Hospital, 72076 Tübingen, Germany (W.B.)
| | - Axel R. Franz
- Department of Neonatology, University Children’s Hospital, Tübingen University Hospital, 72076 Tübingen, Germany (W.B.)
- Center for Pediatric Clinical Studies, University Children’s Hospital, Tübingen University Hospital, 72076 Tübingen, Germany
| |
Collapse
|
5
|
Derbyshire E, Maes M. The Role of Choline in Neurodevelopmental Disorders-A Narrative Review Focusing on ASC, ADHD and Dyslexia. Nutrients 2023; 15:2876. [PMID: 37447203 DOI: 10.3390/nu15132876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Neurodevelopmental disorders appear to be rising in prevalence, according to the recent Global Burden of Disease Study. This rise is likely to be multi-factorial, but the role of certain nutrients known to facilitate neurodevelopment should be considered. One possible contributing factor could be attributed to deficits in choline intake, particularly during key stages of neurodevelopment, which includes the first 1000 days of life and childhood. Choline, a key micronutrient, is crucial for optimal neurodevelopment and brain functioning of offspring. The present narrative review discusses the main research, describing the effect of choline in neurodevelopmental disorders, to better understand its role in the etiology and management of these disorders. In terms of findings, low choline intakes and reduced or altered choline status have been reported in relevant population subgroups: pregnancy (in utero), children with autism spectrum disorders, people with attention deficit hyperactivity disorder and those with dyslexia. In conclusion, an optimal choline provision may offer some neuronal protection in early life and help to mitigate some cognitive effects in later life attributed to neurodevelopmental conditions. Research indicates that choline may act as a modifiable risk factor for certain neurodevelopmental conditions. Ongoing research is needed to unravel the mechanisms and explanations.
Collapse
Affiliation(s)
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok 4002, Thailand
- Research Institute, Medical University of Plovdiv, 10330 Plovdiv, Bulgaria
| |
Collapse
|
6
|
de la Monte SM, Tong M, Delikkaya B. Differential Early Mechanistic Frontal Lobe Responses to Choline Chloride and Soy Isoflavones in an Experimental Model of Fetal Alcohol Spectrum Disorder. Int J Mol Sci 2023; 24:7595. [PMID: 37108779 PMCID: PMC10145811 DOI: 10.3390/ijms24087595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/07/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Fetal alcohol spectrum disorder (FASD) is the most common preventable cause of neurodevelopmental defects, and white matter is a major target of ethanol neurotoxicity. Therapeutic interventions with choline or dietary soy could potentially supplement public health preventive measures. However, since soy contains abundant choline, it would be important to know if its benefits are mediated by choline or isoflavones. We compared early mechanistic responses to choline and the Daidzein+Genistein (D+G) soy isoflavones in an FASD model using frontal lobe tissue to assess oligodendrocyte function and Akt-mTOR signaling. Long Evans rat pups were binge administered 2 g/Kg of ethanol or saline (control) on postnatal days P3 and P5. P7 frontal lobe slice cultures were treated with vehicle (Veh), Choline chloride (Chol; 75 µM), or D+G (1 µM each) for 72 h without further ethanol exposures. The expression levels of myelin oligodendrocyte proteins and stress-related molecules were measured by duplex enzyme-linked immunosorbent assays (ELISAs), and mTOR signaling proteins and phosphoproteins were assessed using 11-plex magnetic bead-based ELISAs. Ethanol's main short-term effects in Veh-treated cultures were to increase GFAP and relative PTEN phosphorylation and reduce Akt phosphorylation. Chol and D+G significantly modulated the expression of oligodendrocyte myelin proteins and mediators of insulin/IGF-1-Akt-mTOR signaling in both control and ethanol-exposed cultures. In general, the responses were more robust with D+G; the main exception was that RPS6 phosphorylation was significantly increased by Chol and not D+G. The findings suggest that dietary soy, with the benefits of providing complete nutrition together with Choline, could be used to help optimize neurodevelopment in humans at risk for FASD.
Collapse
Affiliation(s)
- Suzanne M. de la Monte
- Departments of Pathology and Laboratory Medicine, Medicine, Neurology and Neurosurgery, Rhode Island Hospital, Lifespan Academic Institutions, The Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | | | | |
Collapse
|
7
|
Bernhard W, Raith M, Shunova A, Lorenz S, Böckmann K, Minarski M, Poets CF, Franz AR. Choline Kinetics in Neonatal Liver, Brain and Lung-Lessons from a Rodent Model for Neonatal Care. Nutrients 2022; 14:nu14030720. [PMID: 35277079 PMCID: PMC8837973 DOI: 10.3390/nu14030720] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/03/2022] [Accepted: 02/05/2022] [Indexed: 02/06/2023] Open
Abstract
Choline requirements are high in the rapidly growing fetus and preterm infant, mainly serving phosphatidylcholine (PC) synthesis for parenchymal growth and one-carbon metabolism via betaine. However, choline metabolism in critical organs during rapid growth is poorly understood. Therefore, we investigated the kinetics of D9-choline and its metabolites in the liver, plasma, brain and lung in 14 d old rats. Animals were intraperitoneally injected with 50 mg/kg D9-choline chloride and sacrificed after 1.5 h, 6 h and 24 h. Liver, plasma, lungs, cerebrum and cerebellum were analyzed for D9-choline metabolites, using tandem mass spectrometry. In target organs, D9-PC and D9-betaine comprised 15.1 ± 1.3% and 9.9 ± 1.2% of applied D9-choline at 1.5 h. D9-PC peaked at 1.5 h in all organs, and decreased from 1.5-6 h in the liver and lung, but not in the brain. Whereas D9-labeled PC precursors were virtually absent beyond 6 h, D9-PC increased in the brain and lung from 6 h to 24 h (9- and 2.5-fold, respectively) at the expense of the liver, suggesting PC uptake from the liver via plasma rather than local synthesis. Kinetics of D9-PC sub-groups suggested preferential hepatic secretion of linoleoyl-PC and acyl remodeling in target organs. D9-betaine showed rapid turnover and served low-level endogenous (D3-)choline synthesis. In conclusion, in neonatal rats, exogenous choline is rapidly metabolized to PC by all organs. The liver supplies the brain and lung directly with PC, followed by organotypic acyl remodeling. A major fraction of choline is converted to betaine, feeding the one-carbon pool and this must be taken into account when calculating choline requirements.
Collapse
Affiliation(s)
- Wolfgang Bernhard
- Department of Neonatology, University Children’s Hospital, Tübingen University Hospital, 72076 Tübingen, Baden-Wuerttemberg, Germany; (A.S.); (S.L.); (K.B.); (M.M.); (C.F.P.); (A.R.F.)
- Correspondence:
| | - Marco Raith
- Max-Planck-Institut für Psychiatrie, 80804 Munich, Bavaria, Germany;
| | - Anna Shunova
- Department of Neonatology, University Children’s Hospital, Tübingen University Hospital, 72076 Tübingen, Baden-Wuerttemberg, Germany; (A.S.); (S.L.); (K.B.); (M.M.); (C.F.P.); (A.R.F.)
| | - Stephan Lorenz
- Department of Neonatology, University Children’s Hospital, Tübingen University Hospital, 72076 Tübingen, Baden-Wuerttemberg, Germany; (A.S.); (S.L.); (K.B.); (M.M.); (C.F.P.); (A.R.F.)
| | - Katrin Böckmann
- Department of Neonatology, University Children’s Hospital, Tübingen University Hospital, 72076 Tübingen, Baden-Wuerttemberg, Germany; (A.S.); (S.L.); (K.B.); (M.M.); (C.F.P.); (A.R.F.)
| | - Michaela Minarski
- Department of Neonatology, University Children’s Hospital, Tübingen University Hospital, 72076 Tübingen, Baden-Wuerttemberg, Germany; (A.S.); (S.L.); (K.B.); (M.M.); (C.F.P.); (A.R.F.)
| | - Christian F. Poets
- Department of Neonatology, University Children’s Hospital, Tübingen University Hospital, 72076 Tübingen, Baden-Wuerttemberg, Germany; (A.S.); (S.L.); (K.B.); (M.M.); (C.F.P.); (A.R.F.)
| | - Axel R. Franz
- Department of Neonatology, University Children’s Hospital, Tübingen University Hospital, 72076 Tübingen, Baden-Wuerttemberg, Germany; (A.S.); (S.L.); (K.B.); (M.M.); (C.F.P.); (A.R.F.)
- Center for Pediatric Clinical Studies, University Children’s Hospital, Tübingen University Hospital, 72076 Tübingen, Baden-Wuerttemberg, Germany
| |
Collapse
|
8
|
Nilsson Å, Duan RD, Ohlsson L. Digestion and Absorption of Milk Phospholipids in Newborns and Adults. Front Nutr 2021; 8:724006. [PMID: 34490332 PMCID: PMC8417471 DOI: 10.3389/fnut.2021.724006] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/19/2021] [Indexed: 12/25/2022] Open
Abstract
Milk polar lipids provide choline, ethanolamine, and polyunsaturated fatty acids, which are needed for the growth and plasticity of the tissues in a suckling child. They may also inhibit cholesterol absorption by interacting with cholesterol during micelle formation. They may also have beneficial luminal, mucosal, and metabolic effects in both the neonate and the adult. The milk fat globule membrane contains large proportions of sphingomyelin (SM), phosphatidylcholine (PC), and phosphatidylethanolamine (PE), and some phosphatidylserine (PS), phosphatidylinositol (PI), and glycosphingolipids. Large-scale technical procedures are available for the enrichment of milk fat globule membrane (MFGM) in milk replacement formulations and food additives. Pancreatic phospholipase A2 (PLA2) and mucosal phospholipase B digest glycero-phospholipids in the adult. In the neonate, where these enzymes may be poorly expressed, pancreatic lipase-related protein 2 probably has a more important role. Mucosal alkaline SM-ase and ceramidase catalyze the digestion of SM in both the neonate and the adult. In the mucosa, the sphingosine is converted into sphingosine-1-phosphate, which is both an intermediate in the conversion to palmitic acid and a signaling molecule. This reaction sequence also generates ethanolamine. Here, we summarize the pathways by which digestion and absorption may be linked to the biological effects of milk polar lipids. In addition to the inhibition of cholesterol absorption and the generation of lipid signals in the gut, the utilization of absorbed choline and ethanolamine for mucosal and hepatic phospholipid synthesis and the acylation of absorbed lyso-PC with polyunsaturated fatty acids to chylomicron and mucosal phospholipids are important.
Collapse
Affiliation(s)
- Åke Nilsson
- Division of Medicine, Gastroenterology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Rui-Dong Duan
- Gastroenterology and Nutrition Laboratory, Division of Medicine, Department of Clinical Science, Lund University, Lund, Sweden
| | - Lena Ohlsson
- Division of Medicine, Experimental Vascular Medicine, Department of Clinical Science, Lund University, Lund, Sweden
| |
Collapse
|
9
|
Differential metabolism of choline supplements in adult volunteers. Eur J Nutr 2021; 61:219-230. [PMID: 34287673 PMCID: PMC8783899 DOI: 10.1007/s00394-021-02637-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 07/05/2021] [Indexed: 10/26/2022]
Abstract
BACKGROUND Adequate intake of choline is essential for growth and homeostasis, but its supply does often not meet requirements. Choline deficiency decreases phosphatidylcholine (PC) and betaine synthesis, resulting in organ pathology, especially of liver, lung, and brain. This is of particular clinical importance in preterm infants and cystic fibrosis patients. We compared four different choline supplements for their impact on plasma concentration and kinetics of choline, betaine as a methyl donor and trimethylamine oxide (TMAO) as a marker of bacterial degradation prior to absorption. METHODS Prospective randomized cross-over study (1/2020-4/2020) in six healthy adult men. Participants received a single dose of 550 mg/d choline equivalent in the form of choline chloride, choline bitartrate, α-glycerophosphocholine (GPC), and egg-PC in randomized sequence at least 1 week apart. Blood was taken from t = - 0.1-6 h after supplement intake. Choline, betaine, TMAO, and total PC concentrations were analyzed by tandem mass spectrometry. Results are shown as medians and interquartile range. RESULTS There was no difference in the AUC of choline plasma concentrations after intake of the different supplements. Individual plasma kinetics of choline and betaine differed and concentrations peaked latest for PC (at ≈3 h). All supplements similarly increased plasma betaine. All water-soluble supplements rapidly increased TMAO, whereas egg-PC did not. CONCLUSION All supplements tested rapidly increased choline and betaine levels to a similar extent, with egg-PC showing the latest peak. Assuming that TMAO may have undesirable effects, egg-PC might be best suited for choline supplementation in adults. STUDY REGISTRATION This study was registered at "Deutsches Register Klinischer Studien" (DRKS) (German Register for Clinical Studies), 17.01.2020, DRKS00020454.
Collapse
|
10
|
Waddell J, Rickman NC, He M, Tang N, Bearer CF. Choline supplementation prevents the effects of bilirubin on cerebellar-mediated behavior in choline-restricted Gunn rat pups. Pediatr Res 2021; 89:1414-1419. [PMID: 33027804 PMCID: PMC8024424 DOI: 10.1038/s41390-020-01187-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/19/2020] [Accepted: 09/21/2020] [Indexed: 11/10/2022]
Abstract
BACKGROUND Bilirubin is produced by the breakdown of hemoglobin and is normally catabolized and excreted. Neurotoxic accumulation of serum bilirubin often occurs in premature infants. The homozygous Gunn rat lacks uridine diphosphate glucuronosyltransferase 1A1 (UGT1A1), the enzyme needed to biotransform bilirubin. This rodent model of hyperbilirubinemia emulates many aspects of bilirubin toxicity observed in the human infant. We demonstrate that choline supplementation in early postnatal development is neuroprotective in the choline-restricted Gunn rat, when hyperbilirubinemia is induced on postnatal day 5. METHODS We first compared behaviors and cerebellar weight of pups born to dams consuming regular rat chow to those of dams consuming choline-restricted diets. Second, we measured behaviors and cerebellar weights of pups born to choline-restricted dams, reared on a choline-restricted diet, supplemented with or without choline, and treated with or without sulfadimethoxine (SDMX). RESULTS A choline-restricted diet did not change the behavioral outcomes, but cerebellar weight was reduced in the choline-restricted group regardless of genotype or SDMX administration. SDMX induced behavioral deficits in jj pups, and choline supplementation improved most behavioral effects and cerebellar weight in SDMX-treated jj rats. CONCLUSIONS These results suggest that choline may be used as a safe and effective neuroprotective intervention against hyperbilirubinemia in the choline-deficient premature infant. IMPACT This article investigates the effect of neonatal jaundice/bilirubin neurotoxicity on cerebellar-mediated behaviors. This article explores the potential use of choline as an intervention capable of ameliorating the effect of bilirubin on the choline-restricted developing brain. This article opens the door for future studies on the action of choline in the presence of hyperbilirubinemia, especially in preterm neonates.
Collapse
Affiliation(s)
- Jaylyn Waddell
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Nicholas C Rickman
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Min He
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21218, USA
| | - Ningfeng Tang
- Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Cynthia F Bearer
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| |
Collapse
|
11
|
Zhu J, Liu YH, He XL, Kohlmeier M, Zhou LL, Shen LW, Yi XX, Tang QY, Cai W, Wang B. Dietary Choline Intake during Pregnancy and PEMT rs7946 Polymorphism on Risk of Preterm Birth: A Case-Control Study. ANNALS OF NUTRITION AND METABOLISM 2021; 76:431-440. [PMID: 33503637 DOI: 10.1159/000507472] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 03/24/2020] [Indexed: 11/19/2022]
Abstract
INTRODUCTION AND AIMS Choline-metabolizing genetic variation may interact with choline intake on fetal programming and pregnancy outcome. This case-control study aims to explore the association of maternal choline consumption and phosphatidylethanolamine N-methyltransferase (PEMT) gene polymorphism rs7946 with preterm birth risk. METHODS 145 Han Chinese women with preterm delivery and 157 Han Chinese women with term delivery were recruited in Shanghai. Dietary choline intake during pregnancy was assessed using a validated food frequency questionnaire. Additionally, DNA samples were genotyped for PEMT rs7946 (G5465A) with plasma homocysteine (Hcy) levels measured. RESULTS Compared with the lowest quartile of choline intake, women within the highest consumption quartile had adjusted odds ratio (aOR) for preterm birth of 0.48 (95% confidence interval, CI [0.24, 0.95]). There was a significant interaction between maternal choline intake and PEMT rs7946 (p for interaction = 0.04), where the AA genotype carriers who consumed the energy-adjusted choline <255.01 mg/day had aOR for preterm birth of 3.75 (95% CI [1.24, 11.35]), compared to those with GG genotype and choline intake >255.01 mg/day during pregnancy. Additionally, the greatest elevated plasma Hcy was found in the cases with AA genotype and choline consumption <255.01 mg/day (p < 0.001). CONCLUSION The AA genotype of PEMT rs7946 may be associated with increased preterm birth in these Han Chinese women with low choline intake during pregnancy.
Collapse
Affiliation(s)
- Jie Zhu
- Department of Obstetrics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Nutrition and Foods Program, School of Family and Consumer Sciences, Texas State University, San Marcos, Texas, USA.,Department of Clinical Nutrition, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu-Hong Liu
- Department of Gynaecology and Obstetrics, Shanghai Seventh People's Hospital, Shanghai, China
| | - Xiang-Long He
- Department of Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Martin Kohlmeier
- Human Research Core and Nutrigenetics Laboratory, UNC Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, North Carolina, USA
| | - Li-Li Zhou
- Department of Obstetrics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li-Wei Shen
- Department of Obstetrics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin-Xuan Yi
- Department of Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qing-Ya Tang
- Department of Obstetrics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Cai
- Department of Clinical Nutrition, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Bei Wang
- Department of Obstetrics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China,
| |
Collapse
|
12
|
Choline Content of Term and Preterm Infant Formulae Compared to Expressed Breast Milk-How Do We Justify the Discrepancies? Nutrients 2020; 12:nu12123815. [PMID: 33322176 PMCID: PMC7763895 DOI: 10.3390/nu12123815] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/10/2020] [Accepted: 12/10/2020] [Indexed: 02/06/2023] Open
Abstract
Choline/phosphatidylcholine concentrations are tightly regulated in all organs and secretions. During rapid organ growth in the third trimester, choline requirement is particularly high. Adequate choline intake is 17–18 mg/kg/day in term infants, whereas ~50–60 mg/kg/day is required to achieve fetal plasma concentrations in preterm infants. Whereas free choline is supplied via the placenta, other choline carriers characterize enteral feeding. We therefore quantified the concentrations and types of choline carriers and choline-related components in various infant formulae and fortifiers compared to breast milk, and calculated the supply at full feeds (150 mL/kg/day) using tandem mass spectrometry. Choline concentration in formula ranged from values below to far above that of breastmilk. Humana 0-VLB (2015: 60.7 mg/150 mL; 2020: 27.3 mg/150 mL), Aptamil-Prematil (2020: 34.7 mg/150 mL), Aptamil-Prematil HA (2020: 37.6 mg/150 mL) for preterm infants with weights < 1800 g, and Humana 0 (2020: 41.6 mg/150 mL) for those > 1800 g, comprised the highest values in formulae studied. Formulae mostly were rich in free choline or phosphatidylcholine rather than glycerophosphocholine and phosphocholine (predominating in human milk). Most formulae (150 mL/kg/day) do not supply the amounts and physiologic components of choline required to achieve fetal plasma choline concentrations. A revision of choline content in formulae and breast milk fortifiers and a clear declaration of the choline components in formulae is required to enable informed choices.
Collapse
|
13
|
Brink LR, Lönnerdal B. Milk fat globule membrane: the role of its various components in infant health and development. J Nutr Biochem 2020; 85:108465. [PMID: 32758540 DOI: 10.1016/j.jnutbio.2020.108465] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 12/12/2022]
Abstract
Breastfeeding confers many benefits to the breast-fed infant which are reflected by better short-term and long-term outcomes as compared to formula-fed infants. Many components of breast milk are likely to contribute to these favorable outcomes, and there has recently been focus on the milk fat globule membrane (MFGM). This fraction is a heterogenous mixture of proteins (many of them glycosylated), phospholipids, sphingolipids, gangliosides, choline, sialic acid and cholesterol which is lacking in infant formula as milk fat (which is also low in these components) is replaced by vegetable oils. Many of these components have been shown to have biological effects, and there is considerable evidence from preclinical studies and clinical trials that providing bovine MFGM results in improved outcomes, in particular with regard to infections and neurodevelopment. Since bovine MFGM is commercially available, it is possible to add it to infant formula. There are, however, considerable variations in composition among commercial sources of bovine MFGM, and as it is not known which of the individual components provide the various bioactivities, it becomes important to critically review studies to date and to delineate the mechanisms behind the activities observed. In this review, we critically examine the preclinical and clinical studies on MFGM and its components in relation to resistance to infections, cognitive development, establishment of gut microbiota and infant metabolism, and discuss possible mechanisms of action.
Collapse
Affiliation(s)
- Lauren R Brink
- Department of Nutrition, University of California, Davis, 95616
| | - Bo Lönnerdal
- Department of Nutrition, University of California, Davis, 95616.
| |
Collapse
|
14
|
Serum choline in extremely preterm infants declines with increasing parenteral nutrition. Eur J Nutr 2020; 60:1081-1089. [PMID: 32588218 PMCID: PMC7900091 DOI: 10.1007/s00394-020-02312-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/15/2020] [Indexed: 11/14/2022]
Abstract
Purpose Choline is an essential nutrient for fetal and infant growth and development. Parenteral nutrition used in neonatal care lack free choline but contain small amounts of lipid-bound choline in the form of phosphatidylcholine (PC). Here, we examined the longitudinal development of serum free choline and metabolically related compounds betaine and methionine in extremely preterm infants and how the concentrations were affected by the proportion of parenteral fluids the infants received during the first 28 postnatal days (PNDs).
Methods This prospective study included 87 infants born at gestational age (GA) < 28 weeks. Infant serum samples were collected PND 1, 7, 14, and 28, and at postmenstrual age (PMA) 32, 36, and 40 weeks. The serum concentrations of free choline, betaine, and methionine were determined by 1H NMR spectroscopy. Results The median (25th–75th percentile) serum concentrations of free choline, betaine, and methionine were 33.7 (26.2–41.2), 71.2 (53.2–100.8), and 25.6 (16.4–35.3) µM, respectively, at PND 1. The choline concentration decreased rapidly between PND one and PND seven [18.4 (14.1–26.4) µM], and then increased over the next 90 days, though never reaching PND one levels. There was a negative correlation between a high intake of parenteral fluids and serum-free choline.
Conclusion Circulating free choline in extremely preterm infants is negatively affected by the proportion of parenteral fluids administered. Trial registration ClinicalTrials.gov Identifier NCT02760472, April 29, 2016, retrospectively registered. Electronic supplementary material The online version of this article (10.1007/s00394-020-02312-2) contains supplementary material, which is available to authorized users.
Collapse
|
15
|
Bernhard W, Böckmann K, Maas C, Mathes M, Hövelmann J, Shunova A, Hund V, Schleicher E, Poets CF, Franz AR. Combined choline and DHA supplementation: a randomized controlled trial. Eur J Nutr 2019; 59:729-739. [PMID: 30859363 DOI: 10.1007/s00394-019-01940-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 02/28/2019] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Choline and docosahexaenoic acid (DHA) are essential nutrients for preterm infant development. They are metabolically linked via phosphatidylcholine (PC), a constitutive plasma membrane lipid and the major transport form of DHA in plasma. Plasma choline and DHA-PC concentrations rapidly decline after preterm birth. To improve preterm infant nutrition, we evaluated combined compared to exclusive choline and DHA supplementation, and standard feeding. DESIGN Randomized partially blinded single-center trial. SETTING Neonatal tertiary referral center in Tübingen, Germany. PATIENTS 24 inborn preterm infants < 32 week postmenstrual age. INTERVENTIONS Standard nutrition (control) or, additionally, enteral choline (30 mg/kg/day), DHA (60 mg/kg/day), or both for 10 days. Single enteral administration of 3.6 mg/kg [methyl-D9-] choline chloride as a tracer at 7.5 days. MAIN OUTCOME MEASURES Primary outcome variable was plasma choline following 7 days of supplementation. Deuterated and unlabeled choline metabolites, DHA-PC, and other PC species were secondary outcome variables. RESULTS Choline supplementation increased plasma choline to near-fetal concentrations [35.4 (32.8-41.7) µmol/L vs. 17.8 (16.1-22.4) µmol/L, p < 0.01] and decreased D9-choline enrichment of PC. Single DHA treatment decreased DHA in PC relative to total lipid [66 (60-68)% vs. 78 (74-80)%; p < 0.01], which was prevented by choline. DHA alone increased DHA-PC only by 35 (26-45)%, but combined treatment by 63 (49-74)% (p < 0.001). D9-choline enrichment showed preferential synthesis of PC containing linoleic acid. PC synthesis via phosphatidylethanolamine methylation resulted in preferential synthesis of DHA-containing D3-PC, which was increased by choline supplementation. CONCLUSIONS 30 mg/kg/day additional choline supplementation increases plasma choline to near-fetal concentrations, dilutes the D9-choline tracer via increased precursor concentrations and improves DHA homeostasis in preterm infants. TRIAL REGISTRATION clinicaltrials.gov. Identifier: NCT02509728.
Collapse
Affiliation(s)
- Wolfgang Bernhard
- Department of Neonatology, University Hospital, Calwerstr. 7, 72076, Tübingen, Germany.
| | - Katrin Böckmann
- Department of Neonatology, University Hospital, Calwerstr. 7, 72076, Tübingen, Germany
| | - Christoph Maas
- Department of Neonatology, University Hospital, Calwerstr. 7, 72076, Tübingen, Germany
| | - Michaela Mathes
- Department of Neonatology, University Hospital, Calwerstr. 7, 72076, Tübingen, Germany
| | - Julia Hövelmann
- Department of Neonatology, University Hospital, Calwerstr. 7, 72076, Tübingen, Germany
| | - Anna Shunova
- Department of Neonatology, University Hospital, Calwerstr. 7, 72076, Tübingen, Germany
| | - Verena Hund
- University Pharmacy Department, Eberhard-Karls-University, Tübingen, Germany
| | - Erwin Schleicher
- Department of Internal Medicine IV, Eberhard-Karls-University, Tübingen, Germany
| | - Christian F Poets
- Department of Neonatology, University Hospital, Calwerstr. 7, 72076, Tübingen, Germany
| | - Axel R Franz
- Department of Neonatology, University Hospital, Calwerstr. 7, 72076, Tübingen, Germany.,Center for Pediatric Clinical Studies, University Children's Hospital, Tübingen, Germany
| |
Collapse
|
16
|
Ingvordsen Lindahl IE, Artegoitia VM, Downey E, O'Mahony JA, O'Shea CA, Ryan CA, Kelly AL, Bertram HC, Sundekilde UK. Quantification of Human Milk Phospholipids: the Effect of Gestational and Lactational Age on Phospholipid Composition. Nutrients 2019; 11:nu11020222. [PMID: 30678181 PMCID: PMC6412285 DOI: 10.3390/nu11020222] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/05/2019] [Accepted: 01/17/2019] [Indexed: 02/07/2023] Open
Abstract
Human milk (HM) provides infants with macro- and micronutrients needed for growth and development. Milk phospholipids are important sources of bioactive components, such as long-chain polyunsaturated fatty acids (LC-PUFA) and choline, crucial for neural and visual development. Milk from mothers who have delivered prematurely (<37 weeks) might not meet the nutritional requirements for optimal development and growth. Using liquid chromatography tandem-mass spectrometry, 31 phospholipid (PL) species were quantified for colostrum (<5 days postpartum), transitional (≥5 days and ≤2 weeks) and mature milk (>2 weeks and ≤15 weeks) samples from mothers who had delivered preterm (n = 57) and term infants (n = 22), respectively. Both gestational age and age postpartum affected the PL composition of HM. Significantly higher concentrations (p < 0.05) of phosphatidylcholine (PC), sphingomyelin (SM) and total PL were found in preterm milk throughout lactation, as well as significantly higher concentrations (p < 0.002) of several phosphatidylethanolamine (PE), PC and SM species. Multivariate analysis revealed that PLs containing LC-PUFA contributed highly to the differences in the PL composition of preterm and term colostrum. Differences related to gestation decreased as the milk matured. Thus, gestational age may impact the PL content of colostrum, however this effect of gestation might subside in mature milk.
Collapse
Affiliation(s)
| | | | - Eimear Downey
- School of Food and Nutritional Sciences, University College Cork, T12 YN60 Cork, Ireland.
| | - James A O'Mahony
- School of Food and Nutritional Sciences, University College Cork, T12 YN60 Cork, Ireland.
| | - Carol-Anne O'Shea
- Department of Paediatrics and Child Health, University College Cork, T12 YN60 Cork, Ireland.
| | - C Anthony Ryan
- Department of Paediatrics and Child Health, University College Cork, T12 YN60 Cork, Ireland.
| | - Alan L Kelly
- School of Food and Nutritional Sciences, University College Cork, T12 YN60 Cork, Ireland.
| | - Hanne C Bertram
- Department of Food Science, Aarhus University, 5792 Årslev, Denmark.
| | | |
Collapse
|
17
|
Choline and choline-related nutrients in regular and preterm infant growth. Eur J Nutr 2018; 58:931-945. [PMID: 30298207 DOI: 10.1007/s00394-018-1834-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 09/22/2018] [Indexed: 12/24/2022]
Abstract
BACKGROUND Choline is an essential nutrient, with increased requirements during development. It forms the headgroup of phosphatidylcholine and sphingomyelin in all membranes and many secretions. Phosphatidylcholine is linked to cell signaling as a phosphocholine donor to synthesize sphingomyelin from ceramide, a trigger of apoptosis, and is the major carrier of arachidonic and docosahexaenoic acid in plasma. Acetylcholine is important for neurodevelopment and the placental storage form for fetal choline supply. Betaine, a choline metabolite, functions as osmolyte and methyl donor. Their concentrations are all tightly regulated in tissues. CLINCAL IMPACT During the fetal growth spurt at 24-34-week postmenstrual age, plasma choline is higher than beyond 34 weeks, and threefold higher than in pregnant women [45 (36-60) µmol/L vs. 14 (10-17) µmol/L]. The rapid decrease in plasma choline after premature birth suggests an untimely reduction in choline supply, as cellular uptake is proportional to plasma concentration. Supply via breast milk, with phosphocholine and α-glycerophosphocholine as its major choline components, does not prevent such postnatal decrease. Moreover, high amounts of liver PC are secreted via bile, causing rapid hepatic choline turnover via the enterohepatic cycle, and deficiency in case of pancreatic phospholipase A2 deficiency or intestinal resection. Choline deficiency causes hepatic damage and choline accretion at the expense of the lungs and other tissues. CONCLUSION Choline deficiency may contribute to the impaired lean body mass growth and pulmonary and neurocognitive development of preterm infants despite adequate macronutrient supply and weight gain. In this context, a reconsideration of current recommendations for choline supply to preterm infants is required.
Collapse
|
18
|
Zheng H, Yu W, Xue X, Guo Z, Liu Y, Yang G, Liu Y, Zhu J. Simultaneous determination of free and total choline andl-carnitine in infant formula using hydrophilic interaction liquid chromatography with tandem mass spectrometry. J Sep Sci 2018; 41:3176-3185. [DOI: 10.1002/jssc.201800483] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/08/2018] [Accepted: 06/11/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Hong Zheng
- Shandong Institute for Food and Drug Control; Jinan China
| | - Wenjiang Yu
- Shandong Institute for Food and Drug Control; Jinan China
| | - Xia Xue
- Shandong Institute for Food and Drug Control; Jinan China
| | - Zhimou Guo
- Dalian Institute of Chemical Physics; Chinese Academy of Science; Liaoning China
| | - Yanfang Liu
- Dalian Institute of Chemical Physics; Chinese Academy of Science; Liaoning China
| | - Guosheng Yang
- School of Chemistry and Chemical Engineering; Shandong University; Jinan China
| | - Yanming Liu
- Shandong Institute for Food and Drug Control; Jinan China
| | - Jianhua Zhu
- Shandong Institute for Food and Drug Control; Jinan China
| |
Collapse
|
19
|
Transport of long-chain polyunsaturated fatty acids in preterm infant plasma is dominated by phosphatidylcholine. Eur J Nutr 2017. [DOI: 10.1007/s00394-017-1484-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Moukarzel S, Soberanes L, Dyer RA, Albersheim S, Elango R, Innis SM. Relationships among Different Water-Soluble Choline Compounds Differ between Human Preterm and Donor Milk. Nutrients 2017; 9:nu9040369. [PMID: 28387717 PMCID: PMC5409708 DOI: 10.3390/nu9040369] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 03/21/2017] [Accepted: 04/01/2017] [Indexed: 12/31/2022] Open
Abstract
Choline is essential for infant development. Human milk choline is predominately present in three water-soluble choline (WSC) forms: free choline (FC), phosphocholine (PhosC), and glycerophosphocholine (GPC). It is unclear whether mother's own preterm milk and pooled donor milk differ in WSC composition and whether WSC compounds are interrelated. Mother's own preterm milk (n = 75) and donor milk (n = 30) samples from the neonatal intensive care unit, BC Women's Hospital were analyzed for WSC composition using liquid chromatography tandem mass spectrometry (LC-MS/MS). Associations between different WSC compounds were determined using Pearson's correlations, followed by Fischer r-to-z transformation. Total WSC concentration and concentrations of FC, PhosC, and GPC did not significantly differ between mother's own milk and donor milk. FC was negatively associated with PhosC and GPC in mother's own milk (r = -0.27, p = 0.02; r = -0.34, p = 0.003, respectively), but not in donor milk (r = 0.26, p = 0.181 r = 0.37, p = 0.062, respectively). The difference in these associations between the two milk groups were statistically significant (p = 0.03 for the association between PhosC and FC; and p = 0.003 for the association between FC and GPC). PhosC and GPC were positively associated in mother's own milk (r = 0.32, p = 0.036) but not donor milk (r = 0.36, p = 0.062), although the difference in correlation was not statistically significant. The metabolic and clinical implications of these associations on the preterm infant need to be further elucidated.
Collapse
Affiliation(s)
- Sara Moukarzel
- Department of Pediatrics, University of California San Diego, San Diego, USA and Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence, Health Sciences, University of California, San Diego, CA 92093, USA.
| | - Lynda Soberanes
- Department of Pediatrics, University of British Columbia, Vancouver, BC V6H 3V4, Canada.
| | - Roger A Dyer
- Department of Pediatrics, University of British Columbia, Vancouver, BC V6H 3V4, Canada.
| | - Susan Albersheim
- Department of Pediatrics, University of British Columbia, Vancouver, BC V6H 3V4, Canada.
- Division of Neonatology, BC Women's Hospital and Health Centre, Vancouver, BC V6H 3N1, Canada.
| | - Rajavel Elango
- Department of Pediatrics, University of British Columbia, Vancouver, BC V6H 3V4, Canada.
- Division of Neonatology, BC Women's Hospital and Health Centre, Vancouver, BC V6H 3N1, Canada.
- Origins of Child Health and Disease, Healthy Starts, BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada.
- School of Population and Public Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| | - Sheila M Innis
- Department of Pediatrics, University of British Columbia, Vancouver, BC V6H 3V4, Canada.
- Division of Neonatology, BC Women's Hospital and Health Centre, Vancouver, BC V6H 3N1, Canada.
| |
Collapse
|
21
|
Cilla A, Diego Quintaes K, Barberá R, Alegría A. Phospholipids in Human Milk and Infant Formulas: Benefits and Needs for Correct Infant Nutrition. Crit Rev Food Sci Nutr 2017; 56:1880-92. [PMID: 26075805 DOI: 10.1080/10408398.2013.803951] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The composition of human milk has served as a basis for the development of infant formulas, which are used when breastfeeding is not possible. Among the human milk nutrients, 50% of the total energetic value corresponds to fat, with a high level of fatty acids and 0.2-2.0% present in the form of phospholipids (PLs). The PL contents and fatty acid distribution in PL species have been investigated as bioactive elements for the production of infant formulas, since they offer potential benefits for the optimum growth and health of the newborn infant. The differences in the amount of PLs and in fatty acid distribution in PL species between human milk and infant formulas can imply biologically significant differences for newborn infants fed with infant formulas versus human milk-mainly due to the greater proportion of sphingomyelin with respect to phosphatidylcholine in infant formulas. The limited information referred to the characterization of fatty acid distribution in PL species in infant formulas or in ingredients used to enrich them merits further research in order to obtain products with benefits similar to those of human milk in terms of infant growth, visual acuity, and neurological development. The present review establishes the scientific basis for helping to adjust formulations to the requirements of infant nutrition.
Collapse
Affiliation(s)
- Antonio Cilla
- a Nutrition and Food Chemistry, Faculty of Pharmacy, University of Valencia , Burjassot, Valencia , Spain
| | | | - Reyes Barberá
- a Nutrition and Food Chemistry, Faculty of Pharmacy, University of Valencia , Burjassot, Valencia , Spain
| | - Amparo Alegría
- a Nutrition and Food Chemistry, Faculty of Pharmacy, University of Valencia , Burjassot, Valencia , Spain
| |
Collapse
|
22
|
Wesolowski SR, El Kasmi KC, Jonscher KR, Friedman JE. Developmental origins of NAFLD: a womb with a clue. Nat Rev Gastroenterol Hepatol 2017; 14:81-96. [PMID: 27780972 PMCID: PMC5725959 DOI: 10.1038/nrgastro.2016.160] [Citation(s) in RCA: 169] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Changes in the maternal environment leading to an altered intrauterine milieu can result in subtle insults to the fetus, promoting increased lifetime disease risk and/or disease acceleration in childhood and later in life. Particularly worrisome is that the prevalence of NAFLD is rapidly increasing among children and adults, and is being diagnosed at increasingly younger ages, pointing towards an early-life origin. A wealth of evidence, in humans and non-human primates, suggests that maternal nutrition affects the placenta and fetal tissues, leading to persistent changes in hepatic metabolism, mitochondrial function, the intestinal microbiota, liver macrophage activation and susceptibility to NASH postnatally. Deleterious exposures in utero include fetal hypoxia, increased nutrient supply, inflammation and altered gut microbiota that might produce metabolic clues, including fatty acids, metabolites, endotoxins, bile acids and cytokines, which prime the infant liver for NAFLD in a persistent manner and increase susceptibility to NASH. Mechanistic links to early disease pathways might involve shifts in lipid metabolism, mitochondrial dysfunction, pioneering gut microorganisms, macrophage programming and epigenetic changes that alter the liver microenvironment, favouring liver injury. In this Review, we discuss how maternal, fetal, neonatal and infant exposures provide developmental clues and mechanisms to help explain NAFLD acceleration and increased disease prevalence. Mechanisms identified in clinical and preclinical models suggest important opportunities for prevention and intervention that could slow down the growing epidemic of NAFLD in the next generation.
Collapse
Affiliation(s)
| | - Karim C. El Kasmi
- Department of Pediatrics, Section of Gastroenterology, Hepatology and Nutrition, University of Colorado
| | | | - Jacob E. Friedman
- Department of Pediatrics, Section of Neonatology, University of Colorado,Department of Medicine, Division of Endocrinology, Metabolism, and Diabetes, University of Colorado, Anschutz Medical Campus, 12801 East 17th Avenue, MS 8106, Aurora, Colorado 80045, USA
| |
Collapse
|
23
|
Maas C, Franz AR, Shunova A, Mathes M, Bleeker C, Poets CF, Schleicher E, Bernhard W. Choline and polyunsaturated fatty acids in preterm infants' maternal milk. Eur J Nutr 2016; 56:1733-1742. [PMID: 27164830 DOI: 10.1007/s00394-016-1220-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 04/25/2016] [Indexed: 01/20/2023]
Abstract
BACKGROUND Choline, docosahexaenoic acid (DHA), and arachidonic acid (ARA) are essential to fetal development, particularly of the brain. These components are actively enriched in the fetus. Deprivation from placental supply may therefore result in impaired accretion in preterm infants. OBJECTIVE To determine choline, choline metabolites, DHA, and ARA in human breast milk (BM) of preterm infants compared to BM of term born infants. DESIGN We collected expressed BM samples from 34 mothers (N = 353; postnatal day 6-85), who had delivered 35 preterm infants undergoing neonatal intensive care (postmenstrual age 30 weeks, range 25.4-32.0), and from mothers after term delivery (N = 9; postnatal day 6-118). Target metabolites were analyzed using tandem mass spectrometry and gas chromatography and reported as medians and 25th/75th percentiles. RESULTS In BM, choline was mainly present in the form of phosphocholine and glycerophosphocholine, followed by free choline, phosphatidylcholine, sphingomyelin, and lyso-phosphatidylcholine. In preterm infants' BM total choline ranged from 61 to 360 mg/L (median: 158 mg/L) and was decreased compared to term infants' BM (range 142-343 mg/L; median: 258 mg/L; p < 0.01). ARA and DHA comprised 0.81 (range: 0.46-1.60) and 0.43 (0.15-2.42) % of total preterm BM lipids, whereas term BM values were 0.68 (0.52-0.88) and 0.35 (0.18-0.75) %, respectively. Concentrations of all target parameters decreased after birth, and frequently 150 ml/kg/d BM did not meet the estimated fetal accretion rates. CONCLUSIONS Following preterm delivery, BM choline concentrations are lower, whereas ARA and DHA levels are comparable versus term delivery. Based on these findings we suggest a combined supplementation of preterm infants' BM with choline, ARA and DHA combined to improve the nutritional status of preterm infants. STUDY REGISTRATION This study was registered at www.clinicaltrials.gov. Identifier: NCT01773902.
Collapse
Affiliation(s)
- Christoph Maas
- Department of Neonatology, Faculty of Medicine, Eberhard-Karls-University, Calwer Straße 7, 72076, Tuebingen, Germany
| | - Axel R Franz
- Department of Neonatology, Faculty of Medicine, Eberhard-Karls-University, Calwer Straße 7, 72076, Tuebingen, Germany
- Center for Pediatric Clinical Studies, Faculty of Medicine, Eberhard-Karls-University, Calwer Straße 7, 72076, Tuebingen, Germany
| | - Anna Shunova
- Department of Neonatology, Faculty of Medicine, Eberhard-Karls-University, Calwer Straße 7, 72076, Tuebingen, Germany
| | - Michaela Mathes
- Department of Neonatology, Faculty of Medicine, Eberhard-Karls-University, Calwer Straße 7, 72076, Tuebingen, Germany
| | - Christine Bleeker
- Department of Neonatology, Faculty of Medicine, Eberhard-Karls-University, Calwer Straße 7, 72076, Tuebingen, Germany
| | - Christian F Poets
- Department of Neonatology, Faculty of Medicine, Eberhard-Karls-University, Calwer Straße 7, 72076, Tuebingen, Germany
| | - Erwin Schleicher
- Department of Internal Medicine IV, Faculty of Medicine, Eberhard-Karls-University, Calwer Straße 7, 72076, Tuebingen, Germany
| | - Wolfgang Bernhard
- Department of Neonatology, Faculty of Medicine, Eberhard-Karls-University, Calwer Straße 7, 72076, Tuebingen, Germany.
| |
Collapse
|
24
|
Developmental changes in polyunsaturated fetal plasma phospholipids and feto-maternal plasma phospholipid ratios and their association with bronchopulmonary dysplasia. Eur J Nutr 2015; 55:2265-74. [DOI: 10.1007/s00394-015-1036-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 09/05/2015] [Indexed: 12/31/2022]
|
25
|
Bernhard W, Raith M, Kunze R, Koch V, Heni M, Maas C, Abele H, Poets CF, Franz AR. Choline concentrations are lower in postnatal plasma of preterm infants than in cord plasma. Eur J Nutr 2014; 54:733-41. [DOI: 10.1007/s00394-014-0751-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 07/30/2014] [Indexed: 01/13/2023]
|
26
|
Bernhard W, Raith M, Koch V, Kunze R, Maas C, Abele H, Poets CF, Franz AR. Plasma phospholipids indicate impaired fatty acid homeostasis in preterm infants. Eur J Nutr 2014; 53:1533-47. [PMID: 24464176 DOI: 10.1007/s00394-014-0658-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 01/13/2014] [Indexed: 11/28/2022]
Abstract
BACKGROUND During fetal development, docosahexaenoic (DHA) and arachidonic acid (ARA) are particularly enriched in brain phospholipids. After preterm delivery, fetal enrichment of DHA and ARA via placental transfer is replaced by enteral and parenteral nutrition, which is rich in linoleic acid (LA) instead. Specific DHA and ARA enrichment of lipoproteins is reflected by plasma phosphatidylcholine (PC) species, whereas plasma phosphatidylethanolamine (PE) composition reflects hepatic stores. OBJECTIVE We profiled PC and PE species in preterm infant plasma, compared with cord and maternal blood, to assess whether current feeding practice meets fetal conditions in these patients. DESIGN Preterm infant plasma (N = 171, 23-35 w postmenstrual age (PMA), postnatal day 1-103), cord plasma (N = 194) and maternal serum (N = 121) (both 24-41 w PMA) were collected. After lipid extraction, PC and PE molecular species were analyzed using tandem mass spectrometry. RESULTS Phospholipid concentrations were higher in preterm infant than in cord plasma after correction for PMA. This was mainly due to postnatal increases in LA-containing PC and PE, resulting in decreased fractions of their DHA- and ARA-containing counterparts. These changes in preterm infant plasma phospholipids occurred during the time of transition to full enteral feeds (day 0-10 after delivery). Thereafter, the fraction of ARA-containing phospholipids further decreased, whereas that of DHA slowly reincreased but remained at a level 50% of that of PMA-matched cord blood. CONCLUSIONS The postnatal increase in LA-PC in preterm infant plasma results in decreased fractions of DHA-PC and ARA-PC. These changes are also reflected by PE molecular composition as an indicator of altered hepatic fatty acid homeostasis. They are presumably caused by inadequately high LA, and low ARA and DHA supply, at a stage of development when ARA-PC and DHA-PC should be high, probably reducing the availability of DHA and ARA to the developing brain and contributing to impaired neurodevelopment of preterm infants.
Collapse
Affiliation(s)
- Wolfgang Bernhard
- Department of Neonatology, Faculty of Medicine, Eberhard-Karls-University, Calwer Straße 7, 72076, Tübingen, Germany,
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Weber D, Stuetz W, Bernhard W, Franz A, Raith M, Grune T, Breusing N. Oxidative stress markers and micronutrients in maternal and cord blood in relation to neonatal outcome. Eur J Clin Nutr 2013; 68:215-22. [PMID: 24327121 DOI: 10.1038/ejcn.2013.263] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 10/21/2013] [Accepted: 10/22/2013] [Indexed: 01/26/2023]
Abstract
BACKGROUND/OBJECTIVES Oxidative stress and micronutrient deficiencies have been related to lower birth weight (BW), small for gestational age (SGA) offspring and preterm delivery. SUBJECTS/METHODS The relation between neonatal outcome (BW, head circumference, SGA, preterm delivery) with markers of oxidative stress and micronutrients in maternal and cord blood was to be examined. Oxidative stress markers (protein carbonyls (PrCarb), 3-nitrotyrosine (3NT), malondialdehyde (MDA)), total protein concentration and lipid-soluble micronutrients (carotenoids, retinol, tocopherols) were measured in 200 newborns (11% preterms, 13% SGA) and 151 mothers. Associations between target parameters in cord plasma and maternal serum with BW, head circumference and risk of being SGA or preterm were explored. RESULTS Maternal protein concentration, PrCarb, MDA and all lipid-soluble micronutrients were significantly higher compared with newborns, except for 3NT, which was significantly elevated in newborns. Newborn parameters correlated positively with those of mothers. Preterms had lower proteins and retinol but higher PrCarb than terms. Maternal PrCarb and retinol were inversely associated with BW and head circumference. Mothers with PrCarb, MDA and retinol in the highest quintile had a 3.3-fold (0.9; 12.1), 2.1-fold (0.7; 6.4) and 3.3-fold (1.2; 9.4) risk, respectively, for delivering an SGA newborn, whereas the lowest quintile of retinol in cord blood was associated with an increased risk for preterm delivery. CONCLUSIONS Oxidative stress (elevated PrCarb) was associated with lower BW/head circumference and SGA. Inadequate hemodilution may explain the inverse relation of maternal retinol with BW and head circumference, and the association between highest maternal retinol and risk for SGA.
Collapse
Affiliation(s)
- D Weber
- Department of Nutritional Toxicology, Institute of Nutrition, Friedrich-Schiller-University of Jena, Jena, Germany
| | - W Stuetz
- Department of Nutritional Toxicology, Institute of Nutrition, Friedrich-Schiller-University of Jena, Jena, Germany
| | - W Bernhard
- Department of Neonatology, Faculty of Medicine, Eberhard-Karls-University of Tuebingen, Tuebingen, Germany
| | - A Franz
- Department of Neonatology, Faculty of Medicine, Eberhard-Karls-University of Tuebingen, Tuebingen, Germany
| | - M Raith
- Department of Neonatology, Faculty of Medicine, Eberhard-Karls-University of Tuebingen, Tuebingen, Germany
| | - T Grune
- Department of Nutritional Toxicology, Institute of Nutrition, Friedrich-Schiller-University of Jena, Jena, Germany
| | - N Breusing
- Department of Applied Nutritional Science/Dietetics, Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
28
|
Maas C, Wiechers C, Bernhard W, Poets CF, Franz AR. Early feeding of fortified breast milk and in-hospital-growth in very premature infants: a retrospective cohort analysis. BMC Pediatr 2013; 13:178. [PMID: 24180239 PMCID: PMC4228390 DOI: 10.1186/1471-2431-13-178] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 10/28/2013] [Indexed: 11/30/2022] Open
Abstract
Background Fortified human milk may not meet all nutritional needs of very preterm infants. Early transition from complementary parenteral nutrition to full enteral feeds might further impair in-hospital growth. We aimed to investigate the impact of the cumulative intake of fortified human milk on early postnatal growth in a cohort of very low birth weight infants after early transition to full enteral feeds. Methods Retrospective single-centre observational study. Data are presented as median (interquartile range). Results N = 206 very preterm infants were analysed (gestational age at birth 27.6 (25.6-29.6) weeks, birth weight 915 (668-1170) g). Full enteral feeds were established at postnatal day 8 (6-10) and adequate postnatal growth was achieved (difference in standard deviation score for weight from birth to discharge -0.105(-0.603 - -0.323)). Standard deviation score for weight from birth to day 28 decreased more in infants with a cumulative human milk intake >75% of all enteral feeds (-0.64(-1.08 - -0.34)) compared to those with <25% human milk intake (-0.41(-0.7 - -0.17); p = 0.017). At discharge, a trend towards poorer weight gain with higher proportions of human milk intake persisted. In contrast, we observed no significant difference for head circumference growth. Conclusions Our current standardized fortification of human milk may not adequately support early postnatal growth.
Collapse
Affiliation(s)
| | | | | | | | - Axel R Franz
- Department of Neonatology, University Children's Hospital Tübingen, Calwerstr, 7, Tuebingen 72076, Germany.
| |
Collapse
|
29
|
Weber D, Stuetz W, Bernhard W, Franz A, Raith M, Grune T, Breusing N. 5-Methyltetrahydrofolate and thiamine diphosphate in cord-blood erythrocytes of preterm versus term newborns. Eur J Clin Nutr 2013; 67:1029-35. [PMID: 24002042 DOI: 10.1038/ejcn.2013.158] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 07/01/2013] [Accepted: 07/31/2013] [Indexed: 11/09/2022]
Abstract
BACKGROUND/OBJECTIVES A low folate or low thiamine status may be associated with the risk of preterm delivery, small for gestational age (SGA) offspring and adverse pregnancy outcomes. SUBJECTS/METHODS 5-Methyltetrahydrofolate (5MTHF) and thiamine diphosphate (TDP) were measured directly in cord-blood erythrocytes (CBEs) of early preterm (n=26; <32 weeks gestational age; including 50% multiple births), late preterm (n=38; 32 to <37 weeks; including 24% multiple births) and term newborns (n=60, 37-42 weeks) via high-performance liquid chromatography and fluorescence detection. Associations between 5MTHF and TDP with gestational age, newborn anthropometrics (birth weight, newborn's length and head circumference) and risk of being SGA were explored. RESULTS Group comparison as well as multivariate linear regression analysis of cord-blood vitamins revealed that 5MTHF was significantly lower in late preterms compared with terms but did not differ between singletons and multiples. TDP tended to be higher in preterms than in terms and lower in multiples than in singletons in both early and late preterms. Multivariate analysis on birth outcomes showed that 5MTHF was significantly positively associated with gestational age, birth weight and newborn's length. 5MTHF, increasing gestational age and parity were associated with a significantly reduced risk for being SGA, while TDP, multiple births and gender were not associated with the risk for being SGA. CONCLUSIONS Higher CBE concentrations of 5MTHF were associated with improved birth outcomes. Lower TDP concentrations were observed in multiple births. Future studies evaluating cord-blood vitamin concentrations and their associations with birth outcomes should additionally include dietary intakes and maternal blood concentrations at different stages of pregnancy.
Collapse
Affiliation(s)
- D Weber
- Department of Nutritional Toxicology, Institute of Nutrition, Friedrich-Schiller-University of Jena, Jena, Germany
| | | | | | | | | | | | | |
Collapse
|