1
|
Aradwad P, Raut S, Abdelfattah A, Rauh C, Sturm B. Brewer's spent grain: Unveiling innovative applications in the food and packaging industry. Compr Rev Food Sci Food Saf 2025; 24:e70150. [PMID: 40172248 PMCID: PMC11963836 DOI: 10.1111/1541-4337.70150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 01/11/2025] [Accepted: 02/11/2025] [Indexed: 04/04/2025]
Abstract
Brewer's spent grain, a byproduct of beer brewing, is often discarded as waste, leading to environmental concerns. However, the growing interest in sustainability and the circular bioeconomy has prompted research into its use in food and packaging industries. The objective of this review paper is to explore recent advancements in food applications, focusing on various aspects such as processing innovations, food properties, sensory acceptability, and safety considerations. The paper highlights the role of functional bioactive compounds of BSG in food and evaluates their pharmacological activities. Additionally, it investigates the development of sustainable food-packaging materials derived from BSG, discussing their applications, challenges, and potential for eco-friendly packaging solutions. The inclusion of BSG significantly impacts the food matrix during processing, which can negatively affect the physical, rheological, and textural properties and sensory acceptability. To enhance BSGs desirability as a food ingredient, various approaches have been employed, including drying, fermentation, extrusion, and modifications using enzyme treatments, dough enhancers, and texture modifiers. BSG-derived biodegradable films and coatings demonstrate a promising potential for food-packaging applications, offering desirable properties such as sustainability and effective performance. Key challenges for adopting BSG-based solutions in food and packaging industries include limited consumer awareness, commercialization strategies, and the need for life cycle assessment and life cycle costing for successful integration and widespread adoption.
Collapse
Affiliation(s)
- Pramod Aradwad
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max‐Eyth Allee 100PotsdamGermany
- Indian Council of Agricultural Research, Krishi Bhavan, Dr Rajendra Prasad RdNew DelhiIndia
| | - Sharvari Raut
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max‐Eyth Allee 100PotsdamGermany
- NETZSCH Grinding & Dispersing GmbH, Sedanstraße 70SelbGermany
| | - Ahmed Abdelfattah
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max‐Eyth Allee 100PotsdamGermany
| | - Cornelia Rauh
- Institute of Food Biotechnology and Food Process EngineeringTechnische Universität, Straße des 17BerlinGermany
| | - Barbara Sturm
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max‐Eyth Allee 100PotsdamGermany
- Albrecht Daniel Thaer Institute for Agricultural and Horticultural SciencesHumboldt‐Universität zu Berlin, Hinter der Reinhardtstr. 6–8BerlinGermany
| |
Collapse
|
2
|
Heinen GD, Garzón AG, Cian RE, Drago SR. Gastrointestinal and colonic bioaccessibility of calcium and ferulic acid from microcapsules made with brewer spent grain arabinoxylans. Int J Biol Macromol 2025; 292:139237. [PMID: 39733897 DOI: 10.1016/j.ijbiomac.2024.139237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 12/17/2024] [Accepted: 12/24/2024] [Indexed: 12/31/2024]
Abstract
Three microcapsule formulations with 2.7, 5.5 and 10.9 g calcium 100 g solids-1 (C1, C2, and C3, respectively) were developed using brewer spent grain arabinoxylan concentrate as wall material. The intestinal and colonic bioaccessibility of calcium and phenolic compounds were determined after in vitro gastrointestinal digestion. The level of calcium and the formation of Ca:AX complexes mediated by electrostatic interactions contributed to the construction of the microcapsule wall. It was observed that the higher calcium content increased the total calcium bioaccessibility (27.0 ± 2.4, 29.8 ± 0.2, 37.1 ± 1.0 % for C1, C2, and C3, respectively). However, the calcium level of the microcapsules decreased the total bioaccessibility of the phenolic compounds from 45 to 27 % for ferulic acid, and from 90 to 66 % for p-coumaric acid for C1 and C3, respectively. Also, the secondary metabolites of these phenolics were detected in the colonic fractions. Suitable microcapsules intendant for the supplementation of people with a calcium deficient diet, with the supply of fermentable fibres and phenolic compounds were developed.
Collapse
Affiliation(s)
- G D Heinen
- Instituto de Tecnología de Alimentos, CONICET, FIQ - UNL, 1° de Mayo 3250, 3000 Santa Fe, Argentina
| | - A G Garzón
- Instituto de Tecnología de Alimentos, CONICET, FIQ - UNL, 1° de Mayo 3250, 3000 Santa Fe, Argentina
| | - R E Cian
- Instituto de Tecnología de Alimentos, CONICET, FIQ - UNL, 1° de Mayo 3250, 3000 Santa Fe, Argentina
| | - S R Drago
- Instituto de Tecnología de Alimentos, CONICET, FIQ - UNL, 1° de Mayo 3250, 3000 Santa Fe, Argentina.
| |
Collapse
|
3
|
He Y, Liu T, Larsen DS, Lei Y, Huang M, Zhu L, Daglia M, Xiao X. Barley fermentation on nutritional constituents: structural changes and structure-function correlations. Crit Rev Food Sci Nutr 2025:1-15. [PMID: 39919835 DOI: 10.1080/10408398.2025.2461733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2025]
Abstract
Over the past few years, the demand for healthy grains has become increasingly important. Barley is a basic material for food and animal feed, which is considered an excellent source of multiple nutrients. However, due to limitations in processing techniques, the nutritional attributes of barley have not been completely realized. The functional profile of barley nutrients can be effectively improved by fermentation, due in large to the structural alteration of barley nutrients. The current review outlines the structural changes of barley nutrients during fermentation and summarizes the potential mechanisms by which structural alteration occurs. Correlations between the nutrient structures and their nutritional properties are also discussed. In general, fermentation leads to decreased particle size and modified internal structures of macromolecular nutrients. Enzyme action, pH alterations and interactions between nutrient matrices may contribute to these structural alterations. Barley nutrients with modified structure exhibit enhanced health promoting functions and digestive characteristics, which will further contribute to the utilization of barley resources in the food industry.
Collapse
Affiliation(s)
- Yufeng He
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Tao Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Danaè S Larsen
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Yuexin Lei
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Manchun Huang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Lin Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Maria Daglia
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
| | - Xiang Xiao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
4
|
Bamigbade GB, Oyelami OI, Babalola OO, Adewolu A, Omemu AM, Ogunsanya TF, Sanusi JOF, Daniel OM. An updated comprehensive review on waste valorization: Informetric analysis, current insights and future perspectives on cereal waste and byproduct utilization for sustainable industrial applications. BIORESOURCE TECHNOLOGY 2025; 418:131868. [PMID: 39581479 DOI: 10.1016/j.biortech.2024.131868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/13/2024] [Accepted: 11/21/2024] [Indexed: 11/26/2024]
Abstract
Cereal crops have been integral to human sustenance since the Neolithic era which have earned significant attention as staple foods. The year-round cultivation and consumption of cereal-based products have led to the escalating global production of cereals and a rise in industrial processing which results in significant waste generation. These wastes contain high-value nutrients such as carbohydrates, proteins, and lipids. Due to their dense nutritional values, there is a need to link the diverse array of nutrients in major cereal wastes and by-products to their functionalities and relevant industrial applications. This will not only promote sustainable waste management but also economic stability. Existing studies on cereal research were investigated using informetric analysis to provide a quantitative outlook and identify key trends, research priorities, and gaps in cereal studies. Overall, this review presents a comprehensive update on the past, present, and future of sustainable cereal waste valorization, highlighting previous studies and providing insights for future exploration of these biowastes.
Collapse
Affiliation(s)
- Gafar Babatunde Bamigbade
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al-Ain, United Arab Emirates; Department of Biological Sciences, College of Natural and Applied Sciences, Crescent University, Abeokuta, Nigeria.
| | - Oluwaseun Isaac Oyelami
- Department of Biological Sciences, College of Natural and Applied Sciences, Crescent University, Abeokuta, Nigeria
| | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho 2735, South Africa.
| | - Abiodun Adewolu
- Department of Chemistry and Biochemistry, Chemical Science Laboratory, Florida State University, Tallahassee, FL 32306, USA
| | - Adebukunola Mobolaji Omemu
- Department of Hospitality and Tourism, College of Food Science and Human Ecology, Federal University of Agriculture, Abeokuta, Nigeria
| | - Tobiloba Felix Ogunsanya
- Department of Biological Sciences, College of Natural and Applied Sciences, Crescent University, Abeokuta, Nigeria
| | | | - Olujimi Makanjuola Daniel
- Department of Biological Sciences, College of Natural and Applied Sciences, Crescent University, Abeokuta, Nigeria
| |
Collapse
|
5
|
Jaeger A, Nyhan L, Sahin AW, Zannini E, Meehan D, Li J, O'Toole PW, Arendt EK. In vitro digestibility of bioprocessed brewer's spent yeast: Demonstrating protein quality and gut microbiome modulation potential. Food Res Int 2025; 202:115732. [PMID: 39967179 DOI: 10.1016/j.foodres.2025.115732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 01/03/2025] [Accepted: 01/09/2025] [Indexed: 02/20/2025]
Abstract
With an ever-increasing global population and dwindling natural resources, a shift towards more sustainable food systems is required. Important aspects to aid in this transition are the reduction of food waste, and a movement towards non-animal protein sources. Brewers spent yeast (BSY) is an abundant by-product of the brewing industry, which is generally regarded as waste, despite its high nutritional value. Previous work has shown that fermentation of BSY with Lactobacillus amylovorus FST 2.11 resulted in changes in composition, functionality, and improved palatability of the processed raw material (PBSY). In this study, in vitro protein digestibility, amino acid bioaccessability, and protein quality of PBSY was explored using the static INFOGEST in vitro model. In vitro protein digestibility of PBSY (73.0 %) was almost two-fold higher than that of CBSY (40.0 %), while PBSY also displayed significantly higher in vitro bioaccessability values for all essential amino acids, except for tryptophan. Investigation of protein quality using the digestible indispensable amino acid score (DIAAS) values and the FAO recommended amino acid scoring pattern for individuals >3 years old showed that the protein quality for CBSY was low (DIAAS of 17.0 %), while PBSY was considered to be of "good" protein quality (DIAAS of 98.2 %). Investigation of the modulation potential of PBSY on the gut microbiome using an in vitro colon model system showed an increase in gut microbiome α-diversity indices and an abundance of beneficial Mediterranean diet-responsive taxa after 24 h. Overall, this study highlights the potential of BSY as raw material for the production of a high-quality food ingredient with potential prebiotic effects, aiding in the reduction food waste and supporting global food systems.
Collapse
Affiliation(s)
- Alice Jaeger
- School of Food and Nutritional Sciences, University College Cork, T12K8AF Cork, Ireland
| | - Laura Nyhan
- School of Food and Nutritional Sciences, University College Cork, T12K8AF Cork, Ireland
| | - Aylin W Sahin
- School of Food and Nutritional Sciences, University College Cork, T12K8AF Cork, Ireland
| | - Emanuele Zannini
- School of Food and Nutritional Sciences, University College Cork, T12K8AF Cork, Ireland; Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Dara Meehan
- APC Microbiome Institute, University College Cork, T12 YT20 Cork, Ireland; School of Microbiology, University College Cork, T12 K8AF Cork, Ireland
| | - Junhui Li
- APC Microbiome Institute, University College Cork, T12 YT20 Cork, Ireland; School of Microbiology, University College Cork, T12 K8AF Cork, Ireland
| | - Paul W O'Toole
- APC Microbiome Institute, University College Cork, T12 YT20 Cork, Ireland; School of Microbiology, University College Cork, T12 K8AF Cork, Ireland
| | - Elke K Arendt
- School of Food and Nutritional Sciences, University College Cork, T12K8AF Cork, Ireland; APC Microbiome Institute, University College Cork, T12 YT20 Cork, Ireland.
| |
Collapse
|
6
|
Kruk M, Lalowski P, Płecha M, Ponder A, Rudzka A, Zielińska D, Trząskowska M. Prebiotic potential of spent brewery grain - In vitro study. Food Chem 2025; 463:141254. [PMID: 39298848 DOI: 10.1016/j.foodchem.2024.141254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
Spent brewery grain (SBG) is a by-product of the brewery industry. The study aimed to investigate the prebiotic potential of SBG. The chemical composition and fermentation capacity of SBG were checked. The gut microbiota response to SBG was assessed in two in vitro models (batch fermentation and dynamic system). Substances with prebiotic properties, including arabinoxylans (16.7 g/100 g) and polyphenols (49.1 mg/100 g), were identified in SBG. Suitable growth and fermentation by probiotic bacteria were observed. The modulatory effect of gut microbiota depends on the in vitro system used. In batch fermentation, there was no stimulation of Bifidobacterium or lactic acid bacteria (LAB), but short-chain fatty acid (SCFA) and branched short-chain fatty acids (BCFA) synthesis increased. In dynamic, SBG exhibited a moderate bifidogenic effect, promoting Akkermansia and LAB growth while reducing Bacteroides and Escherichia-Shigella. SCFA stabilisation and reduction of BCFA content were noted. Moderate prebiotic effects were observed.
Collapse
Affiliation(s)
- Marcin Kruk
- Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS), Nowoursynowska St. 159c, 02-776 Warsaw, Poland.
| | - Piotr Lalowski
- Faculty of Human Nutrition, Warsaw University of Life Sciences (WULS), Nowoursynowska St. 159c, 02-776 Warsaw, Poland
| | - Magdalena Płecha
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Adolfa Pawińskiego 5A, 02-106 Warsaw, Poland
| | - Alicja Ponder
- Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS), Nowoursynowska St. 159c, 02-776 Warsaw, Poland
| | - Agnieszka Rudzka
- Department of Dietetics and Food Studies, Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, Al. Armii Krajowej 13/15, 42-200 Częstochowa, Poland
| | - Dorota Zielińska
- Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS), Nowoursynowska St. 159c, 02-776 Warsaw, Poland
| | - Monika Trząskowska
- Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS), Nowoursynowska St. 159c, 02-776 Warsaw, Poland.
| |
Collapse
|
7
|
Falade EO, Kouamé KJEP, Zhu Y, Zheng Y, Ye X. A review: Examining the effects of modern extraction techniques on functional and structural properties of cellulose and hemicellulose in Brewer's Spent Grain dietary fiber. Carbohydr Polym 2025; 348:122883. [PMID: 39562135 DOI: 10.1016/j.carbpol.2024.122883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/27/2024] [Accepted: 10/14/2024] [Indexed: 11/21/2024]
Abstract
Brewer's Spent Grain (BSG) is a by-product of the brewing industry, rich in dietary fibers that offer various health benefits. This review delves into the molecular and structural transformations of BSG and dietary fibers (arabinoxylan, beta-glucan, cellulose etc.) extracted from BSG, triggered by recent advancements in extraction technologies. Through an analysis of current methodologies, such as advanced solubilization methods and emerging technologies like ultrasonication, this paper discusses their significant improvement in yield of BSG-dietary fiber and impact on the structural and functional properties of BSG-dietary fibers (BSG-DF). The review highlights how these technologies enhance fiber solubilization and modify physicochemical properties, thereby improving their functionality in food applications. Furthermore, the review aims to bridge gaps in current research and suggest future directions for optimizing extraction processes to better exploit these fibers in the food industries.
Collapse
Affiliation(s)
- Ebenezer Ola Falade
- College of Biosystem Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China; Zhejiang University-Zhongyuan Institue, Zhengzhou 45001, Henan, China; Organization of African Academic Doctors (OAAD), Off Kamiti Road, P.O. Box 25305-00100, Nairobi, Kenya
| | - Kouadio Jean Eric-Parfait Kouamé
- College of Biosystem Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China; Zhejiang University-Zhongyuan Institue, Zhengzhou 45001, Henan, China
| | - Yanyun Zhu
- College of Biosystem Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China; Zhejiang University-Zhongyuan Institue, Zhengzhou 45001, Henan, China
| | - Yunyun Zheng
- Zhejiang University-Zhongyuan Institue, Zhengzhou 45001, Henan, China
| | - Xingqian Ye
- College of Biosystem Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China; Zhejiang University-Zhongyuan Institue, Zhengzhou 45001, Henan, China.
| |
Collapse
|
8
|
Koc F, Arendt E, Coffey A, Ross RP, Stanton C. Impact of low FODMAP sourdough bread on gut microbiota using an in vitro colonic fermentation model. Front Microbiol 2024; 15:1496022. [PMID: 39588097 PMCID: PMC11586379 DOI: 10.3389/fmicb.2024.1496022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 10/16/2024] [Indexed: 11/27/2024] Open
Abstract
This study explores the development of whole-grain sourdough bread with reduced FODMAP (fermentable oligosaccharides, disaccharides, monosaccharides, and polyols) content to offer dietary solutions for individuals with irritable bowel syndrome (IBS). Three sourdough breads were prepared using different lactic acid bacteria (LAB) strains including Lactiplantibacillus plantarum FST1.7 (SD-FST1.7), Lacticaseibacillus paracasei R3 (SD-R3), and Pediococcus pentosaceus RYE106 (SD-RYE106). A control sourdough bread was prepared using baker's yeast (SD-control). In vitro digestion and in vitro colonic fermentation were employed on bread samples with cellulose (negative control) and inulin (positive control), followed by 16S rRNA sequencing and short-chain fatty acid (SCFA) analysis to evaluate the impact on gut microbiota and SCFA levels. Alpha and beta diversity did not reveal any significant differences within the groups following in vitro colonic fermentation (FDR > 0.05). Taxonomic analysis displayed Firmicutes as the predominant phylum across all fecal samples at the end of colonic fermentation. Actinobacteriota was significantly lower in cellulose fermented fecal samples compared to samples fermented with SD-Control (ANCOMBC, FDR = 0.02) and inulin (ANCOMBC, FDR = 0.0001). Fecal samples fermented with inulin had significantly higher Bacteroidota levels compared to those fermented with cellulose (ANCOMBC, FDR =0.002). Acetate levels were higher in fecal samples fermented with SD-FST1.7 compared to those fermented with SD-R3 and SD-RYE106 (p = 0.03 for both). Positive correlations between butyrate and Lachnospira, Agathobacter, and Bifidobacterium were observed, demonstrating the potential of sourdough fermentation to influence gut health and support IBS management.
Collapse
Affiliation(s)
- Fatma Koc
- APC Microbiome Ireland, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
- Food Biosciences Department, Teagasc Moorepark Research Center, Fermoy, Ireland
| | - Elke Arendt
- APC Microbiome Ireland, Cork, Ireland
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Aidan Coffey
- Department of Biological Sciences, Munster Technological University, Cork, Ireland
| | - R. Paul Ross
- APC Microbiome Ireland, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Catherine Stanton
- APC Microbiome Ireland, Cork, Ireland
- Food Biosciences Department, Teagasc Moorepark Research Center, Fermoy, Ireland
| |
Collapse
|
9
|
Ghajavand B, Avesani C, Stenvinkel P, Bruchfeld A. Unlocking the Potential of Brewers' Spent Grain: A Sustainable Model to Use Beer for Better Outcome in Chronic Kidney Disease. J Ren Nutr 2024; 34:482-492. [PMID: 38621435 DOI: 10.1053/j.jrn.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 04/17/2024] Open
Abstract
The rising global incidence of chronic inflammatory diseases calls for innovative and sustainable medical solutions. Brewers' spent grain (BSG), a byproduct of beer production, presents a unique opportunity in this regard. This review explores the multifaceted health benefits of BSG, with a focus on managing chronic kidney disease (CKD). BSG is identified as a potent prebiotic with potential as a therapeutic agent in CKD. We emphasize the role of gut dysbiosis in CKD and discuss how BSG could help mitigate metabolic derangements resulting from dysbiosis and CKD. Fermentation of BSG further enhances its positive impact on gut health. Incorporating fermented BSG as a key component in preventive health care could promote a more sustainable and healthier future. By optimizing the use of this typically discarded byproduct, we can align proactive health-care strategies with responsible resource management, benefiting both people and the environment.
Collapse
Affiliation(s)
- Babak Ghajavand
- Department of Renal Medicine, Linköping University Hospital, Linköping, Sweden.
| | - Carla Avesani
- Department of Renal Medicine, CLINTEC, Karolinska Institutet, Stockholm, Sweden
| | - Peter Stenvinkel
- Department of Renal Medicine, CLINTEC, Karolinska Institutet, Stockholm, Sweden
| | - Annette Bruchfeld
- Department of Renal Medicine, CLINTEC, Karolinska Institutet, Stockholm, Sweden; Division of Diagnostics and Specialist Medicine, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
10
|
Chattaraj S, Mitra D, Chattaraj M, Ganguly A, Thatoi H, Mohapatra PKD. Brewers' spent grain as fish feed ingredient: Evaluation of bio-safety and analysis of its impact on gut bacteria of Cirrhinus reba by 16S Metagenomic sequencing. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100286. [PMID: 39957783 PMCID: PMC11827020 DOI: 10.1016/j.crmicr.2024.100286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2025] Open
Abstract
A comprehensive eight week feeding trial was conducted to investigate the potential of brewers' spent grain (BSG) as a sustainable fish feed ingredient. The study assessed both the biosafety of BSG and its impact on the gut microbiome of Cirrhinus reba, utilizing advanced 16S metagenomic sequencing techniques to analyze the composition and diversity of gut bacteria. A total of 90 healthy C. reba juveniles (average weight: 12 ± 1 g) were divided into two dietary groups [for control (C), for BSG meal (tB)] in triplicates. Feed prepared with conventional ingredients was used to feed the control group (C). The group tB was fed with BSG meal. After the feeding trial, the fish in tB group showed significantly higher (p < 0.05) growth parameters as compared to the control group. The results of bio-safety assessment indicated the absence of any pathological symptoms in the BSG meal fed carps. The fish in tB group didn't show any histopathological abnormality. Fish fed the Brewers' Spent Grain exhibited significantly elevated serum biochemical parameters, including alanine transaminase (ALT) and aspartate transaminase (AST), compared to the control group (p < 0.05). 16S Metagenomic sequencing of the fish gut microbiota provides insights into how BSG inclusion affects microbial diversity and composition within the digestive tract of C. reba. The analysis revealed the existence of 240 and 250 diverse bacterial genera in the gastrointestinal tract (GIT) of C. reba in dietary groups C and tB respectively. Importantly, the study found the gut of fish in tB group to be dominated by different beneficial genus including Bacillus, Lactobacillus, Bifidobacterium, Paenibacillus, and Lysinibacillus. Feeding C. reba with BSG meal significantly increased the alpha diversity of the gastrointestinal microbiota, as evidenced by elevated Chao 1 estimator and Shannon index values compared to the control diet (p < 0.05). This study provides comprehensive evidence for the bio-safety of BSG as a sustainable feed ingredient in aquaculture, demonstrating its potential to support healthy fish growth and development. Moreover, the prebiotic potential of BSG in fish has also been highlighted.
Collapse
Affiliation(s)
- Sourav Chattaraj
- Centre for Industrial Biotechnology Research, School of Pharmaceutical Science, Siksha ‘O’ Anusandhan University, Kalinga Nagar, Bhubaneswar, 751003, Odisha, India
- Department of Microbiology, Raiganj University, Raiganj, Uttar Dinajpur, West Bengal, 733134, India
| | - Debasis Mitra
- Department of Microbiology, Graphic Era (Deemed to be University), Dehradun, 248002, Uttarakhand, India
| | - Manasi Chattaraj
- Department of Geography, Bankura University, Bankura, West Bengal, 722155, India
| | - Arindam Ganguly
- Department of Microbiology, Bankura Sammilani College, Bankura, West Bengal, 722102, India
| | - Hrudayanath Thatoi
- Centre for Industrial Biotechnology Research, School of Pharmaceutical Science, Siksha ‘O’ Anusandhan University, Kalinga Nagar, Bhubaneswar, 751003, Odisha, India
| | - Pradeep K. Das Mohapatra
- Department of Microbiology, Raiganj University, Raiganj, Uttar Dinajpur, West Bengal, 733134, India
| |
Collapse
|
11
|
Kumar R, Næss G, Sørensen M. Xylooligosaccharides from lignocellulosic biomass and their applications as nutraceuticals: a review on their production, purification, and characterization. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:7765-7775. [PMID: 38625727 DOI: 10.1002/jsfa.13523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/11/2024] [Accepted: 04/16/2024] [Indexed: 04/17/2024]
Abstract
Xylooligosaccharides (XOS) are considered a potent source of prebiotics for humans. The global prebiotic market is expanding in size, was valued at USD 6.05 billion in 2021, and is expected to grow at a 14.9% compound annual growth rate between 2022 and 2030, indicating a huge demand. These XOS are non-digestible pentose sugar oligomers comprising mainly xylose. Xylose is naturally present in the lignocellulosic biomass (LCB), fruits and vegetables. Apart from the prebiotic effect, these XOS have been reported to reduce blood cholesterol, possess antioxidant effects, increase calcium absorption, reduce colon cancer risk, and benefit diabetic patients. The primary use of XOS is reported in the feed industry followed by health, medical use, food and drinks. LCB mainly contains glucan, xylan and lignin. After glucan, xylan is the second-highest available sugar on the globe composed of xylose. Therefore, the xylan fraction of LCB has great significance in producing food, feed and energy. Glucan has been exploited for the commercial production of ethanol, xylitol, furfural, hydroxymethyl furfural and glucose. As of now, xylan has limited applications. Therefore, xylan can be exploited to convert to XOS. The production of XOS from LCB fraction not only helps to produce these at a very low price, but also helps in the reduction of greenhouse gases. Its use in food and drinks is increasing as it can be derived from the abundantly and cheaply available LCB. The article provides a review on the production, purification and characterization of XOS in view of their use as nutraceuticals. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Ravindra Kumar
- Faculty of Biosciences and Aquaculture, Nord University, Steinkjer, Norway
| | - Geir Næss
- Faculty of Biosciences and Aquaculture, Nord University, Steinkjer, Norway
| | - Mette Sørensen
- Faculty of Biosciences and Aquaculture, Nord University, Steinkjer, Norway
| |
Collapse
|
12
|
Kaur A, Purewal SS, Phimolsiripol Y, Punia Bangar S. Unraveling the Hidden Potential of Barley ( Hordeum vulgare): An Important Review. PLANTS (BASEL, SWITZERLAND) 2024; 13:2421. [PMID: 39273905 PMCID: PMC11397514 DOI: 10.3390/plants13172421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024]
Abstract
Barley (Hordeum vulgare) is a winter crop well known for its small-seeded grains and self-pollinating characteristics. The flour derived from barley grains plays a crucial role in numerous processed food items, contributing to their taste and nutritional value. Barley consists of complex carbohydrates (80%), proteins (11.5-14.2%), lipids (4.7-6.8%), β-glucans (3.7-7.7%), and ash (1.8-2.4%). Beyond its other nutrients, barley boasts a good reservoir of phenolic compounds (1.2-2.9 mg/g GAE). This abundance of beneficial compounds positions barley as an attractive industrial substrate. In this review, the nutritional composition and bioactive profile of barley are discussed in a systemic manner, emphasizing its potential in the development of innovative barley-based products that promote health and well-being. By incorporating barley into various food formulations, industries can not only boost nutritional content but also offer consumers a wide range of health benefits. In conclusion, barley's diverse applications in food and health highlight its essential role in promoting healthier living.
Collapse
Affiliation(s)
- Avneet Kaur
- Department of Chemistry, University Institute of Sciences, Chandigarh University, Mohali 140413, Punjab, India
| | - Sukhvinder Singh Purewal
- University Centre for Research & Development (UCRD), Chandigarh University, Mohali 140413, Punjab, India
| | | | - Sneh Punia Bangar
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
13
|
Huang M, Bai J, Buccato DG, Zhang J, He Y, Zhu Y, Yang Z, Xiao X, Daglia M. Cereal-Derived Water-Unextractable Arabinoxylans: Structure Feature, Effects on Baking Products and Human Health. Foods 2024; 13:2369. [PMID: 39123560 PMCID: PMC11311280 DOI: 10.3390/foods13152369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Arabinoxylans (AXs) are non-starch polysaccharides with complex structures naturally occurring in grains (i.e., barley, corn, and others), providing many health benefits, especially as prebiotics. AXs can be classified as water-extractable (WEAX) and water-unextractable (WUAX) based on their solubility, with properties influenced by grain sources and extraction methods. Numerous studies show that AXs exert an important health impact, including glucose and lipid metabolism regulation and immune system enhancement, which is induced by the interactions between AXs and the gut microbiota. Recent research underscores the dependence of AX physiological effects on structure, advocating for a deeper understanding of structure-activity relationships. While systematic studies on WEAX are prevalent, knowledge gaps persist regarding WUAX, despite its higher grain abundance. Thus, this review reports recent data on WUAX structural properties (chemical structure, branching, and MW) in cereals under different treatments. It discusses WUAX applications in baking and the benefits deriving from gut fermentation.
Collapse
Affiliation(s)
- Manchun Huang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.H.); (J.B.); (J.Z.); (Y.H.); (Y.Z.); (Z.Y.)
| | - Juan Bai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.H.); (J.B.); (J.Z.); (Y.H.); (Y.Z.); (Z.Y.)
| | - Daniele Giuseppe Buccato
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy;
| | - Jiayan Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.H.); (J.B.); (J.Z.); (Y.H.); (Y.Z.); (Z.Y.)
| | - Yufeng He
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.H.); (J.B.); (J.Z.); (Y.H.); (Y.Z.); (Z.Y.)
| | - Ying Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.H.); (J.B.); (J.Z.); (Y.H.); (Y.Z.); (Z.Y.)
| | - Zihan Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.H.); (J.B.); (J.Z.); (Y.H.); (Y.Z.); (Z.Y.)
| | - Xiang Xiao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.H.); (J.B.); (J.Z.); (Y.H.); (Y.Z.); (Z.Y.)
| | - Maria Daglia
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy;
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
14
|
Qamar H, Li Y, He R, Waqas M, Song M, Deng D, Cui Y, Yang P, Liu Z, Qammar B, Asnan M, Xie X, Yu M, Ma X. Integrated Metabolomics and Metagenomics Unveiled Biomarkers of Antioxidant Potential in Fermented Brewer's Grains. Antioxidants (Basel) 2024; 13:872. [PMID: 39061941 PMCID: PMC11274078 DOI: 10.3390/antiox13070872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
About one-third of the global food supply is wasted. Brewers' spent grain (BSG), being produced in enormous amounts by the brewery industry, possesses an eminence nutritional profile, yet its recycling is often neglected for multiple reasons. We employed integrated metagenomics and metabolomics techniques to assess the effects of enzyme treatments and Lactobacillus fermentation on the antioxidant capacity of BSG. The biotreated BSG revealed improved antioxidant capability, as evidenced by significantly increased (p < 0.05) radical scavenging activity and flavonoid and polyphenol content. Untargeted metabolomics revealed that Lactobacillus fermentation led to the prominent synthesis (p < 0.05) of 15 novel antioxidant peptides, as well as significantly higher (p < 0.05) enrichment of isoflavonoid and phenylpropanoid biosynthesis pathways. The correlation analysis demonstrated that Lactiplantibacillus plantarum exhibited strong correlation (p < 0.05) with aucubin and carbohydrate-active enzymes, namely, glycoside hydrolases 25, glycosyl transferases 5, and carbohydrate esterases 9. The fermented BSG has potential applications in the food industry as a culture medium, a functional food component for human consumption, and a bioactive feed ingredient for animals.
Collapse
Affiliation(s)
- Hammad Qamar
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China; (H.Q.); (R.H.); (M.S.); (D.D.); (Y.C.); (P.Y.); (Z.L.); (M.Y.)
| | - Yuanfei Li
- Institute of Biological Technology, Jiangxi Provincial Key Laboratory of Poultry Genetic Improvement, Nanchang Normal University, Nanchang 330032, China;
| | - Rong He
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China; (H.Q.); (R.H.); (M.S.); (D.D.); (Y.C.); (P.Y.); (Z.L.); (M.Y.)
| | - Muhammad Waqas
- Faculty of Veterinary and Animal Sciences, University of Poonch Rawalakot, Rawalakot 12350, Pakistan;
| | - Min Song
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China; (H.Q.); (R.H.); (M.S.); (D.D.); (Y.C.); (P.Y.); (Z.L.); (M.Y.)
| | - Dun Deng
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China; (H.Q.); (R.H.); (M.S.); (D.D.); (Y.C.); (P.Y.); (Z.L.); (M.Y.)
| | - Yiyan Cui
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China; (H.Q.); (R.H.); (M.S.); (D.D.); (Y.C.); (P.Y.); (Z.L.); (M.Y.)
| | - Pan Yang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China; (H.Q.); (R.H.); (M.S.); (D.D.); (Y.C.); (P.Y.); (Z.L.); (M.Y.)
| | - Zhichang Liu
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China; (H.Q.); (R.H.); (M.S.); (D.D.); (Y.C.); (P.Y.); (Z.L.); (M.Y.)
| | | | - Muhammad Asnan
- Institute of Animal and Dairy Sciences, University of Agriculture, Faisalabad 38000, Pakistan;
| | - Xiangxue Xie
- Guangdong VTR Bio-Tech Co., Ltd., Zhuhai 519060, China
| | - Miao Yu
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China; (H.Q.); (R.H.); (M.S.); (D.D.); (Y.C.); (P.Y.); (Z.L.); (M.Y.)
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agricultural, Maoming 525000, China
| | - Xianyong Ma
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China; (H.Q.); (R.H.); (M.S.); (D.D.); (Y.C.); (P.Y.); (Z.L.); (M.Y.)
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agricultural, Maoming 525000, China
| |
Collapse
|
15
|
Cui H, Li X, Que J, Li S, Shi X, Yuan T. A water-soluble arabinoxylan from Chinese liquor distillers' grains: Structural characterization and anti-colitic properties. Int J Biol Macromol 2024; 266:131186. [PMID: 38554909 DOI: 10.1016/j.ijbiomac.2024.131186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
Chinese liquor distillers' grain (CLDG) is a valuable and abundant by-product from traditional Chinese baijiu production, containing a diverse array of bioactive components that have attracted significant interest. Herein, a water-soluble polysaccharide, DGPS-2B, with a weight-average molecular weight of 37.3 kDa, was isolated from the alkali-extract fraction of CLDG. Methylation and NMR analysis identified that the primary constituents of DGPS-2B are arabinoxylans, with an arabinose-to-xylose ratio of 0.66. In an animal model of colitis, DGPS-2B treatment significantly altered the gut microbiota composition by increasing the SCFA-producing bacteria (e.g., Butyricicoccus) and reducing the mucin-degrading bacteria such as Muribaculaceae. This microbial shift resulted in elevated production of butyrate, acetate, and propionate, which subsequently suppressed NF-κB signaling, decreased the levels of IL-1β, IL-6, and TNFα, and potentially inactivated Notch signaling. These multifaceted effects stimulated mucin 2 production, reduced inflammation and apoptosis in the gut epithelium, and ultimately alleviated colitis symptoms. Collectively, this study not only elucidates the purification and characterization of DGPS-2B from CLDG but also illuminates its anti-colitic properties and the underlying molecular mechanisms. These findings underscore the potential of DGPS-2B as a therapeutic intervention for managing inflammatory bowel disease and emphasize CLDG as a promising source for developing value-added products.
Collapse
Affiliation(s)
- Hao Cui
- National Research Center for Carbohydrate Synthesis, College of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Xia Li
- National Research Center for Carbohydrate Synthesis, College of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Jiayi Que
- National Research Center for Carbohydrate Synthesis, College of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Shuyue Li
- National Research Center for Carbohydrate Synthesis, College of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Xiaodan Shi
- School of Health, Jiangxi Normal University, Nanchang 330022, China.
| | - Tao Yuan
- National Research Center for Carbohydrate Synthesis, College of Life Science, Jiangxi Normal University, Nanchang 330022, China; School of Health, Jiangxi Normal University, Nanchang 330022, China.
| |
Collapse
|
16
|
Su X, Jin Q, Xu Y, Wang H, Huang H. Subcritical water treatment to modify insoluble dietary fibers from brewer's spent grain for improved functionality and gut fermentability. Food Chem 2024; 435:137654. [PMID: 37820401 DOI: 10.1016/j.foodchem.2023.137654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/16/2023] [Accepted: 10/01/2023] [Indexed: 10/13/2023]
Abstract
Lactic acid (LA)-assisted subcritical water treatment (SWT) was applied to modify the insoluble dietary fiber (IDF) from brewer's spent grain (BSG) for enhancing its functionality and gut fermentability. Modified IDFs were thoroughly characterized for their chemical and structural properties. The results revealed that increasing the treatment temperature and LA concentration reduced hemicellulose content in IDFs from 38.4 % to 0.7 %, alongside a decreased yield (84.8 %-51.4 %), reduced particle size (519.8-288.6 μm), and more porous structure of IDFs. These modifications were linked to improved functionalities, evidenced by the highest water and oil holding capacity increasing by 36 % and 67 %, respectively. Remarkably, the highest glucose adsorption capacity increased by 6.5 folds. Notably, modified IDFs exhibited slower in-vitro fermentation, elevated short-chain fatty acids (SCFAs) production, and a higher proportion of butyrate in SCFAs. These findings highlight the potential of LA-assisted SWT in transforming BSG-derived IDF into a valuable functional food ingredient.
Collapse
Affiliation(s)
- Xueqian Su
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University, 1230 Washington Street SW, Blacksburg VA 24061, USA.
| | - Qing Jin
- School of Food and Agriculture, The University of Maine, 5763 Rogers Hall, Orono, ME 04469, USA.
| | - Yixiang Xu
- Healthy Processed Foods Research Unit, United States Department of Agriculture, Agricultural Research Station, 800 Buchanan Street, Albany, CA 94710, USA.
| | - Hengjian Wang
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University, 1230 Washington Street SW, Blacksburg VA 24061, USA.
| | - Haibo Huang
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University, 1230 Washington Street SW, Blacksburg VA 24061, USA.
| |
Collapse
|
17
|
Hernández-Pinto FJ, Miranda-Medina JD, Natera-Maldonado A, Vara-Aldama Ó, Ortueta-Cabranes MP, Vázquez Del Mercado-Pardiño JA, El-Aidie SAM, Siddiqui SA, Castro-Muñoz R. Arabinoxylans: A review on protocols for their recovery, functionalities and roles in food formulations. Int J Biol Macromol 2024; 259:129309. [PMID: 38216021 DOI: 10.1016/j.ijbiomac.2024.129309] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 01/14/2024]
Abstract
Arabinoxylans (AXs) are compounds with high nutritional value and applicability, including prebiotics or supplementary ingredients, in food manufacturing industries. Unfortunately, the recovery of AXs may require advanced separation and integrated strategies. Here, an analysis of the emerging techniques to extract AXs from cereals and their by-products is discussed. This review covers distinct methods implemented over the last 2-3 years, identifying that the type of method, extraction source, AX physicochemical properties and pre-treatment conditions are the main factors influencing the recovery yield. Alkaline extraction is among the most used methods nowadays, mostly due to its simplicity and high recovery yield. Concurrently, recovered AXs applied in food applications is timely reviewed, such as potential bread ingredient, prebiotic and as a wall material for probiotic encapsulation, in beer and non-alcoholic beverage manufacturing, complementary ingredient in bakery products and cookies, improvers in Chinese noodles, 3D food printing and designing of nanostructures for delivery platforms.
Collapse
Affiliation(s)
- Fernanda Jimena Hernández-Pinto
- Tecnologico de Monterrey, Campus Querétaro. Av. Epigmenio González 500, Tecnológico, 76130 Santiago de Querétaro, Qro., Mexico
| | - Juan Daniel Miranda-Medina
- Tecnologico de Monterrey, Campus Guadalajara, Av. General Ramón Corona 2514, Zapopan 45138, Jalisco, Mexico
| | - Abril Natera-Maldonado
- Tecnologico de Monterrey, Campus Chihuahua, Av. H Colegio Militar 4700, Nombre de Dios, Chihuahua, Chih., Mexico
| | - Óscar Vara-Aldama
- Tecnologico de Monterrey, Campus Monterrey. Av. Eugenio Garza Sada Sur 2501 Sur, Tecnológico, 64849 Monterrey, N.L., Mexico
| | - Mary Pily Ortueta-Cabranes
- Tecnologico de Monterrey, Campus Monterrey. Av. Eugenio Garza Sada Sur 2501 Sur, Tecnológico, 64849 Monterrey, N.L., Mexico
| | | | - Safaa A M El-Aidie
- Dairy Technology Department, Animal Production Research Institute, Agricultural Research Centre, Giza, Egypt
| | - Shahida Anusha Siddiqui
- Technical University of Munich, Department of Biotechnology and Sustainability, Essigberg 3, 94315 Straubing, Germany; German Institute of Food Technologies (DIL e.V.), Quakenbrück, Germany
| | - Roberto Castro-Muñoz
- Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Department of Sanitary Engineering, 11/12 Narutowicza St., 80-233 Gdansk, Poland.
| |
Collapse
|
18
|
Deokar GS, Deokar AM, Kshirsagar SJ, Buranasompob A, Nirmal NP. Extraction, physicochemical characterization, functionality, and excipient ability of corn fiber gum-starch isolate from corn milling industry waste. Int J Pharm 2023; 645:123401. [PMID: 37696343 DOI: 10.1016/j.ijpharm.2023.123401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/21/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023]
Abstract
Corn processing industries generate an extensive fibrous byproduct consisting of corn fiber gum (CFG) and residual starch (S). The present study hypothesized that CFG and S could be isolated as a single crosslinked conjugate. The isolated CFG-S conjugate was acidic, with a pKa value of 11.49, and a swelling index of 99.60%. Henderson-Hasselbalch equation predicted negligible ionization throughout the gastrointestinal pH range. The DSC thermogram highlights glass transition and temperature-specific structure stabilization through the exothermic crystallization domain. FTIR, SEM & XRD confirmed the structural conjugation and integrity of the conjugate. Tablets containing Venlafaxine hydrochloride as a model drug were prepared using CFG-S (14 and 57%) as excipient by wet granulation method. Percentage cumulative drug release with low concentration was up to 99.67175 ± 0.09 % in 5 h whereas with high concentration, it was extended to 12 h (P < 0.05). Korsemayer-Peppas release exponent indicates zero order (R2 = 0.9935) kinetics with super case-II anomalous transport showing diffusion and erosion as drug release mechanisms. The results confirmed that CFG-S isolate could act as a good binding agent at low concentrations and release extending cross-linked matrix former at a higher concentration for release retardant excipient.
Collapse
Affiliation(s)
- Gitanjali Sambhajirao Deokar
- Department of Quality Assurance, MET's Institute of Pharmacy, Bhujbal Knowledge City, Adgaon, Nashik, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Archana Maruti Deokar
- Department of Quality Assurance, MET's Institute of Pharmacy, Bhujbal Knowledge City, Adgaon, Nashik, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Sanjay Jayprakash Kshirsagar
- Department of Quality Assurance, MET's Institute of Pharmacy, Bhujbal Knowledge City, Adgaon, Nashik, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Athisaya Buranasompob
- Center for Innovation and Reference on Food for Nutrition, Institute of Nutrition, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand
| | - Nilesh Prakash Nirmal
- Deaprtment of Food Science, Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand.
| |
Collapse
|
19
|
Sahin AW, Atzler JJ, Crofton E, Gallagher E, Zannini E, Walter J, Arendt EK. Impact of different fibre ingredients on a low-FODMAP biscuit model system. Food Funct 2023; 14:7082-7095. [PMID: 37455535 DOI: 10.1039/d3fo00830d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Fermentable oligo-, di-, monosaccharides and polyols (FODMAPs) are carbohydrates which can cause symptoms of irritable bowel syndrome (IBS). Cereal-based products are high in FODMAPs, as they are part of the carbohydrate fraction in flour. Low-FODMAP products are starch-based which leads to a low dietary fibre content. Hence, the fortification with dietary fibre ingredients low in FODMAPs is essential. This study reveals the impact of three different fibre ingredients, resistant starch, cellulose, and arabinoxylan, and their interactions with each other in a low-FODMAP biscuit model system using response surface methodology. All fibre ingredients have an affinity to water which was further increased by their coexistence in the model system. Fibersym RW affected the biscuit hardness by its morphology and potential to recrystallise leading to a maximum inclusion level of 40%. VITACEL L 600-30 also increased biscuit hardness due to its plasticising character leading to a maximum inclusion of 20%. AgriFiber BFG mainly impacted the colour of the product restricting its inclusion to 2.3%. Additionally, it reduced the degree of starch digestibility of the biscuit by the formation of a film imbedding the starch granules and reducing enzyme attack. This research provides an in-depth insight into the integration potential of these fibre ingredients into a low-FODMAP biscuit, their interactions within the system and inclusion levels which allow their coexistence.
Collapse
Affiliation(s)
- Aylin W Sahin
- University College Cork, School of Food and Nutritional Sciences, College Road, Cork, Ireland.
| | - Jonas J Atzler
- University College Cork, School of Food and Nutritional Sciences, College Road, Cork, Ireland.
| | - Emily Crofton
- Teagasc Food Research Centre Ashtown, Dublin, D15 KN3K, Ireland.
| | - Eimear Gallagher
- Teagasc Food Research Centre Ashtown, Dublin, D15 KN3K, Ireland.
| | - Emanuele Zannini
- University College Cork, School of Food and Nutritional Sciences, College Road, Cork, Ireland.
- Department of Environmental Biology, "Sapienza" University of Rome, Italy.
| | - Jens Walter
- APC Microbiome Ireland, Cork, Ireland
- School of Microbiology and Department of Medicine, University College Cork, Ireland
| | - Elke K Arendt
- University College Cork, School of Food and Nutritional Sciences, College Road, Cork, Ireland.
- APC Microbiome Ireland, Cork, Ireland
| |
Collapse
|
20
|
Calvete-Torre I, Sabater C, Delgado S, Ruas-Madiedo P, Rupérez-García A, Montilla A, Javier Moreno F, Margolles A, Ruiz L. Arabinoxylan-based substrate preferences and predicted metabolic properties of Bifidobacterium longum subspecies as a basis to design differential media. Food Res Int 2023; 167:112711. [PMID: 37087214 DOI: 10.1016/j.foodres.2023.112711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023]
Abstract
Arabinoxylan (AX) and arabinoxylo-oligosaccharides (AXOS) derived therefrom are emergent prebiotics with promising health promoting properties, likely linked to its capacity to foster beneficial species in the human gut. Bifidobacteria appear to be one taxa that is frequently promoted following AX or AXOS consumption, and that is known to establish metabolic cross-feeding networks with other beneficial commensal species. Therefore, probiotic bifidobacteria with the capability to metabolize AX-derived prebiotics represent interesting candidates to develop novel probiotic and synbiotic combinations with AX-based prebiotics. In this work we have deepen into the metabolic capabilities of bifidobacteria related to AX and AXOS metabolization through a combination of in silico an in vitro tools. Both approaches revealed that Bifidobacterium longum and, particularly, B. longum subsp. longum, appears as the better equipped to metabolize complex AX substrates, although other related subspecies such as B. longum subsp. infantis, also hold some machinery related to AXOS metabolization. This correlates to the growth profiles exhibited by representative strains of both subspecies in AX or AXOS enriched media. Based on these results, we formulated a differential carbohydrate free medium (CFM) supplemented with a combination of AX and AXOS that enabled to recover a wide diversity of Bifidobacterium species from complex fecal samples, while allowing easy discrimination of AX metabolising strains by the appearance of a precipitation halo. This new media represent an appealing alternative to isolate novel probiotic bifidobacteria, rapidly discriminating their capacity to metabolize structurally complex AX-derived prebiotics. This can be convenient to assist formulation of novel functional foods and supplements, including bifidobacterial species with capacity to metabolize AX-derived prebiotic ingredients.
Collapse
Affiliation(s)
- Ines Calvete-Torre
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas IPLA, CSIC, Paseo Río Linares s/n, 33300, Villaviciosa, Asturias, Spain; Functionality and Ecology of Beneficial Microbes (MicroHealth) Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Asturias, Spain
| | - Carlos Sabater
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas IPLA, CSIC, Paseo Río Linares s/n, 33300, Villaviciosa, Asturias, Spain; Functionality and Ecology of Beneficial Microbes (MicroHealth) Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Asturias, Spain
| | - Susana Delgado
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas IPLA, CSIC, Paseo Río Linares s/n, 33300, Villaviciosa, Asturias, Spain; Functionality and Ecology of Beneficial Microbes (MicroHealth) Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Asturias, Spain
| | - Patricia Ruas-Madiedo
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas IPLA, CSIC, Paseo Río Linares s/n, 33300, Villaviciosa, Asturias, Spain; Functionality and Ecology of Beneficial Microbes (MicroHealth) Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Asturias, Spain
| | - Alicia Rupérez-García
- Instituto de Investigación en Ciencias de la Alimentación CIAL, (CSIC-UAM) CEI (CSIC+UAM), Madrid, Spain
| | - Antonia Montilla
- Instituto de Investigación en Ciencias de la Alimentación CIAL, (CSIC-UAM) CEI (CSIC+UAM), Madrid, Spain
| | - F Javier Moreno
- Instituto de Investigación en Ciencias de la Alimentación CIAL, (CSIC-UAM) CEI (CSIC+UAM), Madrid, Spain
| | - Abelardo Margolles
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas IPLA, CSIC, Paseo Río Linares s/n, 33300, Villaviciosa, Asturias, Spain; Functionality and Ecology of Beneficial Microbes (MicroHealth) Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Asturias, Spain.
| | - Lorena Ruiz
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas IPLA, CSIC, Paseo Río Linares s/n, 33300, Villaviciosa, Asturias, Spain; Functionality and Ecology of Beneficial Microbes (MicroHealth) Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Asturias, Spain.
| |
Collapse
|
21
|
Baiano A, la Gatta B, Rutigliano M, Fiore A. Functional Bread Produced in a Circular Economy Perspective: The Use of Brewers' Spent Grain. Foods 2023; 12:foods12040834. [PMID: 36832911 PMCID: PMC9957138 DOI: 10.3390/foods12040834] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
Brewers' spent grain (BSG) is the main by-product of the brewing industry, corresponding to ~85% of its solid residues. The attention of food technologists towards BSG is due to its content in nutraceutical compounds and its suitability to be dried, ground, and used for bakery products. This work was aimed to investigate the use of BSG as a functional ingredient in bread-making. BSGs were characterised for formulation (three mixtures of malted barley and unmalted durum (Da), soft (Ri), or emmer (Em) wheats) and origin (two cereal cultivation places). The breads enriched with two different percentages of each BSG flour and gluten were analysed to evaluate the effects of replacements on their overall quality and functional characteristics. Principal Component Analysis homogeneously grouped BSGs by type and origin and breads into three sets: the control bread, with high values of crumb development, a specific volume, a minimum and maximum height, and cohesiveness; Em breads, with high values of IDF, TPC, crispiness, porosity, fibrousness, and wheat smell; and the group of Ri and Da breads, which have high values of overall smell intensity, toasty smell, pore size, crust thickness, overall quality, a darker crumb colour, and intermediate TPC. Based on these results, Em breads had the highest concentrations of nutraceuticals but the lowest overall quality. Ri and Da breads were the best choice (intermediate phenolic and fibre contents and overall quality comparable to that of control bread). Practical applications: the transformation of breweries into biorefineries capable of turning BSG into high-value, low-perishable ingredients; the extensive use of BSGs to increase the production of food commodities; and the study of food formulations marketable with health claims.
Collapse
|
22
|
Beer and Microbiota: Pathways for a Positive and Healthy Interaction. Nutrients 2023; 15:nu15040844. [PMID: 36839202 PMCID: PMC9966200 DOI: 10.3390/nu15040844] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/02/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023] Open
Abstract
Beer is one of the most consumed drinks worldwide. It contains numerous categories of antioxidants, phenolic products, traces of group B vitamins, minerals (selenium, silicon, potassium), soluble fibers and microorganisms. Low or moderate beer consumption, with or without alcohol, showed positive effects on health by stimulating the development of a healthy microbiota. In the present review we focused on four components responsible with interaction with gut microbiota: microorganisms, polyphenols, fiber and melanoidins, their presence in usual beers and on perspectives of development of fortified beers with enhanced effects on gut microbiota. Though microorganisms rarely escape pasteurization of beer, there are new unpasteurized types that might bring strains with probiotic effects. The polyphenols from beer are active on the gut microbiota stimulating its development, with consequent local anti-inflammatory and antioxidant effects. Their degradation products have prebiotic action and may combat intestinal dysbiosis. Beer contains dietary fiber such as non-starchy, non-digestible carbohydrates (β-glucans, arabinoxylans, mannose, fructose polymers, etc.) that relate with gut microbiota through fermentation, serving as a nutrient substrate. Another type of substances that are often considered close to fiber because they have an extremely low digestibility, melanoidins (melanosaccharides), give beer antioxidant and antibacterial properties. Though there are not many research studies in this area, the conclusion of this review is that beer seems a good candidate for a future functional food and that there are many pathways by which its ingredients can influence in a positive manner the human gut microbiota. Of course, there are many technological hinderances to overcome. However, designing functional beers fortified with fiber, antioxidants and probiotics, with a very low or no alcoholic content, will counteract the negative perception of beer consumption, will nullify the negative effects of alcohol, while simultaneously exerting a positive action on the gut microbiota.
Collapse
|
23
|
Berding K, Bastiaanssen TFS, Moloney GM, Boscaini S, Strain CR, Anesi A, Long-Smith C, Mattivi F, Stanton C, Clarke G, Dinan TG, Cryan JF. Feed your microbes to deal with stress: a psychobiotic diet impacts microbial stability and perceived stress in a healthy adult population. Mol Psychiatry 2023; 28:601-610. [PMID: 36289300 PMCID: PMC9908549 DOI: 10.1038/s41380-022-01817-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 09/18/2022] [Accepted: 09/23/2022] [Indexed: 11/09/2022]
Abstract
The impact of diet on the microbiota composition and the role of diet in supporting optimal mental health have received much attention in the last decade. However, whether whole dietary approaches can exert psychobiotic effects is largely understudied. Thus, we investigated the influence of a psychobiotic diet (high in prebiotic and fermented foods) on the microbial profile and function as well as on mental health outcomes in a healthy human population. Forty-five adults were randomized into either a psychobiotic (n = 24) or control (n = 21) diet for 4 weeks. Fecal microbiota composition and function was characterized using shotgun sequencing. Stress, overall health and diet were assessed using validated questionnaires. Metabolic profiling of plasma, urine and fecal samples was performed. Intervention with a psychobiotic diet resulted in reductions of perceived stress (32% in diet vs. 17% in control group), but not between groups. Similarly, biological marker of stress were not affected. Additionally, higher adherence to the diet resulted in stronger decreases in perceived stress. While the dietary intervention elicited only subtle changes in microbial composition and function, significant changes in the level of 40 specific fecal lipids and urinary tryptophan metabolites were observed. Lastly, microbial volatility was linked to greater changes in perceived stress scores in those on the psychobiotic diet. These results highlight that dietary approaches can be used to reduce perceived stress in a human cohort. Using microbiota-targeted diets to positively modulate gut-brain communication holds possibilities for the reduction of stress and stress-associated disorders, but additional research is warranted to investigate underlying mechanisms, including the role of the microbiota.
Collapse
Affiliation(s)
| | | | - Gerard M Moloney
- APC Microbiome Ireland, Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | | | - Conall R Strain
- APC Microbiome Ireland, Cork, Ireland.,Teagsac Food Research Centre, Moorepark, Fermoy, County Cork, Ireland
| | - Andrea Anesi
- Unit of Metabolomics, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | | | - Fulvio Mattivi
- Unit of Metabolomics, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy.,Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Catherine Stanton
- APC Microbiome Ireland, Cork, Ireland.,Teagsac Food Research Centre, Moorepark, Fermoy, County Cork, Ireland.,Department of Psychiatry and Neurobehavioural Sciences, University College Cork, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, Cork, Ireland.,Department of Psychiatry and Neurobehavioural Sciences, University College Cork, Cork, Ireland
| | - Timothy G Dinan
- APC Microbiome Ireland, Cork, Ireland.,Department of Psychiatry and Neurobehavioural Sciences, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, Cork, Ireland. .,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| |
Collapse
|
24
|
Liu L, Chen M, Coldea TE, Yang H, Zhao H. Emulsifying properties of arabinoxylans derived from brewers’ spent grain by ultrasound-assisted extraction: structural and functional properties correlation. CELLULOSE 2023; 30:359-372. [DOI: 10.1007/s10570-022-04912-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/22/2022] [Indexed: 07/02/2024]
|
25
|
Waleed M, Saeed F, Afzaal M, Niaz B, Raza MA, Hussain M, Tufail T, Rasheed A, Ateeq H, Al Jbawi E. Structural and nutritional properties of psyllium husk arabinoxylans with special reference to their antioxidant potential. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2143522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Muhammad Waleed
- Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Farhan Saeed
- Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Afzaal
- Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Bushra Niaz
- Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Ahtisham Raza
- Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muzzamal Hussain
- Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Tabussam Tufail
- University Institute of Food Science and Technology, University of Lahore, Lahore, Pakistan
| | - Amara Rasheed
- Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Huda Ateeq
- Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | | |
Collapse
|
26
|
Wang Y, Jian C. Sustainable plant-based ingredients as wheat flour substitutes in bread making. NPJ Sci Food 2022; 6:49. [PMID: 36307422 PMCID: PMC9614748 DOI: 10.1038/s41538-022-00163-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 09/29/2022] [Indexed: 11/09/2022] Open
Abstract
Bread as a staple food has been predominantly prepared from refined wheat flour. The world's demand for food is rising with increased bread consumption in developing countries where climate conditions are unsuitable for wheat cultivation. This reliance on wheat increases the vulnerability to wheat supply shocks caused by force majeure or man-made events, in addition to negative environmental and health consequences. In this review, we discuss the contribution to the sustainability of food systems by partially replacing wheat flour with various types of plant ingredients in bread making, also known as composite bread. The sustainable sources of non-wheat flours, their example use in bread making and potential health and nutritional benefits are summarized. Non-wheat flours pose techno-functional challenges due to significantly different properties of their proteins compared to wheat gluten, and they often contain off-favor compounds that altogether limit the consumer acceptability of final bread products. Therefore, we detail recent advances in processing strategies to improve the sensory and nutritional profiles of composite bread. A special focus is laid on fermentation, for its accessibility and versatility to apply to different ingredients and scenarios. Finally, we outline research needs that require the synergism between sustainability science, human nutrition, microbiomics and food science.
Collapse
Affiliation(s)
- Yaqin Wang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Ching Jian
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland.
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
27
|
Fermented Brewers’ Spent Grain Containing Dextran and Oligosaccharides as Ingredient for Composite Wheat Bread and Its Impact on Gut Metabolome In Vitro. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8100487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Brewers’ spent grain or BSG is a fiber and protein rich food-grade side stream that has remained underutilized due to its poor technological and sensory characteristics. In this study, BSG was fermented with Weissella confusa A16 in presence of sucrose to induce the synthesis of dextran and maltosyl-isomaltooligosaccharides. Fermented BSG with or without the above polysaccharides was used as ingredient in wheat bread. Digestion of BSG breads was simulated in vitro with Simulator of Human Intestinal Microbial Ecosystem, and levels of fecal metabolites were analyzed. Enrichment of BSG breads with in situ dextran and maltosyl-isomaltooligosaccharides improved the baking quality compared to native BSG. Metabolism of free amino acids and synthesis of short chain fatty acids varied at different stages and parts of colon. The increase in butyric acid was similar in both the proximal and distal colon. In situ dextran and maltosyl-isomaltooligosaccharides, and higher content of proteins and fiber in BSG breads had a positive influence towards gut microbiota functionality. Along with several essential amino acids, an increase in amount of γ-aminobutyric acid was also observed after simulated digestion. BSG breads had a significant effect on the gut metabolome during in vitro digestion, showing increased production of microbial metabolites with potential health benefits.
Collapse
|
28
|
Ullah H, Esposito C, Piccinocchi R, De Lellis LF, Santarcangelo C, Minno AD, Baldi A, Buccato DG, Khan A, Piccinocchi G, Sacchi R, Daglia M. Postprandial Glycemic and Insulinemic Response by a Brewer's Spent Grain Extract-Based Food Supplement in Subjects with Slightly Impaired Glucose Tolerance: A Monocentric, Randomized, Cross-Over, Double-Blind, Placebo-Controlled Clinical Trial. Nutrients 2022; 14:3916. [PMID: 36235569 PMCID: PMC9572698 DOI: 10.3390/nu14193916] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/24/2022] Open
Abstract
Dietary fiber exerts beneficial effects on human health reducing the risk factors of metabolic related diseases such as hyperglycemia, insulin resistance, and hypercholesterolemia. The aim of this study is to demonstrate the efficacy of a food supplement based on brewer's spent grain (BSG) extract in the reduction of postprandial glycemia and insulinemia in normoglycemic subjects. BSG was chemically characterized, revealing the presence of resistant starch (14.64 g/100 g), arabinoxylans (7.50 g/100 g), β-glucans (1.92 g/100 g) and other soluble fibers (6.43 g/100 g), and bioaccessible ferulic acid (91.3 mg/100 g). For the clinical study, 40 normoglycemic subjects were randomized into two groups, 1 and 2 (n = 20), for a cross-over clinical design and received either BSG extract-based food supplement or placebo. Postprandial blood glucose values were significantly lower than corresponding values in the placebo group after 90 and 120 min, while at the baseline and in the first 60 min, the two glycemic curves overlapped substantially. This improved clinical outcome was corroborated by significant reductions in postprandial insulinemia. None of the subjects reported adverse effects. This study showed that the tested BSG extract-based food supplement improves glucose metabolism and insulinemic response in normoglycemic subjects with at most a mild insulin resistance.
Collapse
Affiliation(s)
- Hammad Ullah
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Cristina Esposito
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Roberto Piccinocchi
- Level 1 Medical Director Anaesthesia and Resuscitation A. U. O. Luigi Vanvitelli, Via Santa Maria di Costantinopoli, 80138 Naples, Italy
| | | | - Cristina Santarcangelo
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Alessandro Di Minno
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
- CEINGE-Biotecnologie Avanzate, Via Gaetano Salvatore 486, 80145 Naples, Italy
| | - Alessandra Baldi
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Daniele Giuseppe Buccato
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Ayesha Khan
- Department of Medicine, Combined Military Hospital Nowshera, Nowshera 24110, Pakistan
| | - Gaetano Piccinocchi
- Comegen S.c.S., Societ‘a Cooperativa Sociale di Medici di Medicina Generale, Viale Maria Bakunin 41, 80125 Naples, Italy
| | - Roberto Sacchi
- Applied Statistic Unit, Department of Earth and Environmental Sciences, University of Pavia, Viale Taramelli 24, 27100 Pavia, Italy
| | - Maria Daglia
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
29
|
In Vitro Digestibility and Bioaccessibility of Nutrients and Non-Nutrients Composing Extruded Brewers' Spent Grain. Nutrients 2022; 14:nu14173480. [PMID: 36079739 PMCID: PMC9459946 DOI: 10.3390/nu14173480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
This study aimed to evaluate the effect of the extrusion process on the bioaccessibility of brewers’ spent grain (BSG) nutrients (carbohydrates and proteins) and non-nutrients (bioactive compounds). BSG and extruded BSG (EBSG) were digested in vitro simulating human oral-gastro-intestinal digestion and colonic fermentation. The duodenal bioaccessibility of glucose, amino acids and phenolic compounds was analyzed. The fermentability of the dietary fiber was assessed by analysis of short-chain fatty acids. Additionally, assessment of the bioaccessibility of phenolic compounds after colonic fermentation was undertaken. The antioxidant, anti-inflammatory and antidiabetic properties of the bioaccessible compounds were studied. Extrusion caused no change in the digestibility of gluten and glucose bioaccessibility (p > 0.05). Moreover, the bioaccessibility of amino acids and phenolic compounds significantly increased (p < 0.05) due to extrusion. However, higher short-chain fatty acid content was formed in colonic fermentation of BSG (p < 0.05) compared to EBSG. The latter inhibited intracellular ROS formation in IEC-6 cells and showed anti-inflammatory properties in RAW264.7 cells. With respect to antidiabetic properties, glucose absorption was lower, and the inhibition of carbohydrases higher (p < 0.05), in the presence of EBSG compared to BSG. The effects of EBSG and BSG digests on glucose transporters were not significantly different (p > 0.05). In conclusion, extrusion positively affected the nutritional value and health-promoting properties of BSG.
Collapse
|
30
|
The microbiome modulating potential of superheated steam (SHS) treatment of dietary fibres. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
31
|
Zeko-Pivač A, Tišma M, Žnidaršič-Plazl P, Kulisic B, Sakellaris G, Hao J, Planinić M. The Potential of Brewer’s Spent Grain in the Circular Bioeconomy: State of the Art and Future Perspectives. Front Bioeng Biotechnol 2022; 10:870744. [PMID: 35782493 PMCID: PMC9247607 DOI: 10.3389/fbioe.2022.870744] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/17/2022] [Indexed: 12/30/2022] Open
Abstract
Brewer’s spent grain (BSG) accounts for approximately 85% of the total mass of solid by-products in the brewing industry and represents an important secondary raw material of future biorefineries. Currently, the main application of BSG is limited to the feed and food industry. There is a strong need to develop sustainable pretreatment and fractionation processes to obtain BSG hydrolysates that enable efficient biotransformation into biofuels, biomaterials, or biochemicals. This paper aims to provide a comprehensive insight into the availability of BSG, chemical properties, and current and potential applications juxtaposed with the existing and emerging markets of the pyramid of bio-based products in the context of sustainable and circular bioeconomy. An economic evaluation of BSG for the production of highly valuable products is presented in the context of sustainable and circular bioeconomy targeting the market of Central and Eastern European countries (BIOEAST region).
Collapse
Affiliation(s)
- Anđela Zeko-Pivač
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Marina Tišma
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
- *Correspondence: Marina Tišma,
| | - Polona Žnidaršič-Plazl
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | | | | | - Jian Hao
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Pudong, China
| | - Mirela Planinić
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| |
Collapse
|
32
|
Zannini E, Bravo Núñez Á, Sahin AW, Arendt EK. Arabinoxylans as Functional Food Ingredients: A Review. Foods 2022; 11:1026. [PMID: 35407113 PMCID: PMC8997659 DOI: 10.3390/foods11071026] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 02/04/2023] Open
Abstract
The health benefits of fibre consumption are sound, but a more compressive understanding of the individual effects of different fibres is still needed. Arabinoxylan is a complex fibre that provides a wide range of health benefits strongly regulated by its chemical structure. Arabinoxylans can be found in various grains, such as wheat, barley, or corn. This review addresses the influence of the source of origin and extraction process on arabinoxylan structure. The health benefits related to short-chain fatty acid production, microbiota regulation, antioxidant capacity, and blood glucose response control are discussed and correlated to the arabinoxylan's structure. However, most studies do not investigate the effect of AX as a pure ingredient on food systems, but as fibres containing AXs (such as bran). Therefore, AX's benefit for human health deserves further investigation. The relationship between arabinoxylan structure and its physicochemical influence on cereal products (pasta, cookies, cakes, bread, and beer) is also discussed. A strong correlation between arabinoxylan's structural properties (degree of branching, solubility, and molecular mass) and its functionalities in food systems can be observed. There is a need for further studies that address the health implications behind the consumption of arabinoxylan-rich products. Indeed, the food matrix may influence the effects of arabinoxylans in the gastrointestinal tract and determine which specific arabinoxylans can be included in cereal and non-cereal-based food products without being detrimental for product quality.
Collapse
Affiliation(s)
- Emanuele Zannini
- School of Food and Nutritional Sciences, University College Cork, T12 K8AF Cork, Ireland; (Á.B.N.); (A.W.S.); (E.K.A.)
| | - Ángela Bravo Núñez
- School of Food and Nutritional Sciences, University College Cork, T12 K8AF Cork, Ireland; (Á.B.N.); (A.W.S.); (E.K.A.)
| | - Aylin W. Sahin
- School of Food and Nutritional Sciences, University College Cork, T12 K8AF Cork, Ireland; (Á.B.N.); (A.W.S.); (E.K.A.)
| | - Elke K. Arendt
- School of Food and Nutritional Sciences, University College Cork, T12 K8AF Cork, Ireland; (Á.B.N.); (A.W.S.); (E.K.A.)
- APC Microbiome Ireland, University College Cork, T12 K8AF Cork, Ireland
| |
Collapse
|
33
|
Włodarczyk M, Śliżewska K. Efficiency of Resistant Starch and Dextrins as Prebiotics: A Review of the Existing Evidence and Clinical Trials. Nutrients 2021; 13:nu13113808. [PMID: 34836063 PMCID: PMC8621223 DOI: 10.3390/nu13113808] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/14/2021] [Accepted: 10/22/2021] [Indexed: 12/27/2022] Open
Abstract
In well-developed countries, people have started to pay additional attention to preserving healthy dietary habits, as it has become common knowledge that neglecting them may easily lead to severe health impairments, namely obesity, malnutrition, several cardiovascular diseases, type-2 diabetes, cancers, hypertensions, and inflammations. Various types of functional foods were developed that are enriched with vitamins, probiotics, prebiotics, and dietary fibers in order to develop a healthy balanced diet and to improve the general health of consumers. Numerous kinds of fiber are easily found in nature, but they often have a noticeable undesired impact on the sensory features of foods or on the digestive system. This led to development of modified dietary fibers, which have little to no impact on taste of foods they are added to. At the same time, they possess all the benefits similar to those of prebiotics, such as regulating gastrointestinal microbiota composition, increasing satiety, and improving the metabolic parameters of a human. In the following review, the evidence supporting prebiotic properties of modified starches, particularly resistant starches and their derivatives, resistant dextrins, was assessed and deliberated, which allowed drawing an interesting conclusion on the subject.
Collapse
Affiliation(s)
- Michał Włodarczyk
- Correspondence: (M.W.); (K.Ś.); Tel.: +48-783149289 (M.W.); +48-501742326 (K.Ś.)
| | - Katarzyna Śliżewska
- Correspondence: (M.W.); (K.Ś.); Tel.: +48-783149289 (M.W.); +48-501742326 (K.Ś.)
| |
Collapse
|